PLOS BioLogy

A Signaling Pathway Involving TGF-32
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In a common theme of organogenesis, certain cells within a multipotent epithelial sheet exchange signals with their
neighbors and develop into a bud structure. Using hair bud morphogenesis as a paradigm, we employed mutant
mouse models and cultured keratinocytes to dissect the contributions of multiple extracellular cues in orchestrating
adhesion dynamics and proliferation to shape the cluster of cells involved. We found that transforming growth factor
B2 signaling is necessary to transiently induce the transcription factor Snail and activate the Ras-mitogen-activated
protein kinase (MAPK) pathway in the bud. In the epidermis, Snail misexpression leads to hyperproliferation and a
reduction in intercellular adhesion. When E-cadherin is transcriptionally down-regulated, associated adhesion proteins
with dual functions in signaling are released from cell-cell contacts, a process which we demonstrate leads to Ras-
MAPK activation. These studies provide insights into how multipotent cells within a sheet are stimulated to undergo
transcriptional changes that result in proliferation, junctional remodeling, and bud formation. This novel signaling
pathway further weaves together the web of different morphogens and downstream transcriptional events that guide
hair bud formation within the developing skin.
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Introduction

Mammalian development involves the morphogenesis of
complex three-dimensional structures from seemingly uni-
form sheets or masses of cells. A simple bud-like structure
initiates the formation of many organs, including lungs,
spinal cord, mammary glands, and hair follicles [1]. The
multipotent, adhering epithelial cells are typically attached to
an underlying basal lamina that polarizes the epithelial sheet
and separates it from surrounding mesenchyme. Budding
morphogenesis is guided by a reciprocal exchange of signals
between epithelium and mesenchyme to specify the identity
of the organ that will form and to govern its growth.

At the helm of these molecular communication pathways
are Wnts, bone morphogenic proteins (BMPs), transforming
growth factor PBs (TGF-fs), and fibroblast growth factors
(FGFs). Through activation of cell surface transmembrane
receptors, these external signaling molecules trigger distinct
cascades of intracellular events that culminate in changes in
gene expression, growth, and differentiation [2]. How this
constellation of signals collaborates in tailoring each budding
process so that it executes a distinct morphogenetic program
has yet to be comprehensively defined. However, the process
appears to be patterned at the initial stages of bud formation,
since the relative importance of these pathways and their
downstream effectors differ as buds begin to develop and cell
fates are specified.

The development of a bud requires a number of
coordinated changes in the behavior of the targeted cells
within an epithelial sheet. The process must be accompanied
by alterations in the proliferation, polarity, shape, and
adhesiveness of selected cells, as well as by modifications in
their underlying basal lamina. Thus, extracellular epithelial-
mesenchymal crosstalk must be intricately orchestrated to
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couple the determination of distinct cell fates with the
contemporaneous remodeling of the physical and structural
properties of the cell.

Among the few dispensable organs, hair follicles offer an
excellent model system to study epithelial bud formation.
Mammalian skin epithelium begins as a single sheet of
multipotent ectodermal cells. During development, special-
ized mesenchymal cells populate the skin in a spatially
defined pattern to initiate the complex epithelial-mesenchy-
mal crosstalk that will specify the bud [3]. Once committed, a
small cluster of epithelial cells, the placode, instructs a group
of underlying mesenchymal cells to condense and form the
nascent dermal papilla, which will be a permanent fixture of
the hair follicle. Subsequent exchanges between the placode
and nascent dermal papilla result in further growth of the
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follicle into the underlying dermis, or down-growth, and
eventual differentiation into the six concentric layers of the
mature follicle.

Previously, we delineated how two respective epithelial and
mesenchymal signals, Wnts and the BMP-inhibitory factor
noggin, function in concert to induce lymphoid enhancer
factor-1/B-catenin (LEF-1/B-catenin)-mediated gene transcrip-
tion within the follicle placode [4]. The downstream changes
elicited through convergence of these two early signaling
pathways include down-regulation of the gene encoding E-
cadherin, the prototypical epithelial cadherin that forms the
transmembrane core of intercellular adherens junctions (AJs)
[6]. We subsequently showed that when E-cadherin is trans-
genically elevated in mouse skin, hair follicle morphogenesis is
blocked, suggesting that E-cadherin down-regulation is a
critical event in governing the adhesion dynamics necessary
for budding morphogenesis [4]. Like LEF-1, E-cadherin also
binds to P-catenin. At sites of cell-cell contact, however, E-
cadherin-B-catenin complexes recruit o-catenin, which in
turn coordinates the associated actin polymerization dynam-
ics necessary to stabilize nascent AJs and integrate the
cytoskeleton across an epithelial sheet [6,7,8]. a-Catenin also
binds to the class III Lin-1, Isl-1, Mec-3 (LIM) protein Ajuba (a
member of the zyxin family of proteins), which appears to
function dually in both adhesion and in activation of the Ras-
mitogen-activated protein kinase (MAPK) pathway [9,10].
Through these links, AJs appear able to couple adhesion with
cytoskeletal dynamics as well as with nuclear and cytoplasmic
signaling. This provides a framework for conceptualizing why
E-cadherin levels appear to impact upon a plethora of
developmental processes (reviewed in [11]).

As we probed more deeply into the underlying mechanisms
governing E-cadherin promoter activity, we were intrigued by
the close proximity of the LEF-1/B-catenin binding site to a
site. known to bind the Snail/Slug family of zinc finger
transcriptional repressor proteins [12,13,14,15]. Both activity
of Snail and down-regulation of E-cadherin play pivotal roles
in epithelial to mesenchymal transitions (EMTs), typified by
the transformation of polarized, adhering epithelial cells into
motile mesenchymal cells [16,17]. Bud formation differs from
an EMT in that E-cadherin activity needs to be down-
regulated but not prevented, so that adhesive junctions are
remodeled rather than quantitatively impaired. Supportive of
an underlying ability to fine-tune cadherin expression at the
transcriptional level, Snail seems to have an additive effect
with LEF-1/B-catenin in negatively modulating E-cadherin
promoter activity [4].

In the present study, we discovered that Snail is expressed
briefly at an early stage of hair bud formation, when E-
cadherin down-regulation and activation of proliferation
take place. Thereafter, Snail disappears and remains absent
during subsequent follicle down-growth and maturation. This
exquisite pattern appears to be functionally relevant since
altering it in vivo correspondingly affects features associated
with hair bud formation, including down-regulation of E-
cadherin, increased proliferation, and repressed terminal
differentiation. Although the temporal spike of Snail in the
hair bud is reflected at the mRNA level and seems to follow
Wnt signaling and BMP inhibition, LEF-1/B-catenin activation
does not appear to induce Snail gene expression in embryonic
skin keratinocytes. In contrast, we provide in vitro, transgenic
(Tg), and gene targeting evidence to show that TGF-B2 and
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small phenotype- and mothers against decapentaplegic-
related protein 2 (SMADZ2) signaling are upstream inducers
of Snail gene expression in skin epithelium. In the absence of
TGF-B2 signaling and Snail gene expression, hair placodes can
form, but further follicle down-growth is blocked. Our studies
point to the view that Snail likely functions downstream of
cell fate specification, at a stage where the bud begins to
exhibit enhanced proliferation and migration.

Results

Snail mRNA and Protein Are Expressed Transiently at the
Hair Bud Stage of Follicle Morphogenesis

Although Snail family members are most frequently
associated with EMTs, they also participate in many malignant
processes involving a down-regulation but not a quantitative
abrogation of intercellular junctions [18]. The range of
developmental processes in which Snail family members have
been implicated thus includes the type of epithelial remodel-
ing that is observed in hair follicle bud formation. Given our
prior observation that exogenously added Snail can partic-
ipate with LEF-1/B-catenin in down-regulating E-cadherin
expression in keratinocytes [4], coupled with the established
requirement for LEF-1/B-catenin in hair follicle morpho-
genesis [4,19], we turned to addressing whether Snail/Slug
family members might also participate in the process.

PCR analyses identified transient Snail mRNA expression
during a period of skin embryogenesis when waves of hair
follicles are forming (unpublished data).To pinpoint specif-
ically where Snail mRNA is expressed in the developing skin,
we conducted in situ hybridization using a cRNA probe
unique to the Snail 3’ untranslated region (UTR). Embryonic
day 17.5 (E17.5) was chosen, since the multiple waves of
follicle morphogenesis occurring at this time enabled us to
evaluate Snail expression at different stages of the process. As
shown in Figure 1A, specific hybridization was detected
within the epithelium of nascent hair buds. By contrast, as
follicles progressed further through their development (e.g.,
germ and peg stages), they exhibited no signs of hybridization
(Figure 1A). The transient nature of Snail mRNA expression
during follicle development was most apparent in hybridized
skin sections containing follicles from two different waves of
morphogenesis (as shown in Figure 1). Hybridizing hair buds
from a later wave appeared juxtaposed with nonhybridizing
follicles from an earlier wave.

To determine whether this transient nature of Snail mRNA
expression is reflected at the protein level, we generated an
antibody against the N-terminal sequence that resides up-
stream of the more conserved zinc finger domains. As judged
by Western blot analysis, the antibody did not detect
endogenous proteins from cultured keratinocytes, but it did
yield a band of the expected size from keratinocytes
transiently expressing a hemagglutinin (HA)-tagged Snail
protein (Figure 1B). The antibody also recognized a band
corresponding to the size of endogenous Snail (approxi-
mately 28 kDa) in lysates from embryonic mouse skin, the
temporal appearance of which corresponded to the waves of
hair follicle morphogenesis from E15.5 to newborn when over
90% of the hair on the mouse is formed (Figure 1B).
Consistent with the Western blot data, immunohistochemical
analysis did not detect Snail in single-layered E13.5 epidermis
(Figure 1C) nor in the placode, which is the earliest
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Figure 1. Snail Is Expressed Exclusively in the
% Hair Bud during Morphogenesis

. Embryos were either frozen in OCT em-
- bedding compound (A, F, and H) or
i embedded in paraffin (C, D, E, and G),
and then sectioned (8 pm).
(A) In situ hybridizations with Snail sense
or antisense cRNA probes. Black dotted
lines demarcate the basement membrane
that separates the epidermis (epi) from
dermis (der). Arrows point to Snail RNA
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of follicle morphogenesis. It was not seen
in later hair germ or peg stages.

(B) Expression of Snail protein coincides
with hair development. Protein extracts
were prepared from keratinocytes trans-
~ fected with empty expression vector (K14),
containing the K14 promoter or with the
vector driving HA-tagged Snail (K14-Snail);
or from whole skin from EI3.5 to P5
animals, including newborn (nb). Equal
amounts of proteins were then resolved
by SDS-PAGE through 12% gels and
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subjected to Western blotting using either
an affinity-purified Snail polyclonal anti-
serum, which we generated, or anti-tubulin
(loading control).

| (C-E) Immunohistochemistry shows ex-
s pression of Snail protein in the nuclei of
cells within the hair and skin. (C) E13.5 skin
with a single layered epidermis (epi) shows
no Snail expression. (D) The first morpho-
logical sign that cells have adopted a hair
follicle fate is a cluster of cells called a
placode in E16.5 skin. Snail is not ex-
pressed at this stage of development. (E)
Snail is expressed in the hair bud of E17.5

skin but not in later stages of development
such as the germ or peg.

(F) Immunofluorescence with anti-Ki67
(green) identifies the proliferating cells of
the skin, restricted to the basal layer of the
epidermis and developing hair follicles.
Anti-p4 int labeling reveals the presence
of the hemidesmosomal integrin B4, re-
stricted to the base of cells adhering to the
underlying basement membrane. The
white dotted line marks the outermost
surface of the skin.

(G) Immunohistochemistry with pMAPK
marks a subset of proliferating cells within
the epidermis and hair bud. Anti-pMAPK
labeling was consistently robust within the

hair bud.

(H) Immunofluorescence with anti-laminin 5 (lamb), which demarcates the basement membrane, and anti-E-cadherin (E-cad), a component of
AJs. At the leading edge of the growing bud, cell-cell borders show markedly diminished anti-E-cadherin labeling (arrowheads).

DOI: 10.1871/journal.pbio.0030011.g001

morphological sign of the commitment of multipotent cells
of the embryonic ectoderm to a hair cell fate (Figure 1D).
Consistent with the in situ hybridization results, anti-Snail
antibody labeled only hair buds and not follicles at more
mature stages of development (Figure 1E). Taken together,
the anti-Snail antibody appeared to be specific for its target
protein. It did not detect other Snail family members known
to be expressed in keratinocytes and/or skin (unpublished
data). Furthermore, the immunohistochemical data paral-
leled our Snail in situ hybridization data revealing transient
Snail expression at the hair bud stage (Figure 1A).

As judged by immunohistochemistry, Snail protein was
localized to the nuclei of the hair bud cells (Figure 1E). This
feature was consistent with Snail’s known function as a
transcriptional repressor [12,13]. Additionally, anti-Snail
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labeling was detected in only three of the four major waves
of follicle morphogenesis. Snail was not found in the buds of
guard hairs that are the earliest of all hairs to form (at E13.5),
and which constitute less than 5% of the mouse coat
(unpublished data).

As judged by immunofluorescence with antibodies against
the proliferating nuclear antigen Ki67, the timing of Snail
expression coincided with the stage at which the developing
follicle enhanced its proliferation and down-growth (Figure
1F). Immunohistochemistry with antibodies against the active
(phosphorylated) form of MAPK (pMAPK) marked a subset of
the proliferating (Ki67-positive) cells, and pMAPK-positive
cells were enriched in the hair bud (Figure 1G). The timing of
Snail induction and Ki67 and pMAPK enrichment in the hair
bud appeared to follow closely the induction of LEF-1/B-
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Figure 2. Misexpression of Snail in Mouse Skin Epidermis Results in
Hyperproliferation

Three different surviving Tg founder mice harbored a KI4-Snail
transgene that was integrated into a locus that resulted in inheritable,
mosaic expression of the transgene in skin epidermis. All displayed
similar abnormalities, as did their offspring.

(A) P16 WT and KI4-Snail Tg mice. Insets denote magnified tail
segments, which displayed a mosaic, flaky appearance in Tg mice. Size
differences appeared with age, and are likely due to K14-promoter
activity in the tongue and oral epithelium, resulting in progressive
defects and reduced food intake. Hence, skin sections from young
(P3) mice were analyzed (B-I).

(B) Hematoxylin- and eosin-stained Tg skin section. Double arrows
demarcate the border of mosaic histology, with seemingly normal
epidermis (epi) and a mature hair follicle (hf) at left and hyper-
thickened epidermis at right.

(C) Immunofluorescence of Tg skin section labeled with antibodies as
color-coded on frame. Double arrows demarcate the border of
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mosaic anti-Snail (green), revealing Snail expression coincident with
regions of hyperthickened epidermis (at left) and absent in regions of
normal epidermis (at right).

(D-I) Sections of P3 WT or Tg skin (affected region) subjected to
either immunofluorescence (D, E, H, and I) or immunohistochemistry
(F and G) with antibodies as indicated on the panel. Anti-keratin 5
indicates K5, normally restricted to the basal layer of the epidermis;
anti-keratin 6 detects keratin 6, expressed in postnatal epidermis
under conditions such as wounding, in which hyperproliferation
occurs. All other antibodies are as in the legend to Figure 2.
Comparison of D and E provide representative examples that
illustrate that pMAPK is found in only a subset of all proliferating
(Ki67-positive) cells. Note also the presence of Ki67- (E) and pMAPK-
positive (G) cells in some suprabasal areas; Ki67-positive cells
colabeled with anti-Snail (E).

DOI: 10.1371/journal.pbio.0030011.g002

catenin activity, known to initiate in the hair placode stage
[20]. However, like placodes, hair buds exhibited down-
regulation in E-cadherin expression (Figure 1H; see also [4]).

Sustained Expression of Snail Results in Epidermal
Hyperproliferation and Differentiation Defects in Tg
Mouse Skin

The striking spike of Snail expression coincident with hair
bud formation and enhanced proliferation prompted us to
examine the consequences of ectopically expressing Snail
elsewhere in mouse skin epidermis. To distinguish Tg from
endogenous Snail, we used the HA-epitope, shown previously
not to alter Snail’s transcriptional activity [12]. Of 20 KI14-
Snail[HA] Tg animals generated, three expressed the trans-
gene and all exhibited analogous phenotypes. Mice that
integrated the transgene at the single-cell stage died at or
shortly after birth. The three surviving full-Tg founder mice
harbored transgene integrations that gave stable transmission
of mosaic Snail gene expression through the germline.
Progressively poor health necessitated our sacrificing most
offspring from these lines within a year of birth.

As Snail Tg animals grew, they became distinguished by
their small size, short tails, and flaky skin (Figure 2A).
Histological analyses of 3-d old (P3) mice revealed mosaic
patches marked by epidermal thickening (Figure 2B). The
mosaic morphology was reflected at the level of Tg Snail
protein, with only the hyperthickened regions expressing
nuclear HA-tagged Snail (Figure 2C). These hyperthickened
areas were marked by excessive proliferation, as revealed by
antibodies against the proliferating nuclear antigen Ki67
(Figure 2D and 2E). Activated, pMAPK-positive cells were also
prevalent in these areas (Figure 2F and 2G), as were cells
expressing keratin 6, a keratin induced in the suprabasal
layers of hyperproliferative skin (Figure 2H and 2I).

Expression of the Snail transgene did not block terminal
differentiation in the hyperproliferative epidermis, but it
distorted it markedly (Figure 3A-3H). Typical of most
hyperproliferating conditions, Snail expression led to a large
expansion in layers with spinous and granular morphology.
Additionally, however, was a marked and variable expansion
of keratin 5 (K5), normally restricted to the innermost basal
layer (see Figure 3). Although the failure of Snail-null mice to
develop past gastrulation [21] precluded our ability to study
the loss of Snail function in skin development, a good
correlation emerged between the expression of Snail protein
and the extension of K5, Ki67, and pMAPK suprabasally
(compare data in Figures 2 and 3).
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Figure 3. Alterations in the Differentiation Program and Basement Membrane Organization in Snail-Expressing Tg Epidermis

(A-H) Immunofluorescence of skin sections from P83 WT and Tg mice. Shown are affected areas of Tg skin; in areas where Snail protein was not
expressed, stainings were normal. Sections were labeled with antibodies as indicated and color-coded on each frame. Antibodies are against
markers of normal epidermal differentiation, and include K5 (a basally expressed keratin), K1 (a suprabasal keratin, expressed in spinous layer
cells), involucrin (Inv; a suprabasally expressed cornified envelope protein found in upper spinous and granular layer cells), loricrin (Lor; a
cornified envelope protein expressed in the granular layer), and filaggrin (Fil; a protein that bundles keratin filaments in the granular layer and
stratum corneum). Note abnormal extension of anti-Kb suprabasally, often present in anti-K1 positive suprabasal Tg cells.

(I-N) Immunohistochemistry (I and J) or immunofluorescence (K-N) of sections of P30 Wt (I, K, and M) and Tg (], L, and N) (affected areas) skins
using the antibodies indicated. Note that with age, affected areas of the Tg epidermis became increasingly undulating, often exhibiting
papilloma-like invaginations (J). Insets in I and J are magnified views of the boxed areas, illustrating the absence (Wt) or presence (Tg) of nuclear
anti-cyclin D staining. With age, affected areas of the Tg epidermis also displayed perturbations within the basement membrane, as judged by
antibody labeling against either basement membrane (K and L) or hemidesmosomal (M and N) components. Double arrows in L demarcate
mosaic zones, revealing that perturbations were restricted to hyperthickened, i.e., Snail-positive zones (to left of double arrows). Other
abbreviations are as noted in the legend to Figure 2.

DOI: 10.1871/journal.pbio.0030011.g003

The changes in hyperproliferation and differentiation were
not initially accompanied by gross signs of epithelial
invaginations. With age, however, epidermal folds and
undulations developed in areas where Snail was expressed,
and proliferative markers persisted in these regions (Figure 31
and 3J; anti-cyclin D staining). The undulations were
accompanied by partial dissolution of the underlying base-
ment membrane (Figure 3K and 3L). Aberrant staining was
also observed with antibodies against components of the
hemidesmosomes, which provide strong adhesion of basal
epidermal cells to the underlying basal lamina (Figure 3M and
3N). Interestingly, similar types of alterations occur in the
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basement membrane in the hair bud of embryonic and
newborn mice when Snail is normally expressed. The fact that
the basement membrane separating the epidermis from the
dermis is altered only in the adult Tg animals suggests the
involvement of intermediary factors not as readily available
in the epidermis as they are in the follicle.

Possible Links between Epidermal Hyperproliferation and
Down-regulation of AJ Proteins in Snail Tg Mice

Given that the E-cadherin promoteris a direct target for Snail-
mediated repression in vitro [4,12,13], and that E-cadherin was
down-regulated in Snail-expressing hair buds, we examined
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Figure 4. Snail-Mediated Remodeling of AJs
Contributes to Hyperproliferation

A B back ear

§ IE, § E (A) Immunofluorescence of skin sections
from P30 Wt and Tg mice. Shown are
affected areas of Tg skin; in areas where
Snail protein was not expressed, stainings
were normal. Antibodies used are against
AJ proteins and include E-cadherin (E-
cad), the transmembrane core protein; B-
catenin (B-cat), which binds E-cadherin at
AJs and which can also participate as a
transcription cofactor when associated
with LEF-1/TCF proteins in the nucleus;
o-catenin (d-cat) which binds to both (-
catenin and Ajuba, a close relative of
zyxin; and Ajuba, which can associate with
proteins that bind to the actin cytoskele-
ton, as well as with Grb-2, a mediator of
C SnaII(HA)I the GTP nucleotide-exchange protein Sos,
E-cad(HA ir_1volv_ed in activation of. the Ras—_MAPK
signaling cascade. In Snail-expressing Tg
regions, there was a reduced staining with
anti-E-cad and anti-o-cat and a more
diffuse staining with anti-Ajuba. Insets in
the panels for B-catenin and Ajuba stain-
ing are magnified views of the boxed
areas. Arrows mark membrane localiza-
tion of the protein and asterisks mark
cells with elevated levels of cytoplasmic B-
catenin or Ajuba.
(B) Western blot analyses of protein
extracts from P30 Wt and Tg back and
ear skins. Antibodies are as in (A) except
anti-P-cad, which detects P-cadherin,
whose expression in the hair follicle was
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(C) In the presence of elevated Snail, o-

: g PMAPK m catenin levels can be restored by over-
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Snail(HA) e Ajuba =t e s om0 " Snail(HA) and Ecad(HA) (images on the
preLIM right). 2 d after transfection, cells were
P switched from low-calcium growth me-

Snail st g

tubulin S dium to high-calcium medium for 6 h to

induce AJ formation. Cells were stained
with antibodies as indicated on the panels.
Arrowheads point to sites of intercellular contact between a Snail-transfected keratinocyte and its neighboring untransfected cell.
(D) Reintroduction of E-cadherin in keratinocytes expressing Snail returns pMAPK to basal levels. Keratinocytes were transfected with control
vector (K14), or Snail(HA), or Snail(HA) + E-cad(HA). After 2 d, cells were serum starved for 4 h and whole cell lysates were made and Western
blotted with antibodies to pMAPK, HA to recognize the HA-tagged Snail and E-cadherin protein, 20or tubulin as a loading control.
(E) Ajuba interacts with Grb-2 under conditions where a-catenin levels are reduced. Protein extracts were made from skins of P30 Wt and K14-
Snail Tg P30 mice (blots on the left) and of newborn Wt and KI4-Crefo-catenin (fiff) conditionally null animals (blots on the right) [7]. Equal
amounts of protein extracts were treated with anti-Grb-2 antibody (+) or control isotype antibody (-), and following centrifugation,
immunoprecipitates were subjected to SDS-PAGE and Western blot analysis with anti-Ajuba and anti-Grb-2 antibodies. Note the presence of
Ajuba only under conditions where levels of a-catenin and other AJ proteins were aberrantly low or absent.
(F) Transgene expression of excess Ajuba or the Grb-2-interacting domain (pre-LIM) of Ajuba in keratinocytes results in the activation of the
Ras-MAPK pathway. Primary newborn mouse keratinocytes were transfected with either the empty K14 expression vector (K14), or the
expression vector driving Snail, full length Ajuba, or the pre-LIM domain of Ajuba in the absence or presence of a peptide inhibitor (inh) that
disrupts the interaction between Grb-2 and Sos. 48 h posttransfection, protein extracts were prepared and subjected to SDS-PAGE and Western
blot analyses with antibodies against pMAPK, total MAPK, Ajuba (also recognizing the smaller, pre-LIM domain), and Snail.
DOI: 10.1371/journal.pbio.0030011.g004

the status of E-cadherin and other A proteins within regions of tion of B-catenin and Ajuba appeared to be largely cytoplasmic

hyperproliferative epidermis where Tg Snail was present
(Figure 4A). In these regions, immunofluorescence staining of
E-cadherin and o-catenin were markedly diminished. In
contrast, the intensity of antibody staining for two other AJ
proteins, B-catenin and Ajuba, was still strong. Interestingly,
however, despite appreciable immunofluorescence, localiza-
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rather than at cell-cell borders (Figure 4A insets).
Architectural differences in the epidermis made Western
blot analyses somewhat difficult to gauge. However, in regions
such as ear skin, where the highest levels of Snail protein were
expressed, the effects were accentuated. In both back skin and
ear skin, overall levels of E-cadherin and o-catenin were

January 2005 | Volume 3 | Issue 1 | e11



reduced, under conditions where B-catenin and Ajuba levels
remained unchanged relative to controls (Figure 4B). Taken
together, these data were consistent with our results obtained
from immunofluorescence microscopy.

A priori, the decrease in o-catenin levels could be due to
either direct transcriptional repression by Snail or perturba-
tions in AJ formation caused by the decrease in E-cadherin
gene expression. To distinguish between these possibilities,
we tested whether o-catenin levels could be restored by
exogenous expression of E-cadherin in Snail-expressing
keratinocytes. As shown in Figure 4C, transiently transfected
keratinocytes expressing HA-tagged Snail displayed a loss of
E-cadherin and a-catenin at cell-cell borders. Coexpression of
exogenous HA-tagged E-cadherin not only enabled cell-cell
border localization of E-cadherin protein, but also rescued
the cell-cell border staining of a-catenin (Figure 4C). The
ability to restore a-catenin expression and localization under
these conditions argues against the notion that Snail tran-
scriptionally represses o-catenin. Rather, the findings are
consistent with a previous report that E-cadherin is required
for the translation of o-catenin mRNA [22].

Despite the reductions in AJ markers, Tg skin still displayed
sealed membranes and intercellular junctions that were
largely intact, as judged by ultrastructural analyses (unpub-
lished data). In this respect, the skin epithelium resembled
that of the hair bud, where the down-regulation in junction
proteins is permissive for cell-cell remodeling without
abrogating intercellular adhesion.

The similarities between Snail Tg epidermis and hair buds
extended to the hyperproliferative state, leading us to wonder
whether the down-regulation of AJ proteins might contribute
to this condition. Given the increase in pMAPK staining in
Snail Tg epidermis (see Figure 2G), we used pMAPK levels as
our assay to test whether the loss of E-cadherin contributed
to the Snail-mediated increase in proliferation. Consistent
with our in vivo observations, transfected keratinocytes
expressing Snail exhibited a substantial increase in pMAPK
levels relative to control cells (Figure 4D). Coexpression of E-
cadherin with Snail appeared to abrogate this effect.
Together, these findings raised the possibility that an AJ-
associated protein that is normally sequestered at the plasma
membrane may participate in a proliferation signaling
pathway when AJs are deconstructed.

Numerous studies have correlated a down-regulation of E-
cadherin with a translocation of B-catenin to the nucleus and
a transactivation of genes that are regulated by the LEF-1/T
cell factor (TCF) family of DNA binding proteins [23,24,25].
The presence of nuclear cyclin D in hyperproliferative Snail
Tg epidermis was particularly intriguing since prior studies
have reported ¢yclin D gene as a direct target of TCF/B-catenin
transcription [26]. This said, we did not detect nuclear -
catenin in our Tg epidermis, and mating the Snail Tg mice
against the TOPGal reporter mouse [20] gave no signs of
ectopic LEF-1/Tcf/B-catenin activity (unpublished data).

We next turned to the presence of cytoplasmic Ajuba for a
possible mechanistic link to the proliferative increase in our
Snail Tg epidermis. In addition to its documented ability to
bind o-catenin [10], Ajuba can also associate with growth
factor receptor-bound protein-2 (Grb-2)lson of sevenless
(Sos), the nucleotide exchange factor for Ras, which is
upstream from activation of MAPK [9]. Given the increase
in pMAPK staining in Tg skin, we examined the possibility
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that Ajuba might have changed its binding partner in Snail-
expressing epidermis. Interestingly, Ajuba was readily de-
tected in anti-Grb-2 immunoprecipitates of protein lysates
from skins of Snail Tg mice but not from the corresponding
wild-type (WT) animals (Figure 4E). When these experiments
were repeated with o-catenin-null epidermis, a similar Grb-2-
Ajuba association was detected, and again, this interaction
was not detected in the protein extracts from control
littermate skin (Figure 4E). Together, these data demonstrate
that the reduction in o-catenin levels, either by Snail-
mediated down-regulation of E-cadherin or by a-catenin
conditional targeting, allows Ajuba to interact with Grb-2/Sos.

If the competition between Grb-2/Sos and a-catenin for
Ajuba is functionally relevant to the hyperproliferative state
of a keratinocyte, then overexpression of Ajuba would be
expected to bypass the competition and promote activation
of the Ras-MAPK pathway in WT keratinocytes. Indeed, when
serum-starved keratinocytes were transiently transfected with
an Ajuba expression vector, the levels of pMAPK were not
only elevated but also comparable to those transfected with
the K14-HASnail transgene (Figure 4F). This activation was
abolished when cells were treated with a small peptide
inhibitor that specifically interrupts the Grb-2/Sos interac-
tion (Figure 4F; see lanes marked “inh”) [27].

Ajuba’s pre-LIM domain is the segment that associates with
Grb-2’s Src-homology 3 domain [9]. When this domain was
overexpressed in serum-starved keratinocytes, a comparable
elevation in pMAPK was observed (Figure 4F). As expected,
the small peptide inhibitor that interrupts the Grb-2/Sos
association blocked the effects. These data suggested that by
elevating cytosolic Ajuba levels, Ajuba’s pre-LIM domain may
associate with Grb-2/Sos in a manner that stimulates its
nucleotide exchange activity and leads to activation of the
Ras-MAPK pathway. Although this pathway provides one
mechanism by which Snail expression and proliferation may
be coupled in skin epithelium, proliferative circuitries
involving AJs are known to be complex and often interwoven.
Future studies will be needed to systematically dissect these
putative intricacies at a molecular level.

Probing the Regulation of Snail Gene Expression Reveals
an Essential Link to TGF-B2 Signaling in the Developing
Hair Bud

The temporal spike of Snail mRNA expression in the hair
bud prompted us to consider what factor(s) may be regulating
the Snail gene. A variety of extracellular signals have an
impact on the cell type-specific expression of different Snail
family members, and many of them, including Wnts, BMPs,
FGFs, and TGF-s, also affect hair bud development [2,16,28].
Since Snail is not expressed in cultured skin keratinocytes
that secrete active BMPs and FGFs (see Figure 1B), we focused
our attention on Wnt and TGF-B signaling as more likely
candidates for Snail induction in this cell type.

Previously, we showed that effective transmission of a Wnt-
3a signal in cultured keratinocytes can be achieved through
their exposure to the BMP inhibitor noggin, which induces
LEF-1 expression [4]. In vitro, these conditions down-
regulated the E-cadherin promoter and induced a LEF-1/B-
catenin-sensitive reporter gene, TOPFLASH [4]. In contrast,
Snail expression was not induced by these conditions (Figure
BA). Thus, despite essential roles for Wnts and noggin in hair
follicle specification [4,29,30], our studies did not support an
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Figure 5. TGF-B2, but Not Wnt/noggin,
Transiently Induces Snail Expression In Vitro
(A) Failure of Wnt and noggin signaling to
induce Snail in cultured keratinocytes.
Primary mouse keratinocytes were treated
with Wnt- and/or noggin-conditioned me-
dium (+) or the corresponding control
medium (-). These conditions are known
to activate the LEF-1/B-catenin reporter
TOPGal and down-regulate the E-cadherin
promoter (see [4] for details). Using West-
ern blot analyses, cellular proteins were
then analyzed for Snail, LEF-1, B-catenin,
and tubulin. Proteins from keratinocytes
transfected with K14-Snail were used as a
positive control for Snail expression.

(B) TGF-B2 can induce Snail protein.
Primary keratinocytes were treated for
the indicated times with recombinant
TGF-B2 (4) or heat inactivated TGF-B2 (-).
Total cellular proteins were then isolated
and analyzed by Western blot for Snail,
PSMAD2 (reflective of activated TGF-
signaling), and tubulin. Note the activation
of Snail expression, peaking at 2 h post-
TGF-B2 treatment and then disappearing
thereafter.

(C) Snail mRNA expression is transiently
induced by TGF-B2. The experiment in (B)
was repeated, and this time, total RNAs
were isolated from keratinocytes treated
with TGF-B2 for the indicated times. RT-
PCR was then used with (+) or without (-)

14-Snail

[Ewt prom + TGFR2

Emt prom + TGFR2
wt prom +
[l inact.TGFR2

reverse transcriptase (RT) and with primer sets specific for Snail and GAPDH mRNAs. Note that Snail mRNA expression also peaked at 2 h,

paralleling Snail protein.

(D) TGF-B2 treatment results in enhanced activity of a Snail promoter-B-galactosidase reporter. Keratinocytes were transfected with a B-
galactosidase reporter driven by a Snail promoter that is either WT (wt prom) or harbors a mutation in a putative pPSMAD2/pSMAD4 binding site
(mt prom). At 2 d posttransfection, cells were treated with either TGF-B or heat-inactivated TGF-B2 (inact) for the times indicated. B-
galactosidase assays were then conducted, and results are reported as fold increase over a basal level of activity of 1. The experiment was
repeated three times in triplicate, and error bars reflect variations in the results.

DOI: 10.1871/journal.pbio.0030011.g005

essential role for these signals in governing Snail expression
in keratinocytes.

TGF-B1 has been shown to induce Snail family members in
hepatocytes and heart [15, 31]. In keratinocytes, however,
TGF-B1 inhibits keratinocyte growth and seems to be
involved in triggering the destructive phase of the cycling
hair follicle [32]. Of the loss-of-function mutations generated
in each of the TGF-B genes, only the TGF-B2 null state blocked
follicle development at the hair bud stage [32]. Thus, we
turned towards addressing whether TGF-B2 might be
involved in regulating Snail expression in keratinocytes
isolated from the basal layer of the epidermis. Though there
is no cell culture system available to specifically study
placodal cells, these keratinocytes are their progenitors and
are the closest approximation available to study the behavior
of epithelial cells of the placode.

Interestingly, treatment of cultured keratinocytes with as
little as 5 ng/ml of TGF-P2 caused a rapid and transient
induction of Snail (Figure 5B). Following this treatment, Snail
protein was detected within 30 min, peaked at 2 h, and then
declined thereafter. The induction of Snail appeared to be
specific for the active form of the growth factor, as pretreat-
ment of TGF-B2 for 10 min at 100 °C obliterated the response
[Figure 5B, lanes marked (-)]. By contrast, although TGF-f
receptor activation remained elevated during the duration of
the experiment (as measured by the sustained phosphoryla-
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tion of the downstream effector SMADZ2) Snail expression
could not be maintained (Figure 5B). Thus, although Snail
expression correlated with phosphorylated SMAD2
(pPSMAD?2) induction, its decline seemed to rely on secondary
downstream events.

The rapid kinetics of Snail expression were reflected at the
mRNA level, suggesting that Snail promoter activity in
keratinocytes might be sensitive to TGF-B2 signaling (Figure
5C). To test this possibility, we engineered a transgene driving
the P-galactosidase reporter under the control of approx-
imately 2.2 kb of promoter sequence located 5" from the
transcription initiation site of the mouse Snail gene. At 2 d
after transient transfection, keratinocytes were treated with
TGF-B2 (t = 0) and then assayed for transgene activity over
the same time course in which we had observed Snail protein
induction. The results of this experiment are presented in
Figure 5D.

Within 0.5 h of TGF-B2 treatment, Snail promoter activity
had increased 3-fold, and by 2 h, it peaked to approximately
10-fold over control levels (Figure 5D). Thereafter, Snail
promoter activity rapidly returned to the basal levels seen in
unstimulated keratinocytes. The kinetics of Snail promoter
activity closely paralleled those observed for Snail protein
induction. Moreover, the stimulatory effects appeared to be
specific to TGF-B2, since they were abrogated either by heat
inactivation of the TGF-B2 protein or by mutation of a
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putative SMAD binding element located about 1.8 kb 5’ from
the Snail transcription start site (Figure 5D). Taken together,
these results suggested that in keratinocytes, TGF-B2 signal-
ing results in a pSMAD2-dependent transient activation of
the Snail gene, and that maintenance of Snail protein relies,
in part, upon sustained promoter activity.

The brevity of Snail gene and protein induction in TGF-B2
treated cultured keratinocytes resembled the temporal
appearance of Snail mRNA and protein at the initiation of
hair follicle morphogenesis in embryonic mouse skin. To test
whether TGF-B2 might be required for Snail induction in hair
bud formation in vivo, we first analyzed whether TGF-B2 was
expressed in or around the hair bud. Consistent with previous
observations [33], an anti-TGF-B2 antibody labeled develop-
ing hair buds (Figure 6A). This labeling appeared to be
specific as judged by the lack of staining in follicle buds from
mice homozygous for a TGF-B2 null mutation (Figure 6A;
[34]). Moreover, the downstream effector of TGF-B2 signaling,
PSMAD?2, was also expressed in WT, but not 7GF-B2-null, hair
buds (Figure 6B). Together, these data underscore the
importance of the TGF-B2 isoform despite expression of
both TGF-B1 and TGF-B2 in developing hair buds at this
stage.

To further explore the possible relation between Snail
and TGF-B2, we examined the status of Snail expression in
TGF-B2-null hair buds. As judged by immunohistochemis-
try, Snail protein was absent from E17.5 skin of TGF-B2-
null embryos but not from that of control littermates
(Figure 6C). This effect appeared to be exerted at the
transcriptional level, since Snail mRNAs were also not
found in TGF-B2 null hair buds under conditions in which
the signal was readily detected in the hair buds of
littermate skin (Figure 6D).

Conversely, in 2-wk-old KI14-Smad2 Tg mice, which display
elevated TGF-B signaling in skin [35], Snail protein was
readily detected by Western blot analyses, where it was not
found in postnatal skin (Figure 6E). Taken together, these
results provide compelling evidence that TGF-B2 is func-
tionally important for inducing Snail gene expression in a
pSMAD-dependent manner in developing hair buds.
Whether pMARK activity also contributes to Snail induction
was not addressed in the present study [15].

Although some hair buds still formed in TGF-B2 null skin,
their number was reduced by approximately 50% [32]. Thus,
although the pathway mediated by TGF-B2 signaling impacts
the earliest step of epithelial invagination, it does not appear
to be essential for bud morphogenesis. Consistent with this
notion, basement membrane remodeling still took place in
the TGF-B2-null buds, as judged by immunofluorescence with
antibodies against PB4 integrin, an integral component of
keratinocyte-mediated adhesion to its underlying basement
membrane (Figure 6F). In contrast, TGF-B2 signaling
appeared to be an important factor for the early prolifer-
ation that occurs in the developing hair buds, as judged by
anti-Ki67 and anti-pMAPK immunofluorescence (Figure 6F
and 6G).

If TGF-B2 stimulates Snail expression in developing buds,
loss of this morphogen would be expected to affect the
expression of genes that are typically repressed by Snail.
Since a major target for Snail-mediated repression is the E-
cadherin gene [12,13], we investigated the status of E-cadherin
in TGF-f2-null buds. As shown in Figure 6H, hair buds in
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TGF-B2 null skin displayed elevated immunofluorescence
staining relative to their WT counterparts.

Previously we demonstrated that the concerted action of
the extracellular signals Wnt and noggin are required for the
generation of a LEF-1/B-catenin transcription complex to
repress F-cadherin transcription at the onset of hair fate
specification. As shown in Figure 61 and 6], both WT and
TGF-B2 null buds exhibited nuclear LEF-1 and B-catenin
localization, signs that the Wnt-noggin signaling pathway was
intact. These data suggest that during hair follicle morpho-
genesis, TGF-B2 functions subsequently to Wnt/noggin-
mediated determination of hair fate. Moreover, through
activation of Snail gene expression, TGF-B2 appears to work
in tandem with these other morphogens to down-regulate E-
cadherin levels, which contributes to the activation of
proliferative circuitries.

Discussion

During budding morphogenesis, intersecting signaling
networks from the epithelium and mesenchyme govern
transcriptional, adhesive, polarity, and motility programs in
these select groups of cells. The dynamic nuclear and
cytosolic changes that take place during this time form the
cornerstone for organ morphogenesis. Two major challenges
in understanding the mechanisms underlying a particular
budding process are to order the temporal sequence of
external cues involved and then to dissect how the cells of the
developing bud translate these signals into the downstream
events of cellular remodeling, proliferation, and differ-
entiation. Our studies here provide some insights into how
these events are orchestrated during hair bud formation in
developing skin.

Signaling during Early Hair Follicle Morphogenesis

Recent studies on hair bud morphogenesis suggest that
Wnt signals likely from the epithelium and BMP inhibitory
signals from the underlying mesenchyme converge to
produce an active transcription factor complex involving -
catenin and LEF-1, which in turn plays a key role in specifying
the hair follicle fate [4,29,30,36,37]. Sonic hedgehog (Shh) and
TGF-B2 signaling also play essential roles in follicle morpho-
genesis, but in contrast to B-catenin null skin, in which follicle
invaginations are absent [30], some hair buds still form in the
absence of LEF-1, Shh, or TGF-B2 [32,38]. These likely reflect
the first wave of follicle (i.e., guard hair) morphogenesis,
which accounts for a small number (fewer than 5%) of hairs
and is under distinct regulatory control. Guard hairs form in
the absence of LEF-1 and TGF-B2, and we have found that
they also fail to express Snail at the budding stage of
development (unpublished data). How E-cadherin is regu-
lated in guard hairs remains to be determined. Several
candidates include other Snail family members such as Slug
or twist, or alternatively, transcription factors involving -
catenin and a different member of the LEF-1/TCF/Sry-type
HMG box (commonly known as SOX) family [39,40]. Further
investigation will be required to determine whether the
signaling pathway we have elucidated here is a theme with
multiple variations.

TGF-Bs are known to promote withdrawal of keratino-
cytes from the cell cycle [41]. Hence, when TGF-B2 protein
was detected at the transition between the growing and
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Figure 6. TGF-B2 Is Necessary to Induce
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mouse was previously shown to possess
activated TGF-P signaling [35].

(F-G) Proliferation markers Ki67 (F) and
PMAPK (G) are diminished in TGF-B2-
null hair relative to its WT counterpart.
(H=]) TGF-B2-null hair fails to down-
regulate E-cadherin (H). Wnt and noggin
signaling pathways are still intact in the
TGF-B2 null hair as nuclear LEF-1 (I) and
nuclear B-catenin (J) are still expressed.
DOI: 10.1371/journal.pbio.0030011.g006

destructive phases of the adult hair cycle, research initially
and naturally focused on a role for this family member in
cessation of growth and/or triggering apoptosis ([42] and
references therein). However, in contrast to TGF-BI-null
skin, which exhibits an extended growing phase of postnatal
hair follicles, TGF-B2-null skin displays an embryonic block
in follicle bud progression [32]. Although this phenotype is
consistent with TGF-B2’s embryonic expression patterns
[33], about 50% of TGF-B2 null buds appear unable to
progress to the down-growth phase, a feature that cannot be
explained readily on the basis of previously established
effects of TGF-Ps.

Our finding that TGF-B2 is upstream from Ki67 expression
and MAPK activation lends further support to the notion that
hair follicle keratinocytes at this early stage of development
react to TGF-B2 signaling in a fashion opposite to that
typically expected for TGF-f factors. This said, based upon
PSMAD2 immunohistochemistry, the immediate steps of
downstream signaling appeared to be intact. Thus, we
surmise that the proliferative outcome is likely to be rooted
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in differences in the repertoire of activated SMAD target
genes. In this regard, the positive effects of TGF-f2 on
proliferation within the hair bud may be more analogous to
what has been seen in progression of squamous cell
carcinoma to metastatic carcinoma [43] rather than that
typically observed for keratinocytes [44,45,46].

The prior identification of the Snail gene as a potential
target of TGF-B signaling [15] was intriguing, given the
temporal wave of Snail gene expression that occurs in the
developing hair bud. The additional correlation between
epithelial hyperproliferation and Snail transgene expression
further fostered our interest in a possible link between TGF-
B2 and Snail. Our functional studies demonstrate that
without TGF-B2, Snail expression is abolished in the mutant
hair buds, and conversely, in KI4-Smad2 skin, Snail is
ectopically activated. Moreover, our in vitro studies indicate
that even sustained TGF-P2 exposure may cause only a
transient induction of Snail, offering a possible explanation
as to why Snail is so briefly expressed during hair follicle
morphogenesis. An additional point worth mentioning is that
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prolonged expression of Tg Snail in postnatal skin resulted in
morphological and biochemical signs of epithelial to mesen-
chymal transitions (unpublished data), underscoring why
transient Snail expression may be so important during
normal hair follicle morphogenesis [18].

At first glance, the sparsity in hair coat of K14-Snail Tg
mice seemed indicative of a defect in follicle formation (see
Figure 2A). Closer inspection, however, revealed that not all
hairs penetrated the hyperthickened Tg epidermis. Several
factors may contribute to the seemingly normal follicle
development in these mice. One obvious factor is the K14
promoter, which is elevated in the basal layer of the
epidermis and the outer root sheath (ORS) of the hair
follicle, but is markedly down-regulated in developing
embryonic hair buds as well as in the postnatal hair
progenitor cells. The K14 promoter is also less active in the
ORS than epidermis and hence this might also account for
the lack of apparent response of the ORS to ectopic Snail.
Additional contributing factors could be the multiplicity of
Snail family members and their differential expression, the
saturation, and/or diversity of regulatory mechanisms that
govern A] formation, migration, and proliferation in the
follicle ORS. Distinguishing between these possibilities must
await the generation of mice harboring skin-specific loss-of-
function Snail mutations.

Links between Signaling, Transcriptional Cascades,
Epithelial Remodeling, and Proliferation in the Hair Bud
Previously, we discovered that early during hair follicle
morphogenesis, E-cadherin gene expression is down-regulated
concomitantly with the invagination of developing bud cells
into the skin [4]. Because the timing of this event correlated
with the activation of a LEF-1/B-catenin transcription factor
complex [20], we were intrigued by the presence of a putative
LEF-1/TCF binding site in the E-cadherin promoter. This
prompted an investigation that subsequently led to our
discovery that LEF-1/B-catenin can contribute to repression
of E-cadherin gene expression in skin keratinocytes [4]. In the
course of these studies, we also noted that Snail can also
contribute to this process in keratinocytes in vitro, and our
present studies revealed that Snail is expressed at the right
place and time to be physiologically relevant in the process.
In noggin-null embryonic skin, LEF-1 expression and
subsequent activation of the LEF-1/B-catenin reporter gene
is abrogated in the developing placodes. The corresponding
failure of E-cadherin down-regulation underscores the im-
portance of Wnt/noggin signaling in regulating this event in
follicle morphogenesis [4]. Conditional gene targeting
studies will be necessary to establish whether Snail family
members also contribute to the down-regulation in E-
cadherin gene expression that occurs during follicle forma-
tion. However, it is intriguing that KI14-Snail Tg epidermis
displayed a marked down-regulation in E-cadherin expres-
sion, thereby demonstrating its potential to do so in skin.
Our prior findings showed that by elevating E-cadherin levels
or by conditionally ablating o-catenin, hair follicle morpho-
genesis can be impaired [4,7]. The marked epidermal
hyperproliferation seen in the KI4-Snail Tg skin, coupled
with the converse suppression of proliferation and Snail in
TGF-B2-null hair buds led us to wonder whether the down-
regulation of E-cadherin during follicle morphogenesis
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might have a direct impact on elevating the proliferative
state of these cells.

Our Tg studies suggested that, at least in part through its
regulation of E-cadherin, Snail is able to influence the
subcellular localization of a variety of AJ-associated proteins.
One of these appears to be Ajuba, which was previously
shown to have the dual capacity to bind Grb-2 as well as a-
catenin [9,10]. Our studies revealed that in skin keratinocytes
that either harbor a conditional null mutation in a-catenin or
that overexpress Snail, Ajuba develops an interaction with
Grb-2 that is otherwise not observed in WT keratinocytes.
The corresponding abilities of either Snail-transfected or
Ajuba-transfected keratinocytes to exhibit elevated activation
of the Ras-MAPK pathway suggest that the Grb-2 association
of Ajuba under conditions of reduced levels of AJ proteins
may be directly relevant to the parallel in hyperproliferation.

In stable epithelial (i.e., Madin-Darby canine kidney, or
MDCK) cell lines, Snail has been shown to block cell cycle
progression and promote motility and shape changes for
invasion [47]. While our in vivo studies are consistent with a
role for Snail in motility and epithelial remodeling, they
differ with respect to Snail’s apparent proliferative effects. A
priori, this could be simply due to variations in the response
of different cell types to Snail expression. Alternatively, these
differences may be relevant to the benefit of using mouse
models to reveal functions not always recapitulated in stable
cell line models. Future studies should highlight the under-
lying reasons for these opposing results.

Irrespective of these differences, our in vivo studies do not
stand alone, as there are many situations in which a down-
regulation in A] proteins correlate with enhanced prolifer-
ation. In fact, a myriad of diverse mechanisms have been
implicated in activating epithelial proliferation upon down-
regulation of AJ proteins [7,23,24,48]. Sifting through these
converging pathways is likely to be a difficult and painstaking
process. This said, by identifying the status of different
players involved in specific cell types and at specific stages in
development, our mechanistic understanding of how inter-
cellular remodeling is linked to proliferation in epithelial
morphogenesis should begin to surface in the future.
Flucidating the molecular mechanisms through which these
networks converge is also a prerequisite for understanding
how these processes go awry during tumorigenesis.

Materials and Methods

Reagents. Primary antibodies used were against: E-cadherin (M.
Takeichi, Kyoto University, Japan); o-catenin, B-catenin, pMAPK,
tubulin (Sigma, St. Louis, Missouri, United States), Ajuba (G. Long-
more, Washington University, St. Louis, Missouri, United States); 4
integrin/CD104 (BD Pharmingen, San Diego, California, United
States), laminin 5 (R. Burgeson, Harvard University, Cambridge,
Massachusetts, United States), Kb, K1, loricrin (Fuchs Lab), involu-
crin, fillagrin (Covance, Berkeley, California, United States), MAPK,
pSMAD?2 (Cell Signaling, Beverly, Massachusetts, United States); Grb-
2 (Santa Cruz Biotech, Santa Cruz, California, United States); P-
cadherin (Zymed Laboratories, South San Francisco, California,
United States); HA (Roche Biochemicals), vimentin (Chemicon,
Temecula, California, United States), Ki67 (Novo Castra, Newcastle
Upon Tyne, United Kingdom), keratin 6 (P. Coulombe, John Hopkins
University, Baltimore, Maryland, United States), cyclin D (Oncogene,
San Diego, California, United States), and TGF-B2 (L. Gold, New York
University, New York, New York, United States). FITC-, Texas Red-,
or HRP-conjugated secondary antibodies were from Jackson Immu-
noResearch (West Grove, Pennsylvania, United States). Biotinylated
secondary antibodies were from Vector Labs (Burlingame, California,
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United States). Dilutions were according to the manufacturer’s
recommendation. The Snail antibody was generated in Guinea pigs
by inoculating them with the N-terminal sequence of murine Snail
fused to GST (Covance, Princeton, New Jersey, United States).
Recombinant human TGF-B2 was purchased from R&D (Minneapolis,
Minnesota, United States). Heat inactivated TGF-B2 was generated by
heating the recombinant protein at 100 °C for 10 min.

Mice. The KI14-Snail Tg mouse was generated by digesting the
pcDNA3-mm Snail-HA plasmid (G. de Herreros, Universitat Pompeu,
Fabra, Barcelona, Spain) with BamHI and Notl and subcloned into
the K14 vector [49]. The linearized construct was injected into the
nucleus of embryos from CD1 mice. The K14-Smad 2 Tg mouse was
reported in Ito et al,, 2001. The TGF-B2 knockout (KO) mouse was
described in [34]. The shh KO mouse [38] and TOPGal mouse [20]
have previously been reported.

Western blot and immunoprecipitation. Protein extracts from
primary keratinocytes were generated either by lysing cells in lysis
buffer (1% NP-40, 1% sodium deoxycholate, 20 mM Tris-Cl [pH 7.4],
140 mM NaCl containing 1 mM sodium vanadate, 2 mM phenyl-
methylsulfonyl fluoride, and protease inhibitors) or directly in
Laemmli bPuffer and boiled. For skin tissue: Frozen tissue was
pulverized in a liquid nitrogen-cooled Gevebesmascher and the
powder scraped into a chilled microcentrifuge tube. RIPA buffer (1%
Triton X-100 in PBS with 10 mM EDTA, 150 mN NaCl, 1% sodium
deoxycholate, and 0.1% SDS) and protease inhibitors or Laemmli
buffer was added. The cell suspension was sonicated three times for
15 s and centrifuged at 14,000 rpm at 4 °C. The supernatant was
separated from the pellet and used in the experiments. Extracts
subjected to immunoprecipitation were precleared with Protein G
Sepharose (Amersham, Piscataway, New York, United States) and
incubated with antibody with rocking overnight at 4 °C. Protein G
Sepharose was added and samples were incubated for 1 h at 4 °C with
rocking. Samples were washed three times for 5 min each in lysis
buffer, and the Protein G Sepharose-antibody-antigen pellet was
resuspended in Laemmli buffer and boiled for 10 min. Samples were
run on SDS-PAGE and transferred to nitrocellulose membrane
(Schleicher and Schuell Bioscience, Keene, New Hampshire, United
States). Western blot signals were developed using the enhanced
chemiluminescence kit from Amersham

Cell culture. Primary keratinocytes were culture in low-calcium
medium as previously described [4]. Transient transfections were
carried out with FuGENE6 reagent (Roche, Indianapolis, Indiana,
United States) according to the manufacturer’s protocol. Measure-
ment of PB-galactosidase or luciferase levels in promoter activity
studies were carried out with the Galacto-Lite assay kit (TROPIX,
Bedford, Massachusetts, United States) and the Dual luciferase
(Promega, Madison, Wisconsin, United States), respectively. Runella
luciferase was cotransfected into cells to correct for transfection
efficiency. Experiments were done in triplicate and repeated at least
three times. Measurements were done on a luminometer (MGM
Instruments, Hamden, Connecticut, United States). For experiments
measuring phosphorylation of MAPK, keratinocytes were serum
starved for 3 h prior to harvesting of cells by incubation in medium
lacking serum. Treatment of cells with Wnt- and noggin-conditioned
medium was previously described [4].

Constructs. The 2.2-kb murine Snail promoter was generated
by PCR using a forward primer with an Xbal linker sequence,
5'-TCTAGAATTGTTTGCTGCTGTATGGTCTTC-3', along with a
reverse primer with a BglII linker sequence, 5'-AGATCTGTTGGC-
CAGAGCGACCTAG-GTAG-3', and mouse genomic DNA as a
template. The PCR product was purified with the Gel Extraction Kit
(Qiagen, Valencia, California, United States) and ligated into pCRII-
TOPO TA vector (Invitrogen, Carlsbad, California, United States). The
promoter was verified by sequencing and digested with Xbal and BglII
and subcloned into the pf-gal BASIC vector (BD Biosciences
Clontech, Palo Alto, California, United States). The point mutations
in the SMAD binding element was generated with the Quik-Change
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