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Microarrays are used to 
survey the expression of 
thousands of genes in a single 

experiment. Applied creatively, they 
can be used to test as well as generate 
new hypotheses. As the technology 
becomes more accessible, microarray 
analysis is finding applications in 
diverse areas of biology. Microarrays 
are simply a method for visualizing 
which genes are likely to be used in a 
particular tissue at a particular time 
under a particular set of conditions. 
The output of a microarray experiment 
is called a “gene expression profile.’’

Gene expression profiling has 
moved well beyond the simple goal of 
identifying a few genes of interest. The 
notion that this is the major objective of 
microarray studies has engendered the 
oft-repeated criticism that the approach 
only amounts to “fishing expeditions.’’ 
The sophistication of microarray 
analysis very much blurs the distinction 
between hypothesis testing and data 
gathering. Hypothesis generation is 
just as important as testing, and very 
often expression profiling provides the 
necessary shift in perspective that will 
fuel a new round of progress. In many 
gene expression profiling experiments, 
the hypotheses being addressed are 
genome-wide integrative ones rather 
than single-gene reductionist queries. 
In general, without a hypothesis 
only the most obvious features of a 
complex dataset will be seen, while 
clear formulation of the scientific 
question undoubtedly fuels better 
experimental design. And in some 
cases, the results of a microarray screen 
that was initially designed as an effort at 
cataloguing expression differences are 
so unexpected that they immediately 
suggest novel conclusions and areas of 
enquiry.

Fundamental Microarray 
Technology

All microarray experiments rely 
on the core principle that transcript 
abundance can be deduced by 
measuring the amount of hybridization 
of labeled RNA to a complementary 
probe. The idea of a microarray is 

simply to lay down a field of thousands 
of these probes in perhaps a 5 sq cm 
area, where each probe represents 
the complement of at least a part of 
a transcript that might be expressed 
in a tissue. Once the microarray 
is constructed, the target mRNA 
population is labeled, typically with a 
fluorescent dye, so that hybridization 
to the probe spot can be detected 
when scanned with a laser. The 
intensity of the signal produced by 
1,000 molecules of a particular labeled 
transcript should be twice as bright as 
the signal produced by 500 molecules 
and, similarly, that produced by 
10,000 molecules half as bright as one 
produced by 20,000 molecules. So a 
microarray is a massively parallel way 
to survey the expression of thousands 
of genes from different populations 
of cells. Trivially, if fluorescence is 
observed for a gene in one population 
but not another, the gene can be 
inferred to be on or off, respectively. 
With appropriate replication, 
normalization, and statistics, though, 
quantitative differences in abundance 
as small as 1.2-fold can readily be 
detected. The output of all microarray 
hybridizations is ultimately a series 
of numbers, which covers a range of 
almost four orders of magnitude, from 
perhaps one transcript per ten cells 
to a few thousand transcripts per cell 
(Velculescu 1999).

It is the comparison of gene 
expression profiles that is usually of 
most interest. This is because the 
visualization is done at the level of 
transcript abundance, but just seeing 
a transcript does not guarantee that 
the protein is produced or functional. 
If, however, a difference in transcript 
abundance is observed between two or 
more conditions, it is natural to infer 
that the difference might point to an 
interesting biological phenomenon.

A general approach to performing 
gene expression profiling experiments 
is indicated as a flow diagram in 
Figure 1. Having performed the 
experiment, quality control checks, 
statistical analysis, and data-mining 
are performed. More and more, 
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Figure 1.  Flow Diagram of Gene Expression 
Profiling
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investigators are interested not just 
in asking how large the magnitude 
of an expression difference is, but 
whether it is significant, given the other 
sources of variation in the experiment. 
Similarly, we might want to evaluate 
whether some subset of genes show 
similar expression profiles and so form 
natural clusters of functionally related 
genes. Or we may combine expression 
studies with genotyping and surveys 
of regulatory sequences to investigate 
the mechanisms that are responsible 
for similar profiles of gene expression. 
Finally, all of the expression inferences 
must be integrated with everything else 
that is known about the genes, culled 
from text databases and proteomic 
experiments and from the investigator’s 
own stores of biological insight.

Fishing for Hypotheses

The ability to survey transcript 
abundance across an ever-increasing 
range of conditions gives geneticists a 
fresh look at their cellular systems, in 
many cases providing a more holistic 
view of the biology, but at the same 
time feeding back into the classical 
hypothetico-deductive scientific 
framework. The technology has 
rapidly advanced beyond the simple 
application of fishing for candidate 
genes and now sees applications as 
diverse as clinical prediction, ecosystem 
monitoring, quantitative mapping, and 
dissection of evolutionary mechanisms.

Two of the better-known examples 
of the interplay between microarray 
profiling and hypothesis testing are 
provided by the studies of Ideker et al. 
(2001) and Toma et al. (2002). The 
latter authors profiled the difference 
in expression between strains of flies 
that had been divergently selected 
for positive and negative geotaxis, a 
supposedly complex behavior relating 
to whether flies prefer to climb 
or stay close to the ground. They 
identified two dozen differentially 
expressed genes, several of which were 
represented by mutant or transgenic 
stocks that allowed tests of the effect 

of gene dosage on behavior. At least 
four of the candidate genes indeed 
quantitatively affect geotaxis. Ideker 
et al. (2001) took this approach a 
step further in arguing for a four-step 
iterative feedback between profiling, 
identifying candidate genes, knocking 
them out, and then profiling once 
more. They showed how thoughtful 
experimentation can considerably 
enhance our understanding of genetic 
regulatory pathways such as the yeast 
galactose response.

Much excitement has been 
generated recently by the potential 
for clinical applications of gene 
expression profiling in relation to 
complex diseases such as cancer, 
diabetes, aging, and response to toxins. 
An early foray into this realm was 
provided by Alizadeh et al. (2000), who 
demonstrated that diffuse large B-cell 
lymphomas have two major subtypes 
defined by molecular profiles. Whereas 
it is difficult to predict clinical outcome 
on the basis of histology, these profiles 
define a set of genes that provide quite 
a strong indicator of long-term survival. 
Similarly, van’t Veer et al. (2002) have 
described a “poor prognosis’’ signature 
in breast cancer biopsies from young 
women prior to the appearance of 
metastases in the lymph nodes. Much 
statistical and empirical work remains 
to be done before these tools see 
clinical application, but the idea that 
gene expression integrates signals 
from the genotype and environment 
provides potent motivation for studying 
disease with microarrays.

A good example of the ability of 
microarray analyses to simply surprise 
us is provided by the study reported 
in this issue of PLoS Biology by DeRisi 
and colleagues (Bozdech et al. 2003). 
They reasoned that profiling transcript 
abundance throughout the erythrocyte 
phase of the lifecycle of the malaria 
parasite Plasmodium falciparum might 
identify a handful of genes that are 
induced at critical times and hence 
might be novel drug targets. Employing 
very careful staging, a platform with low 

experimental noise, and appropriate 
statistical procedures, they discovered 
an extremely tight molecular lifecycle 
within the organism. Families of 
functionally related genes are induced 
as a unit, one after another, in a tightly 
orchestrated rhythm that testifies to 
incredible integration of the physiology 
of the parasite. They show that with 
microarray analysis it is possible to 
model the physiology and biochemistry 
of the pathways instead of just targeting 
a few genes.

In the coming years, expect to 
see microarrays developed for an 
extremely diverse range of organisms 
and applied to an even wider range 
of questions, from parasitology to 
nutritional genomics. Consensus on a 
core set of statistical options will likely 
emerge, as will agreement on data 
quality standards. Applications will 
encompass defining gene function; 
inferring functional networks and 
pathways; understanding how variation 
is distributed among individuals, 
populations, and species; and 
developing clinical protocols relating to 
cancer prognosis and detection of toxin 
exposure. Similar profiling methods 
for proteins and metabolites will attract 
just as much attention as functional 
genomics, building on the foundations 
laid by genome sequencing. 
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