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Abstract

Energy metabolism involves a series of biochemical reactions that generate ATP,
utilizing substrates such as glucose and oxygen supplied via cerebral blood flow.
Energy substrates are metabolized in multiple interrelated pathways that are cell-
and organelle-specific. These pathways not only generate energy but are also funda-
mental to the production of essential biomolecules required for neuronal function and
survival. How these complex biochemical processes are spatially distributed across
the cortex is integral to understanding the structure and function of the brain. Here,
using curated gene sets and whole-brain transcriptomics, we generate maps of five
fundamental energy metabolic pathways: glycolysis, pentose phosphate pathway,
tricarboxylic acid cycle, oxidative phosphorylation and lactate metabolism. We find
consistent divergence between primarily energy-producing and anabolic pathways,
particularly in unimodal sensory cortices. We then explore the spatial alignment of
these maps with multi-scale structural and functional attributes, including metabolic
uptake, neurophysiological oscillations, cell type composition, laminar organization
and macro-scale connectivity. We find that energy pathways exhibit unique relation-
ships with the cellular and laminar organization of the cortex, pointing to the higher
energy demands of large pyramidal cells and efferent projections. Finally, we show
that metabolic pathways exhibit distinct developmental trajectories from the fetal
stage to adulthood. The primary energy-producing pathways peak in childhood, while
the anabolic pentose phosphate pathway shows greater prenatal expression and
declines throughout life. Together, these results highlight the rich biochemical com-
plexity of energy metabolism organization in the brain.
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Introduction

The brain relies on substantial energy to maintain signaling and housekeeping func-
tions. Generation of action potentials, synaptic activity, neurotransmitter release,
uptake and repackaging rely on energy production via a multitude of chemical path-
ways [1-3]. These fundamental and interrelated biological pathways transform
nutrients to generate adenosine triphosphate (ATP), the main energy currency within
the cell.

Energy metabolism is a dynamic process that changes from early development
to adulthood and aging, reflecting shifts in substrate utilization and metabolic regu-
lation to meet evolving cellular energy demands [4]. The main source of energy in
the adult human brain is glucose [5,6]. However, the brain can also utilize alterna-
tive energy sources including lactate, ketone bodies and fatty acids under certain
physiological circumstances such as intense physical activity, fasting and at specific
developmental stages [4,7,8]. Uniquely among all organs, the brain stores virtually
no energy, with only minimal glycogen reserves located predominantly in astrocytes
[9,10]. Brain cells therefore rely on a constant nutrient supply from the vasculature
and energy production coupled to synaptic activity. As a result, energy metabolic
pathways are tightly regulated and dynamically adapt to changes in nutrient supply
and demand.

Once glucose is taken up by the brain, it can be metabolized via multiple inter-
acting metabolic pathways (Fig 1). Glycolysis is the first step in the breakdown of
glucose. It converts one molecule of glucose to two molecules of pyruvate, while pro-
ducing a net of two ATP molecules. Lactate dehydrogenases can catalyze the inter-
conversion of pyruvate and lactate, regulating the cellular redox state (maintaining
the NAD*:NADH balance), and provide lactate as an energy substrate that can be
exported, taken up from the extracellular space, or converted to pyruvate to enter
the downstream energy pathways [11]. Alternatively, glucose can enter the pentose
phosphate pathway (PPP), an anabolic pathway essential for cellular biosynthesis.
The PPP produces 5-carbon sugars for subsequent nucleotide, amino acid and neu-
rotransmitter synthesis and generates nicotinamideadenine-dinucleotide phosphate
(NADPH), an essential cofactor for lipid biosynthesis and cellular defense against
reactive oxygen species (via glutathione synthesis) [7,9,12]. Furthermore, pentose
sugars produced via PPP can be metabolized into glycolytic intermediates and sub-
sequently converted to pyruvate by glycolytic enzymes [13,14].

Pyruvate can be shuttled to the mitochondrial matrix where it ultimately enters the
tricarboxylic acid cycle (TCA) to produce high-energy electron carriers nicotinamide
adenine dinucleotide (NADH) and Flavin adenine dinucleotide (FADH2). The TCA
cycle is also involved in anabolic processes by providing precursors for amino acid,
nucleotide and fatty acid synthesis and neurotransmitters such as glutamate and
gamma-aminobutyric acid (GABA) [2,4,15]. The high-energy electron carriers NADH
and FADH2 can then enter the electron transport chain (ETC) within the mitochon-
drial inner membrane. The ETC is made up of four protein complexes that transfer
electrons from NADH and FADH2 to molecular oxygen, producing a proton gradient
across the mitochondrial membrane. ATP synthase, the fifth mitochondrial complex,
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uses this electrochemical gradient to produce ATP, completing the oxidative phos-
phorylation pathway (OXPHOS). OXPHOS enables the complete oxidation of glu-
cose, producing ~15 times more ATP than glycolysis per molecule of glucose. Due
to its high efficiency in ATP production, OXPHOS is regarded as the primary path-
way for ATP generation in the brain [5]. Interestingly, mitochondria are also a major
source of reactive oxygen species (ROS) due to electron leakage from the ETC [16,
17]. Collectively, glucose metabolic pathways are not only essential for ATP produc-
tion, but also play pivotal roles in anabolic processes and antioxidant homeostasis
and are fundamental to cellular growth, repair, and survival.

A growing body of evidence suggests a compartmentalization of energy
metabolism across the different cell types of the brain [18—20]. The differential
expression of genes and enzymes, along with the selective distribution of trans-
porters involved in energy metabolism, suggests that astrocytes favor glycolysis,
whereas neurons rely more on oxidative metabolism [10,11,21-23]. However, this
metabolic division remains a topic of ongoing debate [6,18] and the energy pro-
files and critical contributions of other glial cell types such as oligodendrocytes and
microglia remain relatively understudied and are only beginning to be understood
[24-26]

Multiple imaging modalities have been employed to map energy metabolism in
the human brain. Positron Emission Tomography (PET) has been instrumental in
studying glucose uptake and oxygen consumption [27-31]. However, PET radiotrac-
ers do not provide the biochemical resolution required to distinguish between down-
stream glucose metabolic pathways. Magnetic resonance spectroscopy (MRS) has
also been used to study energy metabolism [32—-36]. MRS enables the measurement
of metabolic pathway rates and metabolite concentrations; however, its low sensitivity
and limited spatial resolution do not allow for precise characterization and mapping of
metabolic pathways in the whole brain [37,38].

To map energy metabolism in the brain at a resolution that would allow pathway-
specific insights, we employ neuroimaging transcriptomic techniques in postmortem
human brains [39]. This approach provides a link between molecular data and the
structural and functional architecture, allowing for a unified framework to study
energy metabolism in the brain. Here, we map the distinct gene expression profile of
five fundamental energy metabolism pathways across the cortex. We further explore
their spatial correspondence to multi-scale structural and functional cortical features,
and chart their developmental trajectories through the human lifespan.

Results

We use whole-brain microarray gene expression from the Allen Human Brain Atlas
(AHBA) [41] to generate maps of five key energy metabolism pathways including: gly-
colysis, pentose phosphate pathway (PPP), tricarboxylic acid cycle (TCA), oxidative
phosphorylation (OXPHOS), and lactate metabolism and transport. Briefly, gene sets
for each pathway were identified based on their corresponding Gene Ontology (GO)
biological process [42] and Reactome pathway [43] IDs and further filtered to only
retain pathway-annotated genes included in both databases. Pathway IDs and final
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Fig 1. Pathways involved in brain energy metabolism. Energy metabolism refers to processes involved in energy production from nutrient
molecules. Glucose is the main energy source in the brain under normal physiological conditions. Glucose entering brain cells can be utilized in three
parallel pathways. It can be processed through glycolysis to produce 2 ATP and 2 pyruvate molecules (blue). Lactate dehydrogenases catalyze the inter-
conversion of lactate and pyruvate (purple). Pyruvate is transported into mitochondria, where it enters the TCA cycle to generate high-energy electron
carriers NADH and FADH2 (green), driving the complete oxidation of glucose through the mitochondrial electron transport chain and oxidative phospho-
rylation (red). Glucose entering the brain can also enter the PPP (orange). PPP is an anabolic pathway that uses glucose to produce 5-carbon sugars
and NADPH, an essential co-factor used in nucleotide and lipid biosynthesis (yellow). Glucose can also be stored in the form of glycogen via glycogen
synthase, a process mainly active in astrocytes. PPP, pentose phosphate pathway; TCA, tricarboxylic acid cycle; OXPHOS, oxidative phosphorylation;
NADH, nicotinamide adenine dinucleotide; FADH2, Flavin adenine dinucleotide.

https://doi.org/10.1371/journal.pbio.3003619.9001

gene sets used to produce the energy maps are provided in S1 Table. Microarray transcriptome data were retrieved using
the abagen package and parcellated into the Schaefer-400 cortical atlas ([40,44], https://abagen.readthedocs.io/). Expres-
sion was then averaged across all genes to produce a mean gene expression map for each energy pathway.

Mapping metabolic pathways using gene expression

Fig 2A shows a Venn diagram of the final number of genes included in each energy pathway expression matrix and the
number of shared genes between them. Note that the final gene sets for each pathway contain fewer genes compared to
the original gene sets retrieved from the GO and Reactome databases, as some of the genes are not present in the AHBA
or did not meet quality control criteria (see Methods). It should be noted that the OXPHOS gene set is predominantly pop-
ulated by mitochondrial complex | genes given its substantially larger size (45 subunits) compared to other complexes
[45]. Additionally, mitochondrially-encoded genes were not included in the AHBA microarray platform and are therefore
absent from our pathway maps (S7 Table).

Importantly, there is minimal overlap between the different energy pathway gene sets, which allows the reconstruction
of distinct maps that represent each pathway individually, facilitating their study in relative isolation despite their inherent
interconnectivity. To assess the correspondence between metabolic pathway maps, we first compute spatial correlations
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Fig 2. Brain maps of energy metabolism pathways. (a) Left: the Venn diagram shows the final number of genes in each pathway gene expres-

sion matrix and the number of shared genes between pathways. Gene sets have minimal overlap; there are three genes shared between the TCA

and OXPHOS belonging to the succinate dehydrogenase complex that is active in both pathways. PFKFB2, which encodes a regulatory enzyme of
the glycolytic pathway, is shared between the glycolysis and lactate pathways. The full name of the genes in each pathway can be found in S1 Table.
(b) Heatmap depicts the pairwise correlation of all genes in the energy pathways across the 400 cortical regions in the Schaefer parcellation [40]. (c)
Spearman’s correlation among mean expression energy maps. (d) Energy pathway maps. Colorbar shows z-scored mean expression values across all
genes in each pathway. The data underlying this figure can be found in S1 Data. For the subcortical energy pathway profiles see S3 Fig. ppp, pentose
phosphate pathway; tca, tricarboxylic acid cycle; oxphos, oxidative phosphorylation; lactate, lactate metabolism and transport.

https://doi.org/10.1371/journal.pbio.3003619.9002

among them. Fig 2B shows the correlated gene expression for genes in all energy pathways across 400 cortical regions,
and Fig 2C shows global spatial correlations among mean expression energy maps.

Glycolysis and OXPHOS maps show the strongest correlation (rho = 0.89, pgpin = 1 X 10~%) consistent with the fact that
they are part of an integrated sequence of events in the oxidation of glucose [46,47]. The lowest correlations are observed
between the PPP map and the glycolysis and OXPHOS maps (rho = 0.097, pg,i, = 0.79; rho = 0.052, p,;, = 0.91, respec-
tively), in line with the role of PPP as a primarily biosynthetic pathway rather than one directly implicated in energy produc-
tion [14]. Conversely, given the PPP’s function in cellular defense against ROS, it could be anticipated that regions with
high oxidative metabolism would exhibit relatively elevated PPP activity. However, after quality control, the PPP gene set
predominantly includes genes involved in its anabolic non-oxidative branch (i.e. RPEL1, RPIA, PRPS2, RBKS), respon-
sible for the production of 5-carbon sugars and downstream nucleotide synthesis [6,48]. Indeed, when we look into the
PGD gene, the only gene representing the oxidative branch in our PPP gene set, which also directly catalyzes one of the
the NADPH-producing reactions, we find significant spatial correlations with glycolysis and OXPHOS maps (glycolysis:
rho = 0.75, pspin = 1 X 1074 OXPHOS: rho = 0.71, pgyin = 1 X 1074; S1 Fig).
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The PPP map shows a moderate correlation with the TCA map (rho = 0.48, p,i» = 0.05), potentially reflecting their
shared roles in supporting cellular anabolic processes, and highlighting cortical regions with greater biosynthesis
demands. Furthermore, the TCA map also shows a strong alignment with the glycolysis and OXPHOS maps (rho = 0.75,
Pspin = 1 X 10~4; rho = 0.74, Pspin = 1 X 104, respectively). These associations highlight the dual role of the TCA in energy
production and cellular biosynthesis [15,20,49]. The lactate map shows strong correlations with glycolysis (rho = 0.77,
Pspin =1 x 107%), TCA (rho = 0.8, pgpin =2 X% 107%), and OXPHOS (rho = 0.73, pg,in =1 X 107*), likely reflecting lac-
tate’s role as a versatile intermediate in brain energy metabolism. Lactate, produced either via aerobic glycolysis or taken
up from the vasculature, is converted to pyruvate by lactate dehydrogenase and readily utilized in the TCA cycle [11,46].
The spatial alignment observed between lactate and the other energy pathway maps could underscore its role in shuttling
metabolic substrates across pathways, linking glycolysis and oxidative metabolism. Collectively, these results highlight the
dependencies and interplay between energy pathways. In the following section we investigate the regional heterogeneity
of these pathways and their enrichment across structural and functional systems.

Regional heterogeneity of metabolic pathways

How are metabolic pathways distributed across the cortex? Fig 2D shows that energy pathway gene expression is region-
ally heterogeneous. Glycolysis and OXPHOS exhibit greater expression in motor and prefrontal cortex, and lower expres-
sion in the visual cortex. In contrast, the PPP map shows greater expression in the visual cortex. The TCA map shows

a particularly higher expression in somato-motor regions (Figs 2D and S2). Across the subcortical regions, energy maps
consistently show greater expression in the thalamus and lower expression in the amygdala [55] (S3 Fig).

To investigate how the spatial patterning of metabolic pathways aligns with the structural and functional organization
of the brain, we estimate their enrichment in four atlases: (1) cytoarchitecture (von Economo-Koskinas classes; [50,52]),
(2) synaptic and laminar architecture (Mesulam classes; [53,56,57]), (3) unimodal-transmodal hierarchy [54,56], and (4)
intrinsic functional networks (Yeo-Krienen networks; [40,58]). For each network class, the average expression of parcels
falling into that class was calculated and tested against a distribution of 10 000 spatial autocorrelation-preserving nulls.
Across the seven von Economo-Koskinas cytoarchitectonic classes, all energy pathway maps except for the PPP have
significantly higher expression in the primary motor cortices (glycolysis: pgpn = 0.01; TCA: pgyin = 8 x 10~4; OXPHOS:
Pspin = 0.008; lactate: pg,i, = 0.002; Fig 3). The PPP map shows significantly greater average expression in the primary
sensory cortex (Pgpin = 1 X 10~4). The insular cortex has the lowest expression across all energy maps with PPP, TCA and
lactate maps showing significantly lower values (PPP: pgy, = 0.003; TCA: pgin = 4 X 1074; lactate: pgp, = 0.04).

To investigate how the energy maps align with the broader cortical hierarchy and functional organization, we further
estimated their enrichment across the Mesulam sensory-fugal hierarchy [56] and the first two principal gradients of rest-
ing state functional connectivity (FC) [54]. Along the Mesulam sensory-fugal axis, the PPP, TCA and lactate maps exhibit
a similar enrichment, with significantly greater expression in idiotypic areas (PPP: py, = 0.002; TCA: pg, = 0.002; lac-
tate: pgpin = 0.001), and overall lower expression in the paralimbic regions. Glycolysis and OXPHOS maps do not show
significant variations across this hierarchy. Likewise, the first FC gradient (FC1) significantly correlates with the PPP and
TCA maps (PPP: rho = 0.47, pgin = 5 X 10~4; TCA: rho = 0.37, Pspin = 0.03) corresponding to overall greater expression
in primary cortices and lower expression in higher order association areas. The second FC gradient (FC2), which differ-
entiates within the primary cortices, correlates significantly with the glycolysis (rho = 0.47, pg,, = 0.016) and OXPHOS
maps (rho = 0.46, pg,i» = 0.01), reflecting greater expression in motor regions and lower expression in the occipital cortex.
S4 Fig shows similar findings using the finer delineation of these functional patterns according to the Yeo-Krienen intrin-
sic networks. Collectively, these results highlight the heterogeneous distribution of energy metabolism pathways across
the structural and functional organization of the cortex, and point to a consistent dichotomy between pathways primarily
involved in ATP production (glycolysis and OXPHOS) and the anabolic PPP. The TCA cycle, which contributes to both
oxidative metabolism and anabolic processes, integrates features of both metabolic functions.
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Fig 3. Distribution of energy pathway maps across structural and functional networks in the cortex. For each energy map, average expression
values for parcels falling into each structural class and functional network was calculated. (a) Distribution of energy pathway mean expression across
seven von Economo-koskinas cytoarchitectonic classes [50-52]. (b) Distribution of energy maps across the sensory-fugal axis of information processing
[53]. Bars represents observed average expression of each energy map in each network class. The y-axis represents mean gene expression of z-scored
maps. (c) Spearman’s correlation between energy maps and the first two functional connectivity (FC) gradients in the human cortex [54]. Highlighted
bars indicate statistical significance when tested against 10 000 spatial-autocorrelation preserving nulls (pspin < 0.05). Brain plots visualize regions
included in each network class. The data in this figure can be found in S1 Data. ppp, pentose phosphate pathway; tca, tricarboxylic acid cycle; oxphos,
oxidative phosphorylation; lactate, lactate metabolism and transport; fc, functional connectivity.
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Energy gradients in the visual cortex

The visual cortex stands out in our analyses as one of the regions in which energy pathways are most differentiated, with
greater expression of PPP and lower expression of glycolysis and OXPHOS. However, previous research characterizes
the visual cortex as having higher glucose and oxygen consumption [60,61]. This discrepancy may be due to the underly-
ing heterogeneity within the visual cortex, where individual sub-regions exhibit distinct metabolic profiles that are not cap-
tured when analyzed as a single structure. Here, we investigate the distribution of the energy maps across the information
processing hierarchy of the visual cortex as defined by the Glasser atlas [59] (S2 Table). TCA, OXPHOS and lactate show
greater expression in the dorsal stream and lower expression in the ventral stream (Fig 4). Glycolysis also exhibits greater
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Fig 4. Spatial distribution of energy pathways within the visual cortex. Energy maps were produced using the Glasser parcellation and the visual
parcels were grouped according to the visual information processing hierarchy detailed in [59] (see S2 Table). (a) Distribution of energy pathway mean
expression across the visual hierarchy. Bars represents z-scored mean gene expression of each pathway, averaged across all ROls in each hierarchy
level. (b) Top: distribution of OXPHOS mean gene expression across the visual cortex shown for the left hemisphere. From left to right: lateral, medial,
dorsal, ventral and posterior views. Colorbar represents the range of expression values within the visual cortex. Bottom: distribution of OXPHOS expres-
sion across individual visual ROls. Bars represent z-scored mean expression of OXPHOS genes. dorsal, dorsal stream; ventral, ventral stream, MT+,
MT+ complex and neighboring visual areas; ppp, pentose phosphate pathway; tca, tricarboxylic acid cycle; oxphos, oxidative phosphorylation; lactate,
lactate metabolism and transport.

https://doi.org/10.1371/journal.pbio.3003619.9g004

PLOS Biology | https://doi.org/10.1371/journal.pbio.3003619 January 30, 2026 8/ 35



https://doi.org/10.1371/journal.pbio.3003619.g004
https://doi.org/10.1371/journal.pbio.3003619

PLO?%. Biology

expression in the dorsal stream but lower expression in the primary visual cortex (V1). This is potentially in line with pre-
vious reports of higher cytochrome oxidase reactivity in the magnocellular layers of the lateral geniculate nucleus relative
to the parvocellular layers [62]. The dorsal stream is thought to be primarily driven by the magnocellular pathway, which
processes high temporal frequencies, while the ventral stream is dominated by the parvocellular pathway that responds
to low temporal frequency [62—65]. The differences in energy pathway expression may reflect the unique energy demands
for visual attributes processed via the dorsal versus ventral streams. The PPP pathway, on the other hand, shows higher
expression in the primary visual cortex. Together, these findings suggest that distinct components of the visual informa-
tion processing hierarchy impose unique demands on energy metabolism, partially reflected in regional patterns of gene
expression.

Energy correlates of multi-scale cortical features

The heterogeneity of energy pathway profiles likely arises from the distinct molecular and cellular properties of different
cortical regions at the microscale, as well as neurophysiological and network-level attributes at the macroscale. Corti-
cal regions exhibit variability in their glucose uptake and oxygen consumption, as shown by molecular imaging. Neuro-
physiological activity associated with signaling (i.e., action potentials and synaptic transmission) are energy-intensive and
account for the majority of cortical energy demand [1,5,8,66]. Cellular specialization further shapes energy metabolism,
as glial and neuronal populations exhibit distinct metabolic profiles [9]. Here, we characterize the spatial alignment of
the energy pathways with a collection of maps corresponding to: (1) molecular imaging of metabolic uptake from PET
[60], (2) neurophysiological oscillations from magnetoencephalography (MEG) [67], (3) cell type composition, (4) lam-
inar organization [68,69] and (5) connectivity metrics (Fig 5). It should be noted that, unlike the PET and MEG maps
which represent direct physiological measurements, cell type composition and laminar organization maps are derived
from the AHBA using cell- and layer-specific gene markers as proxies for cell-type abundance and cortical laminar
structure [68,70,71].

The cerebral metabolic rate of glucose (CMR,;) PET map, which corresponds to glucose uptake, does not significantly
correlate with glycolysis (rho = 0.22, pgs Fpr = 0.63) and OXPHOS maps (rho = 0.16, psin rpr = 0.76), however, it shows
significant correlations with the lactate (rho = 0.53, psj, rpr = 0.005) and PPP (rho = 0.42, pg,in rpr = 0.02) maps. Given
that the PPP is generally characterized by minimal flux relative to other energy-producing pathways [6,13,48], this strong
correlation with CMR; is unexpected. However, it has been shown that glucose flux through the PPP can be largely
underestimated [72,73]. Also, contrary to what we expected, the cerebral metabolic rate of oxygen (CMRg,) map, repre-
senting oxygen consumption in the brain, does not correlate with the OXPHOS map (rho = —0.01, pgpin rpr = 0.95, see
Discussion).

There is a moderate alignment between CMR, and the PPP map (rho = 0.54, pg,in rpr = 0.002), potentially highlight-
ing greater need for cellular repair processes in regions with greater oxygen consumption and consequently higher oxida-
tive damage. The Glycolytic Index shows significant positive correlations with the glycolysis (rho = 0.49, pgi, Fpr = 0.047)
and lactate (rho = 0.53, psin rpr = 0.04) maps, in line with the Glycolytic Index being a measure of aerobic glycolysis in
the brain [60,74]. Unexpectedly, the PPP map shows no correlation with the Glycolytic Index map, despite contributing
to non-oxidative glucose consumption. This may suggest that the PPP is not a major determinant of Glycolytic Index and
that lactate production primarily accounts for aerobic glycolysis in the adult brain.

Furthermore, comparison with interpolated ex vivo maps of mitochondrial activity profile [75] reveals spatial alignment
with gene expression-based energy maps. While TCA and OXPHOS maps do not align with mitochondrial density, they
correlate significantly with mitochondrial respiratory capacity, which reflects mitochondrial specialization across brain
regions (S5 Fig).

A multitude of steps bridge gene transcription and metabolic activity. This can be seen in the gene-wise spatial align-
ment with CMRc, which reveals a wide range of correlations within each energy pathway (Fig 5B). Collectively, these
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Fig 5. Spatial correspondence of energy maps with multi-scale cortical annotations. (a) Spearman’s correlation between energy maps and in
vivo metabolic PET imaging [60], neurophysiological oscillations [67], cell type composition, cortical laminar thickness [68] and network connectivity
attributes [76]. Colors depict the strength of the correlation between pairs of brain maps. Asterisks indicate statistical significance when tested against a
distribution of 10 000 spatial-autocorrelation preserving nulls after FDR-correction using the Benjamini-Hochberg method for multiple comparisons. (b)
Correlation between individual genes in the energy pathways and PET-derived glucose uptake. Spearman’s correlation was calculated between gene
expression values and the CMR . map. Red dots indicate genes encoding rate-limiting and key catalytic enzymes. CMRg, cerebral metabolic rate

of glucose; CMR,, cerebral metabolic rate of oxygen; gi, glycolytic index; cbf, cerebral blood flow. Cell types: astro, astrocyte; neuron ex, excitatory
neuron; neuron in, inhibitory neuron; endo, endothelial cell; micro, microglia; opc, oligodendrocyte precursor cells; oligo, oligodendrocyte; sc, structural
connectivity; fc: functional connectivity.

https://doi.org/10.1371/journal.pbio.3003619.9g005

results highlight the complexity of downstream metabolic pathways following glucose uptake, perhaps capturing different
aspects of the underlying biology.

To examine how oscillatory activity is supported by energy metabolism pathways, we looked at the correspondence
between energy maps and the six canonical MEG power bands. The energy maps primarily correlate with the beta band,
reflecting their greater expression in the motor cortex (glycolysis: rho = 0.69, psin Fpr = 0.03; OXPHOS: rho = 0.65,
Pspin,ror = 0.07; TCA: rho = 0.74, pgyin rpr = 0.04; lactate: rho = 0.77, pgpn rpr = 0.005).

We next explored the correspondence between energy maps and cell type composition. Excitatory neurons show mod-
erate correlations with the glycolysis (rho = 0.46, pg, Fpr = 0.001), and OXPHOS (rho = 0.42, pg,in rpr = 0.006) maps,
in line with the higher energy demand of these principal cortical neurons [3,5,77]. Inhibitory neurons show positive cor-
relations across all energy maps (glycolysis: rho = 0.42, pgi, Fpr = 0.001; OXPHOS: rho = 0.37, pgpjnrpr = 0.001; TCA:
rho = 0.3, Pspin,ror = 0.003; Lactate: rho = 0.5, pgpin rpr = 0.001; PPP: rho = 0.33, pgpin Fpr = 0.002). This may reflect both
the greater energy demand and need for cellular repair processes due to their fast-spiking activity and susceptibility to
oxidative damage. To test whether these associations can be attributed to the fast-spiking population, we further exam-
ined individual inhibitory neuron marker genes (S3 Table). Among inhibitory subtypes, parvalbumin expression shows a
significant correlation with the PPP, TCA and lactate maps (S6 Fig), suggesting that the metabolic signature we observe
may reflect the unique energy demands of fast-spiking parvalbumin-positive neurons. Endothelial cells show significant
positive correlations with the glycolysis (rho = 0.38, psin rpr = 0.014) and lactate maps (rho = 0.56, pgpin Fpr = 0.001),
in line with the proposed glycolytic nature of these cells [78,79]. Microglia significantly correlate with the OXPHOS map
(rho = 0.47, pgyin,Fpr = 0.003), consistent with their reliance on oxidative metabolism [2,80,81]. The PPP map however,
exhibits a negative correlation with the astrocyte map and no significant correlation with microglia, OPC and oligodendro-
cytes, contrary to evidence of higher activity of this pathway in glial cells [13,82,83].
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Given the diverse cellular composition and the distinct circuitry of cortical layers, we next sought to investigate the
energy metabolism profile of cortical laminar organization. The PPP, TCA and lactate maps show the greatest align-
ment with cortical layer 4 (PPP: rho = 0.64, pgpin rpr = 0.001), TCA: rho = 0.79, pypin rpr = 0.001, lactate: rho = 0.87,
Pspin,For = 0.001), potentially hinting at a greater need for fast energy supply and cellular biosynthesis in this sensory
input layer. The glycolysis and the OXPHOS maps show significant alignment with cortical layer 5 (glycolysis: rho = 0.73,
Pspin,For = 0.001, OXPHOS: rho = 0.69, psin rpr = 0.001). Specifically, individual markers of excitatory layer 5 and Betz
cells show significant correlations with glycolysis and OXPHOS (S6 Fig). This could hint to the greater metabolic demand
of large pyramidal cells with their extensive subcortical projections [84,85].

Overall, energy maps exhibit diverse alignments across the different cell types and cortical laminar organization, point-
ing to the underlying compartmentalization of energy metabolism.

The relationship between energy metabolism and network connectivity can offer insights into the metabolic demands of
topological hubs within cortical networks. Here, we find that the FC strength correlates positively with the PPP map (rho =
0.52, pspin = 0.015), suggesting greater anabolic demand in the functional hubs and in line with the higher Glycolytic Index
and plasticity of these hub regions [74,86]. However, the FC strength does not correlate with either glycolysis or OXPHOS
maps, contrary to existing literature reporting greater glucose uptake of functional hubs [87].

Energy pathways track developmental milestones

Energy metabolic pathways are tightly coupled to nutrient availability and exhibit adaptive changes across the lifespan,
underlying their integral role in supporting neurogenesis and synaptic growth and integrity. To investigate the developmen-
tal trajectory of energy pathways, we used the BrainSpan RNA-sequencing data [88]. As before, energy pathway gene
sets were used to retrieve pathway-specific sample-by-gene expression matrices and expression was averaged across
genes (S5 Table). We also investigated the expression trajectory of genes involved in ketone body utilization, given their
importance as an obligate energy substrate during early development [20].

Fig 6 illustrates the distinct trajectories of these energy pathways. Glycolysis, TCA, OXPHOS, and lactate metabolism
exhibit a similar trajectory, rising from the fetal stage to infancy, with OXPHOS peaking in childhood and subsequently
showing a decline into the adolescent and adult levels. This is in accordance with previous reports of glucose and oxygen
uptake peaking in childhood, followed by a decrease in oxidative pathway activity by adolescence [13,20]. This trend fur-
ther resembles the trajectory of synaptic development genes (S7 Fig). The PPP pathway shows a sharp decline from the
fetal stage to infancy, followed by a gradual decrease into adolescence and adulthood. This underscores the importance
of the PPP in supporting brain tissue generation during early development [89-91] and closely aligns with the lifespan tra-
jectory of neural progenitor cells (S7 Fig). Furthermore, we find that the average expression of genes involved in ketone
body utilization increases from the fetal stage to infancy, before declining in early childhood, consistent with the postnatal
trajectory of ketone body utilization during the nursing and weaning periods [4,20,92].

Region-wise analyses further show that these lifespan trajectories are consistent across cortical structures (S8 Fig).
Collectively, these findings reveal the unique expression trajectories of energy metabolic pathways across the lifespan,
offering complementary insight into the metabolic dynamics shaped by developmental needs and nutrient availability.

Sensitivity analysis

As a final step, to ensure that the results are not influenced by preprocessing and analytic choices, we employ several
sensitivity measures. First, given that only two out of six donors in the AHBA include samples from the right hemisphere,
we reproduce the energy maps using expression data exclusively from the left hemisphere. Maps derived from the left
hemisphere correlate significantly with those produced by mirroring across hemispheres (S9A Fig). Second, we repro-
duce the maps and repeat the analyses with the lower resolution Schaefer-100 parcellation (S9B Fig). Third, we repeat
the analysis including all available genes regardless of differential stability (S6 Table). The spatial distribution of energy
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Fig 6. Lifespan trajectory of energy pathway gene expression. Developmental trajectories of energy metabolism pathways were produced using

the BrainSpan RNA-sequencing dataset [88]. For each energy pathway, mean expression was calculated across all genes for each sample. Samples
were grouped into major developmental stages and median expression across all samples falling into each age group was then calculated. Analysis only
included cortical regions. The y-axis represents normalized log, (RPKM) expression values (see Methods. Dots represent individual samples. Line plot
depicts the trajectory of median gene expression across age groups. For details of ages included in each group see S4 Table. ppp, pentose phosphate
pathway; tca, tricarboxylic acid cycle; oxphos, oxidative phosphorylation; lactate, lactate metabolism and transport.

https://doi.org/10.1371/journal.pbio.3003619.9g006

pathways remains consistent with the original analysis (S10 Fig). Fourth, to evaluate the robustness of our results to the
choice of summary measure, we repeated the analysis using the first principal component (PC1) of gene expression for
each pathway. The mean and PC1 maps are highly correlated and show consistent alignment with multi-scale cortical
features (S11 Fig). Furthermore, subject-level analysis of these pathways shows that despite weak regional correlations
across the 400 parcels (S12 Fig), enrichment within the cytoarchitectonic classes remains consistent across the six post-
mortem brains, highlighting the divergence between the motor and sensory cortices (S13 Fig). We repeat the lifespan
analysis using the non-parametric locally-estimated scatterplot smoothing (LOESS) method against log(age) (S14 Fig),
modeling the trajectories without being constrained to predefined age groups. Lastly, we replicate the lifespan analysis
using the BrainSpan microarray dataset [93] (S8 Table). Overall, the lifespan trajectories remain consistent with the origi-
nal results (S15 Fig).

Finally, in addition to these five maps of key energy pathways, we also produced a complementary set of maps corre-
sponding to other energy-related metabolic processes in the brain. These extended maps include: individual maps for the
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five mitochondrial complexes, ketone body utilization, fatty acid metabolism, glycogen metabolism, branched chain amino
acid (BCAA) catabolism, pyruvate dehydrogenase complex (PDC; responsible for the entry of pyruvate to the TCA cycle),
malate-aspartate shuttle (MAS), glycerol phosphate shuttle (GPS), creatine kinase activity, detoxification of reactive oxy-
gen species (ROS detox), generation of reactive oxygen species (ROS gen), nitric oxide signaling via guanylate cyclase
(associated with vasodilation), Na*/K* ATPase pump and the glutamine-glutamate cycle (S16 Fig and S9 Table for cor-
responding gene sets). S17 Fig shows the pair-wise correlation and the clustering among all the main and extended set
of energy maps. For the lifespan trajectories of these extended energy processes see S19 Fig. Notably, mitochondrial
ETC complexes show strong alignment with each other both in their spatial distribution across the cortex (rho = 0.68, S18
Fig) and their lifespan trajectories (S19 Fig), reflecting their structural and functional coupling within the ETC. The great-
est correlations are observed between complex |, lll and IV, which reportedly form the most common supercomplexes.

In contrast, complex Il shows weaker correlations with the other complexes, which can be attributed to its less frequent
incorporation in supercomplex formations, as well as involvement in the TCA [94-96].

Discussion

We used a gene expression atlas to produce maps of five key energy pathways in the human brain. We observe a con-
sistent dichotomy between glucose utilization for energy production versus cellular anabolism and antioxidant defense,
which aligns with aspects of the cortical information processing hierarchy. Furthermore, we show that the developmental
trajectories of these pathways follow critical milestones, reflecting shifts in metabolic requirements and tissue generation
across the lifespan. Finally, we replicate our results using alternative processing approaches and datasets to examine the
robustness of these findings. This study leverages pathway gene expression as a complementary approach to elucidate
the biochemical blueprint of energy metabolism in the human brain.

We find that energy pathways show heterogeneous patterns of gene expression across the cortex with enrichment
in specific structural and functional networks. The glycolysis and OXPHOS maps show higher expression in the pri-
mary motor cortices and lower expression in the visual cortex, hinting at differences in baseline energy requirements
between these regions. The primary motor cortex, which generates efferent signals via large pyramidal neurons (Betz
cells), demands substantial energy to support long-range axonal projections. On the other hand, the visual cortex is spe-
cialized for processing sensory input, has mostly short-range projections, and may rely on efficient encoding strategies
and energy use. Interestingly, the creatine kinase (CK) map shows greater expression in the visual cortex (S16 Fig).
CK catalyzes the reversible interconversion of creatine and phosphocreatine by transferring a phosphate group between
ATP and ADP. The creatine-phosphocreatine shuttle therefore allows for fast regeneration of the ATP pool by continuous
delivery of phosphate. CK is highly expressed in cells with high energy demand and is associated with sites of ATP pro-
duction and consumption, such as mitochondria and ATPases (i.e. the sodium/potassium pump) [97,98]. Together with the
greater expression of ATPase pump components (S16 Fig) in the visual cortex, this allows for a rapidly mobilizable pool
of ATP, coupling substrate oxidation to the creatine-phosphocreatine shuttle and bypassing the electron transport chain,
simultaneously reducing ROS production in mitochondria and exerting an indirect antioxidant effect [97].

The PPP displays greater expression in primary sensory cortices. This pathway is involved in anabolic tissue build-
ing processes and antioxidant defense [14,20,99]. The higher expression of PPP in primary sensory cortices may poten-
tially reflect the greater demand for robust sensory coding [53], necessitating active maintenance of synaptic integrity
through ongoing cellular biosynthesis. The PPP map also aligns with the T1w/T2w ratio and gene PC1 gradient maps
(S20 Fig). The T1w/T2w map reflects the cortical hierarchical organization in the human brain and captures the cyto-
and myelo-architectural boundaries [71]. The gene PC1 gradient represents the principal axis of transcriptional variation
across the cortex: it follows the cortical hierarchical organization and differentiates the primary sensory and motor cor-
tices from higher order association areas. This is in accordance with the role of the PPP in tissue building and synthesis of
fatty acids and cholesterol essential for myelin production and further underscores PPP as a fundamental component of

PLOS Biology | https://doi.org/10.1371/journal.pbio.3003619 January 30, 2026 13/ 35



https://doi.org/10.1371/journal.pbio.3003619

PLO?%. Biology

brain microstructure and organization [90,100,101]. These spatial relationships are also reflected in the correspondence
between energy maps and the first and second FC gradients. FC gradients represent the dominant differences in con-
nectivity patterns across the cortex, which recapitulates the unimodal-transmodal hierarchy [54]. Glycolysis and OXPHOS
align with the second functional gradient, which differentiates between the unimodal cortices. In contrast, the PPP and
TCA capture the cortical hierarchy defined by the first functional gradient, separating primary regions from higher-order
association and limbic cortices.

To examine how energy pathway gene expressions align with in vivo metabolic activity, we compared them to aver-
age maps from metabolic PET imaging. We find that the glycolysis and OXPHOS maps do not overlap significantly with
resting-state glucose and oxygen consumption or cerebral blood flow measured by PET. The weak correspondence
between OXPHOS gene expression and CMR, likely reflects several factors. Mitochondrial proteins are among the
most long-lived within the cell, allowing sustained function even after transcript depletion [102,103]. As a result, OXPHOS
gene expression may better capture long-term metabolic capacity rather than acute oxygen use. In addition, CMRg, PET
reflects resting oxygen consumption and does not account for spare respiratory capacity, which may be better indexed
by transcriptional profiles. In contrast, the PPP shows the greatest correspondence with the CMR, map. The overlap
between PPP and CMR, may indicate the need for cellular repair mechanisms in regions with greater oxygen con-
sumption, which are more susceptible to oxidative damage. Indeed, the PPP is recruited by oxygen supplementation in
newborn mice [104]. Conversely, the lactate map correlates most positively with the CMR,; and Glycolytic Index PET
that individual genes within the energy pathways exhibit a wide range of correlations with CMR;, underscoring the exis-
tence of multiple intermediate steps between gene transcription and pathway activity. Moreover, FDG PET measures
the first step in glycolysis, catalyzed by hexokinase, while our maps incorporate the expression of all the genes in each
pathway.

Electrical activity in the brain relies on substantial energy [5,107]. We find that glycolysis, TCA and lactate maps most
strongly overlap with the MEG beta band. Beta oscillatory activity is associated with task activation and motor processes
and is thought to arise from GABAergic interneurons and bursting pyramidal cells [108]. The association of these three
energy-producing pathways with beta power may underpin rapid energy supply via the astrocyte-neuron lactate shuttle
during task-related neuronal activation [11,105,109].

Different cell types in the brain have distinct yet complementary metabolic gene expression and enzyme activity pro-
files [110,111]. Here, we show that excitatory neurons spatially align with the glycolysis and OXPHOS maps, in line with
reports that glutamatergic signaling accounts for the majority of energy expenditure in the brain [3,5,112]. We also find
that inhibitory neurons show spatial overlap with all energy pathways. Specifically, parvalbumin expression, the canoni-
cal marker of fast-spiking interneurons, shows pronounced alignment with the PPP, TCA and lactate maps (S6 Fig). The
high-frequency spiking activity of parvalbumin-positive neurons imposes an energetic load on the brain, evidenced by
the abundance of mitochondria in these cells [113—116], which renders this cell population especially vulnerable to oxida-
tive damage [117,118]. This alignment likely reflects the recruitment of both energy-producing and anabolic pathways to
support metabolic and cellular repair processes in these cells.

We also compared our energy pathway maps to spatial patterns of cortical laminar organization. The PPP, TCA and
lactate maps exhibit positive correlations with cortical layers 3 and 4. Granular layer 4 is the main input layer of the cor-
tex, characterized by high vascular density [119,120]. The three related energy pathways provide rapid energy supply
upon the influx of sensory information necessary for accurate sensory coding. Conversely, glycolysis and OXPHOS spa-
tially align with infragranular layer 5, the main output layer of the cortex, reflecting the greater static energy requirements
of large pyramidal neurons such as Betz cells (S6 Fig) [84,85,121,122].

Regarding the relationship between energy metabolism and cortical network topology, we find that node degree does
not show a correlation with glycolysis or OXPHOS maps, in contrast to previous studies reporting greater glucose uptake
in high-degree nodes of the functional connectivity network [61,87]. This may indicate energy efficiency in these hub
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regions, as the relationship between glucose uptake and FC degree appears to be nonlinear [87], suggesting efficient
glucose utilization. On the other hand, the alignment between FC strength and the PPP supports the theory that hub
regions require elevated anabolic activity to support neuronal plasticity [74,123,124].

Finally, we explore how energy metabolic pathways change throughout the human lifespan. Pathways primarily
involved in ATP production, including glycolysis, TCA, OXPHOS and lactate metabolism, show a marked increase in
expression from the fetal stage to infancy and peak in childhood. This aligns with research indicating that cerebral glu-
cose and oxygen consumption, initially low at birth, rise rapidly postnatally [20,125,126]. In addition, OXPHOS expres-
sion decreases in adolescence and adulthood, in alignment with reports that oxygen consumption and the activity of
oxidative pathways decline in adolescence [20,127,128]. This pattern is consistent across individual mitochondrial com-
plexes (S19 Fig) and resembles the expression trajectory of synapse development markers (S7 Fig) and the norma-
tive trajectory of total cortical and grey matter volume [129-132]. Additionally, genes involved in ROS detoxification
exhibit reduced expression into adulthood (S19 Fig). This could reflect diminished cellular defenses against oxidative
stress in later stages of life [133]. The PPP shows a steep postnatal decrease, followed by a gradual decline in later
demonstrated that PPP activity progressively declines with age and is undetectable in the rat brain by 18 months of age
[135]. Furthermore, PPP is one of the major contributors to aerobic glycolysis. Aerobic glycolysis is considered a mea-
sure of non-oxidative glucose metabolism in the presence of oxygen [28,60,136,137], important for tissue biosynthesis
[74,138,139]. Previous reports of decreased aerobic glycolysis in the aging brain may therefore be attributed to dimin-
ished PPP activity [140]. The PPP trajectory also resembles the rate of growth of mean cortical thickness across the
lifespan, as well as the trajectories of genes involved in cell proliferation and neural progenitor cells (S7 Fig) [88,93,129].
Taken together, these findings underscore the critical role of PPP in providing anabolic support for brain tissue gener-
ation, emphasizing its importance for neurogenesis during fetal development [141] and waning influence with reduced
plasticity in the aging brain [135,140,142]. Furthermore, given the role of PPP in antioxidant defense and repair, this
decline could further underlie the reduced ROS buffering capacity and increased susceptibility to oxidative stress in later
life [133,143,144].

Regarding ketone body utilization, we see a sharp increase from the fetal stage to infancy, followed by a decline in
early childhood, mirroring the respective availability and use of ketone bodies during these developmental stages (Figs 6
and S15). In the adult brain, ketone bodies are mainly a source of fuel during starvation, but in the infant brain they serve
a critical role both as an energy source and a substrate for synthesis of brain lipids [4,92]. During the nursing period, the
high fat content of maternal milk results in elevated plasma concentrations of ketone bodies, making it an obligate fuel for
the infant brain [145]. As weaning progresses and circulating ketone body levels decline, the brain shifts to glucose as fuel
involved in ketone body utilization. The subsequent increase in late childhood could be associated with adiposity increase
at this stage [148,149] or point to a ketogenic shift in later life [150—-152].

The present findings should be interpreted in light of several limitations. First, the gene expression data were obtained
from only six post-mortem brains. While the brain transcriptome remains relatively stable with respect to post-mortem
intervals, whole blood transcriptome suggests hypoxia-induced shifts in metabolism [153], which likely occur after death
and may impact the generalizability and reliability of gene expression maps, especially ones based on energy metabolism.
Furthermore, the AHBA samples were obtained from adults (ages 24-57, 42.50 + 13.38) when the expression of energy
metabolism genes and specifically the PPP genes has already declined. Additionally, some genes involved in energy
metabolic pathways were unavailable or excluded based on quality control criteria (e.g., mitochondrial DNA genes that
encode critical subunits of the electron transport chain were not probed in the AHBA and may exhibit distinct spatial
patterns from nuclear-encoded genes due to different regulatory mechanisms). Nonetheless, the AHBA remains the
most comprehensive high-resolution transcriptomic atlas of the human brain. Importantly, we see consistent results
when restricting the analysis to the more extensively-sampled left hemisphere and when recreating the maps without
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applying the differential stability threshold, as well as using a lower-resolution parcellation. Second, energy metabolism is
characterized by interconnected pathways that branch out and converge via shared enzymes and metabolites [9].
Studying these pathways in isolation and relying on average expression is an oversimplification of their complex dynam-
ics; nonetheless, we show consistent findings using PC1 as an alternative summary measure. Third, data used in the
lifespan analyses are obtained from a different cohort and constitute a limited number of samples at each developmen-
tal stage, affecting the generalizability of the results. However, we show that the results remain consistent across both
RNA-sequencing and microarray techniques. Finally, transcript levels do not directly correspond to pathway activity or
metabolic flux, due to intervening regulatory steps (e.g., transcript splicing, post-translational modifications, protein ubig-
uitination, phosphorylation and degradation, enzymatic regulation). Therefore, these maps do not account for the post-
translational modifications that underlie metabolic activity and specialization [9]. Moreover, the AHBA is obtained from
bulk tissue samples where regional gene expression originates from mixed cell populations, limiting the ability to attribute
specific energy profiles to a single cell type at this scale. Gene expression as used here could therefore be best viewed as
the molecular blueprint of metabolic capacity.

Taken together, our results suggest that gene expression can be used to study the metabolic makeup of the human
brain and its dynamics across the lifespan. We demonstrate the heterogeneous spatial distribution of key components of
energy metabolism. We show that these energy pathways show distinct alignment across multiple scales of cortical orga-
nization and exhibit dynamic trajectories across the lifespan. The maps generated here provide a complementary per-
spective on the complexity and organization of brain energy metabolism beyond existing PET data, and add to the large
corpus of normative anatomical and functional brain maps for neuroscience [154]. The energy pathway maps, along with
the data and scripts used in this study, are made publicly available.

Methods
Energy pathway gene sets

Gene sets pertaining to energy metabolism pathways were curated using Gene Ontology (GO) [42] and Reactome Knowl-
edge base [43]. These databases provide a unified platform for evidence-based and cross-referenced gene functional
classification and pathway annotation and facilitate the study of biological systems, including genes, proteins and their
interactions within a living organism. Pathways included in the main analysis are: glycolysis, pentose phosphate path-
way (PPP), tricaboxylic acid cycle (TCA), oxidative phosphorylation (OXPHOS) and lactate metabolism and transport.
For each of these pathways, we identified the corresponding GO biological processes [42] and Reactome pathway [43]
IDs. We then retrieved gene sets involved in each pathways using biomaRt version 2.50.3 ([155], https://bioconductor.
org/packages/release/bioc/html/biomaRt.html and GO.db packages (htips://bioconductor.org/packages/GO.db/). BioMart
is a freely available data-mining tool that provides unified access to biological knowledge bases. We used the Ensem-
ble human gene annotation database release 112 [156] to retrieve gene sets for each pathway ID. Pathway gene sets
retrieved from GO and Reactome databases are provided on our GitHub repository (https://github.com/netneurolab/
pourmajidian_metabolism-genes/). For each pathway, genes consistently annotated in both databases were retained
for further analysis. Of the three hexokinase enzymes, only hexokinase 2 met the differential stability criterion (see next
section). However, since hexokinase catalyzes the first step of both glycolysis and the PPP and therefore entrance to both
pathways, it was excluded from these gene sets.

To provide a more comprehensive view of energy metabolism in the brain, we also produced an extended set of maps
including: individual maps for the five mitochondrial complexes, ketone body utilization, fatty acid metabolism, glyco-
gen metabolism, branched chain amino acid catabolism, pyruvate dehydrogenase complex (PDC; responsible for the
entry of pyruvate to the TCA cycle), malate-aspartate shuttle (MAS), glycerol phosphate shuttle (GPS), creatine kinase
(CK), detoxification of reactive oxygen species (ROS detox), generation of reactive oxygen species (ROS gen), the

PLOS Biology | https://doi.org/10.1371/journal.pbio.3003619 January 30, 2026 16/ 35



https://bioconductor.org/packages/release/bioc/html/biomaRt.html
https://bioconductor.org/packages/release/bioc/html/biomaRt.html
https://bioconductor.org/packages/GO.db/
https://github.com/netneurolab/pourmajidian_metabolism-genes/
https://github.com/netneurolab/pourmajidian_metabolism-genes/
https://doi.org/10.1371/journal.pbio.3003619

PLO?%. Biology

glutamine-glutamate cycle, nitric oxide signaling and Na*/K* ATPase pump. MAS, GPS, CK and the glutamine-glutamate
cycle gene sets were further curated based on existing literature [20,98,157-159].

Microarray gene expression data

Regional microarray expression data were obtained from 6 post-mortem brains (1 female, ages 24-57, 42.50 + 13.38;
postmortem interval 10—30 hours) provided by the Allen Human Brain Atlas (https://human.brain-map.org. All approvals
and consent procedures can be found in the Allen Human Brain Atlas white paper and [41]. Data were processed using
the Schaefer 400-region volumetric atlas in MNI space as described below. Microarray probes were reannotated using
data provided by [160]; probes not matched to a valid Entrez ID were discarded. Next, probes were filtered based on their
expression intensity relative to background noise [161], such that probes with intensity less than the background in > 50%
of samples across donors were discarded, yielding 31 569 probes. When multiple probes indexed the expression of the
same gene, we selected and used the probe with the most consistent pattern of regional variation across donors (i.e.,
differential stability; [162]).

MNI coordinates of tissue samples were updated to those generated via non-linear registration using the Advanced
Normalization Tools (ANTs; https://github.com/chrisfilo/alleninf). To increase spatial coverage, tissue samples were mir-
rored bilaterally across the left and right hemispheres [163]. Samples were assigned to brain regions in the provided atlas
if their MNI coordinates were within 2 mm of a given parcel. If a brain region was not assigned a tissue sample based on
the above procedure, every voxel in the region was mapped to the nearest tissue sample from the donor in order to gen-
erate a dense, interpolated expression map. The average of these expression values was taken across all voxels in the
region, weighted by the distance between each voxel and the sample mapped to it, in order to obtain an estimate of the
parcellated expression values for the missing region. All tissue samples not assigned to a brain region in the provided
atlas were discarded. Inter-subject variation was addressed by normalizing tissue sample expression values across genes
using a robust sigmoid function [164]. Normalized expression values were then rescaled to the unit interval [44]. Gene
expression values were then normalized across tissue samples using an identical procedure. Samples assigned to the
same brain region were averaged separately for each donor, yielding a regional expression matrix for each donor with
400 rows, corresponding to the cortical regions in the Schaefer-400 parcellation, and 15633 columns, corresponding to
the retained genes. From this initial expression matrix, we retained genes with a differential stability value greater than 0.1
[71], yielding expression data for a total of 8 687 genes.

Energy pathway gene sets were used to extract pathway-specific gene expression matrices. The final number of genes
per pathway differs from the original gene sets, as some genes were not present in the AHBA dataset or were excluded
based on the above-mentioned quality control criteria applied during preprocessing. The differential stability distribution
for energy pathway genes is shown in (S21 Fig). For each pathway, expression values were averaged across all genes to
yield a pathway mean gene expression map. Brain maps were plotted using the surfplot package [165,166].

Spatial auto-correlation preserving nulls

The brain exhibits inherent spatial auto-correlation in both structural and functional measures. Data mapped onto the brain
such as gene expression are not independent and identically distributed (i.i.d.), which is a common prerequisite for many
statistical tests. Given this spatial autocorrelation, nearby voxels/regions are more likely to have similar values (e.g. similar
gene expression) due to both biological and technical (e.g., image processing and smoothing) factors [167]. This can lead
to inflated statistical values.

To account for this, various spatial permutation tests (spin tests) have been introduced [168—170]. Spin tests account
for the spatial auto-correlation present in brain data by permuting voxels/parcels while maintaining the spatial structure
and auto-correlation, therefore providing a more accurate framework for hypothesis testing. In this study, we used the
spatial permutation test developed by [169] implemented in the netneurotools package (https://netneurotools.readthedocs.
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io/). This method uses parcel centroid coordinates to produce rotations and ensure that there are no duplicate reassign-
ments, providing a true null distribution. We refer to the non-parametric p-value calculated using spatial permutation
testing as pgpin.

Parcellations, structural classes and functional networks

We used a cortical parcellation developed by [40] which divides the cortical surface into 400 regions. This parcellation
was generated using a gradient-weighted Markov Random Field model from resting state fMRI data, integrating both local
gradients and global similarity to define parcel boundaries. To investigate how our energy maps are distributed across
functional networks, we used the resting state network assignments provided by the original authors which is based on
the seven intrinsic functional networks described by [58]. To explore networks pertaining to structural classes, we used
two network definitions: von Economo-Koskinas cytoarchitectonic classes based on the morphology and laminar differ-
entiation of neuronal types [50,52,171,172], and Mesulam classes describing the sensory-fugal hierarchy of information
processing [53,173].

For analysis of energy expression within the visual cortex, we used the Glasser parcellation ([59], https://github.com/
brainspaces/glasser360/). Functional delineation of the visual cortex hierarchy was obtained from [59] supplementary neu-
roanatomical results and https://neuroimaging-core-docs.readthedocs.io/en/latest/pages/atlases.html. Subcortical energy
maps were produced using the Desikan-Killiany atlas [174] and plotted using the ENIGMA Toolbox [175].

Functional connectivity gradients

The first two functional connectivity (FC) gradients calculated by Margulies et al. [54] were retrieved from the neuromaps
package [176]. Briefly, gradients were calculated for 820 healthy individuals from the Human Connectome Project (HCP)
S900 release. All experimental procedures and consent information for the HCP was approved by the Institutional Review
Board at Washington University [177]. The affinity matrix was then calculated from the FC matrix using cosine distance.
FC gradients were computed using diffusion embedding, a non-linear dimensionality reduction technique that projects the
data into a low-dimensional embedding space and assures a more stable representation of the connections compared to
other dimensionality reduction techniques [54]. FC gradients were parcellated according to the Schaefer-400 atlas [40].

Metabolic PET neuroimaging data

Metabolic PET maps were produced previously in [60] and retrieved from the neuromaps package [176]. Ethical approvals
and informed consent for the original study were obtained from the Human Research Protection Office and the Radioac-
tive Drug Research Committee at Washington University in St. Louis.[60]. These PET maps include: CMR using ['8F]-
labeled fluorodeoxyglucose (FDG) radiotracer, CMR, and cerebral blood flow (CBF) using ['®OJoxygen and water. All
PET maps were obtained from neurologically normal individuals (n = 33, 14 males; age = 25.4+2.6 years) at resting state,
using a Siemens model 961 ECAT EXACT HR 47 PET scanner [60]. A map of Glycolytic Index from the same study was
also included in the analysis. The Glycolytic Index map is produced using the residuals after linearly regressing CMR,; on
CMR, and it was introduced previously as a measure of non-oxidative metabolism of glucose (aerobic glycolysis) [60].
Metabolic PET maps were then parcellated into the Schaefer-400 parcellation using the neuromaps package.

Magnetoecephalography maps

MEG frequency data were first processed and used in [67] and were retrieved using the neuromaps package [176]. Rest-
ing state MEG data of a set of healthy young adults (n =33, 17 males; age 22—-35 years) with no familial relationships were
obtained from HCP (S900 release; [177]). The data include resting state scans of about 6 minutes duration (sampling

rate =2 034.5 Hz; anti-aliasing lowpass filter at 400 Hz) and noise recordings for all participants. The data was analyzed
using BrainStorm [178]. Pre-processing was performed by applying notch filters at 60, 120, 180, 240 and 300 Hz and
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was followed by a high-pass filter at 0.3 Hz to remove slow-wave and DC-offset artifacts. The artifacts (including heart-
beats, eye blinks, saccades, muscle movements, and noisy segments) were then removed from the recordings using
automatic procedures as proposed by Brainstorm. Pre-processed sensor-level data were used to obtain a source estima-
tion on HCP’s fsLR4k cortex surface for each participant. Head models were computed using overlapping spheres, and
the data and noise covariance matrices were estimated from the resting-state MEG and noise recordings. Brainstorm’s
linearly constrained minimum variance beamformers method was applied to obtain the source activity for each partici-
pant. Data covariance regularization was performed using the “median eigenvalue” method from Brainstorm[178]. The
estimated source variance was also normalized by the noise covariance matrix. Source orientations were constrained to
be normal to the cortical surface at each of the 8004 vertex locations on the fsLR4k surface. Welch’s method was then
applied to estimate power spectrum density for the source-level data, using overlapping windows of length 4 seconds with
50% overlap. Average power at each frequency band was then calculated for each vertex as the mean power across the
frequency range of a given frequency band. The power spectrum was computed at the vertex level across six canonical
frequency bands: delta (2—4 Hz), theta (5-7 Hz), alpha (8—-12 Hz), beta (15-29 Hz), low gamma (30-59 Hz) and high
gamma (60—90 Hz). Group-averaged maps for each MEG frequency bands were retrieved from the neuromaps package
[176] and parcellated according to the Schaefer-400 cortical atlas [40].

Cell and layer specific gene expression maps

Brain cell type- and layer-specific maps were made using marker gene sets which were obtained from Wagstyl et al. [68],
supplementary file 2. Briefly, the authors curated cell-type markers by combining data from multiple single-cell and single-
nucleus RNA-sequencing studies [88,179-185]. Subcategories across these studies were grouped into seven canon-

ical classes including: excitatory neurons, inhibitory neurons, astrocytes, endothelial cells, microglia, oligodendrocytes
and oligodendrocyte progenitor cells. Cell type gene sets were used to filter the AHBA gene expression matrix to obtain
region-by-gene cell-specific expression matrices. Expression was then averaged across genes to yield a cell type mean
expression map corresponding to the Schaefer-400 parcellation. Layer specific gene sets were curated based on two
RNA-sequencing studies using samples from the prefrontal cortex [186,187]. Layer-specific gene sets were combined in
these two studies by Wasgtyl et al. [68]. Layer-specific mean expression maps were produced as above. Gene markers
for inhibitory and excitatory neuronal subtypes were retrieved from [93] and [184].

Functional and structural connectivity measures

Both functional magnetic resonance imaging (fMRI) and diffusion weighted imaging (DWI) data were previously obtained
for 326 unrelated participants (145 males; age 22—-35 years) from the Human Connectome Project (HCP) S900 release
[76,177,188]. All data were anonymized, and the original study protocol was approved by the WU-Minn HCP Consortium
[177]. fMRI data was acquired using a 3T scanner for 15 minutes during the resting state. All 4 resting state fMRI scans (2
scans with R/L and L/R phase encoding directions on day 1 and day 2, each about 15 minutes long; TR =720 ms) were
available for all participants. Preprocessing was previously performed using the minimal preprocessing pipeline [189].
Briefly, all 3T functional MRI time-series (voxel resolution of 2mm isotropic) were corrected for gradient nonlinearity, head
motion using a rigid body transformation, and geometric distortions using scan pairs with opposite phase encoding direc-
tions (R/L, L/R) [128]. Further preprocessing steps include coregistration of the corrected images to the T1w structural MR
images, brain extraction, normalization of whole brain intensity, high-pass filtering (>2,000s FWHM; to correct for scan-
ner drifts), and removing additional noise using the ICA-FIX process [76,190]. The fMRI time series were then parcellated
into 400 cortical regions in the Schaefer atlas [40] and the functional connectivity matrix was generated by computing the
Pearson’s correlation coefficient between pairs of regional time series for each of the 4 scan each participant. A group-
average functional connectivity matrix was computed representing mean functional connectivity across all subjects and
normalized using a Fisher’s r-to-z transformation [191,192].
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Structural connectomes were previously generated from minimally processed HCP S900 DWI data using the MRtrix3
package [193]. Multi-shell and multi-tissue response functions were estimated and spherical-deconvolution informed fil-
tering of tractograms (SIFT2) was applied to reconstruct whole brain streamlines weighted by cross-section multipliers
[194,195]. The initial tractogram was generated with 40 million streamlines, with a maximum tract length of 250. For each
subject, these reconstructed cross-section streamlines were mapped onto the Schaefer-400 atlas [40] to build a structural
connectome. A group-consensus binary network was constructed, preserving the density and edge-length distributions of
the individual connectomes [196].

Graph theory can be used to study the brain as a network of interconnected nodes and edges, where nodes represent
distinct regions or units within the brain (i.e., neurons or parcels), and edges are the connections or interactions between
these units (structural connection or functional co-activation between pairs of nodes) [197-199]. Graph theory there-
fore allows us to define measures of regional importance in the brain connectivity network. We used the bctpy package
(https://github.com/aestrivex/bctpy) to calculate these network measures from the binary structural connectome and the
functional connectivity matrix including degree centrality and strength [200]. Degree is defined as the number of edges
(connections) of a node. It is a local network measure calculated at each node that represents “hubness” in a network.
Strength is the weighted analogue of degree centrality. In a weighted matrix such as the functional connectivity matrix,
strength is calculated as the sum of connection weights incident on a node.

Mitochondrial phenotype maps

The mitochondrial phenotype maps including mitochondrial density, complex |, complex Il and complex IV enzymatic
activity, tissue respiratory capacity and mitochondrial respiratory capacity are publicly available and were obtained

from [75] (https://neurovault.org/collections/16418/). The post-mortem brain tissue in this study was collected by the
Macedonian-New York State Psychiatric Institute (NYSPI) Brain collection and made available through Quantitative Brain
Biology Institute at the NYSPI. All approvals for the original study were obtained from the Institutional Review Board at
NYSPI [75]. Briefly, a 2-cm-thick frozen coronal slab of the right hemisphere (54 years old, neurotypical male donor) was
physically voxelized into 703 samples (3mm isotropic) using a computer-controlled cryo-milling technique. Mitochon-
drial density was indexed using mitochondrial DNA and citrate synthase. Measures of enzymatic activity were assessed
using independent respirometry and colorimetry assays. Tissue respiratory capacity was defined as the average enzy-
matic activity of the three mitochondrial complexes. Mitochondrial respiratory capacity was defined as tissue respiratory
capacity scaled by mitochondrial density. The 3mm resolution mitochondrial maps were then separately regressed onto
22 MRI-derived structural, functional, and diffusion metrics using stepwise linear regression. The model parameters were
then used to produce whole brain maps of mitochondrial features using the same MRI-based metrics at the 1mm resolu-
tion [75].

Human brain lifespan transcriptomics data

BrainSpan is a freely available database containing the developmental transcriptome of the human brain spanning the
pre-natal stages to adulthood (https://www.BrainSpan.org/static/download.html/). Tissue was collected after obtaining con-
sent and with approval from the institutional review boards of Yale University School of Medicine, the National Institutes
of Health, and contributing institutions. Tissue handling was done in compliance with the NIH ethical guidelines and the
WMA Declaration of Helsinki [88]. The data includes 524 samples from 42 donors (19 females) across 31 developmental
stages spanning from 8 weeks post conception (PCW) to 40 years of age. The samples were taken from a total of 26 cor-
tical and sub-cortical regions in the brain (BrainSpan white paper). RNA-sequencing data was previously processed into
normalized Reads Per Kilobase of transcript per Million (RPKM) using conditional quantile normalization to account for
GC content and sequencing depth and batch effect correction using ComBat [88,201].

RNA-sequencing data (Genecode v10 summarized to genes) were downloaded from the BrainSpan database
(BrainSpan Download). The expression matrix contains normalized RPKM values for 52 376 genes across 524 samples.
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We grouped the samples into major developmental stages including: early fetal, mid fetal, late fetal, infancy, early child-
hood, late childhood, adolescence and adulthood [93,202] (S4 Table). All subsequent analysis was performed on the corti-
cal samples. First, We carried out a basic cleanup of the sample-by-gene expression matrix: (1) We retained regions that
had at least 1 sample in each age group. (2) Duplicate genes were removed, yielding 47 808 unique genes. (3) Genes
were retained if they had an RPKM value >= 1 in 80% of the samples at each spatiotemporal point [203].

The cleanup step resulted in a 352 samples from 11 cortical regions and 8 370 genes. Cortical regions include: ros-
tral anterior cingulate, medial prefrontal cortex, dorsolateral prefrontal cortex, inferolateral temporal cortex (area TEv area
20), orbitofrontal cortex, posterior (caudal) superior temporal cortex (area 22c), posteroventral (inferior) parietal cortex, pri-
mary auditory cortex (core), primary motor cortex (M1, Brodmann area 4), primary somatosensory cortex (S1, areas 312),
primary visual cortex (striate cortex V1, area 17) and ventrolateral prefrontal cortex.

Expression values were log, transformed and normalized using the upper quartile method [204—206]. Each donor’s
data was scaled by their 75th percentile expression value and multiplied by the mean 75th percentile value across all
donors. We then retrieved sample-by-gene expression matrices for each energy pathway using the curated gene sets.
Average expression across all genes for each energy pathway was calculated for each sample. Mean energy pathway
gene expression was then aggregated into the eight age groups by combining all samples within each respective age
group. Pathway expression was then plotted across age categories. Marker genes for neural progenitor cells and synapse
development were obtained from the supplementary materials of [88,93]. Smoothed curves were produced using the
LOESS method against log,,(age) in post conception days using the rpy2 package https://rpy2.github.io/doc.html. For the
microarray dataset, genes were retained if they had a log,(expression) > 6 [93] and the rest of the analysis was carried
out as above.

Supporting information

S$1 Fig. PGD gene expression correlates with glycolysis and OXPHOS maps. Brain map depicts phosphogluconate
dehydrogenase (PGD) gene expression according to the Schaefer-400 parcellation. Colorbar represents z-scored expres-
sion values. PGD expression was correlated (Spearman’s) with glycolysis and OXPHOS mean expression maps. Cor-
relations were tested against a distribution of 10 000 correlations produced from the spatial permutation testing. The
non-parametric p-value is indicated as ps,;,. Dots in the scatter plot represent 400 cortical regions in the Schaefer-400
parcellation.

(PDF)

S2 Fig. Principal component analysis of energy pathway gene expression. (a) Brain maps showing the first princi-
pal component (PC1) of pathway gene expression matrices. PC1 of the glycolysis and OXPHOS gene expression reflect
a gradient from the motor and prefrontal cortices to the parietal association regions, and the visual cortex (glycolysis:
Vareypiained = %45.46; OXPHOS: varg,pined = %55.01). PC1 of the PPP gene expression shows a spatial pattern closely
capturing the established global gene expression gradient, extending from the sensory cortices to the higher order asso-
ciation, and limbic areas [71] (vargypained = %32.30). The PC1 maps can be found in S1 Data. (b) Percent of variance
explained by the first five principal components of pathway gene expression. (c) Spearman’s correlation between energy
maps and the PC1 of expression of all genes in the AHBA. (d) Correlation between energy maps and average expression
of all genes in the AHBA. Highlighted bars represent statistical significance when tested against a distribution of 10 000
spatial-autocorrelation preserving nulls (pspin < 0.05). The correlation and pg,, values can be found in S1 Data. ppp, pen-
tose phosphate pathway; tca, tricarboxylic acid cycle; oxphos, oxidative phosphorylation; lactate, lactate metabolism and
transport.

(PDF)
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S3 Fig. Subcortical energy pathway profiles. Energy pathway gene expression matrices were retrieved for 14 subcor-
tical regions in the Desikian-Killiany atlas [174]. Left: subcortical visualization of mean pathway gene expression. Ventri-
cles are excluded due to the absence of gene expression data. Stable genes (ds > 0.1) were retained to produce path-
way mean gene expression maps (see Methods). Colorbar represents expression values. Right: Barplot representation
of the subcortical energy profiles (left hemisphere). Bars correspond to pathway mean gene expression, z-scored across
all subcortical regions. Energy pathways consistently show higher expression in the thalamus and lower expression in the
amygdala [55]. ppp, pentose phosphate pathway; tca, tricarboxylic acid cycle; oxphos, oxidative phosphorylation; lactate,
lactate metabolism and transport.

(PDF)

S$4 Fig. Distribution of energy pathway maps across intrinsic functional networks. Maps were z-scored across the
400 cortical regions and the average expression of parcels falling into each functional network was calculated for each
energy map, according to the Yeo-Kiernen intrinsic functional network parcellation [58]. Highlighted bars indicate statis-
tical significance when tested against 10 000 spatial-autocorrelation preserving nulls (psi, < 0.05). Brain plots visualize
parcels making up each functional network. Glycolysis, TCA, OXPHOS and lactate maps show significantly greater val-
ues in the somato-motor cortex (glycolysis: pgpin = 0.049; TCA: pg,in = 0.0005; OXPHOS: pg,i, = 0.03; lactate: pgyi, = 0.02).
Glycolysis and OXPHOS have significantly lower expressions in the visual cortex (glycolysis: pg» = 0.003; OXPHOS:
Pspin = 0.004). The PPP map on the other hand shows greater expression in the visual cortex, although not significant
when tested against spatial permutations (ppin = 0.09) and significantly lower expression in the limbic network (pgpin =
0.006). Data underlying this figure can be found in S1 Data. ppp, pentose phosphate pathway; tca, tricarboxylic acid cycle;
oxphos, oxidative phosphorylation; lactate, lactate metabolism and transport.

(PDF)

S5 Fig. Correlation between energy gene expression and ex-vivo mitochondrial phenotype maps. Mitochondrial
phenotype maps were obtained from [75] and parcellated into Schaefer-400. The y-axis represents mitochondrial phe-
notype maps and the x-axis represents gene expression-based maps. Orange scatter plots indicate statistically signifi-
cant correlations (Spearman’s) tested against 10 000 spatial-autocorrelation preserving nulls (pg, < 0.05). Cl, mitochon-
drial complex 1 activity; Cll, mitochondrial complex 2 activity; CIV, mitochondrial complex 4 activity; MitoD, mitochondrial
density; TRC, tissue respiratory capacity; MRC, mitochondrial respiratory capacity; tca, tricarboxylic acid cycle; oxphos,
oxidative phosphorylation.

(PDF)

S6 Fig. Spatial alignment between energy maps and individual inhibitory and excitatory subtypes. For each
individual sub-type, gene markers were obtained from [93] and [184]. For the list of gene markers see S3 Table. (Left)
Heatmap showing the strength of correlation between energy and cell-type maps. Colorbar indicates Spearman’s corre-
lation values. Asterisks indicate statistical significance when tested against a distribution of 10 000 spatial-autocorrelation
preserving nulls after FDR-correction using the Benjamini-Hochberg method for multiple comparisons. (Right) Cortical dis-
tribution of neuronal subtype gene expression. Colorbar represents expression values across the 400 Schaefer regions.
Cell types: pvalb, parvalbumin; sst, somatostatin; calb, calbindin; vip, vasoactive intestinal peptide; exc, excitatory.

(PDF)

S7 Fig. Lifespan trajectory of genes related to neurodevelopmental processes. Expression trajectory of neurode-
velopmental processes were produced using previously curated gene sets [88,93]. Mean expression of marker genes for
each developmental process was calculated for each sample. Samples were then grouped into age categories. Line plot
represents median values across all samples in each age group. Analysis only included cortical regions. The y-axis repre-
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sents upper quartile normalized log,(RPKM) values (see Methods). Dots represent individual samples in each age group.
For details of ages included in each group see S4 Table.
(PDF)

S8 Fig. Region-wise developmental trajectory of energy maps. Lifespan analysis was done using the non-parametric
locally estimated scatterplot smoothing (LOESS) method. For each energy pathway, mean expression was calculated
across all genes for each sample. Samples were grouped into 11 cortical regions available in the dataset. The x-axis
represent log,, transformed age in post conception days. Dots represent individual cortical samples at each age colored
by region. The y-axis shows upper quartile normalized log,(RPKM) values. ppp, pentose phosphate pathway; tca, tricar-
boxylic acid cycle; oxphos, oxidative phosphorylation; lactate, lactate metabolism and transport.

(PDF)

S9 Fig. Sensitivity analysis. To assess the robustness of the results, energy maps were reproduced using (1) only the
left hemisphere microarray data, and (2) a coarser parcellation (Schaefer-100). (a) Maps produced using only left hemi-
sphere data and their correlation with the left hemisphere of maps in the main analysis (produced by mirroring across
hemispheres). Scatter plot represents 200 regions in the left hemisphere parcellated according to Schaefer-400 parcel-
lation. (b) Energy maps according to Schaefer-100 parcellation. Left: Heatmap depicts the pairwise correlation among all
genes included in the energy sets across 100 regions in the Schaefer-100 parcellation. Middle: Spearman’s correlation
between mean expression energy maps. Right: correlation of energy maps with the first principal component of all genes
in AHBA (gene PC1). Brain map color bars represent z-scored expression across all regions in each parcellation. High-
lighted bars show statistical significance when tested against 1 000 spatial-autocorrelation preserving nulls. Data underly-
ing this figure can be found in S1 Data. Ih, left hemisphere; ppp, pentose phosphate pathway; tca, tricarboxylic acid cycle;
oxphos, oxidative phosphorylation; lactate, lactate metabolism and transport.

(PDF)

$10 Fig. Energy maps without the differential stability threshold. Energy maps were reproduced using all available
energy genes in the AHBA regardless of their differential stability threshold. (a) Spearman’s correlation between ds > 0.1
maps and maps with no differential stability threshold. Correlations were tested against a distribution of 10 000 nulls pro-
duced from the spatial permutation testing. The non-parametric p-value is indicated as py,. Dots represent 400 corti-

cal regions in the Schaefer-400 parcellation. (b) Left: Heatmap depicts Spearman’s correlation between mean expres-
sion energy maps. Middle: correlation of energy maps with the first principal component of all genes in AHBA (gene pc1).
Left: Alignment between the FC gradients and energy maps. (c) Top: enrichment of energy maps across the seven von
Economo cytoacrhitectonics classes. Bottom: enrichment of energy maps across the Mesulam sensory-fugal axis of infor-
mation processing. The y-axis represents mean gene expression of z-scored maps. Highlighted bars indicate statistical
significance (pspin < 0.05). Data for this figure is provided in S1 Data. ds, differential stability; ppp, pentose phosphate
pathway; tca, tricarboxylic acid cycle; oxphos, oxidative phosphorylation; lactate, lactate metabolism and transport.
(PDF)

S$11 Fig. Energy maps produced from the first principal component of pathway gene expression. (a) Alignment
between the mean gene expression maps and the first principal component of gene expression for each energy path-
way. Dots in the scatterplot represent 400 cortical regions in the Schaefer-400 parcellation. (b) Spatial alignment among
energy PC1 maps calculated using pairwise Spearman’s correlation. (¢) Spearman’s correlation of PC1 energy maps and
multi-scale cortical features. Asterisk represents significance after permutation testing using 10 000 spatial nulls and FDR
correction using the Benjamini-Hochberg method for multiple comparison. Colorbar shows Spearman’s correlation val-
ues. CMRg, cerebral metabolic rate of glucose; CMR,, cerebral metabolic rate of oxygen; gi, glycolytic index; cbf, cere-
bral blood flow. Cell types: astro, astrocyte; neuron ex, excitatory neuron; neuron in, inhibitory neuron; endo, endothelial
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cell; micro, microglia; opc, oligodendrocyte precursor cells; oligo, oligodendrocyte; sc, structural connectivity; fc: functional
connectivity.
(PDF)

S$12 Fig. Correlation between subject level energy maps. Gene expression matrices were retrieved for each sub-

ject using abagen package. Genes with ds > 0.1 were kept and pathway mean gene expression maps were produced as
before (See methods. For each pathway, the heatmap depicts Spearman’s correlation between individual subjects. The
x- and y-axis corresponds to the donor IDs. ppp, pentose phosphate pathway; tca, tricarboxylic acid cycle; oxphos, oxida-
tive phosphorylation; lactate, lactate metabolism and transport.

(PDF)

S$13 Fig. Distribution of subject-level energy gene expression across the von Economo classes. Maps were z-
scored across the 400 cortical regions and the average expression of parcels falling into each class was calculated for
each energy pathway. The y-axis represents mean gene expression of z-scored maps. Highlighted bars indicate statisti-
cal significance when tested against 10 000 spatial-autocorrelation preserving nulls (psi, < 0.05). Data for this figure can
be found in S1 Data. ppp, pentose phosphate pathway; tca, tricarboxylic acid cycle; oxphos, oxidative phosphorylation;
lactate, lactate metabolism and transport.

(PDF)

S$14 Fig. Lifespan trajectory of energy maps using LOESS. Lifespan analysis was repeated using the non-parametric
locally estimated scatterplot smoothing (LOESS) method. For each energy pathway, mean expression was calculated
across all genes for each sample. The x-axis represent log,, transformed age in post conception days. Dots represent
individual cortical samples at each age. The y-axis shows upper quartile normalized log,(RPKM) values. ppp, pentose
phosphate pathway; tca, tricarboxylic acid cycle; oxphos, oxidative phosphorylation; lactate, lactate metabolism and
transport.

(PDF)

$15 Fig. Microarray expression trajectory of energy maps across the lifespan. Lifespan analysis was repeated
using the microarray data from the BrainSpan dataset [93]. For each energy pathway, mean expression was calculated
across all genes for each sample. Samples were then grouped into eight age bins and the median expression across all
samples falling into each age bin was calculated. Analysis only included cortical regions. The y-axis represents upper
quartile normalized log,(signal intensity) (see Methods). Dots represent individual samples in each age group. Line plot
depicts the trajectory of median gene expression. For details of ages included in each group see S8 Table. ppp, pen-
tose phosphate pathway; tca, tricarboxylic acid cycle; oxphos, oxidative phosphorylation; lactate, lactate metabolism and
transport.

(PDF)

$16 Fig. Extended set of energy related pathways. Mean gene expression maps were produced as before (see Meth-
ods). Color bars represent mean gene expression, z-scored across the 400 cortical regions in the Schaefer-400 parcella-
tion. The clustering analysis of these maps can be found in S17 Fig. The lifespan trajectory of the extended set of energy
maps can be found in S19 Fig. atpsynth, ATP synthase complex; BCAA, branch chained amino acid; pdc, pyruvate dehy-
drogenase complex; mas, malate-aspartate shuttle; gps: glycerol-3-phosphate shuttle; ros detox, detoxification of reac-
tive oxygen species; ros gen, generation of reactive oxygen species; no signaling, nitric oxide signaling; gln-glu cycle,
glutamine-glutamate cycle.

(PDF)

S$17 Fig. Clustering analysis of energy maps. (a) Left: Clustering of the complete set of energy maps was carried
out using PCA on a matrix containing all pathway mean gene expressions. Axes represent the first and second principal
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components. Right: hierarchical clustering of extended energy maps. Colorbar represents expression values across the
400 cortical regions in the Schaefer parcellation. (b) Pair-wise correlation among the extended energy maps. Colorbar
represents Spearman’s correlation values. Bold edges indicate statistical significance tested against 10 000 spatial nulls
and after FDR correction using the Bejamini-Hochberg method for multiple comparisons. atpsynth, ATP synthase com-
plex; BCAA, branch-chained amino acids; pdc, pyruvate dehydrogenase complex; mas, malate-aspartate shuttle; gps:
glycerol-3-phosphate shuttle; ros gen, generation of reactive oxygen species; no signaling, nitric oxide signaling; gin-glu
cycle, glutamine-glutamate cycle.

(PDF)

S$18 Fig. Alignment between the components of mitochondrial respiratory chain. Left: Venn diagram depicts the final
number of genes in each mitochondrial complex and their overlap. Right: Heatmap depicts pairwise Spearman’s correla-
tions between mean gene expression maps. Gene sets for each mitochondrial complex were retrieved using GO pathway
IDs and mean expression maps where produced as before (see Methods). Asterisks show statistical significance when
tested against a distribution of 10 000 correlations produced using spatial autocorrelation preserving permutation test.
atpsynth, ATP synthase complex.

(PDF)

S$19 Fig. Lifespan trajectory of the extended energy metabolism pathways. Developmental trajectories of energy
metabolism pathways were produced using the BrainSpan RNA-seq expression dataset. For each energy pathway,
mean expression was calculated across all genes for each sample and median expression across all samples falling into
each age group was calculated. Analysis only included cortical regions. the y-axis represents upper quartile normalized
log,(RPKM) expression values. Dots represent individual samples in each age group. Line plot depicts the trajectory of
median gene expression. atpsynth, ATP synthase complex; FA, fatty acid; BCAA, branch chained amino acid; pdc, pyru-
vate dehydrogenase complex; mas, malate-aspartate shuttle; gps: glycerol-3-phosphate shuttle; ros detox: detoxification
of reactive oxygen species; ros gen, generation of reactive oxygen species; no signaling, nitric oxide signaling; gin-glu
cycle, glutamine-glutamate cycle.

(PDF)

S$20 Fig. Alignment between the PPP and cortical T1w/T2w map. Spatial alignment between the maps were calculated
using the Spearman’s correlation and tested against a distribution of 10 000 correlations produced from the spatial per-
mutation nulls. The x-axis represents the PPP mean gene expression. Dots in each scatter plot represent the 400 cortical
regions in the Schaefer-400 parcellation. ppp, pentose phosphate pathway.

(PDF)

S$21 Fig. Differential stability of energy pathway genes. The differential stability distribution of the final energy path-
way genes. Expression data were filtered to have a differential stability value >= 0.1. Dots represent individual genes in
each pathway. ppp, pentose phosphate pathway; tca, tricarboxylic acid cycle; oxphos, oxidative phosphorylation; lactate,
lactate metabolism and transport.

(PDF)

S1 Table. Energy metabolic pathway gene sets. Overview of energy metabolic pathways and their final gene sets
included in this study. Gene sets were produced based on GO biological processes and Reactome pathway IDs. Genes
annotated in both databases used for the analyses are listed. ppp, pentose phosphate pathway; tca, tricarboxylic acid
cycle; oxphos, oxidative phosphorylation; Lactate, lactate metabolism and transport.

(PDF)
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S2 Table. Visual ROIs. Visual regions in the Glasser atlas. Delineations were defined according to the supplementary
neuroanatomical results from [59] and https://neurocimaging-core-docs.readthedocs.io/en/latest/pages/atlases.html.
(PDF)

S3 Table. Cell-type marker genes. Individual cell-type markers used to produce cortical maps for inhibitory and excita-
tory neuronal subtypes. Marker genes were obtained from [93,184].
(PDF)

S4 Table. Age groups for BrainSpan RNA-seq samples. RNA-sequencing data (Genecode v10 summarized to genes)
were downloaded from the BrainSpan database (https://www.brainspan.org/static/download.html/). Samples were binned
into eight major developmental stages [93]. Last column shows number of cortical samples for each age group used in the
analysis. pcw, post conception weeks; mos, months; yrs, years.

(PDF)

S5 Table. BrainSpan energy pathway gene sets. Energy metabolism pathway gene sets used in lifespan trajectory
analysis. Note that the same GO biological processes and Reactome pathway IDs were used across all analysis and
the difference in final gene sets for each pathway is the result of different gene data availability in AHBA and BrainSpan
datasets. PPP, pentose phosphate pathway; TCA, tricarboxylic acid cycle; OXPHQOS, oxidative phosphorylation; Lactate,
lactate metabolism and transport; Ketone Body, ketone body utilization.

(PDF)

S$6 Table.Energy metabolic pathway gene sets without the differential stability threshold. As before, gene sets were
produced based on GO biological processes and Reactome pathway IDs. Genes annotated in both databases used for
the analyses are listed. PPP, pentose phosphate pathway; TCA, tricarboxylic acid cycle; OXPHOS, oxidative phosphory-
lation; Lactate, lactate metabolism and transport.

(PDF)

S7 Table. Excluded genes in the OXPHOS map broken down by individual complexes. Genes not available in the
AHBA, as well as genes not fulfilling the differential stability threshold were excluded from the OXPHOS gene expression
matrix.

(PDF)

S8 Table. Age groups for BrainSpan microarray samples. Microarray data were downloaded from the BrainSpan
database (https://www.brainspan.org/static/download.html/) Samples were binned into eight major developmental stages
[93]. Last column shows number of cortical samples for each age group used in the analysis. pcw, Post conception
weeks; mos, months; yrs, years.

(PDF)

S9 Table. Gene sets for the extended set of energy pathways. As before, gene sets were produced based on GO bio-
logical processes and Reactome pathway IDs. When available in both databases, consensus genes used to create the
energy mean expression maps are listed. PPP, pentose phosphate pathway; TCA, tricarboxylic acid cycle; OXPHOS,
oxidative phosphorylation; Lactate, lactate metabolism and transport.

(PDF)

S$1 Data. Supplementary numerical data sheets for Figures 2A-D, 3, S2A,C,D, S4, S9B, S10A-C, and S13.
(XLSX)
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