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Evolution based on the benefits of acquiring ‘‘good genes’’ in sexual selection is only plausible with the reliable
transmission of genetic quality from one generation to the next. Accumulating evidence suggests that sexually
antagonistic (SA) genes with opposite effects on Darwinian fitness when expressed in the two different sexes may be
common in animals and plants. These SA genes should weaken the potential indirect genetic benefits of sexual
selection by reducing the fitness of opposite-sex progeny from high-fitness parents. Here we use hemiclonal analysis in
the fruit fly, Drosophila melanogaster, to directly measure the inheritance of fitness across generations, over the entire
genome. We show that any potential genetic benefits of sexual selection in this system are not merely weakened, but
completely reversed over one generation because high-fitness males produce low-fitness daughters and high-fitness
mothers produce low-fitness sons. Moreover, male fitness was not inherited by sons, consistent with both theory and
recent evidence connecting this form of SA variation with the X chromosome. This inheritance pattern may help to
explain how genetic variation for fitness is sustained despite strong sexual selection, and why the ZW sex chromosome
system found in birds and butterflies appears to foster the evolution of extreme secondary sexual characters in males.

Citation: Pischedda A, Chippindale AK (2006) Intralocus sexual conflict diminishes the benefits of sexual selection. PLoS Biol 4(11): e356. DOI: 10.1371/journal.pbio.0040356

Introduction

Sexual conflict, which arises whenever males and females
have different reproductive interests, takes on two funda-
mentally different forms genetically. Interlocus sexual con-
flict involves direct sexual interactions and has become
particularly topical [1,2] because of its potential to generate
co-evolutionary arms races between the sexes [1,3] that may
contribute to rapid evolution and speciation [4–6]. While
interlocus conflict involves different genes in each sex,
intralocus sexual conflict creates a tug-of-war between the
sexes because the same allelic variation has opposite effects
on Darwinian fitness when expressed in each sex. Intralocus
conflict may be a transient phase that is resolved by sex-
limited gene expression [7], genomic imprinting [8], or
reduced opposite-sex heritabilities [9], each of which may
result in sexual dimorphism by restricting a gene’s expression
to only the sex that it benefits. However, recent studies have
emphasized that substantial intralocus conflict can remain
unresolved in the genome [10–14], thereby reducing the
average fitness of each sex. Thus, among the implications of
this form of conflict are two central problems of evolutionary
genetics: the costs of sexual reproduction and the main-
tenance of genetic variation for fitness in the face of selection
[15,16].

In the Drosophila model system, evidence for intralocus
sexual conflict has come from both selection experiments
[17,18] and hemiclonal analysis in which identical haploid
genomes were expressed in both males and females whose
relative fitness was measured [10]. Although the latter
approach revealed a strong positive genetic correlation for
juvenile survival, a stage in which the sexes look and behave
similarly, adult reproductive success yielded a strong negative
genetic correlation between the sexes [10]. These data
suggested that intralocus sexual conflict is only manifested
when the two sexes have markedly different phenotypes, and
that the average individual was expressing a substantial load

of sexually antagonistic (SA) variation. Moreover, subsequent
work found that SA variation was especially abundant on the
X chromosome [16] as predicted by theory [15], with the X
chromosome explaining a large fraction (estimated 97%) of
the SA effects observed for the whole genome [16].
One predicted consequence of intralocus SA variation is an

inverted pattern of fitness inheritance from mothers to sons
and fathers to daughters, potentially interfering with sexual
selection for good genes. This effect would be exaggerated by
X-linkage of SA genes because males only transmit their X
chromosomes to daughters. As a result, the indirect benefits
of choosing high-fitness males would be diminished because
daughters would experience reduced fitness and sons would
not benefit from paternal fitness. Here, we test these
predictions in D. melanogaster by experimentally mating
female and male flies of high and low genetic quality and
determining the fitness of their offspring.

Results/Discussion

We obtained high- and low-fitness parents using hemi-
clonal analysis [10], which allows a nearly complete haploid
set of chromosomes (99.5% of the genome, consisting of all
major chromosomes except the tiny fourth chromosome) to
be randomly sampled, cloned, and then tested in multiple
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random genetic backgrounds. From independent surveys of
fitness variation in females and males (see Materials and
Methods), three lines with the highest and lowest competitive
reproductive success for each sex (paternity success for males
and egg production for females) were selected as high- and
low-fitness parents for further study. The high-fitness female
lines produced 35% more eggs than low-fitness females (t ¼
4.51, df ¼ 4, p ¼ 0.0108; Figure 1), whereas high-fitness male
lines sired 44% more offspring than low-fitness males (t ¼
11.31, df ¼ 4, p ¼ 0.0003; Figure 1).

To measure the inheritance pattern for fitness, we obtained
offspring from experimental matings between high- and low-
fitness male and female lines in all possible combinations (36
crosses in total). Offspring viability was used to test for
maternal effects and major mutants, under the assumption
that variation influencing organismal function common to
both sexes would be expressed during development and affect
both sexes negatively. We found that offspring viability was
not significantly influenced by the fitness rating (high or low)
of either parent (maternal fitness: F1,24 ¼ 0.001, p ¼ 0.97;
paternal fitness: F1,24 ¼ 0.022, p ¼ 0.88), suggesting that
maternal effects were weak or absent, and levels of uncondi-
tional fitness variation were low. For these reasons, and
because total offspring counts (both males and females) were
used to estimate viability, we considered only the reproduc-
tive success of sons (paternity success) and daughters (egg
production) for our offspring fitness estimates. However,
none of our findings were affected if we incorporated
viability (i.e., assuming a 1:1 sex ratio from viability counts)
into these fitness estimates.

We found that maternal fitness strongly affected the adult
fitness of both daughters (Figure 2A) and sons (Figure 2B), but
in opposite directions. High-fitness mothers produced
daughters that were, on average, 7% more fit than daughters
produced by low-fitness mothers (Table 1). In contrast, high-
fitness mothers produced sons that were substantially less
successful (11%) than low-fitness mothers (Table 1). Similarly,
daughters sired by high-fitness males were, on average, almost
7% less fit than daughters sired by low-fitness males (Figure
2A; Table 1). These results are consistent with the effects of
intralocus SA fitness variation. The fact that paternal fitness
had no significant effect on the fitness of sons (Figure 2B;
Table 1) is also consistent with the inheritance of X-linked SA

Figure 1. Differences in Fitness between the Lines Selected as Parents for Experimental Crosses Were Substantial and Genetically Mediated

In the male fitness survey (n¼ 70), the mean proportion of offspring fathered (6 95% confidence interval [CI]) was 0.544 6 0.016. In the female fitness
survey (n¼ 12), the mean fecundity was 22.85 6 1.87. Error bars indicate standard errors.
DOI: 10.1371/journal.pbio.0040356.g001

Figure 2. X-Linked SA Variation Results in an Inverted Pattern of Fitness

Inheritance from Fathers to Daughters and Mothers to Sons

(A) Daughter reproductive success, measured as egg production in an
18-h period, was positively related to maternal fitness and negatively
related to paternal fitness.
(B) In contrast, son reproductive success, measured as the proportion of
offspring fathered, was negatively related to maternal fitness and
unaffected by paternal fitness.
Error bars indicate standard errors.
DOI: 10.1371/journal.pbio.0040356.g002
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fitness variation, because only the X-inheriting sex (daugh-
ters) should be affected by paternal fitness. These inheritance
patterns are supported by one-tailed Spearman rank corre-
lation coefficients: maternal fitness was positively correlated
with daughter fitness (rs ¼ 0.886, p ¼ 0.03) and negatively
correlated with son fitness (rs ¼ �0.829, p ¼ 0.05), whereas
paternal fitness correlated negatively with daughter fitness (rs
¼�0.886, p¼ 0.03), but was unrelated to son fitness (rs¼ 0.371,
p . 0.05). Considering that there were 24 possible outcomes
for the rank ordering of fitness in both the son and the
daughter experiments, the fact that the pattern predicted by
sex-linked SA genes was realized in each (binomial proba-
bility of p ¼ 0.04 for each assay), lends further (nonpara-
metric) support to these conclusions.

If these patterns are typical, then our results have counter-
intuitive implications for models of sexual selection via either
male–male competition or female mate choice. Females whose
mates have high mating success will gain no indirect benefits
through sons (or their offspring) and pay a cost in the reduced
fitness of daughters. Although grandsons produced by such
females may recover some fitness loss incurred in the F1
generation, these will be weakened by recombination, a full
generation delay, and reduced fitness of granddaughters.
Therefore, although compensation in the F2 generation is
possible, it is predicted to be slight. These patterns of indirect
effects are in direct conflict with the ‘‘good genes’’ and ‘‘sexy
sons’’ theories of sexual selection [19]. Even with genetic
monogamy, if pairs form through positive assortative mating
for fitness, the highest fitness male and female genotypes in a
population will yield only medium-fitness daughters and low-
fitness sons (Figure 2). In fact, when the fitness means for both
sons and daughters from each combination are expressed as
relative values (proportion of the highestmeasured fitness) and
averaged, we find that high-fitness males and females have the
lowest overall offspring fitness (0.919) of any combination.
Instead, it is the combination of low-fitness females with low-
fitness males that produces the highest averaged offspring
fitness (0.956), with the other combinations producing inter-
mediate-fitness offspring (low female3high male¼0.937; high
female 3 low male ¼ 0.939). In other words, fitness shows
regression towards the mean value in response to positive
assortative mating or any form of sexual selection on males.
These findings may help to explain themaintenance of genetic
diversity for fitness, even in the face of strong sexual selection
(e.g., the lek paradox; ref [20]).

Our data also have important implications for sexual
selection in organisms with different sex chromosome
systems. The ZW/ZZ sexual system present in bird and
butterfly species has long been linked to more elaborate male
secondary sexual traits and displays [21–24], a pattern
quantified by Reeve and Pfennig [22]. We suggest that sexual
selection is disrupted in XX/XY systems by sex-linked SA
variation because males are unable to transmit X-linked
preferred traits to their sons. In contrast, males in ZW/ZZ
systems are homogametic (ZZ), and sexual selection on males
carrying sex-linked SA variation may be more efficient
because sons directly inherit the paternal Z chromosome. In
addition, a recent theoretical model of sexual selection found
that female preferences are more likely to drive the
accumulation of male-benefit sex-linked SA traits in ZW
systems [24]. Because paternal fitness affects the fitness of both
sons and daughters, and SA variation in the homogametic sex
is predicted to be dominant in expression [15,16], females in
ZW systems may be under particularly strong selection to
adjust the sex ratio of their offspring based on the quality of
their mates, as has been shown in some bird species [25,26]. If
SA variation is taxonomically widespread, then this combina-
tion of factors predicts stronger sexual selection via male
display and female mate choice in ZW systems such as birds.
These and prior data from Drosophila laboratory popula-

tions [7,10,16] suggest that intralocus sexual conflict may be
an important factor in maintaining genetic variation for
fitness in populations. It is important, however, to acknowl-
edge potential specificities of the system. First, D. melanogaster
has a relatively large X chromosome (approximately 20% of
the genome; ref [27]), which may make the form of SA
variation documented here more prevalent than in other
species. Second, the use of laboratory populations to study
intralocus conflict has been criticized on the grounds that a
history of selection for a relatively constant environment may
remove naturally selected fitness variation, exaggerating the
importance of SA genes [28]. However, the same points can
be used to argue that laboratory populations of fruit flies are
ideal for identifying SA variation. The removal of generally
maladapted genotypes will serve to highlight the differences
generated by disparate fitness strategies between the sexes,
allowing us to estimate the magnitude of intralocus sexual
conflict and predict its consequences under more variable
conditions, in which positive intersexual genetic correlations
are likely to be stronger.

Table 1. The Effects of Maternal and Paternal Fitness on Offspring Fitness

Offspring Fitness Factor df F p-Value

Daughters Female clone line [maternal fitness] 4, 24 4.28 0.0094

Male clone line [paternal fitness] 4, 24 4.45 0.0078

Maternal fitness 1, 24 8.74 0.0069

Paternal fitness 1, 24 8.65 0.0071

Sons Female clone line [maternal fitness] 4, 24 0.76 0.5628

Male clone line [paternal fitness] 4, 24 0.79 0.5409

Maternal fitness 1, 24 6.55 0.0172

Paternal fitness 1, 24 0.81 0.3763

Two-factor ANOVAs showing the full factorial effects of paternal and maternal fitness (high vs. low) on the fitness of sons and daughters. Maternal and paternal clone lines were nested
within fitness category and added as factors. Both interaction terms were nonsignificant with p . 0.49.
DOI: 10.1371/journal.pbio.0040356.t001
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Although intralocus sexual conflict is difficult to measure
in the field, several recent studies have reported analogous
patterns to our own in natural populations. For example, in
the cricket Allonemobius socius, a male’s field-determined
mating success was strongly negatively correlated with his
daughter’s reproductive success [14], and field studies with
side-blotched lizards found that dominant polygynous males
produced daughters with decreased viability [11]. Although
neither of these studies directly measured fitness, or inves-
tigated the influence of sex chromosomes or maternal
condition, these patterns are congruent with our experimen-
tal results in Drosophila. Thus, our results contribute to a
growing body of evidence and theory supporting a significant
role for SA genes in shaping patterns of fitness inheritance.

Intralocus sexual conflict will result whenever the two sexes
are under disruptive selection acting upon a shared charac-
ter, but are genetically constrained from evolving in different
directions (i.e., becoming sexually dimorphic). Many genes
affecting the sexual phenotype are likely to be subject to this
pattern of selection and constraint, and sex chromosomes
appear to support substantial polymorphism for SA alleles
[15,16]. We therefore suggest that intralocus sexual conflict is
a significant force that is likely to be widely taxonomically
distributed across sexual species. Since this form of conflict
reduces Darwinian fitness by undermining fertility, it may
help to explain the paradoxical maintenance of genetic
variation for fitness in the face of selection. By extension,
intralocus sexual conflict is likely to be implicated in
generating the spectrum of sexual preferences and behaviors
seen in sexual animals, as well as variation in their
physiological underpinnings.

Materials and Methods

Creation of low- and high-fitness male and female hemiclones. The
protocols for sampling, cytogenetically cloning, and then expressing
Chromosome I(X), II, and III haplotypes as ‘‘hemiclones’’ are
described in detail elsewhere [10]. Briefly, specially constructed
clone-generator female lines are used to enforce co-segregation and
father–son transmission of all three major chromosomes, facilitated
by the lack of molecular recombination in Dipteran males. By
crossing these males to females with the appropriate karyotype [10],
wild-type sons or daughters may be produced, each carrying the focal
haplotype paired with a random sampling of chromosomes from the
original base population.

For the male fitness survey, 70 haplotypes were randomly drawn
from a large base population (LHM; ref [10]), amplified into several
hundred copies, and then expressed by males containing random
genetic backgrounds from the same base population (LHM). Male
reproductive success was measured by combining five hemiclone
males with ten competitor males taken from a replica of the base
population carrying the recessive brown-eyed bw mutation (LHM-bw).
These males competed for matings with 15 virgin LHM-bw females in
vials containing food medium and 10 mg of yeast for 2.5 d. At this
time, ten LHM-bw females were isolated from each vial and
individually transferred into test tubes containing food medium to
oviposit for 16 h. Male reproductive success was measured as the total
proportion of offspring fathered by the five hemiclone males across
the ten females. Significant additive genetic variation in fitness was
recorded (random effect analysis of variance [ANOVA]: F69,206¼ 1.69,
p¼ 0.0026; estimated h2 of 0.294 from variance component estimate).
From this survey of variation, three male clone lines with repeatably
low or high reproductive success as males were selected. Female fitness
of these hemiclones, assessed in an independent assay, was also
considered in selecting the male lines, and although fitness was not
significantly correlated between the sexes, these lines were believed to
carry SA variation.

For the female fitness survey, a smaller and separate random sample
of 12 haplotypes was taken from the LHM-bw genetic replica of the
base population. Hemiclone females were collected as virgins and

combined with wild-type males at a density of 16 pairs of flies per vial,
corresponding to their normal culture density. Females were housed
with these males on food medium and 10 mg of yeast per vial for 2.5 d,
at which time each vial was divided into three fresh, unyeasted vials
containing four pairs of flies in each. The competitive reproductive
success of females expressing these hemiclones was measured as the
average number of eggs produced per female in the 18-h period
following this, corresponding to their normal selection protocol.

These 12 lines were originally created for mate choice analysis
(hence the small survey and recessive marker), but displayed
substantial genetic variation in reproductive success (random effect
ANOVA: F11,285¼ 8.86, p , 0.0001; estimated h2 of 0.53 from variance
component estimate). The three female lines with the highest and
lowest reproductive success were selected for this study. We are
mindful that they are likely to be less differentiated than would be
possible with a more extensive survey, as performed in males, but
heritability of female fitness is also typically higher in this system [10].

Generating offspring from male and female hemiclones. The
selected lines were used to generate hemiclone males and females as
described above. Males from each of the six male lines were mass-
mated to females from each of the six female lines in all
combinations, creating 36 types of experimental offspring, all of
which were wild type in phenotype (heterozygous for the recessive bw
allele). Offspring fitness was measured in the same manner as
parental fitness, with all experiments designed to closely mimic the
culture conditions of our base population. Both parental and
offspring fitness experiments were conducted under identical
environmental conditions, on standard agar-cornmeal-molasses
medium, and housed in humidity-controlled incubators under a 12-
h light/12-h dark diurnal cycle at 25 8C.

Measuring daughter fitness. From each of the 36 male–female
combinations (each replicated four times), 90 eggs from the focal
combination and 90 eggs from a competitor stock (the LHM-bw
replica base population) were transferred into vials containing food
medium. Viability was measured 11 d following oviposition as the
proportion of eggs surviving to adult eclosion. From each juvenile
competition vial, two adult competition vials containing fresh
medium and a limiting quantity (8 mg) of live yeast were created
with 12 LHM-bw males, six LHM-bw females, and six experimental
females (distinguishable by their red eyes). Although the experimen-
tal design used fewer flies (12 pairs) than the standard culture
protocol (16 pairs), an equal sex ratio was maintained and the amount
of yeast was adjusted accordingly. 2.5 d later, the six experimental
females were transferred into fresh, unyeasted food vials with six
LHM-bw males and were allowed to oviposit for 18 h. The
reproductive success of daughters was measured as the average
number of eggs produced per female in this period. Thus, for each of
the 36 male–female combinations, the fertility of 48 daughters was
measured in eight groups of six females.

Measuring son fitness. Male juvenile competition vials were seeded
with eggs as per the female fitness assay. Each set of 36 combinations
was replicated five times. In this assay the competitor was a replica of
the base population carrying the recessive stmutation (LHM-st), which
confers a scarlet-eyed phenotype. Viability was measured on day 11,
and flies from each juvenile competition vial were then lightly
anaesthetized using CO2 and transferred into half-pint bottles
containing food medium and 40 mg of yeast. This simulated routine
culture, during which flies are anaesthetized and the culture densities
are reduced. Transferring the flies into larger bottles allowed the
naturally occurring numbers to be preserved at approximately normal
densities. Then 2.5 d later, 20 LHM-st females were isolated from each
bottle and individually transferred into test tubes containing food
medium to oviposit for 16 h. The reproductive success of sons was
measured as the total proportion of offspring fathered across the 20
females, adjusted by the number of males present to account for
differences in viability and sex ratios. The use of the LHM-st
competitor stock allowed paternity to be easily assigned, as st produces
a red-eyed phenotype when expressed with either the bwmutation or a
wild-type copy of the gene. As a result, LHM-st females who mated with
experimental sons produced red-eyed offspring, whereas those who
mated with competitor males produced scarlet-eyed offspring.
Because the fertility of the LHM-st females would be affected by
differences in viability or sex ratios in the competition chamber (e.g.,
higher numbers of females may produce greater competition for
limited food resources), we used the proportion of red-eyed (hemi-
clone) offspring rather than the raw number of offspring to estimate
male reproductive success. For each of the 36 male–female combina-
tions, 100 broods were scored to measure male reproductive success.

Statistical analysis. Two-factor nested ANOVA was used for
analysis of offspring fitness. Full factorial analysis was performed
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with the main factors ‘‘Maternal Fitness’’ and ‘‘Paternal Fitness’’
where fitness was coded as high or low. The three independent clone
lines within each category were also added as nested factors to
account for variation between clone lines within each group. Only
grand mean values of each population cross were used in the analysis.
Because there were no significant interaction terms (all p . 0.49),
only the main effects were reported. All analyses were performed
using JMP 5.0.1 (http://www.jmp.com/).
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