PLOS BioLogy

pPRb Inactivation in Mammary Cells Reveals
Common Mechanisms for Tumor Initiation
and Progression in Divergent Epithelia
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Retinoblastoma 1 (pRb) and the related pocket proteins, retinoblastoma-like 1 (p107) and retinoblastoma-like 2 (p130)
(pRby, collectively), play a pivotal role in regulating eukaryotic cell cycle progression, apoptosis, and terminal
differentiation. While aberrations in the pRb-signaling pathway are common in human cancers, the consequence of
pRb; loss in the mammary gland has not been directly assayed in vivo. We reported previously that inactivating these
critical cell cycle regulators in divergent cell types, either brain epithelium or astrocytes, abrogates the cell cycle
restriction point, leading to increased cell proliferation and apoptosis, and predisposing to cancer. Here we report that
mouse mammary epithelium is similar in its requirements for pRb; function; Rb; inactivation by T,,,, a fragment of
SV40 T antigen that binds to and inactivates pRb: proteins, increases proliferation and apoptosis. Mammary
adenocarcinomas form within 16 mo. Most apoptosis is regulated by p53, which has no impact on proliferation, and
heterozygosity for a p53 null allele significantly shortens tumor latency. Most tumors in p53 heterozygous mice
undergo loss of the wild-type p53 allele. We show that the mechanism of p53 loss of heterozygosity is not simply the
consequence of Chromosome 11 aneuploidy and further that chromosomal instability subsequent to p53 loss is
minimal. The mechanisms for pRb and p53 tumor suppression in the epithelia of two distinct tissues, mammary gland
and brain, are indistinguishable. Further, this study has produced a highly penetrant breast cancer model based on

aberrations commonly observed in the human disease.

Introduction

Aberrant retinoblastoma 1 (pRb) pathway activity, resulting
from defects in pRb itself, cyclin-dependent kinase inhibitor
2A (p16INK4”), cyclin D1 (CCND1), or cyclin-dependent kinase
4 (CDK4), is observed in the majority of human sporadic
cancers (Marshall 1991; Weinberg 1995; Sherr 1996; Ortega et
al. 2002). This pathway is commonly altered early in cancer
development, indicating an ability to predispose cells to
tumorigenesis. However, whether the mechanism(s) is similar
among cell types is not known. Examination of pRb
inactivation in specific cell types in vivo has been technically
challenging due to the apparent functional compensation or
redundancy among pRb, retinoblastoma-like 1 (p107), and
retinoblastoma-like 2 (p130) in many cell types of the mouse
(Luo et al. 1998; Robanus-Maandag et al. 1998; Dannenberg et
al. 2000; Sage et al. 2000). Thus, genetic inactivation of the Rb
gene alone, either by conditional deletion (Marino et al. 2000)
or by the generation of chimeric mice harboring pRb-
deficient cells (Maandag et al. 1994; Williams et al. 1994)
yields only medulloblastomas, pituitary, and thyroid tumors.

We have begun to systematically examine the role of
retinoblastoma protein family (pRby) inactivation in multiple
cell types of the mouse by dominant expression of Tys, a
truncation mutant of simian virus 40 (SV40) T antigen that
inactivates all three pRb-related proteins (DeCaprio et al.
1989; Dyson et al. 1989; Ewen et al. 1989; Stubdal et al. 1997,
Sullivan et al. 2000). In this report we determine the role of
pRb inactivation in mammary adenocarcinoma predisposi-
tion, establish a role for pb53 inactivation in subsequent
mammary adenocarcinoma progression, and, together with
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our previous studies, provide a comprehensive comparison of
these mechanisms in distinct epithelial lineages.

pRb plays a critical role in eukaryotic cell cycle progres-
sion, when cells exit GO or G1 and enter S phase, thereby
acting as a crucial negative regulator of cellular proliferation
and neoplasia (Sherr and McCormick 2002). In quiescent or
early Gl-phase cells, pRb is hypophosphorylated and asso-
ciates with specific members of the E2F transcription factor
family, converting them to active transcriptional repressors
(Hamel et al. 1992; Weintraub et al. 1992). Gene repression is
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also mediated by pRb and p130 recruitment of histone
deacetylase to promote formation of inhibitory nucleosomes
(Brehm et al. 1998; Luo et al. 1998; Magnaghi-Jaulin et al.
1998). The many proteins found in association with pRb
suggest other regulatory mechanisms may also be involved
(Morris and Dyson 2001), although the biological potential
for most of these interactions remains yet unproven. Cell
cycle progression from G to S phase occurs when complexes
of D-type cyclins/CDK4/CDK6 phosphorylate pRb, thereby
derepressing E2Fs to direct transcription of DNA-replication
machinery and nucleotide biosynthesis genes (Dyson 1998).

Like most human solid tumors, breast cancers harbor
frequent alterations in the pRb pathway, including CCND1
overexpression in 45% (Buckley et al. 1993), p161NK4A loss in
49% (Geradts and Wilson 1996), and pRb loss in 6% of breast
tumors (Geradts and Wilson 1996). In the Rb-deficient mouse
mammary gland, pl07 and/or p130 may play overlapping or
compensatory roles, as they do during embryonic develop-
ment, given that pRb is dispensable for normal mammary
development and mammary tumor suppression. pRb-defi-
cient embryonic stem cells participate in normal mammary
gland formation in chimeric mice (Maandag et al. 1994), and
donor prfF mammary precursor cells transplanted into
wild-type mice can populate a normal mammary gland
without evidence of neoplasia, even after multiple pregnan-
cies (Robinson et al. 2001).

The interplay between pRb signaling and the tumor
protein p53 pathway is also critical to the understanding of
breast cancer biology. Since the pRb pathway is defective in a
majority of human tumors and the p53 gene is mutated in
about half of them, including approximately a fifth of
sporadic breast cancers (Nigro et al. 1989; Greenblatt et al.
1994), these aberrations often coexist. Whether loss of these
tumor suppressor pathways collaborate in tumorigenesis is
also cell type-specific. In a brain epithelial tumor model, we
previously demonstrated that, in the absence of pRb;
function, inactivation of p53 significantly decreases apoptosis
and accelerates tumor growth in vivo (Symonds et al. 1994).
However, in astrocytic brain tumors induced by pRb¢
inactivation, tumor progression is not accelerated by reduced
p53 activity; rather, the phosphatase and tensin homolog
(PTEN) regulates the apoptosis, and reduction in its function
accelerates tumor growth (Xiao et al. 2002).

In this report, we extend our analysis of pRb function in
vivo and examine the consequence of pRby loss specifically in
mammary epithelium. These studies serve not only to provide
insight into the cell specificity of tumor suppression
mechanisms, but also to model the stepwise evolution of
breast adenocarcinomas that harbor defects in this pathway.

Results

Generation of Mice with Inducible pRbs Deficiency in
Mammary Cells

Seven founder mice were generated in which the 7,; gene
was regulated by the whey acidic protein (WAP) transcrip-
tional signals (Figure 1; see Materials and Methods). Of these,
two founder animals died spontaneously of unknown causes,
while the transgenic progeny of the third line died
prematurely, also of unknown cause (Figure 2A). The extent
to which the transgene contributed to these deaths was not
investigated further; however, ectopic transgene expression
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Figure 1. Diagram of the WAP-T;,; Transgene and Protein

The fragment consists of the 2.4 kb WAP promoter (hatched) and the
mutant SV40 T-antigen coding region (white box) containing two
deletions, the 196-bp amino-terminal deletion, which abolishes small
t antigen production, and the dl1137 deletion, which truncates T
antigen. Both the ] domain and the LXCXE domain are required for
pRb family inactivation (see Materials and Methods).

DOI: 10.1371/journal.pbio.0020022.g001

was detected in several tissues (data not shown). Character-
ization of female mice of the four remaining lines is the focus
of this report.

T121 Is Expressed in Lactating Mammary

Western immunoblotting analyses of mammary gland
extracts demonstrated that this tissue expresses Ti9; protein
at the expected size in all four lines (Figure 2B). Tjo;
expression in lines 1 and 2 was only revealed following
immunoprecipitation using an anti-T-antigen antibody prior
to Western blot analysis, indicating lower levels of To; (right
panel in Figure 2B). A survey of select tissues showed that
detectable expression was restricted to the mammary gland in
lines 1-3, while expression was more widespread in the higher
expressing line 4 (data not shown) and included brain and
kidney expression. As expected, Ty9; expression was induced
by lactation with highest levels observed 5 d postpartum
(Figure 2C). Southern blot analyses indicate that mice in line
3, which was used as a representative line for extensive
characterization, harbor approximately ten copies of the
transgene at a single insertion site (data not shown).

Impact of Rbs Inactivation in Mammary Epithelium
Representative histological analysis of lactating mammary
glands (day 1) from single-pregnancy females of the line 2
founder (Fy) and a line 3 F; mouse shows that the impact of
Rb perturbation is severalfold. Compared to an age- and
parity-matched control tissue, the normal architecture of the
lactating mammary tissue is disturbed. In contrast to normal
tissue where acini consist of a single layer of secretory
epithelia with milk-filled lumen (Figure 3A), transgenic
animals have a lower density of acini (Figure 3K), consistent
with atrophy, and are often atypical (Figure 3I). T 9;-positive
mammary epithelial cells were associated with abnormalities
(Figure 3B, 3F, and 3J). The line 2 F, animal was mosaic for
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A Figure 2. Expression of T;; Protein in
E = WAP-T;5; Mice and a Summary of Gross
" xpression Gross Mammary gl_and Phenotypes
Line Tissue MG T‘F‘ Phenotype Abnormalities As expected, each line showed mam-
Protein mary-specific expression following lacta-
1 lactating MG + normal Ap, Pr, Hyp tion induction, while line 4 showed more
a i widespread expression, with protein de-
2 |actating MO i3 henmal PR D tecte(f in braiE and kidney. pMice from
3 lactating MG i+t FTN At, Ap, Pr, MIN, Adeno-Ca® the higher-expressing lines 3 and 4 failed
lactating MG, Brain to nurse because of lactation defec:ts.
4 Kidne):r ! i FTN, Death©  At, Ap, Pr, MIN, Adeno-Ca® Mammary glands of adult female mice
from all four lines showed elevated
proliferation and apoptosis. Glands from
line 1 and 2 mice were hyperplastic,
B Line # C while glands from lines 3 and 4 were

Line #3 atrophic. Lines 3 and 4 later developed
1 2 3 4 1 2 nt + nt —mm— carcinomas and other neoplasms. Tjo;
protein was detected by Western blot

+
Ti24 _p. . Fae ... ﬁ analysis in lactating mammary glands of

animals from all four lines (B), although
the lower-expressing lines 1 and 2
10 18 5 14 i required immunoprecipitation with
dpc PP PW anti-T-antigen antibody prior to West-
5 ern blot analysis (right panel in [B]).
Brain tumor extract (see Materials and
Methods) was used for a positive control,
and nontransgenic mammary tissue extract was used for a negative control. A timecourse analysis of T} expression (C) shows lactation-induced
expression peaking at 5 d postpartum.
Abbreviations: Adeno-Ca, adenocarcinoma; AP, elevated apoptosis in mammary gland; At, atrophy; dpc, postcoital; FTN, failure to nurse; Hyp,
hyperplastic acini; MG, mammary gland; MIN, mammary epithelia neoplasia; ND, not determined; nt, nontransgenic; pp, postpartum; Pr,
elevated proliferation in mammary gland; pw, post-weaning.
Footnotes:"Mosaic founder animal."At earlier stages, development defects attributed to atrophy, while MIN and adenocarcinoma were observed
at terminal stages.“Approximately half of progeny died of unknown cause.
DOL: 10.1371/journal.pbio.0020022.g002

Ti91 protein expression with distinct regions of expressing Quantification of Tj9; expression and apoptosis revealed
and nonexpressing cells (Figure 3F), whereas T;9; expression higher protein expression levels (see Figure 2B) correlate with
in the line 3 animal was in secretory epithelium distributed higher percentages of apoptotic cells (Figure 4A). Consistent
throughout the gland (Figure 3]). Increased proliferation, with a model for cell-autonomous functioning of T;o;, the
indicated by proliferating cell nuclear antigen (PCNA) pattern of abnormalities of morphology, proliferation, and
staining, was also observed in transgenic mammary glands apoptosis in the mosaic animal mimicked the regionalized
(Figure 3C, 3G, and 3K), concomitant with increased levels of Ti91 expression pattern, and conversely, where T,9; protein

apoptosis assayed by TUNEL staining (Figure 3D, 3H, and 3L). was absent, the tissue appeared normal.

Figure 3. Mammary-Specific Inactivation
of the pRb Pathway Induces Extensive
Abnormalities

Histologic comparisons of nontransgen-
ic (A-D), mosaic (F, line 2 [E-H]), and
transgenic (F;, line 3 [I-L]) lactating
mammary glands reveals that Tjo; ex-
pression results in increased prolifera-
tion and apoptosis. Hemotoxylin and
eosin staining shows acini of the normal
lactating gland are composed of a single
layer of secretory epithelial cells (A) with
milk-filled lumen. Consistent with atro-
phy, transgenic animals have a lower
density of acini demonstrated by the
presence of lipid-filled adipocytes (aster-
isk in [K]). Acini composed of Tjo;-
expressing cells are atypical. Many are
collapsed and composed of tall columnar
epithelia of large hyperchromatic cells
with papillary tufting (arrows in [I]).
Transgene-expressing cells have large
pleomorphic nuclei (open arrows in
[G]) as compared to nuclei of nonexpressing cells (arrows in [G]). Staining for T;9; expression (blue in [B]-[]]) indicates the line 2 F, animal
is mosaic, showing localized expression (F), whereas the transgene expresses throughout the gland of an F; line 3 animal (J). Increased
proliferation assayed by PCNA staining (red) is also localized in the mosaic founder (G), but found throughout the F, transgenic gland (K).
Similarly, TUNEL staining (brown) demonstrates increased apoptosis in transgenic animals (H and L); moreover, the regionalized apoptosis in
the mosaic gland (H) strongly suggests that transgene expression and not precocious involution is the cause. All samples are from primiparous
females on lactation day 1.

DOI: 10.1371/journal.pbio.0020022.g003
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Figure 4. Reduced p53 Activity Decreases
Apoptosis but Does Not Increase Prolifer-
ation

Representative apoptosis levels of each
mouse line correlate with Tyo; expres-
sion as indicated by the percentage of
TUNEL positive cells (A). Decreasing
levels of pb3 activity correlate with lower
levels of apoptosis in transgenic mam-
mary glands (B). The mean percentage of
apoptotic cells in p53 wild-type trans-
genic glands was 21%; in p53 hetero-
zygous animals, 9%; and in p53 null
animals, 5% (B), indicating that 75% of
the apoptosis is p53-dependent. Apop-
tosis levels are further reduced to 2% in
terminal stage tumors (B, Tumors). The
percentage of PCNA staining cells re-
mains unchanged in p53 heterozygous or
nullizygous animals (C), indicating that
reduction of p53 activity levels had no
significant impact on cell proliferation.
Samples were derived from primiparous
animals on lactation day 1, except as
indicated as tumor samples (B). Trans-
genic animals in (B) and (C) were from
line 3.

2+-1% DOL: 10.1371/journal. pbio.0020022.g004
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Role of p53 in Apoptosis

To investigate the impact of germline loss of p53 on
apoptosis levels in Rbgdeficient mammary glands, we mated
line 3 animals to 53 null mice to generate transgenic and
nontransgenic females of distinct p53 genotypes (+H-+, +H—, ——).
Transgene expression was induced by a single pregnancy, and
mammary glands were examined on lactation day 1. As
expected, nontransgenic mammary glands showed no appre-
ciable apoptosis regardless of p53 status (Figure 4B). However,
in transgenic animals, decreased levels of p53 activity were
correlated with lower levels of apoptosis. The mean percent-
age of apoptotic cells in p53 wild-type transgenic glands was
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21%; in p53 heterozygous animals, 9%;and in p53 null
animals, 5% (Figure 4B), indicating that 75% of the apoptosis
is pb3-dependent. That we could detect haploinsufficiency of
p53 for apoptosis is remarkable, since in the previously
characterized T;e1-expressing choroid plexus epithelium,
apoptosis levels were the same in p53 heterozygous and
wild-type backgrounds (Lu et al. 2001). This observation
indicates that there is a threshold for p53 levels in eliciting
apoptosis and that either the threshold is different between
cell types or that the absolute functional p53 level is distinct.
Such differences could have significant impact on the
requirements for tumorigenesis.
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Role of p53 in Proliferation

In two other transgenic mouse models of breast cancer,
where tumors were initiated by activated Harvey rat sarcoma
viral oncogene homolog (v-Ha-ras) (Hundley et al. 1997) or
wingless-related murine mammary tumor virus (MMTV)
integration site 1 (Wn#-1) (Donehower et al. 1995), inactiva-
tion of p53 did not result in a reduction of apoptosis; rather,
loss of p53 was associated with increased proliferation of the
mammary epithelium. To determine whether p53 inactiva-
tion also impacted mammary cell proliferation induced by
Rby inactivation, glands from primiparous lactating (day 1)
mice were assessed for the expression of nuclear PCNA.
Unlike the tumors initiated by activated Ras or Wnt-1, p53
heterozygosity or nullizygosity had no significant impact on
the level of cell proliferation (Figure 4C). This experiment
indicates that p53 can have distinct mechanisms of action
depending on the nature of the initiating lesion.

pRb Inactivation Predisposes to Tumorigenesis

All females from higher-expressing lines (lines 3 and 4)
failed to nurse pups because of lactation defects and
developed mammary tumors after multiple pregnancies.
Because line 4 mice expressed Te; in nonmammary tissues,
further characterization focused on line 3. For this line, the
median time following initial transgene induction until a
palpable tumor appeared was 10 mo, and within 16 mo, all
mice developed palpable tumors (Figure 5A). Interestingly,
latency in this line on a BALBI/c] background (see Materials
and Methods) was reduced to a median time of 8.5 mo (p =
0.0077; Figure 5A) indicating the presence of modifier alleles.
The condensed timeframe for tumor development in this
strain will also be valuable for future preclinical studies using
this model. However, all further studies in the current report
were carried out on the original B6D2F1 background.

The median onset for mammary tumors in line 4 was 14 mo
(n = 3; data not shown), which indicates that the transgene
and not its insertion caused tumorigenesis. With two
exceptions, line 3 WAP-T;,; mice, regardless of p53 status,
developed a single palpable tumor (87% of p53™", n = 15;
78% of p53'", n = 9). A single mouse with either two or three
palpable tumors was also observed in both p53 +H- and +—
backgrounds. At least one additional nonpalpable tumor was
visible during necropsy in approximately one-third of all
tumor-bearing mice. While the two lower-expressing lines,
lines 1 and 2, were able to nurse pups and appeared grossly
normal, both had hyperplastic lobular alveoli associated with
increased levels of proliferation and apoptosis. However,
females from low-expressing lines did not develop adenocar-
cinomas after at least four pregnancies and 20 mo of age (line
1,n = 2;line 2, n = 6) (data not shown).

Most terminal stage tumors in either wild-type or p53#7
backgrounds were adenocarcinomas (Figure 6A, 6B, and 6E);
however, we also observed four pilar tumors (Figure 6C and
6E) and one spindle cell carcinoma (Figure 6D and 6E).
Terminal-stage mammary adenocarcinomas resembled
poorly to moderately differentiated invasive ductal adeno-
carcinoma in humans. Morphologically, we designate these
tumors as mixed solid and glandular carcinomas with
necrosis and fibrosis. Poorly differentiated solid tumors
(Figure 6A) are composed of nests of epithelial cells with
large pleomorphic nuclei and delicate chromatin patterns
with inverted nuclear:cytoplasmic ratios, while glandular
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Figure 5. Mammary Tumor Onset and Growth Are Accelerated by p53
Reduction

Among line 3 animals, the median time following initial transgene
induction until a palpable tumor appeared was 10 mo, and within 16
mo, all mice developed palpable tumors (red line in [A]). In p53+/*
transgenic animals (blue line in [A]), mammary tumors were detected
significantly earlier (p < 0.0003) with a median onset of 6 mo. Among
mice with BALB/c] background (black line in [A]), median mammary
tumor latency (8.5 mo) was significantly shorter (p = 0.0077)
compared to mice of the hybrid BDF1 background strain and
indistinguishable (p = 0.2466) from WAP-T;.;p53" mice. Once
palpable, WAP—TIZ,;;J53“7 tumors grew faster than the p53 wild-type
counterparts (B). The average growth rates for [)55’#F (black solid) and
p55’+/’ (dashed) are indicated.

DOI: 10.1371/journal.pbio.0020022.g005

tumors (Figure 6B) are composed of irregular glands with
varying degrees of differentiation. While most animals had a
single tumor mass, the adenocarcinomas were multifocal,
with solid tumors consisting of subclones of distinct expansile
masses, and with only two exceptions, glandular tumors were
coincident with solid tumors. The adenocarcinomas were
malignant, infiltrating dense, fibrous connective tissue, and
were accompanied by strong peripheral immune response
(Figure 6A).

Mammary Tumor Onset and Growth Are Accelerated by
p53 Reduction

Since 75% of the apoptosis induced by Rby inactivation was
mediated by p53 and was indeed reduced even in 537 mice,
we investigated the impact of p53 loss on tumor onset and
growth kinetics. Animals harboring either one or two p53 null
alleles were monitored for mammary tumors. As expected, a
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Figure 6. Tumor Morphologies

Hemotoxylin and eosin staining of WAP-T,; (C and D) and WAP-T 5,
[)53”7 (A and B) (also representative of WAP-T),;) tumor sections
shows that terminal stage adenocarcinomas have varied morpholo-
gies. Poorly differentiated solid tumors were comprised of nests (A)
or cords of epithelial cells (Tu) that infiltrate a fibrous stroma and
were accompanied by necrosis (arrow) and strong immune response
(arrowheads). Moderately differentiated glandular tumors (B) con-
sisted of irregular, disorganized glands. In animals of wild-type p53
background, four pilar tumors (C), distinguished by swirls of laminar
acellular keratin (arrow), and a single spindle cell carcinoma (D) were
also observed. For comparison, a lactating gland from a wild-type
animal is shown in Figure 3A. The percentage of animals displaying
each of the phenotypes is summarized in (G). Since many tumors
shared multiple morphologies, the sum exceeds 100%.

DOI: 10.1371/journal.pbio.0020022.g006

subset of p53" and p537 mice developed nonmammary
tumors (either thymic lymphomas or sarcomas), consistent
with published reports (Jacks et al. 1994; Sandgren et al. 1995;
Dannenberg et al. 2000). All [J53_/_ mice (n = 4) succumbed to
these tumors by 4 mo of age, prior to developing palpable
mammary tumors, so acceleration of this phenotype could
not be assessed. In p53" animals, mammary tumors were
detected significantly earlier (see Figure BA; p 0.0003)
compared with 55" mice. Furthermore, once palpable,
WAP-T 21,53 tumors grew significantly faster than the p53
wild-type counterparts (see Figure 5B). The observation of
four pilar tumors in p53+/+ animals and none in [J53+/_ animals
is a statistically significant difference (Fisher-Freeman-
Halton’s exact test, p = 0.0177) and suggests that the
reduction of p53 activity drives tumors to the adenocarcino-
ma phenotype. Taken together, these studies indicate that p53
heterozygosity leads to increased tumor growth rates and/or
progression and may alter the spectrum of tumor morphol-
ogies.

Selective Pressure for p53 Inactivation during Adenocar-
cinoma Development

Since apoptosis was significantly reduced in WAP-T,,;p53 "
mammary tissue compared with that of WAP—T121,1755%F mice,
it was possible that p53 heterozygosity was sufficient for
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tumor acceleration. To assess whether this was the case or
whether there was selective pressure for p53 inactivation
during tumor progression, real-time PCR analysis was
employed to determine the status of the wild-type p53 allele
in WAP—TJZI;p55+/_ tumors. Of ten tumors, eight showed loss
of the wild-type p53 allele (Table 1), indicating that the
apoptosis reduction observed in WAP-TIQI;pBH# mammary
epithelium was not sufficient for tumor progression. Signifi-
cant selective pressure favored cells that had completely
inactivated p53, indicating that tumor progression requires
further reduction of apoptotic activity and/or that p53 loss
contributes to tumor progression through additional mech-
anisms that confer selective advantage. Assessment of
apoptosis levels in terminal tumors showed apoptosis levels
were indeed reduced in comparison to preneoplastic tissue
(see Figure 4B).

Comparative Genomic Hybridization Reveals Recurrent
Chromosomal Imbalances in Tumors, but Limited
Chromosomal Instability

Among the multiple mechanisms of tumor suppression
attributed to p53, a common hypothesis is that p53 prevents
genetic instability. Indeed, studies using other mouse models
indicate loss of p53 function in tumors often correlates with
chromosomal instability. These include other breast cancer
models such as Wnt—1p53+/7 (Donehower et al. 1995) and
MMTV-ras p53" (Hundley et al. 1997) and p53"" thymic
lymphomas and sarcomas (Venkatachalam et al. 1998). In
marked contrast, our study of p53 deficiency in an evolving
brain epithelial tumor showed that tumorigenesis progresses
without chromosomal instability, indicating p53 loss contrib-
utes via alternative mechanisms (Lu et al. 2001). To determine
whether this difference was due to cell-type specificity,
differences in initiating mechanisms, or differences in
experimental approaches, we analyzed the genome of
mammary WAP—T,gI;;b55’+/_ tumors. We employed two meth-
ods of comparative genomic hybridization (CGH): chromo-
some-based CGH (cCGH) (Panel I in Figure 7) (Kallioniemi et
al. 1992) and microarray CGH (aCGH) (Panel II in Figure 7)
(Solinas-Toldo et al. 1997; Pinkel et al. 1998).

Twelve mammary tumors were assayed by CGH: ten by
cCGH, eight by aCGH, and six by both procedures. Both
assays revealed limited genomic imbalances (Figure 7), yet
only a single tumor showed loss of Chromosome 11 (which
harbors p53). Among samples tested by both methods, there is
strong concordance among large chromosomal changes,
encompassing multiple cytological bands to whole chromo-
some lengths. For example, there is apparent whole chromo-
somal duplication of Chromosomes 6 and 15 in tumor C and
of Chromosomes 8 and 18 in tumor H, monosomy of
Chromosome 10 in tumor J, and loss of X Chromosome in
tumors E and H (all or partial, respectively). Making
comparisons among imbalances spanning shorter chromo-
some lengths was more difficult, mainly due to the challenge
of reconciling cytological and physical maps. Furthermore,
technical limitations may account for real differences
between the two assays: small imbalances detected by one to
several bacterial artificial chromosome (BAC) clones are
irresolvable by cCGH; on the other hand, the relatively low
density of BAC clones may not adequately sample smaller
regions detected by cCGH. Nevertheless, on average, about
five imbalances per tumor were detected by cCGH. This
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Table 1. p53 LOH among the Majority of p53"~ Tumors

Tissue® Genotype g-(Average)AACL b Number of Wild-Type p53 Alleles
Muscle Wild-type 1.00 2
Muscle Wild-type 0.51 1.75
Muscle Wild-type 0.39 1.5
Muscle Wild-type 0.32 1.25
Muscle Wild-type 0.31 1
Tumor 1 TgWAP-T;5,;,p53 ™" 0.73 2
Tumor 2 TgWAP-T,5,;p53"* 0.90 2
Tumor 3 TgWAP-T;5,;,p53"+ 0.91 2
Spleen TgWAP-T;5,;,p53™~ 0.22 1
Tumor 4 TGWAP-T,5,,p53"7~ 0.34 1
Tumor 5 TgWAP-T;5,;p53~ 0.25 1
Tumor 6 TgWAP-T;5,;,p53™~ 0.12 0
Tumor 7 TgWAP-T,5,,p53"7~ 0.08 0
Tumor 8 TgWAP-T;5,;p53~ 0.13 0
Tumor 9 TgWAP-T;5,;,p53™~ 0.10 0
Tumor 10 TgWAP-T,5,,p53"7~ 0.07 0
Tumor 11 TgWAP-T;5,;,p53"~ 0.04 0
Tumor 12 TgWAP-T;,,;,p53™~ 0.16 0
Tumor 13 TgWAP-T,5,,p53"~ 0.15 0

Real-time PCR was performed in duplicate to determine the status of the wild-type p53 alleles in the mammary tumors or tissues as indicated. Analysis of standard samples
indicates that copy numbers of 2, 1, and 0 are indicated by 242 values of greater than or equal to 0.7, 0.2-0.7, and less than 0.2, respectively (Lu et al. 2001). Of ten WAP-
T121:p53" tumors, eight show LOH of p53 gene, while all three WAP-T;,;;p53"+ tumors retained both p53 alleles. Abbreviation: Tg, transgenic.

*Tumor samples were derived from line 3 animals, except tumor 1, which was derived from a line 4 animal.

PAAC, = [sample C, (p53) — sample C, (-actin) ] — [ p53** control Ct (p53) — p53™" control C, (B-actin) ]. C; = the number of cycles required to reach a threshold value, which
is set within the exponential phase of the logarithmic scale amplification plot.

DOI: 10.1371/journal.pbio.0020022.t001

number is comparable to the number of changes observed in tion. Previous models using wild-type large T antigen (Li et al.
myelocytomatosis oncogene (c-myc)-induced mouse mammary 1996b; Husler et al. 1998; Green et al. 2000; Schulze-Garg et
tumors (Weaver et al. 1999) and human tumors (Ried et al. al. 2000) are unable to address the relative contribution of
1995), yet less than the number of changes seen in breast pRb and p53, since T antigen also binds and inactivates p53.
cancer 1 (Brcal)-deficient mouse tumors (8.0) and more than As in brain epithelium, we show here that when the mammary
v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 tumor phenotype is initiated by pRby inactivation, most of
(HER2/neu)-induced tumors (2.8) (Montagna et al. 2002;  the apoptosis is mediated through p53. Furthermore, as in
Weaver et al. 2002). brain epithelium, heterozygosity for a null p53 allele

significantly shortens tumor latency (discussed further below).
Discussion Importantly, the Rb; deficiency-induced apoptotic response

and inhibition of tumor progression are not universally

Common Mechanisms for Tumor Progression in Epithelial
dependent on pb53. In astrocytes, we recently showed that

Cells of Distinct Origin

Here we report that loss of pRb family function in
mammary epithelium predisposes to malignant adenocarci-
noma. Using a single transgenic allele, we have thus far
inactivated the pRb pathway in several cell types in the
mouse: brain choroid plexus epithelium, astrocytes, and
mammary epithelium. In each case, despite the marked
differences among these divergent cell types, pRb inactiva-

PTEN, and not p53, modulates these same responses to Rby
inactivation. In contrast to the p53-dependent apoptosis of
mammary epithelial cells in response to pRby deficiency,
apoptosis associated with normal mammary involution
subsequent to lactation does not require pb3 (Li et al
1996a). Thus, the “wiring” of the apoptotic response within
this cell type is not global, but rather depends on the signal.

tion causes a similar response, initially evoking increased Although loss of p53-dependent apoptosis accounts for the
proliferation and apoptosis and, ultimately, predisposing to acceleration of mammary tumorigenesis in WAP'TIZI"l’53+/7
tumorigenesis (Chen et al. 1992; Saenz-Robles et al. 1994; mice, in models expressing either activated v-Ha-ras (Hundley
Symonds et al. 1994; Xiao et al. 2002). et al. 1997) or Wnt-1 (Jones et al. 1997), earlier tumor

Not surprisingly, the long latency of mammary adenocar- formation in p53 heterozygous and homozygous null mice is
cinomas indicates that additional events are required for accounted for by increased proliferation rather than attenu-
tumor progression. We show that mammary epithelium is ated apoptosis. An important caveat to this comparison is
similar to brain epithelium (Symonds et al. 1994; Lu et al. that the latter studies compared apoptosis in terminal tumors
2001) in its requirement for p53 activity in the apoptotic in which loss of apoptosis might have been selected regardless
response to aberrant proliferation caused by pRby inactiva- of initial p53 status, leaving open the possibility that tumor
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Figure 7. CGH Analysis Shows Limited
Genomic Instability

Twelve tumors were analyzed by CGH:
ten by cCGH (Panel I, A-]), eight by
aCGH (Panel 11, B, C, E, and H-L), and
six by both procedures (Panels I and II,
B, C, E, and H-J). In Panel I, green and
red lines adjacent to the ideograms
indicate relative gain or loss, respec-
tively. Tumor sample identities are in-
dicated by letters above gain and loss
lines. Only a single sample (Panel I, D)
shows loss of Chromosome 11. Telomeric
sequences of many chromosomes are
increased, most frequently Chromo-
somes b and 15. Recurrent losses are
seen on Chromosomes 10 and X. For
aCGH (Panel II), the genomic map is
depicted with chromosomes horizontally
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each tumor. To simplify visualization,
only BACs with relative intensities great-
er than 1.25 (gains) or less than 0.75
(losses) are shown. X Chromosome values
were halved to account for sex-mis-
matched samples. Changes spanning the
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growth rates in these models reflect the combined effects of
increased proliferation as well as reduced apoptosis. Never-
theless, there is a clear difference in WAP-T;,; mammary
gland in that, unlike the Ras and Wn¢-1 models, proliferation
levels do not depend on p53 status. Taken together, these
observations indicate that the specific cellular response to an
oncogenic stimulus depends on the nature of the initial
insult. Given that the pRb pathway is directly disrupted in
Ti91-expressing cells, this could be explained if these other
initiating events evoke pb3-dependent growth arrest which,
in part, functions upstream of pRb.

High Selective Pressure for p53 Inactivation in the
Transition to Aggressive Mammary Adenocarcinoma
Most of the apoptosis induced by pRb; deficiency in both
mammary (75%) and brain (85%) epithelia is p53-dependent
as determined by comparing p53+/+ and p537/7 tissue.
However, while p53 heterozygosity had no impact on the
level of apoptosis in the brain epithelium, in the mammary
gland the level was reduced by half in p53+/_ tissue. Given that
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10, 15, 18, and X. None of the clones
showing loss on Chromosome 11 spans
the p53 locus. The original p53 back-
ground of the animal and the p53 LOH
status of each tumor are also indicated in
the legend.
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apoptosis is the basis for selective inactivation of p53 in the
brain tumor model (Lu et al. 2001; X. Lu and T. Van Dyke,
unpublished data), it was possible that the pressure was
relieved or reduced in WAP—T121;1)53+/_ mice. However,
aggressive adenocarcinoma growth was accelerated with
100% penetrance, and 80% of these tumors underwent
selective loss of the wild-type p53 allele, just as in the brain
tumor model (Lu et al. 2001). This result indicates that tumor
progression requires more than a simple reduction in the
level of apoptosis; it follows that 53 may contribute to tumor
suppression by multiple mechanisms.

While both mammary and brain carcinomas show high
rates of p53 loss of heterozygosity (LOH), the mechanism of
loss may be distinct. Chromosome loss clearly explains p53
LOH in the brain carcinoma model (Lu et al. 2001) where
nearly all tumors (greater than 90%) are monosomic for
Chromosome 11, whereas only a single mammary tumor
analyzed by CGH showed Chromosome 11 loss. Alternative
mechanisms that may explain p53 LOH in the mammary
tumors include somatic recombination or chromosomal
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reduplication following mitotic nondisjunction. Whether
these alternative routes of LOH represent bona fide tissue-
specific phenomena or are due to relatively small sample sizes
will require further analyses. Interestingly, most mammary
tumors derived from Brcal-deficient mice lost p53; however,
regions distal to p53 were amplified (Weaver et al. 2002).
Thus, it is possible that mammary tumor promoting factor(s)
is located on distal Chromosome 11, selecting against loss.

Limited Chromosomal Instability in the Absence of p53

Genomic instability is a hallmark of most human solid
tumors, and a widely held view is that p53 represses instability
to suppress tumorigenesis, although evidence for this activity
has been mostly correlative. Contrary to this model, we
demonstrated previously that in the absence of p53 activity in
brain epithelia, tumors progress without chromosomal
instability; except for Chromosome 11 loss, in a [753+/_
background these carcinomas are diploid (Lu et al. 2001).
Here we show that mammary tumors similarly harbor limited
genome-wide alterations. While the number of aberrations
within the mammary tumors is small, it is intriguing that
some changes are recurrent, suggesting that their accrual is
causal in tumorigenesis. Ty9;-induced mammary carcinomas
harbor more genomic imbalances than brain tumors (ap-
proximately five versus approximately one). One explanation
for this observation is that, because the brain is a vital organ,
animals succumb to their illness when the brain tumor is at a
relatively earlier stage at which fewer changes have accumu-
lated. However, chromosome content of choroid plexus
tumors passaged further in xenografts remained stable (X.
Lu and T. Van Dyke, unpublished data). The converse
experiment, analyses of early mammary tumors subsequent
to p53 loss, will be required to determine the Kkinetics of
chromosomal changes in this tissue.

Pocket Protein Redundancy

Chimera and tissue-grafting experiments with pRb-defi-
cient cells indicate the absence of pRb alone is not sufficient
for abnormal mammary development or tumor formation
(Maandag et al. 1994; Robinson et al. 2001). Yet mammary-
directed overexpression of CCND1, an upstream regulator of
pRbyg, leads to mammary adenocarcinoma (Wang et al. 1994).
Given other recent studies indicating the possibility for
compensation of pRb function by pl07 andlor pl30
(Dannenberg et al. 2000; Sage et al. 2000) and the clear
redundancy of function in some murine cell types (Robanus-
Maandag et al. 1998; Xiao et al. 2002), it is likely that the
discrepancy among our results can be explained by over-
lapping functions of other family members, p107 and/or
p130. In our studies, T;o; abrogates the activities of all Rb
family members by a dominant interfering mechanism. A
subtly distinct alternative explanation is that the acute loss of
pRb signaling, rather than a chronic loss as of pRb during
mammary development, as in the chimera and grafting
models, accounts for the difference. Cell culture experiments
that support this hypothesis were recently reported (Sage et
al. 2003). In this model, pl07 and pl30 may be more
responsive to pRb regulatory signals during development
than in the terminally differentiated tissue; therefore, the
developing tissue more easily accommodates for the absence
of pRb in the pool of available pocket proteins. In the WAP-
T;2; model, the gland undergoes normal development and
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then is subsequently subjected to acute pRb pathway loss. We
presume that this scenario more closely mimics the situation
of spontaneous somatic loss in adult human breast. The test
of this alternative hypothesis awaits analyses of tissue-specific
inactivation of pRb and the paralogous pocket proteins using
conditional alleles.

A Model for Mammary Tumorigenesis Initiated by
Targeting the pRb Pathway

The WAP-T,;,; model is a significant addition to the current
repertoire of preclinical mammary tumor models exploring
the role of pRb pathway in tumorigenesis. Despite the
prevalence of pRb pathway defects in human sporadic
cancers, mice harboring germline mutations of p16™** do
not develop mammary cancer (Krimpenfort et al. 2001;
Sharpless et al. 2001). In addition, mammary-directed
expression of CCNDI1 is only mildly oncogenic (Wang et al.
1994), and as mentioned above, inactivation of pRb alone is
not sufficient for tumorigenesis. Although the WAP promoter
was a convenient means of directing mammary-specific
expression for an initial assessment this model, it also
presents the major shortcoming to this model in that
expression of Tyg; is linked to lactogenic hormone activity,
as in most existing murine mammary tumor models. Future
improvements aim to direct expression of Tj9; through
hormone-independent methods. Finally, the advantage over
wild-type T antigen models is that WAP-T;,; uncouples the
simultaneous inactivation of pRb and p53 and permits an
assessment of the relative contributions of the individual
oncogenic pathways. Testing the combinatorial effects of Rb
loss and other breast cancer mutations (e.g., BRCAI and
BRCA2), along with the further characterization of WAP-T 5,
tumors, should help provide additional insights into human
breast cancer biology.

Materials and Methods

Derivation and characterization of transgenic mice. The 2.4 kb
WAP promoter region was isolated from a WAP-TGFa construct (a
gift from David Lee, University of North Carolina at Chapel Hill,
United States [Sandgren et al. 1995]) and was cloned upstream of a 2.4
kb KpnI-Sall fragment of the dl1137't plasmid (Chen et al. 1992). We
targeted Tjo; expression to mammary gland using the WAP
promoter, which is induced late in pregnancy and expressed during
lactation (Pittius et al. 1988) (see Figure 1). T}9; contains the first 121
amino acids of the SV40 T antigen (see Figure 1) that encodes a ]
domain and a pRb-binding domain, which together are sufficient to
cause transformation by inactivating the pRb¢ proteins (DeCaprio et
al. 1989; Dyson et al. 1989; Ewen et al. 1989). Importantly, in contrast
to other wild-type T antigen constructs encoding the entire SV40
early region (Husler et al. 1998; Green et al. 2000; Schulze-Garg et al.
2000), small t antigen expression is absent due to a deletion that
removes the splice acceptor site. The importance of this is
demonstrated by the recent observation that small t antigen alone
is sufficient for tumorigenesis in the mammary gland (Goetz et al.
2001). Furthermore, p53 and EP300 (EIA-binding protein p300),
which map to the carboxyl half of T antigen, are also abolished, thus
permitting assessment of pRb¢ inactivation without the confounding
effects of altering additional suppressor pathways. An EcoRI frag-
ment containing the full transgene (see Figure 1) at a concentration
of 4 ng/ul was injected in to fertilized eggs harvested from B6D2F1
(Jackson Laboratory, Bar Harbor, Maine, United States) mice as
described previously (Yan et al. 1990). Transgenic mice were
identified by PCR amplification of a 160 bp fragment using primers
5'-GAATCTTTGCAGCTAATGGACC-3" and 5-GCATCCCA-
GAAGCTCCAAAG-3" with toe-derived genomic DNA as template.
Cycling profile was as follows: 94°C, 2 min; 35 cycles of 94°C, 20 s;
62°C, 45 s; 72°C, 45 s; and final incubation of 72°C, 2 min. TgWAP-T 5,
mouse lines were maintained by crossing to nontransgenic B6D2F1
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mice (Jackson Laboratory) and therefore are designated as B6;D2-
Tg(WAP-T9;) Tvd. To study the effect of background differences,
WAP-T;,; males were backcrossed to BALBIc] (Jackson Laboratory)
female mice. To increase sample size, tumor onset analysis for BALB/c
background mice combined data for N6 (n = 6), N7 (n = 1),and N9 (n
= 4) generation mice. For tumor induction, female mice, unless
noted as virgin, were housed with male mice to maximize the number
of pregnancies, because WAP promoter activity is lactation-depend-
ent (Pittius et al. 1988).

To study the effect of p53 mutation on mammary tumorigenesis
in WAP-T;; mice, male WAP-T,,. mice were mated to ;b53+F females
(p53™" ™, Jackson Laboratory). p53 genotypes were determined by
PCR using two reactions (Lowe et al. 1993), one that amplifies the
neomycin insertion site (neomycin primer: 5'- TCCTCGTGCTTTA-
CGGTATC-3', p53 primer: 5'-TATACTCAGAGCCGGCCT-3'; 525 bp
product) and a second that amplifies the endogenous p53 allele
(substituting 5'-ACAGCGTGGTGGTACCTTAT-3' for the neo primer,
475 bp product). Cycling parameters were the same as the above
WAP-T5; reaction. We performed the cross WAP»TIZI,;[)55+/7 X WAP-
T121+;p53+/7, and transgenic female mice that were p53+”, ]753”7,
or p537 were used for analyses while nontransgenic littermates
served as controls.

Western immunoblotting analysis. Protein expression levels were
assayed as previously described (Symonds et al. 1993). Fresh or flash-
frozen tissue samples were homogenized in lysis buffer (50 mM Tris
[pH 8.0], 5 mM EDTA, 150 mM NaCl , and 1% NP-40) using a
Polytron® homogenizer (Kinematica, Littau-Lucerne, Switzerland).
Total protein (10 pg) was electrophoresed through a 15% poly-
acrylamide denaturing gel and then transferred to nitrocellulose
membrane (15 V, 30 min). Alternatively, for low-expressing lines,
immunoprecipitation was performed prior to electrophoresis as
previously described (Symonds et al. 1991). The filter was preincu-
bated in 3% bovine serum albumin, followed by incubation with
primary antibody against SV40 T antigen (PAb419 at a dilution of
1:5,000; Harlow et al. 1981). The filter was then washed, followed by
incubation at room temperature with horseradish peroxidase-
conjugated goat anti-mouse IgG (Amersham Biosciences, Little
Chalfont, United Kingdom). The enhanced chemiluminescence
method (Amersham Biosciences) was used for autoradiography.

Histopathology and immunohistochemistry. Mammary tissue and
tumor samples were dissected from WAP-T,; transgenic or age- and
parity-matched B6D2F1 animals. A portion of each tumor was flash-
frozen in liquid nitrogen and the remaining tissue was fixed in 10%
phosphate buffered formalin, embedded in paraffin, cut to a 5-pum
thickness, and stained with hemotoxylin and eosin or immunostained
using the Vector ABC system (Vector Laboratories, Burlingame,
California, United States) for histopathological examination. Apop-
tosis levels were evaluated by TUNEL assay (Gavrieli et al. 1992)
essentially as described in Symonds et al. (1994).

Real-time PCR. Quantitative real-time PCR analysis was performed
using a TagMan approach on DNA derived from terminal tumors to
determine the status of the wild-type p53 allele as previously
described (Lu et al. 2001). The primers for the p53 allele were 5'-
ATGGCCATCTACAAGAAGTCACAG-3" and 5'-ATCGGAG-
CAGCGCTCATG-3'. The sequence of the p53 probe was 5'-
ACATGACGGAGGTCGTGAGACGCTG-3'. The primers for the
internal control f-actin gene were 5-AAGAGCTATGAGCTGCCT-
GA-3" and 5'-ACGGATGTCAACGTCACACT-3'. The sequence of the
p-actin probe was 5'-CACTATTGGCAACGAGCGGTTCCG-3'. Each
25-pl reaction mixture contained 50 ng of DNA template, 18 nM p53
primers, 80 nM f-actin primers, 8 nM probe, and 12.5 pl of TagMan
Universal PCR Master Mix (Applied Biosystems, Foster City,
California, United States) containing AmpliTaq Gold polymerase,
deoxynucleoside triphosphates, and PCR buffer. The cycling con-
ditions were 50°C for 2 min and 95°C for 10 min for 1 cycle, and 95°C
for 15 s and 60°C for 1 min for 40 cycles. The reactions were
performed using an ABI 7700 Sequence Detection system (Applied
Biosystems), and the data analyzed using Sequence Detector 1.7
(Applied Biosystems) and standard protocols (http://www.appliedbio-
systems.com). The copy number of each sample was determined by
calculating AACt based on the formula AAC, = [sample Cps3) —
sample Cig.gerin)] — [pB?)HJr control Cts3) — pE’)?)Jr/Jr control Ctg.aeinl»
where C, is the number of cycles required to reach a threshold based
on linear amplification. Analyses of standard samples (L. Chin,
Harvard University, Cambridge, Massachusetts, United States, per-
sonal communication) indicate copy numbers of 2, 1, and 0 are
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indicated by 246! yalues of greater than 0.6, 0.15-0.6, and less than

0.15, respectively. Standard samples analyzed along with experimen-
tal samples confirmed the accuracy of these assignments.

Statistical analyses. Kaplan-Meier survival analysis was used to
determine median tumor latencies (StatsDirect, Camcode, Sale,
United Kingdom), and the Log-Rank (Peto, StatsDirect) test was
performed to evaluate significance. The equivalence of tumor
morphology distributions was tested using the Fisher-Freeman-
Halton’s exact test.

CGH. Genomic DNA was extracted from end-stage tumors (1 cm in
diameter) or tails using a DNeasy genomic tip (Qiagen, Valencia,
California, United States) and further purified by proteinase K
digestion followed by phenol/chloroform extraction, ethanol precip-
itation, and resuspension in sterile HoO. cCGH was performed as
described in Kallioniemi et al. (1992), Donehower et al. (1995), and Lu
et al. (2001). aCGH was performed as described in Snijders et al.
(2001). For both methods, genomic DNA from tumor and normal
tissue was labeled with different fluorochromes and then cohybri-
dized together with Cot-1 DNA to either normal metaphase
chromosomes from cultured cells (cCGH) or microarrayed BAC
clones containing mouse genomic DNA (aCGH). Nonequivalent
fluorescence intensities indicate relative imbalances of genomic
DNA. Aneuploidy and partial chromosome gains and losses are
detectable by cCGH with approximately 10 Mb resolution. Graphical
output of cCGH data was generated using the National Cancer
Institute and National Center for Biotechnology Information
Spectral Karyotyping SKY and Comparative Genomic Hybridization
CGH Database (http://www.ncbi.nlm.nih.gov/sky/skyweb.cgi). For
aCGH, approximately 1,500 BAC clones span the entire mouse
genome with 2-20 Mb spacing. Tumor DNA and normal DNA were
sex-mismatched; thus, the X Chromosome served as an internal
control, while normal tail DNA was used as a negative control. Gains
or losses were scored based on tumor:normal fluorescence ratios that
were greater than 1.25 or less than 0.75, respectively.

Supporting Information

Accession Numbers The accession numbers for the genes and gene
products discussed in this paper are Brcal (LocusLink ID 12189),
CDK2 (LocusLink ID 1017), CDK4 (LocusLink ID 1019), CDK6
(LocusLink ID 1021), c-myc (LocusLink ID 17869), cyclin D1
(LocusLink ID 595), cyclin E (LocusLink ID 898), E2F (InterPro ID
IPR003316), HER2/neu (LocusLink ID 13866), histone deacetylase
(LocusLink ID 3065), p16™*** (LocusLink ID 1029), p53 (LocusLink
ID 7157), p107 (LocusLink ID 5933), p130 (LocusLink ID 5934), p300
(LocusLink ID 2033), PCNA (LocusLink ID 18538), pRb (LocusLink ID
5925), PTEN (LocusLink ID 5728), v-Ha-ras (LocusLink ID 3265), WAP
(LocusLink ID 22373), and Wnt-1 (LocusLink ID 22408).

These databases may be found at www.ncbi.nlm.nih.gov/LocusLink/
(LocusLink), and www.ebi.ac.uk/InterPro/ (InterPro).
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