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Prior research has identified the lateral occipital complex (LOC) as a critical cortical region for the representation of
object shape in humans. However, little is known about the nature of the representations contained in the LOC and
their relationship to the perceptual experience of shape. We used human functional MRI to measure the physical,
behavioral, and neural similarity between pairs of novel shapes to ask whether the representations of shape contained
in subregions of the LOC more closely reflect the physical stimuli themselves, or the perceptual experience of those
stimuli. Perceptual similarity measures for each pair of shapes were obtained from a psychophysical same-different
task; physical similarity measures were based on stimulus parameters; and neural similarity measures were obtained
from multivoxel pattern analysis methods applied to anterior LOC (pFs) and posterior LOC (LO). We found that the
pattern of pairwise shape similarities in LO most closely matched physical shape similarities, whereas shape similarities
in pFs most closely matched perceptual shape similarities. Further, shape representations were similar across
participants in LO but highly variable across participants in pFs. Together, these findings indicate that activation
patterns in subregions of object-selective cortex encode objects according to a hierarchy, with stimulus-based
representations in posterior regions and subjective and observer-specific representations in anterior regions.
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Introduction

What is the neural code for object shape? This question has
been at the core of systems neuroscience for decades. In
monkeys, inferotemporal (IT) cortex has been shown to
contain cells selective for complex shapes [1]; in humans,
functional magnetic resonance imaging (fMRI) has identified
a brain region known as lateral occipital complex (LOC) as a
neural center for object representation [2,3]. This region
responds more to intact than scrambled images of everyday
objects [2,3] and is thought to be critical for object
recognition [4,5]. However, the nature of the representations
in these object-selective regions remains poorly understood.

A number of previous studies suggest that the coding of
objects in high-level visual cortex may reflect subjective
perceptual experience of shapes. For instance, LOC adapts
across changes in low-level physical stimulus properties that
leave perceived shape unaltered, but not across changes that
affect perceived shape [6,7]. Furthermore, the fMRI signal in
LOC tracks recognition performance more accurately than
activation in retinotopic cortex [5,8], and both IT neurons
and the fMRI signal in LOC reflect the perceptual similarity
of stimuli [8,9]. Finally, Kayaert et al. [10,11] found that IT
cells are more strongly modulated by perceptually salient
stimulus changes (nonaccidental properties) than by metric
changes of equal physical magnitude.

FMRI studies of visual processing have traditionally focused
on mean activation levels, looking for brain regions showing a
difference in activation between different stimulus condi-
tions. More recent studies, in contrast, have illustrated the
importance of the distributed pattern of activation in

representing information about stimulus conditions [12–14].
Haxby et al. [12] first showed that even when there is no
difference in the mean activation levels of specific conditions
across occipitotemporal cortex, object category can still be
determined from the distributed pattern of activation using a
correlation method. Recently, Williams et al. [8] demonstra-
ted that activation patterns contain object-specific informa-
tion only on trials where recognition is successful. This
finding raises the question whether activation patterns
contain detailed information about subjective visual experi-
ence.
We used a combination of human fMRI and psychophysics

to test the hypothesis that distributed activation patterns in
LOC reflect perceived shape. We created a novel artificial
shape space, in which physical similarity was controlled by
gradual, parametric changes in aspect ratio and skew.
Perceptual similarity was measured by psychophysical dis-
crimination performance between the shapes, and neural
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similarity was measured by the correlations between the fMRI
activation patterns of these shapes in LOC. (Note that we use
the term ‘‘neural’’ to refer to fMRI activation patterns
because of the high correlation between the BOLD signal
and neuronal activity [15]) We found significant correlations
between neural and perceptual similarity measures in LOC.
Interestingly, this finding was restricted to the anterior
portion of LOC (pFs); in the posterior portion (LO), we
found significant correlations between neural and physical
similarity measures. In addition, neural similarities were
consistent across participants in posterior LOC, but highly
variable across participants in anterior LOC. Together, these
results suggest that object representations in posterior LOC
reflect the physical stimulus, while representations in
anterior LOC reflect subjective shape experience.

Results

We created a novel artificial stimulus space consisting of
four complex objects (Figure 1A). Each stimulus had four
radially arranged protrusions (two half-parabolas joined at the
vertices), which varied parametrically in aspect ratio and skew
across stimuli. This stimulus space had five important features.
First, IT cortex contains cells that are tuned to aspect ratio
and skew, independently of one another [16]; thus, our stimuli
varied along dimensions likely to be relevant in object-
selective areas. Second, the four shapes used in the experiment
were equidistant in aspect ratio and skew, and we thereby
controlled important aspects of the their physical similarity;
we refer to these aspects of similarity as ‘‘physical similarity,’’
while noting that other definitions of physical similarity are
possible (see below for an analysis using a V1-like measure of
similarity). Third, the stimuli were novel, allowing us to
investigate shape similarities without confounds from seman-
tic or learned associations. Fourth, spatial fMRI activation
patterns in LOC have recently been shown to contain
information sufficient for discrimination of such novel shapes

[8,14,17]. Finally, the stimuli were chosen such that perceptual
similarities correlated somewhat with physical similarity, but
not perfectly, leaving room for the neural similarities to
correlate, e.g., with perceptual similarity without necessarily
also correlating with physical similarity, and vice-versa.
To study the relationship between perceptual, physical, and

neural similarities in pFs and LO, we obtained three
similarity measures for each pair of stimuli as follows. First,
for each of the six possible pairs of nonidentical stimuli,
physical similarity was measured by the inverse pairwise
distances of the four shapes in the aspect ratio/skew space
(Figure 1B, top right panel). As pointed out above, aspect
ratio and skew were chosen because these dimensions are
thought to be of relevance in high-level visual cortex [16].
Since the four stimuli formed a continuum with equal
distances between adjacent stimuli, the six possible pairs of
the four stimuli had distances of 1, 1, 1, 2, 2, and 3 steps; these
distances were converted to similarities by inverting their
values, to yield the similarity values 3, 3, 3, 2, 2, and 1 (see
below for a different measure of physical similarity).
Second, to obtain a measure of perceptual shape similarity,

we conducted a separate behavioral experiment outside the
scanner with the same participants. On each trial, two shapes
were shown in succession, and participants responded
whether the two shapes were identical or different. Each
shape was shown for 17 ms, with a forward and a backward
mask of 50 ms each (without gaps between stimulus and
masks), followed by a 1,500 ms response period. The
proportion of trials on which a particular participant
responded ‘‘identical’’ to a pair of stimuli that were in fact
different was used as a measure of the perceptual similarity of
that pair of stimuli. An example of a perceptual similarity
matrix is shown in Figure 1B (top left panel). Note that we use

Figure 1. Stimuli and Analysis Method

(A) The Stimuli used in the fMRI and behavioral experiments. Adjacent
stimuli were equidistant in the aspect ratio/skew stimulus space, and
together the four stimuli formed a straight line through this space. We
could thus control physical similarity in terms of aspect ratio and skew.
Area was kept constant across stimuli.
(B) Example of perceptual (top left), physical (top right), and neural
(bottom) similarity matrices, together with correlation coefficients
between the matrices. These correlation coefficients were obtained for
all participants and are summarized in Figure 2.
doi:10.1371/journal.pbio.0060187.g001
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Author Summary

As early as 1031 A.D., the Arab scholar Ibn al-Haytham suggested that
visual experience was not veridical, but inherently subjective. During
the last few decades, this observation has given rise to one of the
core questions in visual neuroscience: how does the subjective
experience of visual stimuli relate to their neural representations in
the brain? It is well-known that visual shape is represented in a brain
region called lateral occipital complex (LOC). However, do these
representations reflect physical or perceptual stimulus character-
istics? We presented observers with a set of complex visual stimuli
and obtained three measures of similarity for these stimuli: a
physical similarity measure based on stimulus parameters; a
behavioral similarity measure based on discrimination performance;
and finally a neural similarity measure based on multivariate pattern
analyses in LOC. We found that in anterior LOC, neural stimulus
similarities correlated with subjective perceptual similarities, but not
with physical stimulus similarities; the reverse was true in posterior
LOC. In addition, neural similarities were consistent across partic-
ipants in posterior LOC, but highly variable across participants in
anterior LOC. Together these findings suggest a two-part answer to
the question of how cortical object representations relate to
subjective experience: anterior regions appear to contain subjective,
individually variable shape representations, whereas posterior
regions contain stimulus-based shape representations.



the confusion rate merely as a proxy for true, first-person
perceptual similarity, and do not wish to argue strongly that
two stimuli that are confused with high probability necessa-
rily also have highly similar qualia. Our definition of
perceptual similarity is therefore merely an operational one
in the context and for the practical purposes of this
experiment.

Finally, to obtain a measure of neural similarity, we
scanned the brains of eight participants using fMRI. Since
we had a specific hypothesis about neural coding in object-
selective cortex, we first identified the human object-selective
region LOC in an independent localizer scan, using the
standard comparison of intact versus scrambled everyday
objects [2] (p , 10�4). LOC can be subdivided into a posterior
portion, LO, on the lateral surface of occipitotemporal
cortex; and an anterior portion, pFs, on the fusiform gyrus
of the temporal lobe [18]. These two anatomically distinct
portions of LOC were defined as separate regions of interest
(ROIs). The ROI approach is of advantage because it is not
subject to multiple comparisons problems.

In separate scans, we presented participants with the four
shapes, using an event-related design. Each stimulus was
shown for 300 ms, followed by a blank period of 1,700 ms,
during which the participants had to respond whether the
current stimulus was identical to that on the previous trial
(one-back task). The purpose of this task was to keep
participants’ attention focused on the stimuli. We then
extracted the spatially distributed activation patterns of each
individual stimulus from the two LOC ROIs, on a voxel-by-
voxel basis. Thus, in each participant and for each ROI, we
obtained four vectors, each representing the voxelwise
activation pattern of one particular shape in that ROI. We
then computed the correlations between each of the six pairs
of activation patterns for nonidentical stimuli, separately for
pFs and LO. This resulted in six correlation coefficients for
each ROI, one for each possible pair of the four shapes. An
example of a neural similarity matrix is shown in Figure 1B
(bottom panels).

Correlations between Neural and Perceptual/Physical
Similarity in LOC

Thus, we obtained physical, perceptual, and neural
similarity measures for each possible pair of stimuli. We next
compared these six-element similarity matrices to one
another, by computing their correlation coefficients within
participants and ROIs (Figure 1B). A high correlation
between, e.g., the perceptual similarity matrix and the neural
similarity matrix in a given ROI would indicate that if two
stimuli are similar perceptually, they are also similar neurally
in that ROI, i.e., their neural activation patterns are highly
correlated with one another. Our hypothesis predicted that
neural and perceptual similarity should be correlated in LOC.

The results confirmed this hypothesis, with an interesting
twist. Neural and perceptual similarities were positively
correlated in pFs, with an average correlation of 0.35 across
participants, whereas in LO the average neural-perceptual
correlation was only 0.001 (Figure 2). Conversely, neural and
physical similarities were strongly positively correlated in LO
(average correlation 0.41), but much more weakly in pFs
(average correlation 0.10; Figure 2).

To quantify these results, we initially applied the Fisher z
transformation to all correlation coefficients. This method

transforms the non-normally distributed correlation coef-
ficients into normally distributed variables, which allows the
use of standard analysis of variance methods [19] (for details,
see Materials and Methods). Statistical analysis after Fisher z
transformation confirmed that across participants, the
correlation coefficients between neural and perceptual
similarities were significantly greater than zero in pFs (t(5) ¼
5.66, p , 0.001), but not greater than zero in LO (t(5)¼ 0.10, p
¼ 0.38). Conversely, the correlations between neural and
physical similarities were significantly greater than zero in LO
(t(5)¼ 2.66, p , 0.05), but not in pFs (t(5)¼ 0.70, p ¼ 0.29). A
two-way analysis of variance (ANOVA) with region of interest
(pFs versus LO) and correlation type (neural-perceptual
versus neural-physical) as factors revealed a significant
interaction of ROI and correlation type (F(1,5) ¼ 13.79, p ,

0.005), confirming the dissociation between these ROIs:
neural pattern similarities in pFs correspond to subjective
shape similarities, while neural pattern similarities in LO
correspond to physical shape similarities.
These results were not due to differential mean signal levels

for any of our stimuli, for two reasons: first, the correlation
analysis does not take into account mean levels of activation;
second, there were no differences in mean signal between the
four stimuli in either region of interest (pFs: F(3,21)¼1.86, p¼
0.17; LO: F(3,21) ¼ 0.17, p ¼ 0.92). Moreover, these results
cannot be due to task performance, since critically the
perceptual similarity measure was obtained in a separate
testing session, while in the scanner participants performed
an easy one-back task. (A control analysis for potential effects
due to this task is reported below.)

Inter-Participant Reliability
As a further test of this finding, we speculated that if neural

similarities in pFs reflect subjective perceptual similarities,
the correspondence of neural similarities across participants
in this region might be low: if a given pair of stimuli is
neurally similar in pFs in one participant, the same pair may
be neurally different in another participant whose subjective
percept is different. Conversely, if neural similarities in LO

Figure 2. Mean Correlations across Participants between Neural and

Perceptual Similarities (Left) and Neural and Physical Similarities (Right)

Neural-perceptual correlations are high in pFs and low in LO, and the
reverse is true for neural-physical correlations. Shown are means 6 1
(conventional) standard error (SE).
doi:10.1371/journal.pbio.0060187.g002
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reflect physical similarities, they should not differ greatly
across participants. In other words, in pFs we would expect
low inter-participant reliability of the neural similarities,
whereas in LO we would expect high inter-participant
reliability. To test this hypothesis, we correlated the neural
similarity matrices of all individual participants with one
another, separately for each ROI. This resulted in two 8 3 8
matrices, where each cell represents the correlation between
the neural similarity matrices of two individual participants
in one ROI (Figure 3). A high correlation in a given cell
indicates that in these two participants, the stimulus pairs
that are neurally similar in one participant are also neurally
similar in the other participant.

As predicted, inter-participant reliability was low in pFs
(mean across-participant correlation: 0.07; not different from
zero, t(25) ¼ 0.92, p ¼ 0.26; Figure 3), but high in LO (mean:
0.42; greater than zero, t(25)¼ 7.83, p , 0.00000005; Figure 3).
The difference between these two ROIs was significant (t(25)¼
�2.80, p , 0.05).

Note that this analysis is independent of the results
described above: whether the neural similarities in pFs
correlate across participants (as tested here) does not depend
on whether they correlate with the behavioral similarities
within participants (tested above).

Further Regions of Interest
To test whether the results described above are specific to

object-selective cortex, we defined a set of further regions of
interest: a retinotopic ROI based on activation at the
occipital pole during the localizer task, as described before
[8]; the fusiform face area (FFA [20]; see also [7]), and the
occipital face area (OFA; [21,22]), based on the standard
functional contrast of faces against objects (p , 10�4); and the
parahippocampal place area, PPA [23], based on the standard
contrast of scenes against objects (p , 10�4). In none of these
regions did the neural similarities exhibit significant corre-

lations with either perceptual or physical similarity (Figure
4A). Moreover, we found no significant inter-participant
reliability in any of these regions (Figure 4B). With the
exception of PPA, each of these regions contained at least as
many voxels as pFs, ruling out the possibility that this finding
is due to an inability to detect a correlation in small datasets.
However, this possibility remains for PPA, which contained
significantly fewer voxels than pFs. Note that FFA did not
overlap with pFs in any of our participants.

Behavioral Results
The psychophysical same-different task used outside the

scanner to obtain a measure of perceptual similarity was
made as difficult as possible by presenting stimuli for
extremely short durations (17 ms each) and using both
forward and backward high-energy noise masks (50 ms each).
Nevertheless, the performance level was high, with an average
of 93% 6 1% correct performance on the same-different
task. However, this level of performance corresponds to an
average of 44 6 9 errors over the course of the psychophys-
ical experiment; this number of errors, distributed over the
four stimuli used, proved sufficient to obtain a reliable
measure of perceptual similarity. In support of this claim, the
inter-participant reliability of perceptual similarity was on
average r ¼ 0.28 across participants (different from zero:
t(25)¼2.77, p , 0.05), showing that pairs of stimuli that a
particular participant confused with high probability were
also perceptually similar for the other participants. However,
at the same time the fact that this correlation was not
extremely high leaves room for subjective, observer-specific
patterns of perceptual similarities.
The average correlation between the physical and percep-

tual similarity measures across participants was r ¼ 0.38; this
value was significantly different from zero (t(5) ¼ 2.75, p ,

0.05). Thus, perceptual similarity correlated with physical

Figure 3. Inter-Participant Reliability

(A) Mean neural inter-particiapnt correlation coefficients in pFs (left) and
LO (right). Consistent with observer-specific, subjective similarities in pFs,
and physically-based similarities in LO, inter-participant reliability is low
in pFs and high in LO. Shown are means 6 1 (conventional) SE.
(B) Neural inter-particiapnt reliability in pFs (top) and LO (bottom). Each
cell represents the correlation coefficient between the neural similarity
matrices of two individual participants. A high correlation indicates that
pairs of stimuli that are neurally similar in one participant are also
neurally similar in the other participant.
doi:10.1371/journal.pbio.0060187.g003

Figure 4. Correlations in Control ROIs

(A) Mean correlations across participants between neural and perceptual
similarities (left) and neural and physical similarities (right) in control
ROIs. No bar is significantly different from zero using Fisher-z–
transformed correlations and standard errors. Shown are means 6 1
(conventional) SE.
(B) Neural inter-participant reliability in control ROIs. Each bar represents
the average correlation coefficient between the neural similarity matrices
of all pairs of individual participants. A high correlation indicates that
pairs of stimuli that are neurally similar in one participant are also
neurally similar in the other participant. No bar is significantly different
from zero. Shown are means 6 1 (conventional) SE.
doi:10.1371/journal.pbio.0060187.g004
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similarity, but not perfectly, again leaving room for the
neural similarity measures to correlate with either the
perceptual or the physical similarities without necessarily
also correlating with the other.

The one-back task participants performed in the scanner
was designed purely to keep participants’ attention focused
on the stimuli and was very easy to perform; none of our
participants made a single mistake on this task. However, to
nevertheless control for any possible effects of performance
in the scanner, we analyzed the reaction times during the task
in the scanner as follows. Since the order of stimulus
presentation was randomized using m-sequences, each
stimulus was preceded equally often by each other stimulus;
therefore, each of the six possible discriminations among the
four stimuli entered the neural pattern an equal number of
times, and differential performance on any of these con-
ditions could therefore not influence the neural pattern.
However, it is possible that the task was easier for some
stimuli in general; such a difference would enter the neural
pattern of those stimuli and could thus potentially bias our
results. Indeed, we observed a significant difference in the
reaction times of stimuli 1 and 3 (mean reaction time [RT],
stimulus 1: 602 ms 6 13 ms; stimulus 3: 624 ms 6 14 ms; t(7)¼
8.11, p , 0.001), and stimuli 1 and 2 (mean RT, stimulus 2: 619
ms 6 17 ms; t(7)¼ 2.88, p , 0.05). To assess the effect of this
difference, we used the reaction time differences among the
four stimuli during the task in the scanner as a new
behavioral similarity measure within each participant; e.g.,
if a particular participant took an average of 635 ms to
respond to stimulus 1, and 649 ms for stimulus 2, the new
behavioral similarity of these stimuli would be the negative
reaction time difference, i.e. �14 ms (negative to turn the
measure from a ‘‘difference’’ into a ‘‘similarity’’ measure). We
then re-computed the correlations between the neural
similarities and this new behavioral similarity measure. None
of the resulting correlations were significant in any of our
ROIs, although there was a nonsignificant trend towards a

correlation between neural similarities and the new reaction
time similarities in LO (mean r ¼ 0.33, t(5)¼ 1.75, p ¼ 0.09).

Robustness to Subsampling
As pointed out above, it is conceivable in principle that

differential numbers of voxels in different ROIs affect the
likelihood of detecting correlations. Indeed, LO contained
more voxels on average than pFs (pFs: mean 127 6 36 voxels,
LO: mean 287 6 107 voxels). We therefore wished to test
whether the results described above depend on the number
of voxels in each ROI. To this end, we conducted a control in
which we randomly excluded 50% of the voxels of each ROI.
This procedure was repeated 100 times, and an average
correlation estimate was obtained by averaging over the 100
bootstrapping iterations. The results were the same as in the
main analysis reported above (Figures 5 and 6): the average
correlation between neural and perceptual similarities in pFs
was 0.25 (different from zero: t(5)¼ 6.32, p , 0.001; Figure 5),
but that between neural and physical similarities in this
region was only 0.05 (not different from zero: t(5)¼ 0.56, p¼
0.32); in contrast, LO exhibited a significant correlation
between neural and physical similarities (mean r¼ 0.32, t(5)¼
2.33, p , 0.05; Figure 6), but not between neural and
perceptual similarities (mean r ¼ 0.06, t(5) ¼ 0.56, p ¼ 0.32).
The interaction was again significant (F(1,5) ¼ 12.00, p ,

0.005). Similarly, the inter-participant reliability was again
high in LO (mean r ¼ 0.21, t(25) ¼ 2.82, p , 0.05), but low in
pFs (mean r ¼ 0.04, t(25) ¼ 0.60, p ¼ 0.33; Figure 6). The
difference between LO and pFs was significant (t(25)¼ 2.04, p
¼ 0.05). Note, however, that subsampling reduced the inter-
participant reliability in LO by a factor of one-half (mean r¼
0.42 to mean r¼0.21). In light of this change, and the fact that
the average sizes of pFs and LO differed by a factor greater
than two, we repeated the subsampling for the inter-
participant reliability analysis using not 50% of voxels, but
instead equalizing voxel numbers across the two ROIs.

Figure 5. Robustness of Within-Participant Analysis to Subsampling

Mean correlations across participants between neural and perceptual
similarities (left) and neural and physical similarities (right), after random
exclusion of 50% of voxels and 100-fold bootstrapping. Neural-
perceptual correlations are high in pFs and low in LO, and the reverse
is true for neural-physical correlations. Shown are means 6 1 (conven-
tional) SE.
doi:10.1371/journal.pbio.0060187.g005

Figure 6. Robustness of Inter-Participant Reliability to Subsampling

(A) Mean neural inter-participant correlation coefficients in pFs (left) and
LO (right), after random exclusion of 50% of voxels and 100-fold
bootstrapping. Consistent with observer-specific, subjective similarities
in pFs, and physically-based similarities in LO, inter-participant reliability
is low in pFs and high in LO. Shown are means 6 1 (conventional) SE.
(B) Neural inter-participant reliability in pFs (top) and LO (bottom), after
random exclusion of 50% of voxels and 100-fold bootstrapping. Each cell
represents the correlation coefficient between the neural similarity
matrices of two individual participants. A high correlation indicates that
pairs of stimuli that are neurally similar in one participant are also
neurally similar in the other participant.
doi:10.1371/journal.pbio.0060187.g006
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Specifically, we excluded random subsets of voxels from the
larger ROI, until its size matched that of the smaller ROI,
again with 100-fold bootstrapping. The results were com-
parable to that of the initial analysis: the inter-participant
reliability was high in LO (mean r ¼ 0.31, t(25) ¼ 7.79, p ,

0.0001), but low in pFs (mean r ¼ 0.07, t(25) ¼ 0.91, p ¼ 0.26),
with a significant difference between LO and pFs (t(25)¼2.65,
p , 0.05). Thus, our results are independent of the size of our
ROIs.

An Alternative Physical Similarity Measure
The physical similarity measure reported above was based

on the distances of the stimuli from each other in terms of
aspect ratio and skew parameters. The high correlation of
these aspect ratio/skew distances with neural similarities in
LO is consistent with the proposal that LO encodes stimuli in
terms of aspect ratio and skew, as has been reported
previously for high-level visual cortex in monkeys [16,24].
This finding suggests that LO might no longer correlate with
physical similarity if it was defined in a different fashion. As a
test of this hypothesis, we replaced the aspect ratio/skew
distance measure with an alternative physical similarity
measure designed to mimic the properties of area V1: the
images were convolved with a set of Gabor filters with
orientation and spatial frequency selectivities similar to those
found in V1 [25] (see Materials and Methods); the resulting
filtered images were then compared for pixelwise similarity.
The resulting mean physical similarity matrix correlated well
(r¼0.67) with the physical similarity measure reported above,
i.e., closeness of the stimuli in parameter space. However, the
neural similarities of pFs and LO showed no correlation with
this V1-type physical similarity measure: in pFs, the mean
correlation of the neural similarities with the mean Gabor
similarity measure was r¼ 0.06 (not different from zero: t(5)¼
0.42, p¼ 0.34); in LO, it was r¼ 0.07 (t(5)¼ 0.45, p¼ 0.34). In
addition, we repeated this analysis for each individual Gabor
filter (4 orientations 3 5 spatial frequencies); none of the
resulting 20 correlations between neural and physical
similarities were significantly different from zero across
participants in either pFs (correlations ranging from �0.09
to 0.10, none significant across participants) or LO (correla-
tions ranging from �0.11 to 0.16, none significant across
participants). Thus, the correlation of neural and physical
similarities in LO appears to be specific to the case when the
physical similarities are described in terms of aspect ratio and
skew [16].

The neural patterns in retinotopic cortex only showed a
weak correlation with the physical stimulus distances based
on this V1-type similarity measure; the mean correlation
between neural and Gabor similarities in retinotopic cortex
was r ¼ 0.15, which did not differ from zero across
participants (t(5) ¼ 0.76, p ¼ 0.27). Moreover, none of the
correlations were significant when the individual physical
similarity matrices resulting from each of the 20 Gabor filters
were correlated one-by-one with neural similarities (correla-
tions ranging from 0.12 to 0.17, none significant across
participants). This result is probably due to the fact that the
images were presented with a random jitter of ;2 degrees
during scanning, which likely resulted in sufficiently non-
overlapping activations in retinotopic cortex to disrupt the
neural similarity estimates in this region, and therefore also
any correlation between neural and physical similarities. In

support of this hypothesis, the stimuli were not distinguish-
able in retinotopic cortex using Haxby’s pattern discrim-
ination method [12] (mean percent correct discrimination:
44% 6 5%), while they were easily discriminable in pFs (66%
6 4% correct) and LO (65 6 3% correct; for more details see
next section).

Stability of Neural Patterns across Split-Halves
The results reported above indicate that the neural patterns

in our regions of interest contain fine-grained information
about perceptual and physical stimulus similarity. These
analyses were based on correlations between the neural
activation patterns of pairs of stimuli; this measure controls
for noise in the data because the formula for the correlation
coefficient includes a division by the standard deviations of
the data vectors. However, we additionally wished to confirm
with a conventional analysis method that these neural
patterns were indeed stable and contained information about
stimulus identity. To this end, we applied the widely used
technique of Haxby et al. [12]: we extracted the activation
patterns separately for even and odd runs, and compared
‘‘within’’ and ‘‘between’’ correlations. The mean ‘‘within’’
correlations were 0.10 6 0.05 and 0.04 6 0.02 in pFs and LO,
respectively, while the mean ‘‘between’’ correlations were 0.04
6 0.02 and�0.001 6 0.04 for pFs and LO, respectively. These
correlations were low because we used an event-related
design. Importantly, however, the ‘‘within’’ correlations were
significantly higher than the ‘‘between’’ correlations, indicat-
ing that the patterns contained enough information to
discriminate between same versus different stimuli (F(1,7) ¼
3.67, p , 0.05, two-way ANOVA with ROI and within/between
as factors). As a further test of pattern discriminability, we
computed the ‘‘Haxby Index’’ [8,12,13,26]. This index esti-
mates classification performance between pairs of stimuli
based on the within and between correlations, where 50% is
chance performance and 100% is optimal performance.
Discrimination performance was 66% 6 4% in pFs and
65% 6 3% in LO; these levels of performance were
significantly above chance (pFs: t(7) ¼ 4.20, p , 0.005; LO:
t(7) ¼ 4.55, p , 0.005). Thus, the patterns in both ROIs were
stable enough across the split halves to successfully discrim-
inate between our stimuli.

Discussion

In sum, we have found that distributed activation patterns
in human object-selective cortex contain information about
the subjective perceptual similarities between complex visual
stimuli. Specifically, we show a dissociation between neural
coding of perceptual versus physical similarities within LOC:
using independent measures of neural, perceptual, and
physical similarity on our set of novel artificial shapes, we
find that the neural similarities of shapes in anterior LOC
(pFs) correlate with their perceptual similarities. Conversely,
the neural similarities in posterior LOC (LO) correlate with
the physical similarity of the shapes in the stimulus space.
Furthermore, the agreement across participants of the neural
similarities is high in LO, but low in pFs, consistent with a
physically based representation in LO and a representation
based on observer-specific subjective shape experience in
pFs.
These results are specific to object-selective cortex, i.e., the
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regions LO and pFs; additional ROIs including retinotopic
cortex, FFA, OFA, and PPA did not show significant
correlations between either neural and perceptual or physical
similarities. Moreover, the results did not depend on the
number of voxels in each ROI.

Our findings confirm previous studies showing that object
representations in the ventral stream reflect subjective
perception [5–9,11,27], and extend them by showing that
the distributed pattern of activation in LOC contains
information about idiosyncratic perceptual similarities on a
fine-grained scale [14].

Similarly, the finding that posterior LOC shows a correla-
tion between neural and physical stimulus similarity confirms
previous studies that have shown selectivity for physical shape
features of moderate complexity in high-level visual cortex.
In area V4, single-cell and fMRI studies have demonstrated
tuning to contour curvature in monkeys [24,28,29] and
selectivity for radial and concentric gratings [30] and
intermediate-complexity object parts [31] in humans. Single
cells in monkey IT cortex have been shown to be tuned to
metric changes in simple geometrical shapes [10,16] and to
particular combinations of simple shapes [1]. Moreover, IT
responses are sensitive to low-level visual properties such as
object size, position, and viewpoint [32–34].

Putting the results from pFs and LO together, our findings
are consistent with previous evidence regarding an anterior-
posterior functional subdivision within LOC: Grill-Spector et
al. [35] showed that pFs exhibits more location- and size-
invariance than LO; Lerner et al. [36,37] found that pFs was
more vulnerable to object scrambling than LO; and Kourtzi et
al. [38] showed that pFs does not adapt across changes that
alter an object’s subjective appearance (convex versus
concave), while LO does. Together, these studies suggest that
object representations in pFs are more high-level, abstract,
and closer to subjective perception than those in LO. Our
results substantiate this claim by showing directly that neural
similarities correlate with perceptual similarities in pFs but
not LO, while neural similarities correlate with physical
similarities in LO but not pFs. In contrast to these previous
studies, our experiment shows the correspondence between
perceptual and neural similarities directly and within
individual participants, by using participant-specific meas-
ures of perceptual and neural similarity. Furthermore, by
computing these neural similarities on the activation pattern
across individual voxels, we obtain a richer and more
informative measure of neural similarity than can be
achieved by averaging the activation across the entire ROI
[12].

However, it should be noted that other recent studies have
found evidence highlighting the informativeness and behav-
ioral relevance of neural activation patterns in LO: Eger et al.
[14] showed that support vector classification within catego-
ries was better in LO than pFs; Williams et al. [8] found that
correct versus incorrect recognition was reflected in the
activation patterns of LO but not pFs. Thus, pFs may not
always be the seat of conscious shape perception; instead, the
cortical regions whose representations are most closely
associated to subjective shape perception may vary with the
stimulus, task, and viewing conditions [8].

Three previous studies have shown correlations between
pattern information and subjective perception in object-
selective cortex. First, Edelman et al. [9] used multi-dimen-

sional scaling (MDS) to uncover the perceptual and neural
similarities of a set of categorized stimuli, and found that
both the behavioral and the neural measures of similarity
followed the stimulus category boundaries (e.g., four-legged
animals versus cars). However, their stimulus set consisted of
photographs of familiar, every-day objects from a restricted
set of categories; thus, it is unclear whether the correspond-
ence between the neural and behavioral measures is due to
low-level visual similarity of objects in the same category,
category membership itself, or even matching semantic
associations of stimuli in the same category. By using novel
objects from a parametrized stimulus space we can disen-
tangle perceptual from physical similarity. Moreover, we
show a functional dissociation between the two subregions of
LOC, which were not analyzed independently in the Edelman
et al. [9] study.
Second, Op de Beeck et al. [27] showed in monkeys that the

firing rates of neurons in IT cortex reflect perceptual
similarities in a set of complex stimuli. The present experi-
ment was inspired by this study, and we replicate its findings
in a different species (human) and using a different technique
(fMRI). In addition, we show that human object-selective
cortex contains both physically based and perceptually based
similarity metrics, organized in a posterior-anterior hier-
archy.
Third, Williams et al. [8] used a pattern analysis approach

similar to the one used here to show that the activation
pattern in LOC contains information sufficient for stimulus
discrimination only if the participant successfully categorizes
the stimulus. This study is similar to ours in that it establishes
a link between the distributed activation patterns in LOC and
behavioral performance. However, the question it addresses
is substantially different from ours: Williams et al. asked
whether the information contained in the LOC activation
patterns correlated with successful object categorization; in
contrast, we ask whether the activation patterns in LOC
reflect physical stimulus similarities or subjective perceptual
similarities. This difference is also the likely cause for a
further one, namely that Williams et al. find correspondence
between neural patterns and task performance in LO, but not
in pFs, while we show correlations between neural and
perceptual similarities in pFs but not in LO (see also [14]). In
addition, Williams et al. used visually highly distinctive
stimulus categories, whereas the differences between our
stimuli were more subtle. Together these differences suggest
that coarse category membership [8] and more fine-grained
similarity (this study) may be neurally distinguishable at the
level of LOC.
In conclusion, our results indicate that object shape may be

coded in terms of physical features in posterior LOC, and in
terms of subjective shape experience in anterior LOC. Of
course, this claim simply replaces one puzzle with another:
‘‘What is the neural code for object shape?’’ is transformed
into the equally difficult question, ‘‘What are the determi-
nants of subjective shape experience?’’ However, the advant-
age of this new question is that it has been the subject of
intensive study since the time of the Gestalt psychologists
[39], and the accumulated evidence is a rich source of new
hypotheses about the neural code for object shape. Combin-
ing behavioral measures with fine-grained fMRI pattern
analysis methods [8,12,13] may prove a powerful means of
solving the puzzle of visual object recognition.
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Materials and Methods

Participants.We recruited eight participants from the MIT Human
Subject Pool. Each participant was compensated US$60. The study
was approved by the MIT Committee on the Use of Humans as
Experimental Subjects (COUHES). All participants gave informed
consent.

Stimuli. Localizer scans: The LOC was localized as the region that
responded more strongly to grayscale images of intact objects than to
images of scrambled objects (p , 10�4), as described previously [2,6].
The FFA [20] and the OFA [21,22] were defined as the regions
responding more to faces than objects (p , 10�4). The PPA [23] was
defined as the region responding more to scenes than objects (p ,
10�4). The retinotopic ROI was defined based on activation at the
occipital pole in a contrast between all stimulus conditions versus
baseline in the localizer scans (p , 10�4; [8]).

Experimental scans and behavioral experiment: Four novel stimuli, each
measuring 10 degrees across, were used for the experimental scans.
The use of novel stimuli ensured that correlations were not due to
semantic associations with the stimuli; this was a potential confound
in previous pattern similarity studies [9]. Furthermore, we wished to
use shape features that are likely to be encoded in object-selective
cortex. Single-cell studies have shown that aspect ratio and skew are
two such features [10,16]; we therefore created our stimuli based on
parametric changes in aspect ratio and skew. Specifically, each
stimulus consisted of four protrusions arranged radially around a
central disk. Each protrusion was composed of two adjoining half-
parabolas of the form y¼ a xn. The parameters a and n could be used
to vary the skew and aspect ratio of each protrusion parametrically.
In doing so, the total area of the stimuli was always kept constant to
avoid low-level confounds. We defined aspect ratio as the ratio of the
height to the base width of each protrusion, and skew as the position
of the vertex with respect to the center of the base; for instance, 0%
skew indicates a vertex directly above the center of the base, skew of
100% indicates a vertex directly above the right end of the base, and
skew of �100% indicates a vertex directly above the left end of the
base. From the left to the right end of the stimulus spectrum, the
aspect ratio of the second and fourth protrusions (counting clock-
wise, beginning at 12 o’clock) decreased by 1.4 and 1.6 on each morph
step, respectively; the aspect ratio of the first and third protrusions
was fixed. For skew, the first, second, and fourth protrusions moved
counterclockwise by 60%, 24%, and 24% for each step, respectively
(where a cumulative skew change greater than 100% simply meant
moving the vertex of the protrusion beyond its base); the skew of the
third protrusion changed in the clockwise direction by 25% on each
step. Thus, the four stimuli used were equidistant in terms of aspect
ratio and skew, forming a straight line in the stimulus space. The
magnitude of the parametric distances between the stimuli was
chosen based on informal testing to be at the same time discriminable
and not too obvious. The stimuli were filled with random dots, with a
mean luminance of 50%, to ensure activation throughout the ventral
visual stream. In addition, a chair and a face were included in the
stimulus set, to prevent adaptation in ventral visual cortex due to the
high similarity among the novel shapes.

Procedure. fMRI experiment: Each participant was run in one session
of about 2 h, consisting of eight experimental scans and four LOC
localizer scans. Stimuli were presented using the Psychophysics
Toolbox [40] and Matlab (Mathworks).

The localizer scans were run as described previously [6,20,23].
The experimental scans were event-related, and each scan

contained 144 stimulus trials and 36 fixation trials. On each trial,
one of the six possible stimuli (four novel shapes, one face, one chair)
was presented at the center of the screen for 300 ms, followed by a
1,700-ms response period during which participants indicated
whether the current stimulus was identical or different from the
previous one. The purpose of this task was to keep participants’
attention focused on the stimuli. The order of stimulus presentation
was optimized using m-sequences (Optseq). Each stimulus occurred
24 times per scan, resulting in a total of 192 times for the whole
experiment.

Behavioral experiment: In a separate behavioral session that followed
the fMRI experiment with a delay of at least 1 wk, each of the original
participants performed a same-different task on pairs of the same
four shapes, plus the face and the chair, that were presented in the
fMRI experiment. On each trial, two stimuli were shown sequentially,
for 17 ms each, with a forward and a backward mask (consisting of a
full screen noise field of random letters with high density and
overlap) of 50 ms each, followed by a 1,500-ms response period.
Perceptual similarities were obtained by computing the proportion
of trials on which a particular pair of different stimuli was

erroneously considered ‘‘identical’’. Participants performed 630 trials
total. Each stimulus appeared with equal probability on each trial,
and with equal probability as the first and second stimulus of each
pair.

Functional imaging. fMRI scanning was performed on a 3T
Siemens Trio Scanner (Siemens) at the Athinoula A. Martinos Center
for Biomedical Imaging at the McGovern Institute for Brain Research
at MIT. A Gradient Echo single-shot pulse sequence was used (TR¼ 2
s; TE ¼ 30 ms). Twenty-five slices were collected with a 12-channel
head coil. Slices were oriented roughly perpendicular to the calcarine
sulcus and covered most of the occipital and posterior temporal
lobes, as well as some of the inferior parietal lobes. Slices were 2 mm
thick, with a 10% gap, and had an in-plane resolution of 1.631.6 mm.

Data analysis. Data analysis was performed using FS-FAST (http://
surfer.nmr.mgh.harvard.edu), fROI (http://froi.sourceforge.net), and
custom-written software. Before statistical analysis, images were
motion corrected [41], and the data from the blocked localizer scans
(not the event-related scans) were smoothed (3 mm full width at half
maximum Gaussian kernel).

The LOC was defined as the set of contiguous voxels in the central
occipitotemporal cortex that showed significantly stronger activation
(p , 10�4, uncorrected) to intact objects than to scrambled versions of
the same objects [2]. Two subregions of LOC were defined as ROIs, as
described previously [42]: a posterior portion, LO, on the lateral
surface of occipitotemporal cortex; and an anterior portion, pFs, on
the fusiform gyrus of the temporal lobe [18]. Furthermore, we defined
four control regions of interest: the FFA [20] and the OFA [21,22],
based on the standard functional contrast of faces against objects (p
, 10�4); the PPA [23], based on the standard contrast of scenes
against objects (p , 10�4); and a retinotopic ROI based on activation
at the occipital pole in a contrast between all stimulus conditions
versus baseline in the localizer scans (p , 10�4; [8]). The FFA did not
overlap with pFs in any of our participants, as is sometimes the case.

For the blocked localizer scans, statistical maps were calculated by
correlating the signal time course with a gamma function (delta ¼
2.25, tau¼ 1.25) for each voxel convolved with the block timecourse.
For the event-related scans, the hemodynamic response was extracted
using a deconvolution analysis, without any assumptions about the
shape of the response. The peaks of the fMRI responses of each of the
four novel shapes were extracted from each ROI, for all voxels
separately. This resulted in four patterns per ROI, each representing
the distributed activation pattern to a particular stimulus in that ROI.
Neural similarities were obtained by computing the Pearson
correlation coefficient between these patterns, as described above.

To assess the statistical significance of the correlation matrices
results, we first applied the Fisher z transformation to the data and
then performed t-tests and ANOVAs. This transformation is
necessary because correlation coefficients do not follow a normal
distribution, and are therefore strictly not amenable to analysis of
variance statistics [19]. The Fisher z transformation converts
correlation coefficients into normally distributed variables and
thereby makes t-tests and ANOVAs possible. Given a correlation r,
the Fisher z is given by

z ¼ 1
2
ln

1þ r
1� r

:

We took care to use the standard error formula specific to the
Fisher z:

SE ¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

n� 3
p

This formula has fewer degrees of freedom and is therefore more
conservative than the conventional standard error.

V1-like physical similarity measure. To obtain a V1-like physical
similarity measure, we applied a set of Gabor filters to the images and
then computed pixelwise similarities between the images. This
analysis was motivated by the fact that V1 cells exhibit tuning
profiles that are well-described by Gabor filters [25,43]. Each image
was convolved with Gabors of four different orientations (08, 458, 908,
and 1358; these orientations cover the whole unit circle because of the
symmetry of the Gabors) and five different spatial frequencies (2, 4, 6,
8, and 10 cycles per degree). These parameters are representative of
the tuning properties found in early visual cortex [25]. We then
correlated the resulting physical similarity matrices with the neural
similarities from our regions of interest, as described above; this was
done both for the average across the V1-like similarities, as well as the
individual matrices. The average V1-like physical similarity matrix
correlated well (r ¼ 0.67) with our other physical similarity measure,
i.e. distance of the stimuli in parameter space.
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