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There is a tradition in biology of using specifi c animal 
models to study generalizable basic properties of a 
system. For example, the giant axon of squid was used 

for the pioneering work on nerve transmission; the fruit fl y 
(Drosophila) has played a key role in researchers discovering 
the role of homeobox genes in embryogenesis; the sea slug 
(Aplysia) is used to study the molecular biology of learning; 
and the round worm (Caenorhabditis elegans) is used to study 
programmed cell death. Basic insights gained from these four 
systems apply widely to other multicellular animals. Here, I 
will review basic discoveries made by studying birdsong that 
have helped answer more general questions in vertebrate 
neuroscience.

Vocal Learning and the “Song System”

Oscine songbirds (e.g., zebra fi nches, canaries, and white-
crowned sparrows) learn their song by imitating those of 
older members of their own species [1,2]. This is done 
by modifying vocal output until the auditory feedback 
it generates matches a memorized model [3]. In some 
birds vocal learning gives rise to easily discernible song 
dialects, which then act as local cultural traditions [4]. In 
most songbirds mastery of a song model takes many weeks. 
Song learning starts with a stage that has been likened to 
human infant babbling called “subsong,” during which 
highly variable, low-amplitude sounds are produced in a 
non-communicatory context, often while the juvenile seems 
to doze. The sounds of subsong provide the raw material 
from which imitations emerge. As these imitations become 
recognizable, they are referred to as “plastic song.” As the 
imitations are perfected, song becomes less and less variable. 
The stable song typical of adults is in place by the time the 
sexually mature bird is ready to start to defend a territory 
and woo a mate. Intriguingly, in birds as in human infants, 
the path of vocal change that culminates with imitation of a 
model can be very idiosyncratic, as if this were an exercise in 
problem solving for which there is no single solution [5].

The acquisition and production of learned song is made 
possible by a group of discrete brain nuclei and their 
connecting pathways, referred to as the “song system” [6,7], 
which has similarities in the three groups of birds—songbirds, 
parrots, and hummingbirds—that evolved learned song 
[8,9]. This system, described in considerable detail in oscine 
songbirds, has two main branches: the posterior descending 
pathway (PDP), necessary for both the acquisition and 
production of learned song, and the anterior forebrain 
pathway (AFP), necessary for acquisition only (see Figure 1). 
The high vocal center (HVC) is at the starting point of both 
these pathways, but the HVC cells that project to the PDP and 
AFP differ. In mammalian terms the PDP is homologous to a 
motor pathway that starts in the cerebral cortex and descends 
through the brain stem [6], while the AFP is homologous to 

a cortical pathway through the basal ganglia and thalamus 
[7,10,11]. 

Several of the telencephalic nuclei that participate in 
the production and acquisition of learned song are small 
in nestlings, before the onset of song development, and 
their volume, cell number, cell size, and connections grow 
during the subsequent weeks or months. As a result of these 
changes, many of the components of the circuits for the 
acquisition and production of learned song are formed and 
connected during the very period when song fi rst develops 
(reviewed in [12]). Another peculiarity of this system is that 
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Figure 1. The Song System of Songbirds
Nucleus HVC feeds information into two pathways that 
ultimately lead to the neurons in the tracheosyringeal half of the 
hypoglossal nucleus (nXIIts) that project to vocal muscles. HVC 
projects to nucleus RA directly (PDP), and indirectly via Area X, 
the dorsolateral anterior thalamic nucleus (DLM), and LMAN 
(AFP) in a manner that shares similarities with the mammalian 
pathway cortex�basal ganglia�thalamus�cortex.
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the right and left sides of the brain can operate, to some 
extent, independently, each responsible for a different array 
of sounds. In birds such as the canary, the chaffi nch, and the 
white-crowned sparrow a majority of the sounds of song are 
produced by the left syringeal half, under the control of left, 
uncrossed pathways. This phenomenon has been referred to 
as “left hypoglossal” or “left hemispheric” dominance [13].

Adult Variation, Neurogenesis, and Neuronal 
Replacement

The song system of birds is sexually dimorphic: it is better 
developed in males, which usually sing more and produce 
a more complex repertoire than females. For example, the 
nucleus HVC of canaries is three times larger in males than 
in females; in zebra fi nches it is eight times larger [14]. In 
seasonal singers such as the canary and song sparrow, song 
system nuclei such as HVC are signifi cantly larger in the 
spring than in late summer, after breeding stops [15,16]. 
Cells in many of the song control nuclei are androgen and 
estrogen sensitive [17]. The nucleus HVC of adult female 
canaries treated with physiological doses of testosterone 
doubles in volume, and these birds start to sing in a male-like 
manner [18]. Initially such changes were thought to result 
solely from growth of dendritic trees and synapse formation 
[19], but subsequently it was found that new neurons were 
added, too. These new neurons, as in embryos, are born 
in the wall of the forebrain’s lateral ventricle [20,21]. 
Interestingly, the addition of new neurons to nucleus HVC 
occurred also in male and female adult canaries that had 
received no hormonal treatment [22].

Earlier claims of neurogenesis in the adult mammalian 
brain [23,24] had met resistance [25]. Nucleus HVC yielded 
the fi rst unambiguous example of adult neurogenesis, in 
that individual cells labeled with a cell birth marker provided 
neurophysiological recordings that were unmistakably 
neuronal [26]. We now know that the recruitment of new 
HVC neurons is part of a process of constant replacement 
[27,28]. This replacement is particularly active in canaries 
during seasonal changes in the song repertoire [29]. Male 
canaries develop a new song repertoire each year. New 
neurons are constantly added, as well, to many regions of the 
adult avian telencephalon, where they are probably involved 
in a variety of brain functions. There is no evidence of 
neuronal addition to other parts of the adult songbird brain 
[22]. We now know that adult neurogenesis and neuronal 
replacement are probably common to all vertebrates [30]. 
The song system of birds helped change the way in which we 
think of brain circuits and their potential for rejuvenation 
and repair. Just as important, the discovery of neuronal 
replacement has raised basic questions about the brain 
variables that set limits to learning [31].

Neurophysiology Offers Insights on the Mechanisms 
for Vocal Learning

From early on, the song system drew the attention of 
neurophysiologists. It was known that lesions of HVC and 
the robust nucleus of the arcopallium (RA) affected the 
organization of song differently, the former being more 
devastating than the latter [6]. Likewise, stimulation of 
HVC during song interrupted and reset the song program, 
something that did not happen if the stimulating electrode 
was in RA [32]. This hierarchical relation between HVC and 

RA was confi rmed by recording from HVC and RA while the 
bird sang [33], but the manner in which the sounds of song 
were represented in HVC remained unclear. This issue was 
resolved by recording from individual HVC neurons that 
projected to nucleus RA. These neurons, it was shown, fi red 
very sparsely and at narrowly defi ned times, each neuron 
fi ring always during the same six-millisecond window while 
the bird produced its single learned song [34]. The inference 
that these neurons—and the PDP of which they are part—
carried the learned pattern of song seems inescapable. Since 
these are the very HVC neurons that are replaced when birds 
modify their song [31], it follows that the replacement cells 
learn their score. 

But what, then, is the role of the AFP in song learning? It 
was known that the AFP was necessary for the acquisition but 
not for the production of learned song [35]. It was known, 
too, that the variable song typical of juvenile songbirds 
became very stereotyped after bilateral lesions of the lateral 
magnocellular nucleus of the nidopallium (LMAN) (part 
of the AFP), from which it was inferred that LMAN played 
a crucial role in fostering circuit plasticity necessary for 
learning [36]. But the mechanism for this effect remained 
unknown. Two recent independent studies now show how 
this effect comes about [37,38]. In this issue of PLoS Biology, 
Ölveczky and colleagues show that the LMAN neurons 
that project to RA fi re in a quasi-random pattern when 
variable song is produced in juvenile birds. Thus, while 
the HVC�RA projection carries the learned song, the 
LMAN�RA projection carries the jitter that induces the 
variability in motor output necessary for the imitation of a 
model. This jitter, presumably, is imposed on the fi ring of the 
same RA neurons that receive the more orderly output from 
HVC. When the LMAN neurons are silent (or absent), the 
HVC�RA pathway produces a stereotyped pattern; when the 
LMAN�RA neurons are fi ring, song is more variable. This is 
a most elegant breakthrough. However, it is not clear exactly 
how this pathway functions in song learning. One possibility 
is that birds trying to imitate a model succeed by retaining, 
from the variability generated, those patterns that more 
closely approximate the model and discard the rest, thus, 
over a period of time, achieving a perfect imitation. A second 
possibility is that the variable mismatch between a model and 
the attempted imitation drives output modifi cation, so that 
patterns that had not occurred before now fi rst appear. Both 
mechanisms would depend on auditory feedback. It is the 
fi rst time we are so close to a mechanism for vocal learning.

Open Questions

The stage is set for many more insights. An unsolved 
question is the extent to which the very pathways that 
produce learned song may also partake in the perception 
of song. On a different front, why is it that HVC�RA 
neurons are periodically replaced? It was thought that 
changes in dendritic confi guration, dendritic spines, and 
synaptic number and effi ciency provided all the plasticity 
needed to change circuit confi guration and explain how 
new information was acquired and remembered. But if so, 
why replace whole neurons? Is it possible that dendritic 
and synaptic changes underlying learning are less easy to 
achieve in older neurons? If so, are older neurons replaced 
to reinstate a level of plasticity necessary for learning? Or 
might it be that in some cases the whole neuron, rather than 
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the synapse, is the unit of learning? In this latter scenario, 
changes associated with learning would be committed 
as permanent gene expression changes akin to those 
characterizing cellular differentiation. Such a change would 
be a very stable way to encode learning, but it would have a 
major drawback: the more learning that occurred, the fewer 
neuronal pupils would remain. Thus, we are left to wonder 
whether neuronal replacement takes place to make up for 
the lost plasticity of aging neurons, or whether it takes place 
as part of a normal recycling of memory space and of the 
memories it holds. 

During the early 1970s, before the song system was 
discovered, it was widely believed that the learning of any 
one skill had a wide representation in the vertebrate brain 
[39]. The discovery of discrete brain regions devoted to song 
learning and execution in the bird brain helped change 
that view. It was also widely believed that the brains of male 
and female vertebrates were virtually identical, with small 
allowances for the levels of circulating hormones. The song 
system changed that, too. And it was widely believed that 
the anatomy of adult brains was set, but we now know that 
the volume of brain structures can change seasonally and in 
response to blood hormone levels. Most importantly, it was 
widely held that though a straggling few neurons might still 
be added after birth to late-developing parts of the brain, 
brain cells, once lost, could not be replaced. Again, work 
on the song system changed the prevailing view. It may well 
be that our best understanding of how complex skills are 
acquired and how broken circuits can be fi xed will come not 
from humans, or other primates, but from the way birds learn 
their song. �
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