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Abstract

Cochlear hair cells are essential for hearing, and their stereocilia bundles are critical

for mechanotransduction. However, analyzing the 3D morphology of these bundles

can be challenging due to their complex organization and the presence of other cel-

lular structures in the tissue. To address this, we developed VASCilia (Vision Anal-

ysis StereoCilia), a Napari plugin suite that automates the analysis of 3D confo-

cal microscopy datasets of phalloidin-stained cochlear hair cell bundles. VASCilia

includes five deep learning-based models trained on mouse cochlear datasets that

streamline the analysis process, including: (1) Z-Focus Tracker (ZFT) for selecting

relevant slices in a 3D image stack; (2) PCPAlignNet (Planar Cell Polarity Alignment

Network) for automated orientation of image stacks; (3) a segmentation model for

identifying and delineating stereocilia bundles; (4) a tonotopic Position Prediction tool;

and (5) a classification tool for identifying hair cell subtypes. In addition, VASCilia

provides automated computational tools and measurement capabilities. Using VAS-

Cilia, we demonstrate its utility on challenging datasets, including neonatal wild type

and Eps8 KO 5-day old mice. We further showcase its power by quantifying complex

bundle disorganization in Cdh23−/− cochleae via texture analysis, which revealed

systematically more heterogeneous and less regular bundles than littermate con-

trols. These case studies demonstrate the power of VASCilia in facilitating detailed

quantitative analysis of stereocilia. VASCilia also provides a user-friendly interface

that allows researchers to easily navigate and use the tool, with the added capability

to reload all their analyses for review or sharing purposes. We believe that VASCilia

will be a valuable resource for researchers studying cochlear hair cell development
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and function, addressing a longstanding need in the hair cell research community

for specialized deep learning-based tools capable of high-throughput image quan-

titation. We have released our code along with a manually annotated dataset that

includes approximately 55 3D stacks featuring instance segmentation (https://github.

com/ucsdmanorlab/Napari-VASCilia). This dataset comprises a total of 502 inner and

1,703 outer hair cell bundles annotated in 3D. As the first open-source dataset of its

kind, we aim to establish a foundational resource for constructing a comprehensive

atlas of cochlea hair cell images. Ultimately, this initiative will support the develop-

ment of foundational models adaptable to various species, markers, and imaging

scales to accelerate advances within the hearing research community.

1 Introduction

The last decade has seen a phenomenal advancement in Artificial Intelligence (AI),
giving birth to countless architectures, backbones, and optimization techniques
that are being continually refined [1,2]. Despite the potential to revolutionize com-
puter vision tasks, many researchers in biological sciences still use computationally
primitive and labor-intensive approaches to analyze their imaging and microscopy
datasets. One major area where AI-based computer vision tasks could have maxi-
mal impact is in pre-clinical auditory research. In our lab, cutting-edge imaging tools
and approaches are developed and utilized to gain insights into the structure-function
relationship of subcellular structures in sensory hair cells with molecular resolution.
These rich imaging datasets present an opportunity to understand how sensory hair
cells function in health and disease, including cases of congenital and age-related
hearing loss [3–9]. The structural attributes of the cochlea are quite uniform across
species. For example, the famously snail-shaped cochlea is governed by a so-called
“tonotopic” organization with a gradient of morphological features that change from
one end of the cochlea to the other. The result of this organization is that each posi-
tion along the length of the cochlea dictates the characteristic frequency of sound
to which the tissue responds, therefore directly correlating position with function.
In other words, the sensory hair cell organelles called “stereocilia” or “bundles” fol-
low a pattern of increasing lengths as a function of position along the length of the
cochlea [10,11]. The cartoon in Fig 1 illustrates how the length of hair cells corre-
sponds to specific frequencies, when the cochlea is unrolled for illustrative pur-
poses. Hair cells are organized tonotopically. Hair cells at the base of the cochlea
respond best to high-frequency sounds, while those at the apex respond best to low-
frequency sounds. The physical and functional properties of these structures vary
systematically along the tonotopic axis of the auditory system. For example, hair bun-
dles might be longer or shorter, or synapses might be more or fewer or have differ-
ent properties, depending on whether they are associated with high-frequency or
low-frequency regions [12,13]. The association between these attributes and their
purpose makes the cochlea an ideal system for investigating the potential of AI in
biological image analysis.
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Napari, an open-source Python tool [14], as the founda-
tion for developing our plugin, chosen for its robust viewer capabilities. The Napari
platform has seen a growing number of plugins [15–28] designed to address vari-
ous biomedical challenges. However, our plugin represents the first such tool tailored
specifically for the ear research community, enabling high-precision AI-based 3D
instance segmentation and measurement quantification of stereocilia cells.

Previous studies have explored manual segmentation of stereocilia images
to quantify measurements for specific research objectives [9,29]. Others have
attempted to automate this process using traditional intensity-based methods [30].
However, these traditional approaches typically lack the capabilities provided by AI
technologies, which can autonomously extract features and identify regions with-
out relying exclusively on intensity cues. This gap underscores the critical need for
advanced AI-driven segmentation techniques that utilize a broader array of features,
thereby enhancing both the accuracy and the detail of the segmentation. We identi-
fied a few machine learning and deep learning publications. Urata et al. [31] relies on
template matching and Machine learning-based pattern recognition to achieve detec-
tion and analysis of hair cell positions across the entire longitudinal axis of the organ
of Corti. Buswinka et al. [32] develops a software tool that utilizes AI capabilities;
however, this tool is limited to providing bounding box detection and does not offer
3D instance segmentation for the bundles. This significantly hampers the tool’s abil-
ity to provide shape-level descriptors and accurate measurements. Cortada et al. [33]
use stardist deep learning architecture [34] to segment the hair cells, however, they
don’t provide 3D instance segmentation, they only provide 2D detection based on
max projection.

VASCilia (Fig 18) provides a comprehensive workflow assisted by AI for auto-
mated 3D hair cell image analysis: 1. Read and pre-processes 3D image z-stacks. 2.
Removes out-of-focus frames (AI-assisted). 3. Aligns stacks to the planar cell polarity
(PCP) axis (AI-assisted). 4. Generates instance-labeled 3D segmentation masks for
downstream analysis (AI-assisted). 5. Computes 2D/3D measurements (e.g., volume,
centroid, surface area) and additional derived metrics. 6. Measures tip-to-base height
for each hair-cell bundle. 7. Classifies bundles into four rows (IHC, OHC1, OHC2,
OHC3) (AI-assisted). 8. Quantifies protein intensity to assess expression levels. 9.
Estimates bundle orientation relative to the PCP axis. 10. Identifies the cochlear
region of origin (base, middle, apex) using a pre-trained model (AI-assisted). 11. Sup-
ports model fine-tuning on user data to accommodate staining protocols and exper-
imental conditions (AI-assisted). 12. Enables full export/import of the analysis state
(data and intermediates) via a single pickle file for reproducibility.

To demonstrate the robustness and practical utility of VASCilia, we specifically
apply it to challenging preclinical datasets. These include neonatal (P5) mice, whose
shorter stereocilia are historically difficult to analyze, and feature a range of pheno-
types from wild type (WT) to knockout (Eps8 KO) and AAV-rescued genotypes. Fur-
thermore, we showcase VASCilia’s ability to move beyond simple measurements by
quantifying complex bundle disorganization in a genetic model of deafness (Cdh23
mutants), proving its capability to analyze intermediate and abnormal phenotypes
that are otherwise intractable to quantify at scale. We anticipate that our AI-enhanced
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Fig 1. The anatomy of the cochlea [35]. Sensory hair cell stereocilia sit along a tonotopic axis that follows the length of the spiral-shaped cochlea with
a striking pattern of increasing stereocilia lengths from the base to the apex of the cochlea. The morphological and spatial features of cochlear hair cell
stereocilia follow extremely predictable tonotopic patterns between individuals and species: Stereocilia lengths increase as a function of position along
the tonotopic axis of the cochlea, which in turn is reflective of the frequency of sound they are tuned to detect. Thus, the relationship between the mor-
phological and spatial features of these cells and their function are relatively well-defined compared to many other biological systems. Due to their highly
patterned organization, cochlear tissues thus present a particularly striking opportunity for automated computer vision tasks.

https://doi.org/10.1371/journal.pbio.3003591.g001

plugin will streamline the laborious process of manual quantification of hair cell bundles in 3D image stacks, offering high-
throughput and reproducible analysis with clear biological interpretation.

2 Results
2.1 Z-Focus tracker for 3D images of cochlear hair cells

In this section, we present the performance and evaluation of our custom network, ZFT-Net, along with comparisons to
other commonly used architectures such as ResNet10, ResNet18, DenseNet121, and EfficientNet. Our goal was to clas-
sify image frames within each 3D z-stack into three zones: the pre-cellular zone (PCZ), the cellular clarity zone (CCZ) and
the noise saturation zone (NSZ) to focus segmentation and analysis on the portion of the z-stack that contains clear cellu-
lar structures. The results shown in Table 1 and Fig 2 highlight the performance of the networks in metrics such as accu-
racy, precision, recall, specificity, F1 score and error rate, and prediction stability. We found ZFT-Net produced the best
results. All metrics were averaged across all three classes and calculated using true positives (TP), false positives (FP),
false negatives (FN), and true negatives (TN) derived from the confusion matrix.

One notable feature of ZFT-Net is that it does not produce prediction fluctuation errors, which we named “switches”.
This consistency in its predictions offers a high degree of confidence, making ZFT-Net our primary choice for VASCilia.
As described in Sect 4.3, the preparation of the data and the configuration of CNN played a crucial role in achieving these
results. We speculate that ZFT-Net outperforms the other well-known networks because our images are downsampled
to 256x256 resolution. Deeper networks tend to lose spatial characteristics in the process, which negatively impacts their
performance. The architecture of ZFT-Net, on the other hand, is better suited to preserve these critical spatial features,
resulting in better performance across all metrics.

Accuracy = TP+TN

TP+TN+FP+FN
Precision = TP

TP+FP
Recall = TP

TP+FN
Specificity = TN

TN+FP

F1-Score = 2 × Precision× Recall

Precision+Recall
Error Rate = ∑i≠j Confusion Matrixi,j

∑i,j Confusion Matrixi,j
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Table 1. Comparison of architectures based on performance metrics for Z-focus tracker. The results highlight that ZFT-Net outperforms all other
architectures across all evaluation metrics. Notably, ZFT-Net achieved a switch count of 0, meaning its predictions consistently transitioned from class 0
(pre-cellular zone) to class 1 (cellular clarity phase), and finally to class 2 (noise saturation zone), without fluctuations or misclassifications. This indicates
the model’s robustness in maintaining a stable and accurate prediction sequence. Source data are provided in Supplementary Information S1 Data.xlsx.

Architecture Accuracy Precision Recall Specificity F1 Score Error Rate Confusion Matrix Switches

ZFT-Net 97.66 94.14 96.01 98.48 94.97 0.03 [
237 1 0
6 72 7
0 3 159

] 0

ResNet18 94.36 89.59 87.46 95.81 88.16 0.08 [
236 5 0
6 65 23
1 6 143

] 9

ResNet10 94.77 92.18 88.65 95.89 89.52 0.07 [
231 3 0
12 72 22
0 1 144

] 6

DenseNet121 95.87 92.43 90.67 97.05 91.21 0.06 [
241 5 1
2 69 20
0 2 145

] 3

EfficientNet 95.46 90.01 89.98 96.68 89.99 0.06 [
236 9 0
7 60 10
0 7 156

] 3

https://doi.org/10.1371/journal.pbio.3003591.t001

Fig 2. The confusion matrix for ZFT-Net is presented alongside a corresponding bar plot, illustrating the overlapping predictions for the CCZ
class, represented by the digit 1. Errors are color-coded and oriented to reflect the different cases in the confusion matrix. GT0, GT1, and GT2 cor-
respond to the Pre-Cellular Zone (PCZ), Cellular Clarity Zone (CCZ), and Noise Saturation Zone (NSZ), respectively. At the bottom of the figure, we
provide an example of the first subject’s prediction, visualized through a barplot. It shows a smooth transition in prediction from 0 (PCZ), to 1 (CCZ),
to 2 (NSZ) without any fluctuation errors, except for two minor boundary errors that are likely due to annotator subjectivity. For ZFT-Net, Conv repre-
sents Convolution layers, BN stands for Batch Normalization, ReLU is the Rectified Linear Unit activation function, Pool refers to Pooling layers, and FC
denotes Fully Connected layers.

https://doi.org/10.1371/journal.pbio.3003591.g002

2.2 Rotation correction and alignment of 3D image stacks with PCPAlignNet

The orientation of 3D cochlear image stacks is highly variable due to inconsistencies in imaging parameters, tissue han-
dling, and the complex spiral structure of the cochlea. Automated orientation of cochlear hair cell image stacks can signif-
icantly accelerate batch processing, which is essential for efficiently handling large datasets. To address this challenge,
we generated training data for PCPAlignNet, which aligns each 3D stack to orient the hair cell bundles along the planar
polarity axis.

After data preparation and augmentation Sect 4.4, our training dataset resulted in 72 folders (classes), each containing
1,831 images. We experimented with several networks, and DenseNet121 yielded the best performance; see Table 2.
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Table 2. Performance comparison of different architectures using various error metrics reveals that DenseNet121 has optimal performance
across all the metrics. Source data are provided in Supplementary Information S1 Data.xlsx.

Architecture MAE RMSE Max Error Median Absolute Error R-squared
ResNet50 10.53 41.36 180 0 0.86
ResNet18 10 41.33 180 0 0.86
MobileNet 10 41.33 180 0 0.86
DenseNet121 0 0 0 0 1

https://doi.org/10.1371/journal.pbio.3003591.t002

During inference, we corrected the orientation of the stereocilia bundles by predicting the rotation angle for each image
in the tested stack using the pre-trained model. For each frame, the model produced class scores corresponding to possi-
ble angles of rotation. The predicted scores were averaged across all frames in the stack to ensure that the final decision
accounted for the model’s predictions for every frame. The angle corresponding to the highest average score (class × 5°)
was selected as the final predicted orientation. To achieve proper alignment, the images were rotated by 360∘ minus the
predicted angle.

2.3 A 3D instance segmentation pipeline for stereocilia bundles

Our method utilizes 2D detection on individual frames, which is then followed by reconstructing the 3D object through a
multi-object assignment algorithm. For detailed methodology, refer to Sect 4.6.

We partitioned the dataset into training, testing, and validation groups at the stack level to avoid data leakage and mix-
ing frames from different stacks. The training set includes 30 stacks, while the validation contains 5 stacks. Ten stacks are
withheld for testing and evaluation. These stacks are categorized into two types: typical and complex cases. Six stacks
fall into the typical category, featuring images that are easier to segment due to less overlap among the bundles and well-
separated bundle rows. The remaining four stacks are classified as complex cases. These contain structures that pose
significant challenges for segmentation due to various factors. The objective of this partitioning is to evaluate the decrease
in performance when processing challenging cases and check the robustness of the detection algorithm. Fig 3A–3E illus-
trate the model’s proficiency in accurately detecting the cells and demonstrate the model’s effectiveness in overcoming
the inherent challenges associated with this task. As a representative single-stack example, Fig 4 shows 13 frames from
one stack segmented in 2D; a multi-object assignment algorithm then reconstructs each 3D object. Details are provided in
Sect 4.6.

After completing the training process, we employed the trained model to segment each bundle in the images from the
testing set. To evaluate performance, we calculate the Intersection over Union (IoU) for 3D volumes by comparing pre-
dicted and ground truth segmentation masks. It is defined as IoU = |A∩B|

|A∪B|
, where |A ∩ B| represents the volume of the inter-

section of the two volumes, and |A ∪ B| represents the volume of their union. In addition, we calculate the F1 measure,
accuracy, precision, and recall for the predictions against the ground truth. The evaluation process iterates through unique
labels found in both ground-truth and predicted volumes, excluding the background label, and computes the IoU for the
corresponding labels. This method tracks TP, FP, and FN across varying IoU thresholds. For instance, if one 3D bundle in
the ground truth overlaps with two bundles in the predictions, the algorithm considers the one with the largest overlap as a
TP and the unmatched one as a false positive. We perform evaluations across a range of IoU thresholds, from 0.1 to 1 in
steps of 0.05. In object detection, we do not consider the True Negative (TN) because it refers to correctly labeling back-
ground pixels or non-object pixels as such. Since the background or non-object areas can be vast, focusing on TNs would
skew the performance metric towards the most common class (background), which does not provide useful information
about the model’s ability to detect objects of interest.

Fig 5A indicates that the average F1-measure and accuracy are 99.4% and 98.8%, respectively, at an IoU of 0.5 for typ-
ical test set. In contrast, Fig 5C reveals that at the same IoU level, the average F1-measure and Accuracy decrease to
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Fig 3. Panels A, B, and C show instances where inter-row stereocilia bundles are in close proximity, yet the algorithm successfully separates
them, demonstrating robust performance. Panel D presents a scenario where intra-row bundles are tightly clustered; however, the algorithm effi-
ciently distinguishes each bundle, highlighting its ability to resolve complex spatial relationships within the samples. In Panel E, despite the raw image
being notably dark, the algorithm remains effective in detecting and segmenting individual bundles.

https://doi.org/10.1371/journal.pbio.3003591.g003

95.7% and 91.9% for complex test set. Maintaining the F1 measure and accuracy above 90% demonstrates that the algo-
rithm effectively handles the significant challenges present in the images. We can observe from Fig 5B and 5D that the
total number of TPs remains high until the IoU reaches 0.8 and 0.72, respectively. Beyond these thresholds, there is a
noticeable increase in both FPs and FNs. When you observe that TPs remain high until IoU thresholds of 0.8 and 0.72,
this indicates that the algorithm is quite effective at correctly identifying and matching relevant objects or features in the
dataset up to these points. The increasing errors (FPs and FNs) at higher IoU thresholds indicate that the algorithm strug-
gles with precision and recall balance as criteria become more strict. Fig 6 showcases ten crops of stereocilia bundles: the
first row displays the raw crops, the second and third rows features ground truth manual annotations made by two human
annotators in the open-source Computer Vision Annotation Tool (CVAT [36]), and the fourth row presents our predicted 3D
volumes for each bundle. It is evident that most bundles achieve IoU scores between 0.7 and 0.8, which visually suggest
near-perfect alignment.
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Fig 4. The algorithm successfully detects stereocilia bundles in 2D across successive frames, assigning unique IDs to each detected object
within the 2D plane. The variation in IDs across frames reflects the independent detection process in each 2D frame. Subsequently, a multi-object
assignment algorithm intervenes to reconcile these IDs, effectively re-assigning them to maintain consistency across frames. This step is crucial for
reconstructing accurate 3D objects, ensuring that each bundle retains a consistent ID throughout all frames.

https://doi.org/10.1371/journal.pbio.3003591.g004

The dataset has been annotated by five different human annotators. To put the accuracy of our predictions in a more
meaningful context, we investigated the margin of error between annotators on the same stack. We found that the aver-
age IoU for 47 instances from a single stack between two annotators is 0.70. Strikingly, the model achieved a higher aver-
age IoU of 0.76 with the first annotator and 0.74 with the second annotator. We speculate this is due to the model’s abil-
ity to effectively average the experience of multiple annotators (five annotators in our case). These results also highlight
the difficulty of achieving accuracies beyond a certain amount, as even two human expert annotators only agreed 70%
on pixel-based 3D annotations. In addition, Paired t-tests revealed that the model’s predictions are significantly better
aligned with both Annotator 1 (t = 3.7399, p = 0.0002) and Annotator 2 (t = 7.8134, p = 0.0000) compared to the agree-
ment between the two annotators. No significant difference was found between the model’s alignment with Annotator 1
and Annotator 2 (t = –1.7431, p = 0.0879), indicating that the model generalizes equally well across both sets of annota-
tions (Fig 7A and 7B). We speculate that the model may be averaging the annotators’ varying styles effectively, and that
these results underscore the robustness of the model in producing reliable and consistent predictions, which, in some
cases, surpass the level of agreement between human expert annotators.

2.4 VASCilia computational tools and measurements

The Napari plugin equips users with essential measurements and deep learning-based tools tailored for analyzing
cochlear hair cell stereocilia bundles. Users can accurately obtain up to 15 different 2D and 3D measurements, including
volume, surface area, and centroids of segmented regions. Beyond these fundamental measurements, the plugin includes
specialized metrics critical for hair cell research, such as calculating stereocilia bundle heights, predicting the region of the
cochlea from which the stack is taken (Base, Middle, Apex), classifying hair cells (e.g. inner vs. outer hair cell subtypes),
measuring fluorescence signal within each bundle, and determining bundle orientation with respect to the planar polar-
ity axis of the cochlea. These features are designed to support the most common goals of the hair cell imaging research
community.
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Fig 5. Detailed performance indicators are presented. The metrics are evaluated across two categories: typical cases that do not present extreme
challenges and complex cases affected by factors such as contrast variations, noise, overlapping bundles, and close proximity between them. Source
data are provided in Supplementary Information S1 Data.xlsx.

https://doi.org/10.1371/journal.pbio.3003591.g005

2.4.1 Validation of Stereocilia bundle height measurement. VASCilia significantly reduces the time required for
bundle height measurements. The manual and computational approaches used for these measurements are detailed in
Sect 4.7. The plugin provides users with a CSV file that details the height measurements for each bundle, each tagged
with a corresponding ID. Fig 8 illustrates the computation and Table 3 and Fig 9 present bundle height validation as mea-
sured between VASCilia and two human expert annotators for 18 cells from four different datasets (two WT and two Eps8
KO with AAV injection [37]). We found it takes an average of 5.5 minutes to manually annotate each bundle height using
the most commonly used open-source microscope image analysis tool, Fiji [38] In contrast, VASCilia significantly reduces
this time to just one second to press a button to calculate the height of all the bundles in a single 3D stack (as many as
55), with at most five minutes needed for refining the base and top points of stack bundles if necessary. Thus, measuring
the length for 10 stacks, each containing 50 cells, would take 2,750 minutes (approximately 46 hours) with Fiji, compared
to only 50 minutes with VASCilia. We conducted both paired t-tests and Pearson correlation analyses to evaluate the
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Fig 6. Comparison of raw crops (first row), GT masks for the first human annotator (second row), GT masks for the second human annotator
(third row), and the Predicted masks (fourth row) for 10 different crops from the same stack, the IoU score underneath the crops indicate the
score between the 3D GT masks and the 3D predicted masks.We examined the margin of error between two annotators for a single 3D stack over
47 instances. The average overlap was 0.70 between two annotators, 0.74 between one annotator and the prediction, and 0.76 between the second
annotator and the prediction.

https://doi.org/10.1371/journal.pbio.3003591.g006

Fig 7. Comparison of the IoU distribution (left) and density plot (right) between model predictions and annotators. Source data are provided
in Supplementary Information S1 Data.xlsx. [A] Box plot comparing the IoU alignment of model predictions with Human 1 and Human 2, and the
agreement between Human 1 and Human 2. Statistical tests indicate that the model predictions are significantly better aligned with both Human 1 (p
= 0.0002) and Human 2 (p = 0.0000) compared to the agreement between the two annotators. Notably, there is no significant difference between the
model’s alignment with Human 1 and Human 2 (p = 0.0879). [B] A density plot (KDE) estimates the distribution of IoU values by smoothing the data with
small curves (kernels) at each point. The y-axis shows the density, representing the relative likelihood of observing the IoU values at different points on
the x-axis. The density curves for Model vs. Human 1 and Model vs. Human 2 show considerable overlap, indicating similar IoU distributions between
the model and both annotators. In contrast, Human 1 versus Human 2 shows less overlap, suggesting greater variability between the annotators’ manual
segmentation.

https://doi.org/10.1371/journal.pbio.3003591.g007
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Fig 8. An illustration of the plugin’s automated method for measuring the distance from the tip to the bottom of stereocilia bundles. Users
can adjust the positions of the upper and lower points. Upon making these adjustments, the plugin’s listeners automatically detect the changes, redraw
the connecting line, and recalculate the distance accordingly. Left: shows the 3D visualization using Napari. Right: demonstrates how the distance is
computed from x, y, and z, considering the physical resolution in microns.

https://doi.org/10.1371/journal.pbio.3003591.g008

Table 3. Measurements from VASCilia and Observers with Descriptive Statistics

Sample ID VASCilia Observer1 Observer2
DataSet1 2 3.520 3.513 3.431

19 2.786 2.675 2.883
25 4.129 3.590 3.947
32 3.728 3.367 3.613

DataSet2 10 3.816 3.474 3.466
32 3.028 2.633 2.454
24 3.748 3.534 3.575
31 3.572 3.389 3.159

DataSet3 3 2.006 2.189 2.646
39 1.678 1.897 2.426
34 2.099 2.202 2.006
46 4.314 4.543 4.313
33 3.671 3.624 2.944
48 3.304 3.519 3.194

DataSet4 3 2.738 2.446 2.916
47 2.797 2.706 3.206
17 2.531 2.628 2.044
54 3.004 2.559 1.965

Statistics Mean Median Std. Dev.
VASCilia 3.137 3.166 0.725
Observer 1 3.027 3.037 0.663
Observer 2 3.010 3.052 0.649

https://doi.org/10.1371/journal.pbio.3003591.t003

agreement between VASCilia and human expert annotators. The Pearson correlation analysis showed very strong posi-
tive relationships: 0.942 (p < 0.001) between VASCilia and annotator 1, 0.802 (p < 0.001) between VASCilia and annotator
2, and 0.830 (p < 0.001) between annotators 1 and 2. The paired t-test results indicate no statistically significant differ-
ences between the measurements obtained by VASCilia and annotator 1 (t = 1.868, p = 0.078) or annotator 2 (t = 1.191,
p = 0.249). No significant difference (t = 0.180, p = 0.860) was observed between the measurements from observers 1
and 2. Together, our findings suggest VASCilia performs comparably to human expert annotators, and that the annotators
themselves are consistent in their measurements, see Table 4.

To further validate stereocilia–length quantification, we compared VASCilia against manual Fiji measurements on
n = 15 Eps8-KO cells sampled from six stacks (two Base, two Middle, two Apex) drawn from the dataset used in
Fig 10A. We also evaluated n = 15 cells lacking functional Cdh23 [39] (Cdh23v-6J/v-6J, referred to as Cdh23−/−), chosen
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Fig 9. Data set crops that are associated to the computations used in Table 3, See Fig S2 A-D, where all four complete datasets are visualized
for reference.

https://doi.org/10.1371/journal.pbio.3003591.g009

Table 4. Pearson correlation coefficients, p-values, and paired t-test results.

Comparison Correlation Coefficient Correlation p-value t-test Statistic t-test p-value
VASCilia vs Observer 1 0.942 <0.001 1.868 0.078
VASCilia vs Observer 2 0.802 <0.001 1.191 0.249
Observer 1 vs Observer 2 0.830 <0.001 0.180 0.860

https://doi.org/10.1371/journal.pbio.3003591.t004
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Fig 10. This figure consists of two panels. Panel (A) on the left shows bundle heights and tonotopic variations of phalloidin fluorescence intensity in
P5 mouse cochlear hair cells across all cochlear regions. The tonotopic gradient observed here may not be representative of other developmental ages,
which were not examined in this study. Panel (B) presents the anti-EPS8 analysis, comparing anti-EPS8 fluorescence intensity between wild type and
knockout stereocilia bundles from the mid-cochlear region at P30. Source data are provided Supplementary Information S1 Data.xlsx.

https://doi.org/10.1371/journal.pbio.3003591.g010

to represent significantly disrupted bundles to assess generalization. Across both cohorts, the mean lengths were highly
comparable and the paired differences were not statistically significant (paired t-test and Wilcoxon signed-rank); see S7
and S8 Tables.

2.4.2 Fluorescence intensity measurements. Understanding signal levels whether they are one or multiple proteins
or a particular stain is crucial in various research fields, including cochlear function. The plugin enables the user to get a
precise quantification for the signal to allow researchers to gain deeper insights into its function and potential involvement
in hearing loss.

The plugin has a mechanism to calculate both the mean and total fluorescence intensity, subtracting the background
intensity (optional) to correct for ambient noise. This is achieved by superimposing the 3D segmented masks onto the
corresponding fluorescent image slices and aggregating the fluorescent intensities across the z-stack.

The resulting intensities are normalized using max normalization and plotted, allowing for comparative analysis across
different cell types such as inner hair cells (IHCs) and outer hair cells (OHCs) in various categories (OHC1, OHC2, and
OHC3). Data for each cell type is stored and visualized through histogram that display the mean and total intensity distri-
butions to provide insights and observation about the protein or signal expressions across the cochlear architecture. To
enable further downstream analysis, users will obtain plots for each cell type, resulting in a total of 20 outputs per stack
(10 plots and 10 CSV files). See Fig 11 for the total intensity histogram bars for all cells in three modes, illustrated in Sect
3, from the Napari plugin. The plugin can also be used to analyze and generate plots for other proteins in different chan-
nels as needed by the study.
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Fig 11. The plot demonstrates the utility and ease with which users can compare data between bar plots and actual cellular images within the
plugin. Top: Segmented bundles; class legend (IHC WT = yellow, OHC WT = red). Green numbers mark each bundle’s ID. Middle: Per-bundle fluo-
rescence (phalloidin) for three depth-aggregation modes: Mode 1:All layers (use each bundle’s full depth); Mode 2: Common depth only (truncate to
n=min depth across bundles); Mode 3: Pad to max depth (pad shallower bundles to n=max depth by repeating the weakest-layer value, then sum).
Bottom: Galleries from four example cells (shared same depth). Across cells, IHC bundles show consistently higher fluorescence than OHC bundles,
reflecting greater F-actin signal. Source data are provided in Supplementary Information S1 Data.xlsx.

https://doi.org/10.1371/journal.pbio.3003591.g011
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2.4.3 Case Study 1: Differences in stereocilia bundle heights and fluorescence signals (phalloidin and anti-
EPS8, WT vs. Eps8 KO).
Analysis of bundle heights and phalloidin signal across cochlear regions and hair cell types in neonatal P5 WT
and Eps8 KO mice (Fig 10A):

To challenge our approach and demonstrate its utility, we conducted a study involving 18 cochlear stacks from neona-
tal P5 mice, with samples from three wild type (WT) animals and three Eps8 KO mice, which have previously been shown
to have abnormally short stereocilia [37]. Each animal’s cochlea was analyzed across three regions (Base, Middle, and
Apex), and within each region, we studied two cell types (IHCs and OHCs). See Fig 10A (top row) for a detailed analy-
sis of stereocilia bundle height variations between WT and KO. The violin plots were generated using data processed
through the VASCilia plugin. Consistent with prior studies, VASCilia showed a gradient of increasing bundle heights along
the base-mid-apex tonotopic axis for both WT and Eps8 KO mice, with Eps8 KO mice showing significantly shorter bun-
dles than WT. S1 and S2 Tables summarize bundle height distributions (mean, SD, median, N) and the pairwise tono-
topic differences. They show a robust Base→Middle→Apex increase in WT (IHC/OHC) and KO OHCs, with the only non-
significant step being Base vs. Middle in KO IHC (Holm-adjusted tests).

See Fig 10A (bottom row) for the results of our challenge case study on the accumulated phalloidin signal between WT
and Eps8 KO mice in three regions (Base, Middle, and Apex) for two cell types (IHC and OHC). Intensities were com-
puted as the 3D sum within each bundle and global Min-Max normalized across all WT+KO samples to place values on a
scale of 0 to 1. In this analysis, we applied mode 2, discussed in Sect 3, separately to each dataset. For a given data set
D, we set n to the largest depth shared by all bundles within D; equivalently, n =min{bundle depths in D}. This dataset-
specific choice of n ensures that within each data set, all bundles contribute the same number of layers. The IHC WT
groups showed the highest normalized intensities in the Base region (median 0.84), with a tonotopic gradient of decreas-
ing intensity from Base to Apex across all groups. KO groups exhibited a significant reduction in intensity compared to
WT, with the OHC KO Apex group showing the lowest median intensity of 0.11. See S3 and S4 Tables, which report
descriptive statistics (mean, SD, median, N) and pairwise contrasts (Δ, 95% CI, Hedges’ g, Holm-adjusted p-values);
significant comparisons are indicated.

Analysis of anti-EPS8 signal in mid-cochlear inner hair cells of mature P30 WT and Eps8 KO mice (Fig 10B):
Quantitative analysis of stereocilia bundle morphology and anti-EPS8 signal in postnatal day 30 (P30) inner hair cells
(IHCs) revealed pronounced structural and molecular differences between wild type (WT) and Eps8 knockout (KO) mice.
WT bundles (n = 14) exhibited a mean length of 3.59 ± 0.29 𝜇m (SD; range: 3.12–4.28 𝜇m), whereas Eps8 KO bundles
(n = 15) were significantly shorter, measuring 1.22 ± 0.18 𝜇m (SD; range: 0.90–1.53 𝜇m; Welch’s t = 25.89, df = 21.29,
p = 1.4 × 10−17). To evaluate bundle-specific anti-EPS8 labeling intensity, total fluorescence intensity was quantified
within the same segmented IHC bundles. WT bundles exhibited a mean total intensity of 0.616 ± 0.059 (SD), while Eps8
KO bundles showed markedly lower values of 0.094 ± 0.012. Normalization was performed by dividing each bundle’s
total intensity by the maximum total intensity observed across both WT and KO groups. This reduction was highly signifi-
cant (Welch’s t = 8.63, df = 14.16, p = 5.1 × 10−7). These findings demonstrate that the loss of Eps8 leads to a substantial
decrease in both the length of the stereocilia and the anti-Eps8 signal, consistent with its essential role in the development
and maintenance of the stereocilia F-actin architecture.

2.4.4 Case Study 2: Fluorescence-based bundle texture analysis and classification in Cdh23-/- and Cdh23+/-

hair cells.
Quantifying bundle disorganization (Cdh23−/− vs. Cdh23+/−) (Fig 12A): Here we present an illustrative case study
demonstrating VASCilia’s utility beyond bundle-height and intensity measurements. We analyzed 3D image stacks from
Cdh23v-6J/v-6J mice, referred here as Cdh23−/− [39] to quantify texture differences (Gray-level Co-occurrence Matrix
(GLCM) and Local Binary Pattern (LBP)) between genotypes. We compared heterozygous controls (Cdh23+/−; n =
187 crops) with homozygous knockouts (Cdh23−/−; n = 176 crops). Cdh23+/− bundles were well organized, whereas
Cdh23−/− bundles were visibly disorganized, consistent with the expected phenotype.
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Fig 12. This figure presents the texture analysis displayed at the top as panel (A), and the anti-CDH23 fluorescence quantification analysis
included at the bottom as panel (B). Source data are provided in Supplementary Information S1 Data.xlsx. (Panel A) [Top row]: t-SNE of texture
features [I to IV] and PCA projection show clear genotype separation in feature space, with crops from the two genotypes providing visual represen-
tation. (Panel A) [I to V]: GLCM energy by genotype (Cdh23−/− bundles have lower energy than Cdh23+/−, reflecting less uniform, more complex
textures; differences are statistically significant); GLCM correlation by genotype (Cdh23−/− bundles exhibit lower correlation than Cdh23+/−, indicating
weaker spatial regularity; differences are statistically significant); GLCM contrast by genotype (Cdh23−/− bundles show higher contrast than Cdh23+/−,
consistent with greater local intensity variation; differences are statistically significant); GLCM homogeneity by genotype (Cdh23−/− bundles show
reduced homogeneity relative to Cdh23+/−, consistent with more uneven local texture; differences are statistically significant); and Random forest
feature importance highlights key GLCM/LBP drivers. (Panel B): Anti-CDH23 immunofluorescence quantification analysis for P7 IHC and OHC stere-
ocilia bundles from a mid-cochlear location. Each data point represents a value obtained from an individual bundle, normalized to the maximum value
within the dataset. Exemplar images on the right show stereocilia bundles stained with phalloidin (white) and anti-CDH23 antibody (magenta), with the
automatically generated stereocilia bundle mask overlaid.

https://doi.org/10.1371/journal.pbio.3003591.g012

To quantify these differences, we extracted texture features from segmented bundle crops using VASCilia. Specifically,
we computed GLCM features—contrast, correlation, energy, and homogeneity—and LBP [40] histograms for each crop.
Cdh23−/− samples had higher median contrast (136.88 vs. 74.76), consistent with more heterogeneous texture; lower
correlation (0.98 vs. 0.99), reflecting weaker spatial regularity; lower energy (0.0147 vs. 0.0157), indicating less unifor-
mity; and lower homogeneity (0.1368 vs. 0.1782), consistent with greater local contrast. Two-sided Mann–Whitney U tests
showed highly significant differences across all GLCM features (p < 0.0001). Several LBP bins (0, 1, 2, 5, 6, 7, 9) also dif-
fered between genotypes (p < 0.01), reflecting shifts in local texture patterns. Dimensionality reduction (PCA and t-SNE)
visually revealed a clear separation between genotypes in feature space. To quantitatively validate this observation, we
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trained a random forest on the extracted features (training n = 290; test n = 73), which achieved 94.5% accuracy on held-
out crops (4/73 misclassified). The most important features aligned with those that were statistically significant (Fig 12A);
representative examples are shown in S5 Fig.

Anti-CDH23 fluorescence quantification analysis (Cdh23−/− vs. Cdh23+/− (Fig 12B): To examine how loss of
cadherin-23 affects anti-CDH23 staining, we quantified total fluorescence intensity in IHCs and OHCs bundles from
Cdh23-/- and Cdh23+/- mice. Data were obtained from 7 Cdh23-/- and 6 Cdh23+/- datasets, all from the mid-cochlear loca-
tion. Values were min–max scaled using the global all cells range across both genotypes and cell types. As shown in
Fig 12B, across all bundles, Cdh23-/- cells (n = 112) measured 0.202 ± 0.012 SEM, whereas Cdh23+/- cells (n = 76) had
a mean normalized intensity of 0.482±0.021 SEM. By cell type, IHC bundles were highest: Cdh23-/- (n = 34) 0.352±0.021
SEM vs. Cdh23+/- (n = 24) 0.621 ± 0.040 SEM. OHC bundles showed the same trend: Cdh23-/- (n = 78) 0.137 ± 0.007
SEM vs. Cdh23+/- (n = 52) 0.417± 0.019 SEM. These results demonstrate a robust, genotype-dependent reduction in anti-
CDH23 bundle fluorescence in Cdh23-/- hair cells across both IHCs and OHCs, consistent with cadherin-23 being required
to maintain normal stereocilia organization and F-actin integrity in the mid-cochlea.

2.4.5 Tonotopic position prediction (BASE, MIDDLE, APEX). One of the fascinating features of cochlear hair cell
bundles is the so-called “tonotopic” organization, wherein the bundle heights follow a pattern of increasing lengths as a
function of position along the length of the cochlea, see Fig 1. Since the frequency of sound detected follows a similar
pattern along the length of the cochlea, we were motivated to generate a model that can accurately assess the tonotopic
position of the imaged region of the cochlea. To conduct this task, we trained a classification CNN. For more details about
the training and architecture, see Sect 4.8. This method has demonstrated robust performance, achieving a subject-based
accuracy of 97%; 28 out of 29 stacks were correctly identified. The single observed misclassification in our testing data
involved a stack from the MIDDLE being incorrectly predicted as BASE, which we speculate was due to the close proxim-
ity and overlapping characteristics of these two cochlear regions. The covariance matrix for the regions BASE, MIDDLE,
and APEX is in Fig 13.

To gain insights into the focus areas of our model during prediction, we employed Gradient-weighted Class Activation
Mapping (Grad-CAM), a powerful visualization tool used to explain deep learning-based predictions. Grad-CAM helps
visually identify which parts of an image are pivotal for a model’s decision-making process. Grad-CAM works by capturing
the gradients of the target label, which is the correct class in this scenario, as they propagate back to the final convolu-
tional layer just before the softmax. It then uses these gradients to weigh the convolutional feature maps from this layer,
generating a heatmap that visually emphasizes the image regions most critical for predicting the class label. Grad-CAM
visualization is shown in Fig 13.

2.4.6 High-throughput computation of bundle orientation. Understanding the precise orientation of stereocilia bun-
dles in the cochlea is critical for deciphering the intricate mechanics of hearing. These hair-like structures are arranged
in a “V” shape due to a phenomenon called planar cell polarity (PCP). PCP ensures that neighboring hair cells and their

Fig 13. left: covariance matrix for model prediction, others: Grad-CAM Visualization for Base, Middle, and Apex; Resized and Over-
laid Response from the Last Convolutional Layer Highlighting Focus on Bundles During Decision Making. Source data are provided in
Supplementary Information S1 Data.xlsx.

https://doi.org/10.1371/journal.pbio.3003591.g013
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stereocilia bundles are aligned in a specific direction which plays an essential role in orchestrating the precise orientation
of stereocilia bundles, which is fundamental for both the directional sensitivity and efficient mechanotransduction neces-
sary for our sense of hearing. Studying and potentially manipulating PCP holds immense potential for developing better
hearing aids, diagnosing hearing loss with greater accuracy, and understanding the mechanisms behind various auditory
disorders. In addition, it provides information on the effects of genetic mutations and environmental factors on hearing and
facilitates comparative studies that explore evolutionary adaptations in hearing.

We developed two automated mechanisms, “Height only” and “Height and Distance”, in our plugin to automatically
obtain the orientation of the stereocilia bundles based on our 3D segmentation masks:

For the ‘Height only’ approach, our method pinpoints and records the lowest points on both the left and right sides
of the centroid within the 2D projection. Conversely, the ‘Height and Distance’ method not only locates these points but
also measures distances from a specific peak point to identify the most remote and lowest points on each side. While
the ‘Height only’ approach functions perfectly with cells that exhibit a V-shape structure as clear in Fig 14, it is less effec-
tive for cells with atypical shapes, commonly encountered in the apex region. This limitation led to the development of the
‘Height and Distance’ method, which reliably accommodates cells with irregular shapes, see Fig 15.

Following the orientation calculations, the script proceeds to generate lines and angles for each region. It connects the
corresponding left and right points and calculates angles using the arctan2 function for deltaY and deltaX, providing a pre-
cise angular measurement. These orientation points, lines, and computed angles are then visualized in the Napari viewer
through distinct layers, specifically designated for points, lines, and text annotations. This visualization is enhanced with
carefully chosen colors and properties to ensure clarity and optimal visibility. To ensure dynamic interactivity within our
visualization tool, event listeners are embedded to reflect any adjustments in orientation points directly on the orientation
lines and measurements.

For Fig 14, the Fiji measurements had a mean of 94.04°, median of 92.32°, and standard deviation of 8.83°, while VAS-
Cilia reported a mean of 93.36°, median of 92.47°, and standard deviation of 8.44°. The Wilcoxon signed-rank test gave
a p-value of 0.0652, and the paired t-test yielded a p-value of 0.0834, indicating no statistically significant difference. Sim-
ilarly, for Fig 15, Fiji results showed a mean of 87.94°, median of 87.73°, and standard deviation of 7.80°, while VASCilia
produced a mean of 86.88°, median of 85.75°, and standard deviation of 5.90°. The Wilcoxon test returned a p-value
of 0.1901, and the paired t-test gave a p-value of 0.2738, again confirming no statistically significant difference. These
results validate that VASCilia produces automated angle measurements that are consistent with manual Fiji annotations.
See S5 and S6 Tables that record all comparison values.

We also quantified bundle orientation angles in PCP-deficit cochleae [41] to assess generalization. The early postnatal
Pcdh15-R245X mouse cochleae were acutely dissected, fixed with 4% PFA, stained with phalloidin to visualize the stere-
ocilia bundles, then mounted and imaged with Leica SP8 confocal microscopy using a 63x1.3NA lens. Validation against
manual Fiji measurements showed comparable means without statistically significant differences (S9 Table; S4 Fig).

2.4.7 Hair cell classification (IHC, OHC1, OHC2, OHC3). The categorization of hair cells into IHC, OHC1, OHC2,
and OHC3 in cochlear studies is not merely a morphological distinction but is deeply tied to their physiological roles, sus-
ceptibility to damage, and their distinct roles in the auditory system. Higher throughput classification will enable more
nuanced research exploration, diagnostics, and treatments in audiology and related biomedical fields. Identifying these
rows manually is a time-consuming and laborious process. For this reason, we have enhanced our plugin with mecha-
nisms to identify the four rows using three strategies: KMeans, Gaussian Mixture Model (GMM), and deep learning. As a
result, this can significantly automate the process, providing high-throughput results for all cells in the current stack in just
one second.

1. KMeans: We have implemented KMeans clustering due to its simplicity and efficiency in partitioning data into dis-
tinct clusters based on their features. Specifically, we use KMeans to categorize hair cells into four clusters, leveraging
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Fig 14. Automated Computation of Stereocilia Bundle Orientation Using a Height-Only Method. Top Left: illustrates the bundle orientations super-
imposed on the raw data, Top right: displays the 3D segmentation masks with bundle orientation highlighted. Bottom Right and Left are cropped regions
for a closer look. Source data are provided in Supplementary Information S1 Data.xlsx.

https://doi.org/10.1371/journal.pbio.3003591.g014

attributes such as proximity and density for grouping. This method calculates the centroids of the data points and itera-
tively minimizes the distance between these centroids and their assigned points, making it highly suitable for fast, gen-
eral clustering tasks. KMeans proves particularly effective when IHCs and OHCs are distinctly separated and organized in
linear rows, especially as it performs optimally without the presence of outliers or significant overlap between rows.

2. Gaussian Mixture Model: The Gaussian Mixture Model is a probabilistic model that assumes all the data points are
generated from a mixture of several Gaussian distributions with unknown parameters. By fitting the GMM to the ’y’ coor-
dinates of hair cell endpoints, we can predict the cluster for each cell, which aids in categorizing them into distinct groups
based on their vertical spatial alignment. This approach is particularly useful in scenarios where the clusters might have
different variances, which is often the case in biological tissues. The ability of GMM to accommodate mixed distribution
models helps in accurately classifying cells into four predetermined clusters. The Gaussian Mixture Model (GMM) offers
flexibility over KMeans by accommodating clusters of varying shapes, sizes, and densities, which is crucial in biological
data where such variations are prevalent. Unlike KMeans, which assumes spherical clusters and hard partitions, GMM
models the probability of each point’s membership in potential clusters, allowing for soft clustering.

3. Deep Learning: While KMeans and GMM provide robust and instant results for many samples, see first row of
Fig 16, however, these statistics-based methods can struggle with complex configurations, particularly in samples with
outliers, overlapping rows, or non-linear, curvy arrangements. For these challenging scenarios shown in second and third
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Fig 15. The limitations of the Height-Only orientation computation.While the Height-Only method excels with cells exhibiting a clear V-shape
Fig 14, it struggles with some apical region hair cells that lack this distinct structure. To address these challenges, we developed the Height and Distance
approach, which effectively handles a wider variety of cell shapes. The visual comparison includes the frames from which the crops are taken (first
column), Height-Only results superimposed on the 3D segmented labels (second column) and the original images (third column), alongside the height
and distance results superimposed on the 3D segmented labels (fourth column) and the original images (fifth column). We observe that the Height and
Distance method overcomes the limitations of the Height-Only computation. Source data are provided in Supplementary Information S1 Data.xlsx.

https://doi.org/10.1371/journal.pbio.3003591.g015

row of Fig 16, we have developed a deep learning approach that utilizes multi-class classification to accurately iden-
tify and categorize all hair cell bundles, effectively handling the spatial and structural complexities inherent in such data.
Check Sect 4.9 about the architecture and model training details.

For inference, we focused exclusively on stacks from the Apex region, where the cells frequently display non-linear
growth, are closely packed, and often overlap, leading to higher error rates with KMeans and GMM methods. Conversely,
cells in the Base and Middle regions are typically well-aligned. We conducted two experiments: In the first, we tested all
Apex data, including 41 datasets from both training and testing phases. In the second experiment, we evaluated 25 stack
datasets that were not included in the training set to verify the model’s performance on both seen and unseen data.
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Fig 16. First row: Successful cases for all methods—KMeans, GMM, and Deep Learning—in accurately clustering the four rows into their
respective categories are clearly demonstrated. This scenario represents an ideal case where each row is well-separated, linearly aligned, and free
from outliers that simplify the task of accurate clustering. Second and third rows: Failure cases for KMeans and GMM in accurately clustering the four
rows into their respective categories are evident: IHC1 in yellow, OHC1 in cyan, OHC2 in green, and OHC3 in magenta. These traditional methods often
struggle to precisely segregate the rows due to their inherent limitations in handling complex data distributions, outliers, and overlapping clusters. In con-
trast, Deep Learning significantly outperforms both KMeans and GMM, providing accurate and reliable clustering for all cell types. Errors are represented
by red bounding boxes. For the sample in the second row, there are Five errors in KMeans, three errors in GMM, and no errors with deep learning. For
the sample in the third row, there are Sixteen errors in KMeans, twenty eight errors in GMM, and no errors with deep learning

https://doi.org/10.1371/journal.pbio.3003591.g016

Fig 17A and 17B illustrate the error rates by method and dataset to assess performance per sample. Fig 17C and 17D
present heatmaps of the errors by method and sample, offering a more visual representation of performance with a color
map transitioning from black at the bottom to yellow at the top. These figures highlight the pronounced error frequency in
the KMeans and GMM methods compared to our deep learning approach. Fig 17E and 17F display the cumulative errors,
providing insight into how errors accumulate linearly per dataset and method. It is notable that the errors with KMeans
and GMM, represented in blue and brown, show a steep increase, whereas the deep learning method demonstrates a
more consistent error rate. In Experiment 1, across a total of 1824 cells, the error counts were 202 for KMeans, 257 for
GMM, and 12 for Deep Learning. In contrast, Experiment 2 involved 1102 cells, with error counts of 136 for KMeans, 169
for GMM, and 11 for Deep Learning. We also conducted a one-way ANOVA (Analysis of Variance) test. This statistical
test is used to determine whether there are statistically significant differences between the means of three or more inde-
pendent (unrelated) groups. We found that there is significant differences between groups with F-value equal to 10.45, A
higher F-value indicates a greater degree of variation among the group and P-value equal to 0.0001 which reject the null
hypothesis of the ANOVA test. The null hypothesis for an ANOVA test states that all group means are equal.
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Fig 17. Comprehensive Examination of Error Rates, Heatmaps, and Cumulative Errors for Cell Type Identification in the Apex Region. Subplots
(A, B, E, and F) illustrate error rate and cumulative errors, with blue representing KMeans, brown for GMM, and green denoting Deep Learning. Subplots
(C and D) utilize the ’inferno’ colormap to depict error rates, transitioning from black (low errors) to yellow (high errors), providing a visual gradient of
error severity. This color-coded representation aids in distinguishing the methodologies applied across different datasets and highlights the specific error
dynamics associated with each method.Source data are provided in Supplementary Information S1 Data.xlsx.

https://doi.org/10.1371/journal.pbio.3003591.g017
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3 Discussion

VASCilia, displayed in Fig 18, stands out in several unique ways: 1) Purpose-Built for Inner Ear Hair Cell Bundle
Research: VASCilia is the first Napari plugin and software analysis tool specifically designed for 3D segmentation of stere-
ocilia bundles. It is equipped with comprehensive analysis capabilities and machine learning models tailored for the inner
ear imaging community. 2) User-Friendly Interface: VASCilia features an intuitive, easy-to-install interface that allows
users to navigate the tool with minimal effort or expertise. 3) Flexible Application and Fine-Tuning: The flexibility of VAS-
Cilia allows users to directly apply it to their own datasets, ranging from mice to humans. Additionally, users can fine-
tune their own models using the tool’s built-in training module. 4) Batch Processing Capability: VASCilia provides a robust
batch processing feature, enabling users to process multiple samples automatically. With automated filtering and rotation
of each image stack, all subsequent steps in the pipeline are streamlined. Users simply input the names and paths of their
sample files, and VASCilia generates results for each sample, storing them in separate folders with all intermediate results
saved for easy access. 5) Review and Collaboration: VASCilia offers a distinctive feature for reloading analysis results
from a pickle file, allowing multiple users to review results at a later time, facilitating collaboration and simplifying the
review process. All workflow steps and buttons are documented with step-by-step screenshots in https://ucsdmanorlab.
github.io/Napari-VASCilia/overview.html.

Fig 18. VASCilia enables the ear research community to process their cochlea samples through an end-to-end workflow, all within a
user-friendly interface.

https://doi.org/10.1371/journal.pbio.3003591.g018
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VASCilia delivers end-to-end 3D segmentation and quantitative analysis of stereocilia bundles; here we synthesize
robustness evidence and key biological insights from each Results section.

In Sects 2.1 and 2.2, two preprocessing steps most strongly stabilize downstream analysis. First, ZFT-Net yields near
switch-free PCZ→CCZ→NSZ focus labels along the z-axis, so segmentation and quantification operate on cellular-clarity
planes rather than out-of-focus frames. Second, PCPAlignNet places each stack in a PCP-aligned reference frame, reduc-
ing rotational variance and standardizing height, intensity, orientation, and tonotopic measurements.

In Sect 2.3, accurate 3D instance segmentation of cochlear stereocilia is intrinsically challenging, due to nonspecific
staining; close apposition within and across rows; noise, intra-cell signal dropout, intensity variation; and tonotopic shape
heterogeneity (Fig 3). Despite these factors, our approach consistently separated closely apposed bundles and main-
tained detection in low-signal frames, indicating robustness to common experimental artifacts. To highlight variability in
segmentation depth as a function of bundle orientation (upright vs. flat) and phalloidin-signal continuity, and to show that
the segmentation excludes the cuticular plate, S1A and S1B Fig presents two bundles from a representative apical P21
cochlear stack, including all z-planes with and without overlays; orthogonal slice views (XY, XZ, YZ); and 3D volume ren-
derings.

In Sect 2.4.1, VASCilia height measurements show human-level reliability, matching expert annotations with strong
agreement, supporting its use for large quantitative studies. Beyond agreement with experts, a key methodological advan-
tage is that our length metric is rotation-invariant because it traces bundles through the z-stack rather than relying on pro-
jected height. As shown in S3A–S3C Fig, rotated OHC1 bundles traverse more layers (depth = 10) than the straighter
OHC2/3 bundles (depth = 5), yet the computed lengths are comparable. For example, OHC1 cell bundles with IDs 17 and
18 measure 1.65–1.69 𝜇m and cell bundle 16 is 1.75 𝜇m, comparable to OHC2 cell bundle 38 at 1.71 𝜇m. The apparent
visual foreshortening effect of rotated bundles reflects viewing angle, not true length; the increased z-plane depth afforded
by the 3D imaging data accounts for these angle differences. In ambiguous cases, specifically when a bundle does not
exhibit a typical V-shape, we performed optional manual refinement. The plugin includes event handlers that allow users
to manually adjust the highest and lowest points of each bundle. These adjustments are easily made through the intuitive
3D viewer in the Napari interface, enabling researchers to refine measurements as needed.

In Sect 2.4.2, one potential limitation when measuring total intensity between bundles is the variability in segmenta-
tion depth across cells, which can arise from differences in fluorescence signal strength (phalloidin here), imaging depth,
or biological heterogeneity. This variability may cause some bundles to appear shallower, potentially affecting their total
intensity measurements. Although such differences tend to average out when large numbers of cells are analyzed, min-
imizing their impact on overall trends and group comparisons, we also provide a dedicated option for researchers who
wish to control for this factor. Specifically, VASCilia outputs a CSV file that records per-layer intensity values for each bun-
dle. We extended the analysis code to offer three alternative aggregation modes for per-bundle fluorescence intensity
(shown in Fig 11): (i) the sum of raw intensities across all detected layers for each bundle; (ii) the sum restricted to the
top n layers, where n is the largest depth shared by all bundles being compared; and (iii) the sum obtained by padding
shallower bundles to n layers by repeating the bundle’s weakest-layer value, where nmax =maxi di is the maximum depth
across bundles.

To illustrate depth-controlled comparisons, Fig 11 presents four depth-matched examples—two IHCs (Cell #3 and
Cell #7; yellow) and two OHCs (Cell #26 and Cell #18; red). With depth held constant, the total 3D intensity becomes pri-
marily driven by morphology (bundle size/footprint) and F-actin density. Consistent with this, Cell #18 shows the lowest
total intensity because it is the smallest and finest, whereas Cell #3 shows the highest total intensity, reflecting a larger
bundle and denser phalloidin signal.

In Sect 2.4.3, which examines the relationship between bundle height and phalloidin intensity, we observed that height
increases tonotopically from base to apex in both WT and Eps8 KO, while Eps8 loss yields consistently shorter bundles.
Phalloidin intensity shows the opposite trend—highest at the base and decreasing toward the apex across groups—with
KO animals reduced relative to WT (e.g., lowest in OHC KO at the apex). Although basal bundles are shorter than apical
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bundles, the higher basal intensity is consistent with a higher packing density of F-actin rather than length. Prior work also
reports that IHC stereocilia are thicker than OHC stereocilia [42–44]. See S11 Fig for a depth-matched visual comparison
of base vs. apex in WT; the same qualitative pattern holds in KO. In summary, phalloidin-measured actin content does not
necessarily increase with bundle height across WT and Eps8 KO P5 animals.

In Sect 2.4.4, texture analysis captured the expected phenotype: homozygous Cdh23−/− bundles exhibited more het-
erogeneous and less regular stereocilia organization than heterozygous controls, consistent with visible disorganization.
Across metrics, Cdh23−/− crops showed systematic shifts (e.g., lower energy, homogeneity, and correlation with higher
local contrast), and these differences were separable in low-dimensional embeddings; a simple classifier trained on the
same features generalized well to held-out data.

In Sect 2.4.5, we noticed how Grad-CAM (Fig 13) serves as a sanity check to confirm the model’s reliance on accu-
rate features for its predictions. Interestingly, Grad-CAM revealed that the model predominantly focuses on the hair cell
bundles to distinguish between the BASE, MIDDLE, or APEX regions. Future directions include exploring the possibility
of developing a foundation model capable of accurately predicting cochlear regions across various datasets with differ-
ent staining and imaging protocols. This effort would undoubtedly require extensive data collection. We believe this work
demonstrates that this task is feasible. The Napari-based graphical user interface and interactive visualization tools pre-
sented here should help make these methodologies and trained models accessible to the average researcher. We hope
these results help motivate collaborative efforts to gather and share more comprehensive imaging data within the inner
ear hair cell research community.

In Sect 2.4.6, Bundle orientation is biologically meaningful because planar cell polarity (PCP) aligns stereocilia and
underlies directional sensitivity and mechanotransduction. Quantifying orientation therefore provides an objective read-
out of PCP integrity. The time-consuming nature of the manual PCP measurement methods highlights the need for more
automated and efficient techniques to further advance our understanding of this critical process. We identified an auto-
mated Fiji plugin, PCP Auto Count, for quantifying planar cell polarity and cell counting [45]. This plugin relies on identi-
fying “chunks” (the hair cell apical surface) and “caves” (the fonticulus) to measure the orientation between their centers.
However, this approach was not effective with our images due to the absence of clear caves, especially in low-contrast
images. The reliance on distinct caves for orientation measurement poses a limitation for datasets where such features
are not consistently visible or distinguishable. Automated angles closely matched manual Fiji measurements on both our
datasets and an independent PCP-deficit dataset [41] , indicating human-level reliability. See S5, S6, and S9 Tables that
record all comparison values.

In Sect 2.4.7, automated row identification (IHC, OHC1–3) proved reliable even in challenging apical stacks where rows
curve and overlap. Compared with unsupervised clustering (KMeans/GMM), the learned classifier handled outliers and
nonlinear row geometry substantially better, reducing row-assignment ambiguity in the apex. In Fig 17, errors for KMeans
and GMM (blue and brown) increase steeply, whereas the deep-learning model shows a more stable error rate.

As demonstrated in the case studies and generalizable beyond them, VASCilia enables high throughput, standard-
ized quantification. Once 3D instance segmentation is available, the pipeline automatically extracts height, depth-matched
phalloidin intensity, orientation, row identity, tonotopic position, 2D and 3D morphology metrics, and texture features
across thousands of bundles. This reduces analyses that would typically require months of manual curation to hours,
yielding reproducible, statistically powered findings.

Comparison with commercial solutions:While commercial software packages such as Imaris and Arivis offer
advanced 3D visualization and generic segmentation capabilities, these platforms are proprietary, costly, and often oper-
ate as “black boxes” with limited transparency regarding model architecture or training data. Furthermore, they are not
optimized for the specific challenges of cochlear hair bundles, such as the dense, anisotropic packing of stereocilia and
non-specific phalloidin staining of all actin filaments in whole mount tissues. In contrast, VASCilia is fully open-source
and specifically tailored for hair-cell research. It allows users to transparently inspect and fine-tune segmentation models,
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ensuring reproducibility and providing a standardized, high-throughput workflow that fills a critical gap not addressed by
general-purpose commercial tools.

Limitations and future work: All downstream features in VASCilia are only as accurate as the underlying 3D instance
segmentation. While the model generalized across multiple datasets analyzed here, large distribution shifts (e.g., vestibu-
lar hair cells, different stains/microscopes), strong preprocessing changes (e.g., deconvolution/denoising), or very low
SNR can degrade segmentation quality and thus bias derived measurements. In such cases, domain adaptation via fine-
tuning on a small, labeled subset of the target dataset is advisable. We maintain and continuously update the segmenta-
tion models and training recipes in our public repository to facilitate such adaptation.

Extending segmentation from bundle level to single stereocilium resolution would enable higher-detail analyses, includ-
ing per-bundle stereocilia counts and row-specific length distributions across the three rows within each bundle. Such
capabilities would strengthen quantitative comparisons across conditions but will likely require much higher-resolution,
higher-SNR datasets (e.g., STED or expansion microscopy) and specialized training data with reliable instance-level
labels. Developing such a model is beyond the scope of the present work and represents an important direction for future
studies.

4 Methods
4.1 Description of our 3D microscopy datasets

C57BL/6J mouse P5 and P21 cochleae were harvested and post-fixed overnight at 4°C in 4% PFA. After fixation,
cochleae were dissected and tissues were permeabilized in PBS containing 0.3% Triton-X (PBST) for 30 minutes at room
temperature. Alexa Fluor 568-conjugated phalloidin was applied in 0.03% PBST containing 3% NGS and incubated for 30
minutes at 23°C. Samples were washed three times with 0.03% PBST for 10 minutes each, mounted in ProLong Glass
Antifade (ThermoFisher Scientific, Cat#P36980, Carlsbad, CA, USA) with a #1.5 coverslip, and imaged with a 2.5 𝜇W
561 nm laser and a 63x 1.4NA DIC M27 objective on an 880 Airyscan confocal microscope with a 43 x 43 nm xy pixel
size, 0.110 nm z-step size, and a pixel dwell time of 2.3 𝜇s per pixel then processed with default Airyscan processing set-
tings. All experiments were conducted under strict accordance with the recommendations and approval of the Institutional
Animal Care and Use Committee (IACUC) at the University of California, San Diego (UCSD) (protocol number S23058).

4.2 Testing other lab datasets

4.2.1 Lab A’s datasets. We tested our software without any fine-tuning of the training model on another lab’s (Lab A)
datasets [46–48], which included samples with varying mouse ages, illumination conditions, cell counts per sample, image
dimensions, and pixel sizes. The software successfully performed 3D segmentation and all subsequent analysis steps on
these diverse datasets. See S6 and S7 Figs.

For this dataset, all procedures were conducted in compliance with ethical regulations approved by the Institutional Ani-
mal Care and Use Committee of Mass Eye and Ear, and in agreement with ARRIVE guidelines. Cochleae were dissected
in L-15 medium, fixed in 4% formaldehyde (EMS, #15713) in HBSS for 1 hour, and washed with Ca2+, Mg2+-free HBSS.
For mice older than P6, fixed cochleae were decalcified in 0.12 M EDTA (pH = 7.0) for 2 days, washed, then micro-
dissected, and permeabilized in 0.5% Triton X-100 (Thermo Scientific, #85111) in Ca2+, Mg2+-free HBSS for 30 minutes.
Samples were blocked with 10% goat serum (Jackson ImmunoResearch, #005-000-121) in 0.5% Triton X-100 in Ca2+,
Mg2+-free HBSS for 1 hour, and incubated in a 1:200 dilution of rabbit anti-PKHD1L1 (Novus Bio #NBP2-13765) overnight
at 4°C. Samples were washed with Ca2+, Mg2+-free HBSS and stained for 2 hours in a 1:500 dilution of Goat anti-Rabbit
CF568 (Biotium #20099) and phalloidin CF488 (1:20, Biotium #00042) in the blocking solution. Following washes, sam-
ples were mounted on slides with the ProLong Diamond Antifade Kit (ThermoFisher Scientific #P36961) and imaged on
a Leica SP8 confocal microscope (63x, 1.3 NA objective lens), or an upright Olympus FluoView FV1000 confocal laser
scanning microscope (60x, 1.42 NA objective lens).
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4.2.2 Lab B’s lab datasets. We also tested the software on yet another lab’s (Lab B) datasets, See S8 and S9 Figs.
C57BL/6J mice were exposed at 5 weeks of age to noise at 118 dB SPL for 2 hrs, then intravascularly perfused at 8
weeks with 4% PFA. Cochleas were extracted and decalcified in 0.12M EDTA, cryoprotected in 30% sucrose, and stored
for 2-3 months at -80°C. After thawing, they were dissected and blocked for one hour at room temperature in PBS with
5% normal horse serum and 0.3% Triton X-100. The tissue was then incubated overnight at 37°C with rabbit anti-ESPN
(Sigma #HPA028674 @ 1:100), to label stereocilia, in PBS with 1% normal horse serum and 0.3% Triton X-100. Primary
incubation was followed the next day by two sequential 60-minute incubations in an anti-rabbit secondary coupled Alex-
afluor 647 in PBS with 1% normal horse serum and 0.3% Triton X-100. After immunostaining, pieces were slide-mounted
in Vectashield, coverslipped, and imaged on a Leica SP8 confocal with a 63x glycerol-immersion objective (N.A. = 1.3) at
38 nm per pixel in x and y and 250 nm in z.

In addition, S10 Fig shows VASCilia results on human data, despite the fact that no human data stacks were included
in our training set. The stacks were imaged on a Leica SP8 confocal using a 63x glycerol immersion objective (Planapo
NA 1.3) and the Lightning deconvolution package. The pixel resolution was 0.038 microns in x and y and 0.217 microns
in z.

4.3 Z-Focus tracker for cochlear image data preparation and architecture

Our 3D image stacks consist of numerous frames, which we categorize into three distinct zones to better describe the
progression of image quality and content throughout the stack:

Pre-Cellular Zone (PCZ): This refers to the early frames where no cellular structures are visible. These frames likely
correspond to regions outside the tissue boundaries or the initial imaging volume that has not yet captured the cellular
regions.

Cellular Clarity Zone (CCZ): This middle portion of the stack contains well-resolved, clearly visible cells, representing
the optimal imaging conditions with a high signal-to-noise ratio. Here, the microscope achieves the clearest visualization
of stereocilia bundles.

Noise Saturation Zone (NSZ): The later frames where image quality degrades and noise increases significantly, likely
due to reduced laser penetration, light scattering, and other optical limitations, leading to fading and distortion of cellular
structures.

We define these three zones as distinct classes for training a classifier. The objective is for the classifier to automati-
cally exclude both the Pre-Cellular Zone (PCZ) and the Noise Saturation Zone (NSZ), retaining only the Cellular Clar-
ity Zone (CCZ). This approach will significantly reduce processing time while enabling the segmentation model to concen-
trate on regions containing clear cellular structures.

We have compiled a dataset of 135 3D image stacks of P5 mouse cochlea, using 125 stacks for training and validation,
and reserving 10 stacks for testing. Each frame was manually annotated into one of the three defined classes, resulting in
3,355 frames for the PCZ, 1,111 for the NSZ, and 2,088 for the CCZ. After applying data augmentation through rotation,
we obtained a balanced dataset with 6,710 frames for each class.

To further enhance the generalizability of the model, we incorporated 13 additional stacks from P21 mice and 22 stacks
from Liberman Lab (Lab B’s datasets). This expanded the training set to a total of 7,722 frames for each class, improving
the model’s ability to generalize across different ages, species, and microscopes.

We resized our images to 256 × 256 and tested several networks, including ResNet10, ResNet18, DenseNet121, and
EfficientNet. However, our custom network, Z-Focus Tracker Net (ZFT-Net), produced the best results. ZFT-Net consists
of five blocks, each containing a convolutional layer, batch normalization, ReLU activation, and a pooling layer. This is
followed by an additional ReLU activation and dropout layer, and finally, two fully connected layers.
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4.4 PCPAlignNet data preparation and architecture

Our P5 and P21 mouse datasets consist of 3D stacks with different orientations ranging from 0 to 360 due to variations
in how the cochlear tissue is handled or sliced during the sample preparation process. These small discrepancies in
positioning can lead to notable shifts in orientation during imaging. Additionally, the cochlea’s spiral and complex three-
dimensional structure contributes to the variability in the orientation of the stacks.

This variability in orientation presents a significant challenge during analysis, as the angle must be corrected so that the
stereocilia bundle rows align horizontally with respect to the tissue’s planar polarity axis. This is not an easy task because
both the images and the bundles exhibit high variability. Even when we manually rotate the images with great precision
to appear horizontal to the human eye, some rows may still differ in orientation from others, and bundles can also vary
among themselves. As a result, making manual decisions to establish ground truth is extremely challenging. Therefore,
we opted to define 72 classes instead of 360. We selected 70% from the stacks of the P5 and P21 data set for training,
20% for validation, leaving 10% for testing. However, these stacks are insufficient to train a robust network capable of pre-
dicting across 72 classes, as we do not actually have all the possible angles represented. To address this, we augmented
our data set by rotating each frame in every stack to all 72 possible classes (i.e. ranging from 0 to 355 degrees, with 5-
degree increments), see Fig 20. For training, we experimented with several models, including ResNet50, ResNet18,
MobileNet, and DenseNet121. We trained each model for 50 epochs, utilizing early stopping with a patience of 3. The
Adam optimizer, along with a cross-entropy loss function, was employed to optimize the model.

A key challenge that caught our attention was the need to avoid the incorporation of empty pixel values in padded
regions during image rotation. To address this, we applied a rotation correction in Python, followed by cropping the largest
area that excluded the empty regions. Since each frame begins at a different orientation prior to augmentation, the cor-
rected images, after rotation and removal of empty regions, vary in scale. These variations are often beneficial for CNN
training, as they improve the network’s ability to generalize across different spatial representations of data. See Figs 19
and 20.

4.5 3D manual annotation and dataset partitioning for segmentation task

Training a 3D supervised model that efficiently segments each stereocilia bundle requires manual 3D annotation for many
bundles, a process that is both cumbersome and slow. We utilized the Computer Vision Annotation Tool (CVAT) [36] to

Fig 19. Determining the precise orientation of the frame is challenging, as not all stereocilia bundle rows share the same horizontal alignment.
Achieving an exact degree out of 360 is practically impossible, even manually. To address this, we decided to use 72-degree intervals with 5-degree
increments. We have adapted the augmentation process, shown in Fig 20, to increase the number of image samples.

https://doi.org/10.1371/journal.pbio.3003591.g019
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Fig 20. To expand our dataset and represent all possible angles, we augmented each frame by rotating it and cropping the largest area with-
out empty pixels from padded regions. This process results in frames with varying perspectives and scales. In the example shown, the original slide
is highlighted in orange, while all others are augmented versions.

https://doi.org/10.1371/journal.pbio.3003591.g020

annotate our 3D samples. CVAT facilitates the drawing of manual polygons with an effective tracking feature, which anno-
tators can use to accelerate the annotation process. We manually annotated 45 stacks using the CVAT cloud applica-
tion [36], assigning each 3D bundle a unique ID for precise identification. The annotated data were thoroughly inspected
and refined by both the author and the biologists responsible for imaging the data.

To maintain the integrity of the data split, we divided the dataset into training, testing, and validation sets at the stack
level, thus preventing the mingling of frames from different stacks during partitioning. The training set comprises 30
stacks, the validation set includes 5 stacks, and the testing set consists of 10 stacks, which are further classified into 6
typical complexity cases and 4 complex cases. The details on how many training, validation, and testing 3D instances
exist in this dataset can be found in Table 5.

4.6 3D segmentation of stereocilia bundles using 2D detection and multi-object assignment algorithm

Our approach to the 3D segmentation task involves applying 2D detection to each frame, followed by the reconstruction of
the 3D object using a multi-object assignment algorithm. We employ the Detectron2 library from Facebook Research [49],
using the Mask R-CNN architecture [50] combined with a ResNet50 backbone [51] and a Feature Pyramid Network [52].
This setup leverages transfer learning from a model trained on the COCO dataset [53]. The algorithm is executed over
50,000 iterations with a learning rate of 0.00025. We focus on a single class, specifically the stereocilia bundle, with a
head threshold score set at 0.5.

After getting all the 2D frame segmentation masks across all stacks, the multi-object assignment algorithm involve
these steps, see Fig 4:

1. Initialization:
• Set frame_count to zero, marking the start of the frame sequence.
• Create an empty list tracks to maintain records of active object tracks.

Table 5. Summary of 3D stereocilia bundle instances across different data sets.

Data Set IHC OHC Total
Training (30 stacks) 270 940 1210
Validation (5 stacks) 47 170 217
Inference (10 stacks) 93 350 443
Total (45 stacks) 410 1460 1870

https://doi.org/10.1371/journal.pbio.3003591.t005
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• Load the initial frame of the stack to start the tracking process.
2. Processing the First Frame:

• Detect all objects within the first frame and assign each a unique track ID.
• Store the position and ID of each detected object in tracks.
• Increment frame_count.

3. Tracking in Subsequent Frames:
• Load the next frame to continue tracking.
• Detect all visible objects in the current frame.
• For each detected object:
– Calculate the overlap area with each object in tracks.
– Determine the appropriate track based on overlap:
∗ If no significant overlap is found, initialize a new track.
∗ If an overlap exists, assign the object to the track with the largest overlap and update the track’s position.

– Handle ambiguous cases:
∗ If multiple objects overlap significantly with a single track, choose the object with the largest overlap for the
track.

∗ Consider initiating new tracks for other overlapping objects.
• Increment frame_count.

4. Loop Through Remaining Frames:
• Repeat the process in Step 3 for each new frame until the end of the stack sequence.

5. Finalization:
• Assemble and output all completed tracks for further analysis.
• Conclude the tracking algorithm. At this stage, each cell or bundle is assigned a unique ID based on the tracks to
enable the user to visualize them in Napari.

4.7 Stereocilia bundle height measurement

Hair cell stereocilia bundles are essential for hearing, as they convert acoustic vibrations into electrical signals that the
brain detects as sound. Many deafness mutations cause bundle defects, including improper elongation. Accurately and
consistently measuring stereocilia bundle heights in 3D images is therefore critical, but unfortunately laborious and costly,
in particular for shorter bundles in either or both developing or mutant (e.g. Eps8 KO mouse [37,54] cochlea tissues). Here
we leverage our hair cell bundle segmentations to automate the measurement of bundle heights.
Automated segmentation-derived method. The steps for accurate and automated bundle height measurements involves
calculating the distance from the tip to the base of the tallest row of stereocilia in hair cell bundles.

1. Iterate through each connected component in the labeled volume. Skip the background and any filtered components.
2. For each relevant component, identify all voxel coordinates that belong to the bundle.
3. Create a binary sub-volume for the current component where the component’s voxels are marked as one, and all

others are zeros.
4. Project the binary sub-volume along the z-axis to reduce it to a 2D projection by summing along the z-dimension and

then applying a threshold to ensure the projection remains binary (values greater than 1 are set to 1).
5. Locate the highest (tip) and lowest (base) xy-coordinates in the 2D projection that have nonzero values:

• Find the highest point by identifying the minimum xy-coordinate value that corresponds to 1 in the projection.
• Find the bottom-most point by tracing downward from the centroid of the projection until reaching a xy-coordinate
with a value of 0, then stepping back to the last non-zero coordinate.

6. Determine the z-coordinates of these points in the original 3D volume:
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• For the highest point, find the z-coordinates where the voxel at the identified (x, y) location is 1.
• For the lowest point, set zbase to the deepest slice index across the stack where the component is present.

7. Store the coordinates of the highest and lowest points. These are used for calculating the 3D Euclidean distance
between the tip and the base of the bundle.

8. Calculate the distance using the Euclidean distance formula between the stored highest and lowest points.

Distance =√(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the first and second points in these dimensions. Note that
a scaling factor should be used for each dimension to ensure the calculated distance accurately reflects the true
spatial separation between the two points in real physical units.

Manual observer method (two observers): The height of manual stereocilia was measured in Fiji (ImageJ). For each
bundle, an observer (i) identified the tallest stereocilium, (ii) placed a marker point at its base (x, y, z), (iii) scrolled through
the z-stack to the tip of the same stereocilium to place a second marker (x, y, z), and (iv) calculated the 3D Euclidean dis-
tance between the base and tip using the known voxel dimensions (the same formula as above). Each bundle was inde-
pendently measured by two observers.

4.8 Utilizing pre-trained ResNet50 for targeted classification of cochlear tonotopic regions

For training and validation, our dataset comprises 36 3D stacks from the BASE region containing 535 images, 35 3D
stacks from the MIDDLE with 710 images, and 38 3D stacks from the APEX with 651 images. For testing the model, we
used ten stacks from BASE, nine from MIDDLE, and ten from APEX that were withheld from the training data. The classi-
fication of each stack as BASE, MIDDLE, or APEX is determined through a majority voting mechanism applied across all
frames of the associated stack, starting from the median and extending over a length of 13 frames.

In this study, we employed a modified ResNet50 model [51] using the PyTorch framework [55] to classify images of
cochlear regions into three categories: BASE, MIDDLE, and APEX, which correspond to the high, middle, and low fre-
quency response tonotopic positions of the cochlear spiral. The model, initialized with weights from pre-trained networks,
was adapted to our specific task by altering the final fully connected layer to output three classes. When using a pre-
trained ResNet50 model, the weights of the model have been adjusted based on its training on ImageNet [56], contains
over 14 million images categorized into over 20,000 classes, where it has likely learned rich feature representations for
a wide variety of images. This pre-training makes the model a strong starting point for most visual recognition tasks. To
enhance model robustness and adaptability, training involved dynamic augmentation techniques including random resiz-
ing, cropping, flipping, color adjustments, and rotations, followed by normalization tailored to the ResNet50 architecture.
This approach utilized both frozen and trainable layers, allowing for effective feature extraction adapted from pre-trained
domain knowledge while refining the model to the specific needs of our dataset. Training was conducted over 100 epochs
with real-time monitoring via TensorBoard, optimizing for accuracy through stochastic gradient descent with momentum.
The best performing model was systematically saved to achieve marked improvements in classification accuracy.

4.9 IHC and OHC row classification

We implemented a deep learning strategy employing multi-class classification to precisely identify and categorize each
hair cell bundle as either IHCs (first row from the buttom), OHC1 (second row from the buttom), OHC2 (third row from the
buttom), and OHC3 (forth row from the buttom).

For the training and validation process, we utilized the same dataset used for the 3D segmentation. Each dataset was
manually annotated into four rows: IHC, OHC1, OHC2, and OHC3. We employed a multi-class segmentation approach
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using a U-Net architecture with a ResNet-50 backbone and a feature pyramid network. Transfer learning was utilized,
leveraging pre-trained ImageNet weights to enhance model robustness. Given the existing 3D segmentation, our objec-
tive was simply to identify which cell corresponds to which row. To this end, we applied maximum projection to all frames
in the stack to simplify and standardize the results.

Data augmentation has played a crucial role in enhancing the model’s ability to generalize across different laboratory
datasets, see Fig 21. Specifically, we have rotated the images by 10 and 20 degrees to both the right and left. Addition-
ally, we have employed segmentation masks to mask out the raw images, effectively eliminating the background. This
step creates additional training samples that focus on the foreground, helping the model to generalize better to other
datasets where stains may not highlight the background, ensuring more accurate segmentation in diverse experimental
conditions. Additionally, a CSV file that records distances is updated to include the new classifications, ensuring that each
cell’s identity (whether IHC, OHC1, OHC2, or OHC3) is documented.

4.10 Toward developing a foundational model for cochlea research: Integrating diverse data sources

For the final model available to the ear research community, we trained the architecture using a comprehensive dataset.
This dataset included all the data from P5 (young mice), which consists of 45 stacks, as well as 10 stacks from P21 (adult
mice), and 22 stacks provided by the Liberman lab. This amounted to a total of 901 2D images and 29,963 instances.

Given that this model is trained on young and adult mice of the same strain, as well as data from a different labora-
tory with varying settings, stains, and microscopy techniques, we consider this model to be the first trial in developing a
foundational model. It is hoped that this model will work with data from other laboratories without requiring fine-tuning.

We are committed to maintaining our GitHub repository and actively encourage collaborators from other labs to share
their data. By doing so, we aim to broaden the model’s applicability and enhance its robustness, ultimately benefiting the
entire ear research community.

4.11 Computational resources for all the experiments

All experiments were conducted on a local desktop computer equipped with a 13th Gen Intel(R) Core(TM) i9-13900K
CPU, 128GB of RAM, and an NVIDIA GeForce RTX 4080 GPU with 16.0 GB of dedicated memory, running Microsoft
Windows 11 Pro. We utilized the PyTorch framework [55] to implement all machine learning models to develop the Napari
plugin. For training using the Facebook Research Detectron2 library [49], we utilized the Windows Subsystem for Linux
(WSL), as the library is not supported natively on Windows. To integrate the algorithm into the Napari plugin [14], we built
an executable that runs through one of the plugin’s buttons via WSL. Consequently, users will need to set up WSL to
utilize this plugin, details of which are thoroughly described in our GitHub documentation.

Fig 21. Augmentation of maximum projection images from 3D confocal stacks for training a classification model that discriminates between
IHC, OHC1, OHC2, and OHC3.

https://doi.org/10.1371/journal.pbio.3003591.g021
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Supporting information

S1 File. Describes the VASCilia workflow and features, user-guided adjustment of automated measurements, and
the training procedures for stereocilia bundle segmentation.
(PDF)

S1 Fig. Representative P21 apex stereocilia segmentations (upright vs. flattened) shown across all z planes with
overlays and 3D/YZ views; masks follow stereocilia signal and exclude cuticular plate unless signal is present.
(TIFF)

S2 Fig. Full z-stacks (DS1–DS4) used to derive measurement crops; red boxes mark IHC/OHC positions.
(TIFF)

S3 Fig. Straight vs. rotated bundles (P5): raw stack, automatic segmentation, and 3D length readouts; 3D mea-
surement handles both morphologies.
(TIFF)

S4 Fig. Angle computation on a PCP-deficit cochlear dataset; VASCilia closely matches manual Fiji measure-
ments (paired t-test p = 0.783, Wilcoxon p = 0.965).
(TIFF)

S5 Fig. Representative images for Cdh23+/− and Cdh23−/− mice.
(TIFF)

S6 Fig. VASCilia screenshots with multiple samples (Lab A), set 1.
(TIFF)

S7 Fig. VASCilia screenshots with multiple samples (Lab A), set 2.
(TIFF)

S8 Fig. VASCilia screenshots with Lab B mouse cochlea data, set 1.
(TIFF)

S9 Fig. VASCilia screenshots with Lab B mouse cochlea data, set 2.
(TIFF)

S10 Fig. VASCilia screenshots with Lab B human cochlea data.
(TIFF)

S11 Fig. Base vs. apex in WT animals: base shows wider/stiffer bundles; apex finer/tighter bundles with reduced
phalloidin intensity.
(TIFF)

S1 Table. Bundle height summary by genotype (WT/KO), tonotopic region (Base/Middle/Apex), and cell type
(IHC/OHC); mean, SD, median, N.
(PDF)

S2 Table. Pairwise tonotopic contrasts in bundle height (Welch t-tests; Hedges’ g; Holm-adjusted p); all signifi-
cant except KO IHC Base–Middle.
(PDF)
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S3 Table. Normalized fluorescence intensity by genotype/tonotopic region/cell type; mean, SD, median, N.
(PDF)

S4 Table. Pairwise tonotopic contrasts for normalized intensity with effect sizes and Holm-adjusted p-values.
(PDF)

S5 Table. Per-cell orientation angles (Manual vs. VASCilia), dataset 1; summary statistics.
(PDF)

S6 Table. Per-cell orientation angles (Manual vs. VASCilia), dataset 2; summary statistics.
(PDF)

S7 Table. Per-cell stereocilia lengths for Eps8 KO (Manual vs. VASCilia; n = 15); no significant differences (paired
t p = 0.609; Wilcoxon p = 0.720).
(PDF)

S8 Table. Per-cell stereocilia lengths for Cdh23−/− (Manual vs. VASCilia; n = 15); no significant differences (paired
t p = 0.851; Wilcoxon p = 0.639).
(PDF)

S9 Table. Per-bundle orientation values for a PCP-deficit mouse dataset (Manual vs. VASCilia); tests indicate no
significant difference.
(PDF)

S1 Data. Excel file containing all data related to Table 1, Table 2, Figs 5A–5D, Figs 7A–7B, Figs 10A–10B, Figs
11–15, and Figs 17A–17F. The name of each worksheet corresponds to the related figure or table.
(XLSX)
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