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Abstract

The ability to anticipate rhythmic and melodic structures in music is considered a
fundamental human trait, present across all cultures and predating linguistic com-
prehension in human development. Yet, it remains unclear the extent to which this
ability is already developed at birth. Here, we used temporal response functions

to assess rhythmic and melodic neural encoding in newborns (N=49) exposed to
classical monophonic musical pieces (real condition) and control stimuli with shuffled
tones and inter-onset intervals (shuffled condition). We computationally quantified
context-based rhythmic and melodic expectations and dissociated these high-level
processes from low-level acoustic tracking, such as local changes in timing and pitch.
We observed encoding of probabilistic rhythmic expectations only in response to real
but not shuffled music. This proves newborns’ ability to rely on rhythmic statistical
regularities to generate musical expectations. We found no evidence for the tracking
of melodic information, demonstrating a downweighting of this dimension compared
to the rhythmic one. This study provides neurophysiological evidence that the capac-
ity to track statistical regularities in music is present at birth and driven by rhythm.
Melodic tracking, in contrast, may receive more weight through development with
exposure to signals relevant to communication, such as speech and music.

Introduction

Music is an increasingly compelling means for understanding the development of a
wealth of neuro-cognitive processes, including those that support communication
through sound patterns [1]. From the earliest stages of development, the human
brain relies on multiple auditory cues to extract meaningful patterns—such as words
or melodies—from the acoustic environment [2—4]. This process is facilitated by

PLOS Biology | https://doi.org/10.137 1/journal.pbio.3003600 February 5, 2026

1/21



http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3003600&domain=pdf&date_stamp=2026-02-05
https://doi.org/10.1371/journal.pbio.3003600
https://doi.org/10.1371/journal.pbio.3003600
https://doi.org/10.1371/journal.pbio.3003600
https://doi.org/10.1371/journal.pbio.3003600
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9613-8933
mailto:roberta.bianco@unipi.it

PLON. Biology

and reproduction in any medium, provided the
original author and source are credited.

Data availability statement: All data underly-
ing the findings described in this manuscript
are fully available without restriction. The EEG
data and analysis code are publicly available
from the Open Science Framework (OSF) at
https://doi.org/10.17605/0SF.10/K758D. The
EEG data are shared in accordance with the
Continuous-event Neural Data (CND) format
standard. The corresponding musical stimuli
are available in the same repository under the
STIMULI folder. All data used to generate the
figures are included as Supporting Information
files (S1-S9 Data).

Funding: R.B. is funded by the European Union
(MSCA, PHYLOMUSIC, 101064334, https:/
marie-sklodowska-curie-actions.ec.europa.
eu/). G.N. and E.B. are funded by the European
Research Council (ERC, MUSICOM, 948186,
https://erc.europa.eu/homepage). T.N. is funded
by the European Union (MSCA, SYNCON,
101105726, https://marie-sklodowska-cu-
rie-actions.ec.europa.eu/). B.T., G.P.H., and

|.W. are funded by the Hungarian National
Research Development and Innovation Office
(ANN131305, FK139135, and K147135,
respectively, https://nkfih.gov.hu/english-nkfih).
The funders did not play any role in the study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing interests: The authors have
declared that no competing interests exist.

Abbreviations: ASR, Artefact Subspace
Reconstruction; BERA, Brainstem Evoked
Response Audiometry; CI, confidence inter-
vals; EEG, electroencephalography; ERPs,
event-related potentials; ICA, independent
component analysis; IDyOM, information
dynamic of music; 10I, inter-onset-interval; IPI,
inter-pitch-interval; LMMs, linear mixed-effects
models; mTRF, multivariate temporal response
function; SE, standard errors;

the integration of sequential information and, thereby, by the extraction of statistical
patterns along temporal and spectral dimensions, such as timing and pitch [5,6]. In
music, tracking of statistical patterns is largely implicit [7], allowing the brain to antic-
ipate events or patterns that occur more frequently than others based on both recent
and past contexts. Expectations, therefore, build on statistical regularities acquired in
real time as the current sequence unfolds, and/or retrieved from prior exposure. This
process permits listeners to recognize rhythmic (temporal) and melodic (spectral) pat-
terns [8], as well as to anticipate when an event will occur and what it will be [9—11].
Such rhythmic and melodic expectations are the backbone of music perception and
appreciation [12] and are assumed to have contributed to the evolution and develop-
ment of human musicality [13—18].

Based on cross-species studies, rhythmic and melodic expectations in primate
species seem to have evolved along different phylogenetic pathways. Sensitivity to
rhythmic patterns was observed in nonhuman primates, suggesting deep phyloge-
netic roots [19-24]. In contrast, the sensitivity to melodic patterns based on pitch
relations appears more variable, if not absent, in nonhuman primates and may be
unique to humans within the primate lineage [19,25-27]. This observation raises an
important question: are humans naturally predisposed to melodic tracking? Answer-
ing this question is challenging yet important for understanding how biological predis-
positions, along with cultural traits, shape the complex spectrum of human musical
abilities observed worldwide [28,29].

Here, we take human newborns as a testbed for studying the human brain’s pre-
disposition to process music, specifically its rhythmic and melodic aspects. New-
borns’ auditory responses can be reliably recorded using electroencephalography
(EEG) [30,31], and these responses are marginally influenced by prior exposure
compared with those measured at any later developmental stage (but see [32-36]).
Compelling evidence suggests that the human brain engages with sounds already in
utero, as fetuses discriminate, habituate to, and memorize sounds [37]. By approx-
imately 35 weeks of gestation, fetuses begin to respond to music with changes
in heart rates and body movements [38]. What remains unclear is which specific
aspect of music—namely its rhythmic or melodic structure—drives these early
predispositions.

In terms of rhythm perception, EEG studies demonstrated an early neural tuning to
temporal structure in the human neonatal brain, such as specialization for temporal
cues in both speech [39] and nonspeech signals [40], adaptation to the presentation
rate of temporal patterns [41], tracking of meter-related frequencies [42], and percep-
tion of the beat [43]. Also, studies in newborns suggest that exposure to structured
temporal input, such as music, can strengthen auditory networks and scaffold later
language development [44,45]. Despite this evidence, it remains unclear whether
newborns use rhythmic statistical regularities beyond sound periodicities, such as
transition probabilities, to form temporal expectations [46]. In terms of melodic capac-
ities, EEG studies showed that newborns exhibit discrimination of pitch independent
of timbre [47] and detection of highly surprising events, such as deviants from deter-
ministic patterns of tones [48] or regularities in sequences of tone intervals [49,50].
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These studies provide preliminary evidence for expectations based on probabilistic distributions of melodic information.
Yet they tested only the two tail-ends of such presumed probabilistic distribution: very frequent versus very infrequent
events, ignoring the wide range of note-by-note surprises of real music. This leaves it unclear whether newborns can form
melodic expectations whilst listening to continuous naturalistic music, as observed in adults [19,51,52]. Finally, because
melodic and rhythmic abilities have often been studied separately, the weights of rhythmic and melodic expectations
during music processing at birth are unknown.

Here, we investigate neural tracking of expectations based on both timing and pitch structures to understand how
the newborn brain weights these musical features while listening to naturalistic musical stimuli (i.e., classical piano
pieces). Therefore, unlike traditional paradigms, our design directly assesses rhythmic and melodic tracking within a full,
ecologically valid stimulus, rather than inferring them from detection of salient irregular sounds. Rhythmic and melodic
expectations can be generated through different anticipatory mechanisms sensitive to different features of the stimulus—
from surface acoustical attributes to local and global event-based probabilities. Thus, using the multivariate Temporal
Response Function analysis (mTRF) [53,54], we measured how multiple features of the continuous musical stimuli—
namely ‘low-level’ acoustic features and ‘high-level’ probabilistic rhythmic/melodic information—predict human newborns’
EEG responses to music. As in previous human and nonhuman primate work [19,51,52], we assessed neural encoding of
J. S. Bach’s piano monophonic pieces—rich musical stimuli combining both melodic and rhythmic probabilistic structures.
Based on previous findings of rhythmic but not melodic tracking in nonhuman primates [19], we hypothesized that human
newborns would show a similar pattern if these abilities were inherited phylogenetically. This would imply that whilst
rhythm encoding is embedded in the human brain from the outset, melodic encoding might develop more slowly with
experience and behavioral relevance. Conversely, if, unlike other nonhuman primates, rhythmic sensitivity and melodic
sensitivity each emerge in parallel in humans, then human newborns might already exhibit some capacity for melodic
encoding, potentially comparable to rhythmic encoding, as observed in adults [19,51].

Results

An mTRF analysis was carried out to assess the neural encoding of musical expectations in humans at birth (Fig 1A).
Newborns were exposed to musical melodies (real condition) and control stimuli (shuffled condition, where pitch and note
timings were shuffled over time to create sequences with disrupted musical regularities). Musical melodies composed by
Bach contain the regular melodic and rhythmic patterns typically found in tonal Western music. In contrast, the shuffled
stimuli lack comparable predictability in pitch or timing (including a weak sense of musical beat), despite being acoustically
similar (see S1 Fig; stimuli are available at https://doi.org/10.17605/OSF.I0/K758D).

To objectively assess the predictability of the experimental stimuli, probabilistic expectations were estimated based on
the information-theoretic properties of the stimuli using a variable-order Markov model of statistical learning (i.e., informa-
tion dynamic of music [IDyOM]; [55]). The model learns statistical patterns from sequences of discrete symbols represent-
ing different stimulus attributes, specifically concerning pitch and timing. It leverages observations from the past (long- and
short-term) musical context, and it computes Shannon’s surprise (S) and entropy (E) of each note in a melody associated
with pitch (Sp and Ep, respectively) and onset timing (St and Et). Surprise and entropy provide complementary charac-
terizations of predictive processing: entropy captures the inherent uncertainty of an event, whereas surprise reflects the
unexpectedness of that event given prior context. Including both predictors allows us to fully represent pitch and timing
tracking, ensuring that we capture neural activity related to both aspects of musical anticipation. The estimates provided
by the model confirmed that shuffled melodies were overall more unexpected than real melodies, both with respect to
pitch (Sp: W=40, p=.002; Ep: W=40, p=.002; see Methods ‘Statistical analysis’ for details) and to timing (St: W=35,
p=.036; Ep: W=33, p=.075) (Fig 1B).

We further investigated the relationship between stimulus predictability and low-level acoustic features. Note-specific
surprise and entropy estimates positively correlated with low-level acoustic features such as the magnitude of the latest
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Fig 1. Materials and methods. (A) Experimental paradigm. We analyzed EEG data recorded from 49 sleeping human newborns while being exposed
to monophonic piano melodies composed by J. S. Bach (real condition) and control stimuli (shuffled condition). (B) Surprise and entropy. Surprise and
entropy associated with each note’s timing (green, St and Et, respectively) and pitch (yellow, Sp and Ep, respectively) were estimated using an unsu-
pervised statistical learning model trained on all stimuli. Dot plots display mean surprise and entropy associated with real and shuffled music, averaged
across melodies (left panel), and separately for each melody (right panel). Error bars represent bootstrapped 95% confidence intervals (Cl). See S1°
Data. (C) Correlations between stimulus features. Pearson’s correlations (r values) between the stimulus features: inter-pitch-interval (IPl), inter-onset-
interval (I0l), and surprise and entropy associated with timing (St and Et) and pitch (Sp and Ep). See S1 Data. (D) Analytical approach. Multivariate Tem-
poral Response Function (nTRF) models were fit to describe the forward relationship between multiple stimulus features and the EEG signal. The full
TRF model (leftmost panel) included acoustic low-level features (spectral flux, acoustic onset, I10I, and IPI) and high-level features (surprise and entropy
of pitch and timing). To assess the unique contribution of each feature (or set of features) to the EEG data, we run reduced models encompassing all
variables but with the specified one being randomized in time (yet preserving the note onset times). We then calculated the difference in EEG prediction
accuracy (Pearson’s correlations, r) between the reduced models and the full model (Ar). On the rightmost panel, the light blue circle denotes information
of a reduced model, with the variable(s) of interest being randomized. The orange area indicates the unique contribution of the variable of interest that
leads to an increase in the explanatory power of the full model (black circle).

https://doi.org/10.1371/journal.pbio.3003600.9001

pitch or timing interval (i.e., inter-pitch-interval, IPI, or inter-onset-interval, 10I) (Fig 1C). Hence, in the following anal-
yses, we assessed the unique contribution of probabilistic pitch and timing expectations, above and beyond the con-
tribution of low-level acoustic processing (including IPI, IOl, acoustic onsets, and spectral flux) (Fig 1D). To do so, we
derived single-participant TRFs by fitting multivariate lagged regression models (Fig 2A). We then estimated prediction
accuracy (Pearson’s correlations, r) between the EEG signals predicted by the TRF models and the actual EEG data
(averaged across all participants, ‘ground-truth EEG data’ see Methods ‘TRF analysis’), separately for each melody and
EEG channel, using leave-one-melody-out cross-validation over a lag window ranging from =50 to 400 ms. To assess
the unique contributions of the variables of interest to the EEG data, we trained reduced models that included a verid-
ical representation of all variables except for the variable of interest, which was randomized (see Methods ‘TRF Anal-
ysis’). Finally, we calculated the difference in prediction accuracy (Ar) between the reduced and full models, selecting
the top 25% of channels with the highest prediction accuracy in the full model across conditions (see Methods for ROI
definition).
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Fig 2. Neural encoding of timing but not pitch expectations at birth. (A) TRF full model. Ridge regression weights in time yielded by TRF for all
predictors of the full model at the electrode Fz. Orange and purple colors indicate positive and negative weights, respectively. Zero on the time axis
represents the note onset. (B) Unique contribution of high-level musical features. Left panel: black dots indicate EEG prediction accuracy of the full
model of each infant, computed across 25% of channels with the highest prediction accuracy across conditions (best channels per infant, used in all
following plots). Infants are ranked according to the prediction accuracy (r) of the full model. Central upper panel: group-average (n=49) Ar resulting
from the difference between full and reduced models assessing the unique contribution of high-level musical features (St, Et, Sp, and Ep) computed
across each infant’s best channels and plotted separately for real (red) and shuffled (gray) melodies with associated topographical maps. Central lower
panel: grand-average Ars are displayed for each melody, ranked from slower to faster tempo (see S1 Table). Error bars represent bootstrapped 95% CI.
Right panel: scatter plot representing the relationship between Ar yielded by high-level musical features associated with real (x-axis) and shuffled (y-axis)
melodies (each dot represents one participant). See S2 Data (C) Unique contribution of timing and pitch-related features. Topographical maps represent-
ing group-average Ar resulting from the difference between full and reduced models separately assessing the unique contribution of high-level timing
features (St and Et), high-level pitch-related features (Sp and Ep), as well as low-level timing (I0I) and pitch-related (IPI) features across conditions (left:
real; right: shuffled). Dot plots represent the group-average mean Ars for the four reduced models (dots are color coded consistently with the colors used
to label the high- and low-level musical features), computed across each infant’s best channels. Error bars represent bootstrapped 95% CI; asterisks
indicate the presence of significant main effects and interactions; ‘ns’ indicates nonsignificant effects. See S2 Data. (D) Intersubject variability. Histo-
grams of individual Ars for models reduced by St and Et, Sp and Ep, IOI, as well as IPI, separately for the two conditions.

https://doi.org/10.1371/journal.pbio.3003600.9002

Encoding of probabilistic expectations in real but not shuffled music

Fig 2A shows the weights (see Methods ‘TRF analysis’) in time yielded by TRF for all stimulus features of the full model.
Fig 2B (left panel) shows that the full model—including all features—predicted the EEG data with reasonable accuracy
across virtually all participants, yielding correlation values comparable to those reported in previous TRF studies [51,56].
However, the intersubject variability was substantial, but not explained by the gestational age [57] (Spearman p=0.183,
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p=0.207), perhaps reflecting the limited variability of this measure in our sample (gestational age mean 279.8+6.8 GG,
range 257-290 GG).

To what extent do probabilistic (high-level) expectations contribute to the neural signal? We tested the unique contri-
bution of probabilistic (high-level) features derived from the IDyOM model (St, Et, Sp, and Ep) beyond low-level stimulus
features (onset, spectral flux, 10Il, and IPI). We thus compared the change in prediction accuracy (Ar) between the full
model and the reduced model—where event-related predictors (St, Et, Sp, and Ep) were randomized both in real and
shuffled music (Fig 2B, top central panel). A linear mixed effect model (see Methods ‘Statistical analysis’ for details) with
the fixed factor Condition (real versus shuffled) yielded a main effect of Condition (x3(1) = 12.065, p<.001) indicating
encoding of probabilistic expectations in real but not shuffled music (real>shuffled: b=.004, SE=.001, p=.005; real>0:
b=0.003, SE=.0007, p<.001; shuffled>0: p=.594). These effects were not driven by any specific melody (Fig 2B, bottom
central panel) and exhibited high variability across subjects (Fig 2B, right panel, see also S2A Fig for a visualization of the
condition effect on Ar values across individual participants and electrodes). This analysis demonstrates that the predict-
able structure of real (but not shuffled) melodies allows newborns to generate musical expectations over and above mere
acoustic tracking.

Timing- but not pitch-related expectations

We tested whether the encoding of probabilistic expectations was specifically driven by pitch or timing structures (Figs 2C,
2D and S2B upper panels). We thus examined the difference between the full model and a reduced model, in which either
St and Et (timing probabilistic TRF model) or Sp and Ep (pitch probabilistic TRF model) were randomized. A linear mixed
effect model with fixed factor Condition (real versus shuffled) and TRF model (St and Et versus Sp and Ep) yielded a main
effect of condition (x?(1) = 12.353, p<.001) and an interaction between Condition and TRF model (x*(1) = 9.897, p=.002).
For real music, paired contrasts indicated encoding of probabilistic expectations based on timing but not pitch structure (St
and Et>Sp and Ep: b=.002, SE=0.0004, p<.001; St and Et>0: b=0.0024, SE=.0005, p<.001; Sp and Ep>0: p=.384),
whereas for shuffled music, neither of the two dimensions yielded significant effects (St and Et>Sp and Ep: p=.856; St
and Et>0: p=.166; Sp and Ep>0: p=.601). This analysis demonstrates that newborns track the predictable rhythmic
structure of the real melodies to generate expectations. In contrast, pitch-based probabilistic expectations do not appear
to emerge with statistical significance.

As a control, we ran similar analyses to test the unique contribution of expectations driven by just immediate local
changes in timing and pitch, as estimated by IOl and IPI (Figs 2C, 2D and S2B lower panels). We thus examined the
difference between the full model and a reduced model, in which either 101 or IPl was randomized. A linear mixed effect
model with fixed factor Condition (real versus shuffled) and TRF model (1Ol versus IPI) yielded a main effect of TRF model
(x3(1) = 48.225, p<.001) and an interaction between Condition and TRF model (x?(1) = 5.032, p=.025). Paired contrasts
indicated encoding of 101 but not IPI for both real (I01>1PI: b=.001, SE=0.0003, p=.001; I0I>0: b=0.0022, SE=.0005,
p<.001; IPI>0: p=.12) and shuffled music (I01>IPI: b=.003, SE=0.0005, p<.001; 101>0: b=.00026, SE=.0007, p=.002;
IPI>0: p=.705). This analysis demonstrates that (low-level) expectations based on local temporal intervals are not altered
by the rhythmic structure of the music, as I0Is were similarly tracked in real and shuffled melodies. It also shows that
encoding of the pitch information did not reach significance in either condition (although IPI tracking approached signifi-
cance when compared to zero in the real condition). Hence, the current results do not support the tracking of either pitch
probabilistic expectations or local pitch change.

Note that notes carrying high surprise are often preceded by relatively larger 10ls, and this bias was stronger in real
than in shuffled music (S3A Fig). However, the stronger tracking of probabilistic rhythmic expectations (St and Et model) in
real than shuffled music cannot be explained by low-level timing alone, as St and Et regressors captured additional EEG
variance beyond that explained by the preceding 10l (Fig 2C). We also conducted further control analyses. First, because
IOIs were occasionally short, one could argue that consecutive ERPs may have overlapped, potentially confounding the

PLOS Biology | https://doi.org/10.1371/journal.pbio.3003600 February 5, 2026 6/21




PLON. Biology

TRF results across conditions. This concern had already been addressed in our main analysis, where the 101 preceding
each event was included as a regressor in the TRF model. To further rule out this possibility, we repeated the analysis,
also adding the subsequent IOl as a regressor. The results of this analysis confirmed the findings reported above (S3B
Fig). Second, to rule out the possibility that some, even if not all, infants were able to generate pitch-based probabilistic
expectations, we explored whether those infants generating relatively stronger predictions for timing were also generating
stronger predictions for pitch. To do so, we correlated Ar across Sp and St but found no significant correlation for either
real (Spearman p=0.234, p=0.105) or shuffled music (Spearman p=0.209, p=0.15).

Converging evidence from Event-Related Potentials (ERPs)

To ground the TRF results in more widely used neurophysiological responses, we examined ERP responses to a subset
of musical notes, specifically those carrying the highest and lowest 20% quantiles of surprise values (High S and Low
S, respectively), separately for pitch and timing (Fig 3A). The ERPs consisted of a first negative peak (termed N1) fol-
lowed by two broad positive-going deflections (P1 and P2) separated by a small (second) negative-going deflection (N2).
The ERP waveforms resemble those previously observed in newborns evoked by auditory stimuli [58]. Furthermore, the
waveform is reminiscent of TRF’s regression weights (Fig 2A), suggesting that the TRF analysis primarily captured phase-
locked auditory responses, as observed in previous studies [19,51,59].

Notably, the amplitude of the two positive-going deflections was enhanced in response to temporally unexpected
(High S) compared to expected (Low S) notes, reaching significance in the second peak (from +.24 to +.37 s). This was
observed for real but not for shuffled music. Conversely, no significant amplitude modulation was evoked by notes with
unexpected pitch. This dissociation, together with the observation that pitch- and time-related surprise values (Sp and St)
are weakly correlated (rho=.17), suggests that unexpected pitch and timing events are processed independently. These
results fully align with the TRF results, confirming that newborns generate expectations based on the rhythmic rather
than melodic structure of the musical stimuli. They further provide insights into a neurophysiological response, specifi-
cally a late EEG positivity, whose amplitude varies as a function of timing- but not pitch-related surprise. Together, these
results warrant comparison with findings from previous studies that exposed human adults (Fig 3B) and Rhesus monkeys
(Macaca mulatta, Fig 3C) to the same stimuli [19,51] to be further elaborated upon in the Discussion.

Discussion

We employed continuous music stimuli with a rich melodic and rhythmic “alphabet” as a testbed for investigating the
neurophysiology of music encoding in newborns. We demonstrated the feasibility of using naturalistic complex stimuli,
such as Western tonal music, to examine different levels of auditory processing at birth. By determining how newborns
use statistical regularities in melodic and rhythmic information to process music, our findings provide key contributions to
understanding auditory development and its built-in biological constraints. Specifically, while rhythmic statistical regulari-
ties embedded in musical stimuli are neurally encoded already at birth, pitch-based information does not receive the same
depth of processing, whether at low or high levels of encoding. This suggests that rhythmic and melodic sensitivities do
not emerge in parallel in humans, with rhythm developing earlier than melody.

TRF analyses revealed high inter-individual variability in overall neural tracking of musical stimuli (Fig 2B left panel,
see also [60]), likely stemming from the high variability in morphology and latency of newborns’ auditory ERPs [61], and
compatible with the notion that TRFs capture ERP-like responses [54]. Crucially, we showed that newborns track note-by-
note predictability in real but not shuffled music, and that the rhythmic, not the melodic, aspect of sound sequences drove
this effect. This indicates that newborns extract statistical regularities from structured contexts (real condition)—likely the
rhythmic relationship between nonadjacent timing intervals—to predict upcoming events in the sequence. Conversely,
musical expectations were reduced when regularities were weak or absent in random contexts (shuffled condition). As
expected, local temporal information—the latency difference between two adjacent notes—was encoded while listening
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Fig 3. Modulation of auditory event-related potentials as a function of surprise. (A) Human newborns. Group-average (n=49) ERPs (electrode Fz)
evoked by notes carrying relatively high (continuous line) versus low (dashed line) St (green) and Sp (yellow) for real and shuffled music locked to the
note onset (0s). The amplitude of the P2 component was higher in response to notes carrying relatively high versus low temporal surprise (green) (from
+.24 to +.37s) for real (left) but not for shuffled music (right). No effect of pitch-related surprise was found. Gray windows highlight significant differences
between low versus high surprise responses (cluster-corrected permutation tests over time across all electrodes). Topographies illustrate the amplitude
difference between conditions in the time windows of identified clusters. See S3 and S4 Data. (B) Human adults. To assist the comparison with results
of previous studies, we plotted group-average (n=20) ERPs (electrode FCz) recorded from human adults listening to the same stimuli as the infants
(reanalysis of data from [51]). Note that no shuffled stimuli were presented in this study. The amplitude of the P1-N1-P2 components was higher in
response to notes associated with high than those with low temporal surprise (P1: from +.05 to +.07 s; N1: from +.11 to +.12s; P2: from +.16 to +.21s).
Notably, human adults also exhibited sensitivity to pitch-related surprise, as indicated by enhanced P1-N1-P2 in response to notes carrying relatively
high versus low surprise in pitch (Sp, yellow) (P1: from +.07 to +.09s; N1: from +.12 to +.14's; P2: from +.17 to +.27 s). (C) Adult Rhesus monkeys.
Group-average (n=2) ERPs (electrode FCz) recorded from Rhesus Monkeys listening to the same stimuli as the infants (reanalysis of data from [19]).
The amplitude of the P1 and P2 components (P1: from +.03 to +.06's; P2 from +.12 to +.15s, frontal electrodes) was higher in response to notes asso-
ciated with high than those with low temporal surprise for real, but not for shuffled music. Similarly to newborns, pitch-related surprise did not yield any
significant modulation of the EEG amplitude.

https://doi.org/10.1371/journal.pbio.3003600.9003
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to both real and shuffled music (see Fig 2C, IOl reduced model), independently of whether high-order structural pat-
terns were present. These findings align with the idea that tracking event predictability relies on the ability to extract and
represent structural information from the past context [62,63]. The reduced response in the shuffled condition reflects a
down-weighting of such predictability-related response when the inferred stability, or precision, of the sensory input is low,
and the present information does not conform with past experience [64,65].

This finding also brings novel evidence to our understanding of human rhythmic abilities present at birth. While rhyth-
mic skills, such as sensitivity to isochrony and beat periodicity, are well-documented in infants at 5 months [66], at birth
[43], and even in preterm infants [42], evidence regarding sensitivity to context-based probabilistic expectations remains
elusive [46]. Here, we offer positive evidence. Using J. S. Bach’s compositions with a variable range of 10ls, we show that
newborns are not merely tracking isochrony and periodic patterns. They also process a higher-level feature, namely the
probability of when the next event will occur based on a range of past different 10ls. This capacity in infants might build
upon the well-documented sensitivity to isochrony and periodicity: in other words, an isochronous or periodic representa-
tion of a sequence might provide a temporal grid of predictable sound events, like a scaffold facilitating the segmentation
and organization of more complex temporal and/or spectral patterns [67].

What could underlie such precocious rhythmic abilities? A potential candidate is the fetal sensory environment, which
is characterized by the prominence of biological rhythms. This includes auditory stimulations (e.g., the mother’s heartbeat
[4]), as well as vestibular stimulations (e.g., associated with the regular pace of maternal gait [68—70]). An alternative
possibility is that newborns developed such predictive skills through exposure to musical input during gestation [71]. This
hypothesis, however, appears not to be supported by our supplementary analysis, demonstrating that estimating surprise
values using a model pre-trained on a large musical corpus, reflecting prior exposure, produced results similar to those
obtained from a model without pre-training (S4 Fig). Thus, fast statistical learning throughout the stimulus set provides a
more parsimonious explanation. This is generally consistent with the existence of an inborn automatic statistical learning
mechanism for sequence processing [72], and in line with recent EEG evidence of the neonates’ ability to rapidly learn
transition probabilities across different attributes of complex sounds, such as speech [73,74]. While we could not manip-
ulate prenatal musical exposure, future research should systematically manipulate it under the hypothesis that greater
musical exposure would lead to stronger neural encoding of musical expectations.

Turning to the functional significance of such precocious rhythmic abilities, we speculate that it might be key in the early
development of cognition, not only as a precursor to higher-order statistical learning but also as a mechanism for orienting
attention and organizing behavior in time [75]. In support of this idea, newborns can partially adapt spontaneous rhythmi-
cal behaviors, such as sucking, to external stimuli [76]; rhythmical rocking interventions on preterm infants improve orient-
ing responses [77]; and vestibular rhythmical stimulation on preterm infants increases their adaptive breathing response,
vital for organizing structured behaviors, such as feeding, early vocalizations, and interactions [78].

As opposed to rhythm, we found no evidence for neural encoding of local pitch intervals (IPI1) or pitch-based probabilis-
tic expectations (Sp) (note, however, that IPI neural tracking approached significance when compared to zero in the real
condition). Whilst this is at first surprising based on past work [47-50], large variability and hardly detectable responses
to pitch variations were also previously highlighted, suggesting that pitch neural tracking in newborns requires clear-cut
pitch-change manipulations [61]. Such generally weak pitch encoding may stem from the fact that fetal hearing is heavily
low-pass filtered in the womb [79], resulting in substantial attenuation of pitch details during gestation and slower matura-
tion of pitch sensitivity. This is consistent with immature frequency-specific pathways and coarse frequency tuning at birth
[80], as well as immature temporal resolution of different tones (see evidence from 6-month-old infants [81]). This factor,
combined with the greater complexity of our stimuli compared with previous work, might explain the limited melodic tracking
we observed. Indeed, our musical stimuli (across real and shuffled melodies) were characterized by sequences of multiple
pitches (N=38, mean height=73.04 £6.32; range: 55-93, in MIDI notation), IPIs (N=29, mean interval size=4.66+.4.12;
range: 0-28), and I0Is (N=30, mean interval size=.19+.13; range: .03-2.6) presented at varying tempi and rhythms. While
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these features better approximate everyday music listening, they indeed also pose a greater computational challenge for
the neonate’s brain compared to traditional oddball paradigms using constant 10l and large infrequent pitch deviants. In
sum, newborns’ sensitivity to pitch appears far from sufficient for appreciating musical pitch regularities, which likely emerge
through maturation and enculturation. According to this view, reports of musical memory from the womb to birth [82] are
likely to rely primarily on timing rather than pitch information, a hypothesis that deserves further testing.

The dissociation observed between rhythmic and melodic statistical tracking might stem from their independent yet
complementary neural implementations—respectively relying on temporal and content-based signaling along the audi-
tory hierarchy [83—85]. This separation grants flexibility, allowing the brain to weight predictive signals by their reliability
to optimize sequence perception [6]. Our findings suggest that the weighting of these two predictive processes is shaped
by developmental refinement, with rudimentary pitch encoding at birth, eventually becoming as robust as temporal
encoding later on. It is also possible that these two processes are differentially vulnerable to vigilance states. According
to this hypothesis, during sleep, timing is favored over pitch because it is more salient and potentially linked to survival-
relevant cues [75]. This would align with EEG studies on adults, suggesting that in-sleep perception and learning might be
restricted to simple salient information [86] (see examples in music [87] and speech [88]). Future research should investi-
gate whether melodic processing is modulated by sleep in newborns and whether it is similarly underweighted in sleeping
adults. This would clarify whether this effect is truly lacking in newborns or is a consequence of how pitch-related informa-
tion is processed during sleep.

From a phylogenetic perspective, the prominent perceptual role of rhythm observed in early phases of human ontogeny
might piggyback on a more ancestral phylogenetically conserved sensitivity to rhythm (rather than melody) within the pri-
mate lineage. The ERP analysis showed greater amplitude of P1-P2 responses to temporally unexpected than expected
notes but no modulation in the pitch dimension (Fig 3A). Given their similar broad frontal topography, these two peaks
may reflect a single positivity with a similar underlying generator (as also discussed in [58,89]). They might also represent
precursors to the adults’ P1 and P2 components [90] (Fig 3B), possibly involving frontotemporal areas for sensory predic-
tive processing and memory-based sequential integration [91-93]. Interestingly, the P1-P2 responses of both monkeys
and human adults listening to the same stimuli presented to the newborns were also modulated by temporal surprise [19]
(see the re-analyses in Fig 3B and 3C). Thus, the similarity in cortical responses to temporal but not pitch surprise across
groups suggests rhythm as a primary perceptual cue in auditory sequence tracking. This does not imply that humans and
monkeys generate rhythmic expectations through the same neural mechanism, even if the cortical responses are similarly
modulated by temporally unexpected events. For instance, these responses might reflect the contribution of anticipatory
mechanisms operating over different rhythmic features—ranging from periodicity and local temporal changes to statistical
and hierarchical structures [94, 95]. Supplementary analyses suggest that, in newborns, probabilistic and local temporal
information explain comparable amounts of EEG variance (Figs 2C and S3), whereas in monkeys, local temporal informa-
tion contributes relatively more strongly (Figure S3 in [19]). Comparing distinct rhythmic computational models across phy-
logenetically close groups and as a function of exposure might shed light on the biological basis and evolutionary history
of these different rhythmic capacities.

Regarding melodic expectations, the lack of significant melodic tracking observed in both human newborns and musi-
cally naive monkeys (as opposed to human adults, Fig 3) leaves open the hypothesis that melodic sensitivity may not
have emerged only in humans within the primate lineage but might potentially develop in other nonhuman primates given
sufficient musical exposure. Testing this hypothesis across species could shed light on the role of experience in shaping
the relative weighting of pitch- and timing-based expectations in auditory processing.

Conclusions

Overall, this study provides neurophysiological evidence that tracking rhythmic statistical regularities is a capacity pres-
ent at birth, whilst melodic tracking might not be, at least with respect to naturalistic musical stimuli, such as the ones
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we used here. Future investigations should assess whether the observed dominance of rhythm over melody reflects
state-dependent factors such as sleep or instead marks an early developmental bias that gradually shifts with experience
toward the balanced sensitivity observed in adulthood.

Methods
Ethics statement

Written formal consent was obtained from the parent/guardian, and the infant’s mother could opt to be present during the
recording. The study fully complied with the World Medical Association Helsinki Declaration and all applicable national
laws. Approval was granted by the Hungarian Medical Research Council, Committee of Scientific and Research Ethics
(ETT TUKEB), ethics approval: 1V/2199-4/2020/EKU.

Participants

Sixty-four healthy full-term newborn infants (0—2 days of age, 30 male, and APGAR score 9/10) were tested at the
Department of Obstetrics-Genecology, Szent Imre Hospital, Budapest. EEG data from 6 infants were corrupted, and 9
other infants did not complete the experiment. As a result, these data were not analyzed, leaving a total sample size of
49. The analyzed infants had a mean gestational age of 40 weeks (SD=7.1 days) and a mean birthweight of 3468.1g
(SD=398.29). All newborns had normal hearing and passed the Brainstem Evoked Response Audiometry (BERA) test.

Stimuli

The stimuli consisted of 14 monophonic piano melodies used in [19] (details in S1 Table): 10 melodies (real music)
composed by Johann Sebastian Bach (previously also used in [51]) and 4 control melodies (shuffled music) created

by disrupting the pitch order and timing regularities of four of the original melodies (see below). The length of the mel-
odies varied (average duration=158.07 s+24.06), and the tempo ranged from 47 to 140 bpm (average tempo=106.5
bpm34.7). The four shuffled melodies were derived from four of the real melodies, specifically selected to represent
those with the highest (melodies 05 and 08) and lowest (melodies 01 and 10) temporal-onset mean surprise. This selec-
tion was motivated by evidence suggesting that music with higher timing surprise elicits stronger brain responses in
humans, aiming to balance these effects across both real and shuffled music. The shuffled melodies were matched to the
real melodies in terms of pitch content, average note duration, and IOls, but their structure was disrupted in two key musi-
cal dimensions. Pitch regularities were altered by reordering the temporal sequence of the original notes. Rhythmic pat-
terns were disrupted by creating a new set of 10ls drawn from a Gaussian distribution centered around the original mean
[OI, with an added variation based on the difference between the mean and the minimum IOIl. These randomly generated
IOIs were then adjusted in MuseScore software (version 3.3.4.24412, https://musescore.org) to align with 16th-note quan-
tization, preserving integer ratios. In MuseScore, the MIDI velocity (which correlates to note loudness) was standardized
to a constant value of 100, and piano sound waveforms were synthesized with a 44,100 Hz sampling rate. Each melody
was preceded and followed by a beep (800 Hz pure tone, linearly ramped with a 5ms fade-in and fade-out) and a 5-s
silence, following the structure: beep-silence-music-silence-beep. The resulting audio files were converted to mono and
amplitude-normalized by dividing by the standard deviation using Matlab (R2019, The MathWorks, Natick, MA, USA).

Information dynamics of music model

Stimuli were analyzed using the IDyOM model (https://www.marcus-pearce.com/idyom/), which predicts note-by-note
unexpectedness (surprise) and uncertainty (entropy). IDyOM is a variable-order Markov model that learns statistical
patterns from musical sequences. It generates probability distributions for each new note based on prior context and
outputs surprise (S) and entropy (E) over time. Surprise measures the unexpectedness of an event at time ‘t’ once it has
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occurred. Entropy reflects the uncertainty about the event at ‘t’ before it occurs based on the probability distribution of all
potential notes considering all observations prior to the event at ‘t". The model incorporates both short-term and long-term
contexts, with the short-term model trained on the current sequence and the long-term model on prior musical exposure.
To simulate the statistical knowledge that the newborns would acquire through mere exposure to the stimuli, predictions
were derived from a combination of short and long-term models, with the latter being trained only on the stimuli used in
the experiment, i.e., via resampling (10-fold cross-validation) (in IDyOM terminology: no pretraining, “both+” model config-
uration). IDyOM can account for many aspects of music, but here, we focused on two key dimensions that best describe
piano monophonic melodies: pitch and timing. To this end, time series representing pitch and inter-onset interval ratios
(using separate ‘cpitch’ and ‘ioi-ratio’ IDyOM viewpoints) were analyzed independently by IDyOM to calculate note-by-
note surprise (S) and entropy (E) for both pitch (Sp, Ep) and timing (St, Et). These were then combined to determine the
joint (sum) probability for each note (S, E). To simulate the long-term statistical knowledge of music possibly acquired by
infants in the womb, we run control analyses by using S and E estimates derived by an IDyOM model pre-trained on a
large corpus of music (comprising 152 Canadian folk songs, 566 German folk songs from the Essen folk song collection,
and 185 J. S. Bach chorale melodies (as in previous applications [19,51,96]).

Procedure

As a common procedure in EEG studies in newborns, infants were asleep during the EEG recording and stimulus presen-
tation. Stimuli were presented using a Maya 22 USB external soundcard and ER-2 Insert Earphones (Etymotic Research,
Elk Grove Village, IL, USA) placed into the infants’ ears via ER-2 Foam Infant Ear-tips. The melodies were presented at a
comfortable intensity (about 70 dB SPL). Two sets of the 14 melodies were presented in a randomized order within each
set, ensuring that each infant listened to each melody at least once, with some melodies being heard twice. None of the
infants heard the full set of 14 melodies twice (range 14-25), and on average, they had 1.18 (SD=1.4) repetitions. The
presentation was implemented in Matlab (R2014, The MathWorks, Natick, MA, USA) and Psychtoolbox (version 3.0.14).
EEG was recorded throughout the stimulus presentation. The inter-stimulus interval between melodies (ISI, offset to
onset) was 900-1,300 ms (random with even distribution, 1 ms step). The experiment took 45 min overall, including both
preparation and stimulation.

Data recording and preprocessing

An ActiChamp Plus amplifier with a 64-channel sponge-based electrode system (saltwater sponges and passive Ag/AgCl
electrodes, R-Net) and a Brain-Vision Recorder were employed to record EEG (Brain Products GmbH, Gilching, Ger-
many). The sampling rate was 500 Hz with a 100 Hz online low-pass filter applied. Electrodes were placed according to
the International 10/10 system. The Cz channel served as the reference electrode while the ground electrode was placed
on the midline of the forehead. During the recording, impedances were kept below 50 kQ.

Data were preprocessed and analyzed in MATLAB R2019. For the analysis, we applied a fully data-driven pipeline
for preprocessing EEG data, combining open-access denoising algorithms, similar to previous studies dealing with noisy
EEG recordings [19,59]. The analysis used Fieldtrip [97] and EEGLAB toolboxes (http://sccn.ucsd.edu/). The continuous
EEG data were bandpass filtered between 1 and 30 Hz (Butterworth filter, zero-phase, order 3), down-sampled to 100 Hz,
and segmented into epochs from the onset to the offset of each melody, separately. Before re-referencing the data to the
average of a set of electrodes (‘F9’, ‘F10’, ‘P9’, ‘P10’, and ‘1Z’), faulty or noisy electrodes were temporarily discarded to
prevent noise contamination across electrodes. Specifically, for each electrode, the mean, standard deviation, and peak-
to-peak values were calculated across time within each trial. If any of these values deviated by more than 2.75 standard
deviations from the mean of other electrodes, the electrode was flagged as noisy/faulty. This process was repeated until
a distribution without outliers was obtained. The data were then further denoised in EEGLAB using the Artefact Subspace
Reconstruction (ASR) algorithm [98] (threshold value 5 previously validated for both adult human and monkey EEG data
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[19]). Eye-movement artifacts were corrected using the ICLabel algorithm in EEGLAB. After performing independent com-
ponent analysis (ICA) with EEGLAB’s ‘runica’ function, independent components labeled by ICLabel as ‘eye movements’
(with > 90% likelihood) were rejected. Subsequently, electrodes that were initially excluded (due to being faulty or noisy)
were interpolated by replacing their voltage with the average voltage of the (preprocessed) neighboring electrodes (18 mm
distance, including 8 electrodes on average). If, following the above preprocessing, noisy electrodes were still automati-
cally identified, the interpolation step was repeated (the number of such iterations varied between 1 and 2).

TRF analysis

We employed Temporal Response Functions (TRF) to model EEG responses to the continuous acoustic and musical
features of the presented stimuli using the mTRF MATLAB toolbox [53]. Each stimulus feature (as listed below) was
normalized across time for each melody, ensuring that the root mean square of each feature was 1. A forward model was
run to predict the ongoing EEG response from the stimulus features, with a time lag window of =50 to +400 ms to capture
EEG fluctuations related to changes in the stimulus. This time window was sufficiently large to encapsulate well-known
ERP-like modulations of EEG signals that are known to drive the variance modeled by TRF. Ridge regression was used to
prevent overfitting (lambda range: 10~ to 108). TRFs were fitted to all melodies (pooled real and shuffled melodies) using
leave-one-melody-out cross-validation, and the EEG time course of the left-out melody was predicted. Note that the cor-
relation values are typically calculated between EEG signals and their predictions by considering single-participant EEG
signals, which might carry much noise (especially if recorded from newborns). As such, EEG prediction correlations are
variable between participants largely due to the variable SNR of the EEG signal across participants (as every prediction is
correlated with a different EEG signal). To overcome this issue, we averaged all participants’ EEG timeseries data to form
a single EEG ‘super-subject’ data timeseries, which we refer to as ‘ground-truth EEG’. Then, per each participant, melody,
and electrode, prediction accuracy was quantified by calculating Pearson’s correlation between the predicted and ground-
truth EEG data.

We tested the contribution of high-level probabilistic musical expectations to the predicted EEG in addition to that of the
low-level acoustic features in both the timing and pitch dimensions. Feature selection was based on the approach used in
[19]. We additionally tested for the contribution of local changes in timing and pitch, such as IOl and IPI (measured in ms
and absolute number of semitones, respectively), as these features are to some extent correlated with surprise values in
naturalistic music (e.g., relatively larger temporal or pitch deviations tend to be relatively more unexpected, particularly in
structured compositions like Bach’s) [99].

Thus, we run a full model including low-level acoustic features (acoustic onset, spectral flux, as well as IOl and IPI) and
high-level probabilistic musical features with impulses at the note onsets but whose amplitudes are set to the pitch and
onset surprise and entropy values from IDyOM (surprise pitch, surprise timing and entropy pitch, entropy timing—Sp, St
and Ep, Et). A control analysis, adding envelope and its half-rectified derivative as part of low-level acoustic regressors,
yielded a pattern of results similar to the main analysis (see S5 Fig).

Although, as shown in Fig 1C, the correlations across regressors in our stimuli are small (<0.3) to moderate (<0.5), we
used a variance partitioning approach that accounts for shared variance across regressors, allowing us to estimate their
unique contributions to neural responses. We acknowledge, however, that a more direct way to assess the unique contri-
bution of individual features is through causal manipulation, as demonstrated by the “model-matched” stimulus approach
[100]. Thus, to assess the unique neural encoding of a single or a set of stimulus features, we subtracted the prediction
accuracy of several reduced models from the full model (containing all features). We then analyzed the Ar values obtained
for each reduced model. Note that we used the term ‘reduced’ to indicate a model in which a given predictor (or a set of
predictors) is temporally shuffled to estimate its unique contribution to the full model. The reduced models had the same
dimensionality as the full model, but the feature/s of interest was/were randomized in time whilst preserving the onset
times. We tested five reduced models: 1) A probabilistic music model where the high-level features (St and Et and Sp
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and Ep) were randomized to assess the overall effect of adding surprise and entropy estimates to low-level features to

the neural tracking; 2) A probabilistic timing model with randomized St and Et; 3) A probabilistic pitch model with random-
ized Sp and Ep; 4) A local timing model with randomized IOl; and 5) A local pitch model with randomized IPIl. To compare
across the different models, for each participant, condition, and TRF model, Ar values were averaged across 25% of
channels with the highest prediction accuracy in the full model and across the real and the shuffled conditions. These
values were then entered into linear mixed-effects regressions. Note that ROls were defined as the top 25% of electrodes
showing the highest correlation values in the full model, averaged across conditions, ensuring independence from both
condition (real versus shuffled) and regressor type (surprise pitch versus surprise timing). Using alternative thresholds (top
10% or 50%) yielded the same pattern of results, confirming that findings were robust to ROI definition.

Statistical analysis

Statistical analyses were run in R (version 4.1.3, 2022-03-10) and included nonparametric tests or linear mixed-effects
models (Ime4 package). All models included Random Effects of Infants and Melodies (IDs 1-14). The Fixed effects
included Condition (real/shuffled) and TRF model (depending on the comparison; see Results). Statistical significance
was evaluated by likelihood-ratio tests (x?) conducted using the ‘anova’ function (stats package). Follow-up contrasts were
conducted using the ‘emmeans’ package and the Tukey method to account for the increased risk of type | error resulting
from multiple comparisons. Adjusted p-values were calculated to determine significant differences between conditions.
A significance level of a=0.05 was used. All linear mixed-effects models (LMMs) report fixed-effect estimates (b) along
with their standard errors (SE) and t-values, with degrees of freedom estimated via Satterthwaite approximation when
applicable.

When a direct test of differences was needed, the nonparametric Wilcoxon signed-rank test was used. For these,
results are reported as W-values, indicating the sum of ranks of signed differences.

ERP analysis

Event-related potential (ERP) analyses were performed by segmenting the EEG data into 600 ms epochs, beginning

100 ms before the onset of each note and ending 500 ms after the onset. Epochs were baseline corrected using a 50 ms
window before the note onsets, and trials that deviated from the mean by more than 2.5 the average standard deviation
were rejected (3.45+1.12% of the trials per subject). To assess ERP modulation based on note surprise, we selected

the notes with the highest and lowest 20% surprise (high S and low S) values, separately for each melody, as assessed
by the IDyOM. For each subject, epochs were trimmed to a window of =50 +400 ms relative to note onset and averaged
by high/low S condition, separately for real and shuffled melodies. Cluster-based permutation testing [101] was used to
account for multiple comparisons across adjacent time points and electrodes. Clusters of adjacent timepoints and neigh-
boring electrodes (at least three) associated with significant (p-values <0.025) differences across conditions were formed.
A cluster-level threshold of p<0.05 was applied to the t-statistic, and the Monte Carlo method (1,000 iterations) was used
to estimate the null distribution of this statistic. To assist comparability with the previous work, we re-analyzed the EEG
data recorded from human [51] and monkey [19] adults following the same pipeline described here (both datasets are
open source). Note that for the monkey data, as in the original work, clusters were identified separately for each animal
(across 22 sessions) and considered significant only when exhibited by both animals (conjunction analysis).

Supporting information

S1 Fig. Summary statistics (mean and variance of the amplitude envelope across frequency bands) of stimuli.
To extract the envelope associated with each frequency band, we bandpass-filtered the musical stimuli into 128 logarith-
mically spaced frequency bands ranging from 100 to 8,000 Hz using a gammatone filter bank. We then computed the
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amplitude envelope of each band as the absolute value of the Hilbert-transformed signal over time. The envelope mean
(left) and variance (right) are shown as a function of frequency band. Thin lines represent individual melodies (real and
shuffled), while thick lines indicate the average across melodies for Real (solid line) and shuffled (dotted line) conditions.
Note that the real and shuffled conditions show comparable envelope means and variances. See S5 Data.

(TIF)

S2 Fig. Difference in prediction accuracy (Ar) between real and shuffled conditions across participants and elec-
trodes for each reduced model. The 2D matrices display electrodes on the Y-axis and participants on the X-axis, with
colors coding the difference in Ar values (full—reduced model) between real and shuffled conditions. Note that positive
values (red color coded) indicate a greater contribution of the real compared to the shuffled condition. Near-zero values
(white color coded) indicate similar contributions across conditions. (A) Unique contribution of high-level musical features.
Between condition difference in Ar (full—reduced model assessing the unique contribution of high-level musical fea-
tures—St, Et, Sp, and Ep). To facilitate visualization, we display the labels of 16 representative electrodes (out of 63) on
the y-axis, along with their corresponding position on the EEG cap (bottom). (B) Unique contribution of timing and pitch-
related features. Between condition difference in Ar (full and reduced models separately assessing the unique contribution
of St and Et, Sp and Ep, IOIl, and IPI). See S6 Data.

(TIF)

S3 Fig. (A) Length of preceding and subsequent IOIs as a function of rhythmic surprise and condition. Notes
carrying high surprise are often preceded by relatively larger 10Is. A linear mixed model predicting the preceding 10I, with
factors condition (real/shuffled) and surprise level (high/low), yielded no main effect of condition (x*(1) = 1.12, p=0.29), but
a significant main effect of surprise level (x2(1) = 16.89, p<.001), and an interaction of condition and surprise level (x2(1)
=18.12, p<.001). This indicates that larger IOls generally anticipate notes carrying high surprise, more so in real than in
shuffled music (left panel). Conversely, the same analysis predicting the subsequent (rather than preceding) IOI, yielded a
nearly significant effect of surprise level (x*(1) = 3.52, p=0.06) but no main effect of condition (x*(1) = 0.008, p=0.90) and
no interaction (x3(1) = 0.70, p=0.40). This indicates that notes carrying high surprise tend to be followed by larger I1Ols,
but comparably across real and shuffled music (right panel). See S7 Data. (B) Unique contribution of St and Et is indepen-
dent of preceding or subsequent I10I. To distinguish neural tracking of rhythm from spurious modulations of event-related
potentials (ERPs) attributable to overlapping (i.e., temporally proximal) neural responses, we re-run the main analysis,
adding the length of the subsequent 10l as a regressor in the mTRF. We thus run a full model with the following regres-
sors: onset, spectral flux, inter-pitch interval, preceding I0I, subsequent IOI, Sp, Ep, St, and Et. We then computed three
reduced models, each randomizing one of the following regressors: 1) St and Et, 2) preceding I0Il, and 3) subsequent

IOI. The results of this control analysis confirm a unique contribution of St and Et features to the neural response beyond
the contribution of subsequent and preceding IOI. The plot shows the topographical maps representing group-average Ar
resulting from the difference between the full and the three reduced models across real and shuffled conditions.

(TIF)

S$4 Fig. Control analyses. No effects of IDyOM statistical knowledge on EEG prediction accuracy. We compared the
effect of deriving surprise estimates by training IDyOM on either the experimental stimuli alone (left panel) or on the exper-
imental stimuli, as well as an additional corpus of Western tonal music (right panel). For each panel, we plot the difference
in EEG prediction accuracy (Ar) between the full and the reduced models (randomizing St, Et, Sp, and Ep). Dots represent
the grand-average mean Ar computed across all channels and melodies (left top panel, with associated topographical
maps) for real (red) and shuffled (gray) music. Error bars represent bootstrapped 95% CIl. The absence of differences in
predicting neural responses between pre-trained and nonpre-trained model configurations suggests that incorporating
pretraining to estimate surprise and entropy values does not enhance the prediction of EEG data. This may be due to

the high correlation between the estimates derived from the two IDyOM configurations, leading to similar EEG predictive
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power. Additionally, it may indicate that Bach’s music contains sufficient rules and statistical regularities, allowing the
model to learn these directly from the stimulus set, rendering pretraining on the large music corpus redundant to predict
brain signals. See S8 Data.

(TIF)

S5 Fig. Control analysis. Replication of the results reported in Fig 2C, here adding envelope and its half-wave rectified
derivative as predictors in the full model. We repeated the analysis using an enriched acoustic model, thus adding enve-
lope and its half-wave rectified derivative to the already used acoustic regressors (onsets, spectral flux, ITI, and IOI). This
additional analysis confirms the robustness of our results: the main findings remain overall unchanged, indicating a unique
contribution of the high-level music regressors in the real but not the shuffled music condition, specifically driven by the St
and Et regressors. See S9 Data.

(TIF)

S1 Table. Characteristics of the experimental stimuli.
(DOCX)

S1 Data. Excel file containing the numerical data values for Fig 1B and 1C. Sheet1: average surprise and entropy
values of each note, computed separately for pitch and timing, within each melody. Sheet2: values used for Pearson’s
correlation between the stimulus features of all melodies: inter-pitch-interval (IPl), inter-onset-interval (10l), and surprise
and entropy associated with timing (S t and E t) and pitch (Sp and Ep).

(XLSX)

S2 Data. Excel file containing the numerical data values for Fig 2B, 2C, and 2D. Sheet1: EEG prediction accuracy (r
values) for each infant and melody of the full model, as well as the difference between the full and the reduced model (Ar
values), assessing the unique contribution of high-level musical features (St, Et, Sp, and Ep). Sheet 2: EEG prediction accu-
racy (r values) for each infant and melody of the full model, as well as the difference between the full and the reduced model
(Ar values), assessing the unique contribution of timing (St and Et) and pitch-related (Sp and Ep) high-level features. Sheet
3: EEG prediction accuracy (r values) for each infant and melody of the full model, as well as the difference between the full
and the reduced model (Ar values), assessing the unique contribution of timing (IOI) and pitch-related (IPl) low-level features.
(XLSX)

S3 Data. MATLARB file containing the numerical values underlying Fig 3A, representing ERPs evoked by notes
with relatively high versus low pitch surprise (Sp) for real and shuffled music, time-locked to note onset. The data
are stored as a 4D matrix with dimensions subject x condition x channel x time, where conditions 1—4 correspond to Low Sp
(real), High Sp (real), Low Sp (shuffled), and High Sp (shuffled). Data can be opened using nonproprietary software such
as R or Python.

(MAT)

S4 Data. MATLAB file containing the numerical values underlying Fig 3A, representing ERPs evoked by notes
with relatively high versus low timing surprise (St) for real and shuffled music, time-locked to note onset. The
data are stored as a 4D matrix with dimensions subject x condition x channel x time, where conditions 1—4 correspond to
Low St (real), High St (real), Low St (shuffled), and High St (shuffled). Data can be opened using nonproprietary software
such as R or Python.

(MAT)

S5 Data. Excel file containing the summary statistics (mean and variance of the amplitude envelope across fre-
quency bands) of stimuli shown in S1 Fig.
(XLSX)
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S6 Data. Excel file containing the numerical values underlying S2 Fig. The Ar values (full—reduced model) for each
of the 5 plots, corresponding to 5 different reduced models, are stored in 5 different spreadsheets containing values for
each subject x condition (real/shuffled) x electrode.

(XLSX)

S7 Data. Excel file containing the numerical data values for S3A Fig. Surprise associated with timing, length of pre-
ceding IOI, as well as length of the subsequent IOls for each note of all melodies).
(XLSX)

S8 Data. Excel file containing the numerical data values for S4 Fig. Difference of EEG prediction accuracy for each
infant between the full and the reduced model (Ar values), assessing the unique contribution of high-level musical features
(St, Et, Sp, and Ep) obtained from an enculturated IDyOM model trained on an extra music corpus.

(XLSX)

S9 Data. Excel file containing the numerical data values for S5 Fig, with the full model additionally containing
envelope and its derivative. Sheet1: EEG prediction accuracy (r values) for each infant and melody of the full model, as
well as the difference between the full and the reduced model (Ar values), assessing the unique contribution of high-level
musical features (St, Et, Sp, and Ep). Sheet 2: EEG prediction accuracy (r values) for each infant and melody of the full
model, as well as the difference between the full and the reduced model (Ar values), assessing the unique contribution of
timing (St and Et) and pitch-related (Sp and Ep) high-level features. Sheet 3: EEG prediction accuracy (r values) for each
infant and melody of the full model, as well as the difference between the full and the reduced model (Ar values), assess-
ing the unique contribution of timing (IOI) and pitch-related (IPI) low-level features.

(XLSX)
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