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Abstract

The human brain makes abundant predictions in speech comprehension that, in

real-world conversations, depend on conversational partners. Yet, tested models of

predictive processing diverge on how such predictions are integrated with incoming

speech: The brain may emphasise either expected information through sharpening or

unexpected information through prediction error. We reconcile these views through

direct neural evidence from electroencephalography showing that both mechanisms

operate at different hierarchical levels during speech perception. Across multiple

experiments, participants heard identical ambiguous speech in different speaker con-

texts. Using speech decoding, we show that listeners learn speaker-specific seman-

tic priors, which sharpen sensory representations by pulling them toward expected

acoustic signals. In contrast, encoding models leveraging pretrained transformers

reveal that prediction errors emerge at higher linguistic levels. These findings support

a unified model of predictive processing, wherein sharpening and prediction errors

coexist at distinct hierarchical levels to facilitate both robust perception and adaptive

world models.

1 Introduction

The human brain continuously predicts incoming sensory inputs from generative
models of the world, allowing for rapid and efficient perception [1,2]. In the domain
of speech perception, predictive mechanisms have recently been demonstrated to
operate across multiple levels, from low-level acoustic features to high-level seman-
tic structure [3–5]. Yet, most studies have focused on speech perception in monologic
contexts such as audiobooks, leaving open how predictive processes unfold in actual
conversational settings, in which our main goal is to understand another person. In
natural dialogue, predictions may track not only general linguistic statistics but also,
crucially, leverage speaker-specific semantic priors, i.e., our expectations of what the
other person is going to talk about. For example, if Jamie habitually talks about food,
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speaker-specific semantic predictions may be crucial for correctly comprehending
Jamie: I’m putting my beans/dreams on the back-burner, particularly under common
challenging listening conditions such as noisy environments or poor phone lines [6].
However, whether such speaker-specific predictions occur remains untested.

While prominent theories like hierarchical predictive coding (hPC) propose that
higher-level priors, such as semantic expectations, generate lower-level predictions,
such as acoustic predictions, to facilitate perception and ambiguity resolution [1,7],
how priors are applied at a mechanistic level is highly debated [2,8]: Empirically,
prior work has reported enhancement of either expected components of the signal
(sharpening), improving veridicality of representations [9–12], or unexpected parts
of the signal (prediction error), improving informativeness of representations [13–
16]. Yet, models of predictive processing typically assume distinct neuronal units
for both sharpening and prediction error within regions [1,2]. Models tested in many
empirical approaches, however, include only sharpening or prediction error compo-
nents [9,11,12,15,16] and often do not track their dynamics jointly across time and
levels of processing [10,13,14]. Therefore, it remains unclear how sharpening and
prediction error computations are coordinated in function, over time, and across lev-
els of the neural hierarchy [2,17]. Recent theoretical work predicts a hierarchical split:
sharpening should dominate early sensory stages to stabilise perception, and predic-
tion error should dominate later, higher-level stages to support adaptive updating of
world models, but concrete evidence has been limited [18].

Here, we provide direct evidence that speaker-specific semantic priors modulate
neural processing by sharpening early auditory representations, while generating
prediction errors at the level of semantics. In a series of experiments, participants
learned to identify acoustically ambiguous words in different speaker contexts that
were cued with different faces. We show that participants apply speaker-specific
semantic priors when resolving ambiguities, reporting to hear the word consistent
with the speaker’s semantic context. Using stimulus reconstruction models [19] and
within-item composite representational similarity [20] regression of recorded elec-
troencephalography (EEG) responses, we show that these priors manifest in early
sharpening of neural representations, with low-level acoustic content shifted toward
the expected acoustic signal. Further, single-trial encoding models [21,22] leverag-
ing pretrained transformers [23] reveal that speaker-specific prediction errors emerge
at the higher semantic level instead, albeit with a relatively early modulation of the
EEG signal. Finally, we employ real-time modeling of semantic priors using free-
energy models [24] to show that participants flexibly deploy and discard speaker-
specific priors, depending on the probability of words under the prior. This dynamic
interplay between flexible application of priors through low-level sharpening and high-
level prediction errors provides new insights into how humans perceive and learn
to adapt to individual speakers to maintain robust comprehension in acoustically
ambiguous settings and critical evidence for a unified model of predictive processing
in communication.
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2 Results

To examine how listeners apply speaker-specific semantic priors, participants learned to associate six distinct faces with
six unique semantic contexts, i.e., fashion, politics, arts, tech, nature, food, in two independent, preregistered experi-
ments [25,26] (online N1 = 35, EEG N2 = 35, see Fig 1A). Each trial began with a speaker’s face that cued a speaker-
specific semantic context. Participants then heard a degraded morphed word that combined two words—only one of
which fit the speaker’s semantic context—and subsequently selected the perceived word from the two words making up
the morph written on the screen (see Fig 1B).

As morphing two words may not result in perfectly ambiguous sounds, we measured context-free perception of each
morph in an independent, preregistered experiment [27] (N = 40) and used these results as control predictors for acoustic
unambiguities in subsequent analyses. In addition, we degraded the spoken words with a vocoding technique [28] so that
the voice sounded like a whisper and voice-identity information was removed (see Stimulus creation). This allowed us to
avoid any voice differences and link the identical spoken input to different faces, as we were interested in testing the effect
of semantic priors on the representation of speech.

Speaker-specific feedback was provided visually by highlighting choices that were congruent or incongruent with the
speaker in green or red, respectively, to ensure that each speaker was consistently linked to their semantic context (see
Fig 1B). To track participants’ semantic expectations throughout the experiment, we computed trial-by-trial estimates
of their semantic priors by fitting Gaussian distributions over semantic embeddings of the words they reported to hear
through free-energy models in real-time (see Estimating real-time semantic models). To be able to dissociate learning
of speaker-specific semantics and general semantics across the experiment (e.g., learning what kinds of semantic con-
texts are included in the experiment across all speakers) or, to a lesser degree, sequence effects (e.g., responses at trial
t biassing responses at trial t + 1 irrespective of speaker-context), we fit two types of models: Firstly, modeling speaker-
specific semantic priors, i.e. one prior per individual speaker, and, secondly, estimating speaker-invariant semantic priors,
i.e., one general semantic prior across all six speaker contexts (see Fig 1D).

Critically, the same ambiguous morph (e.g., sea-tea) was presented in different speaker contexts (e.g., nature-food),
allowing us to test whether perception and the underlying representation was pulled toward (i.e., sharpening) or away
from the speaker priors (i.e., prediction error, see Fig 1D, 1E). For example, an idealised sharpened representation of
the morph between sea-tea given a speaker who was associated with the semantic context nature would be more similar
to sea and related words, whereas the idealised prediction error representation would be more similar to tea and related
words instead.

2.1 Behavioural analysis shows that listeners apply speaker-specific semantic priors

In experiment one, participants (N1 = 35, see Participants) were cued with a speaker’s face and subsequently listened
to a degraded spoken word (see Fig 1B). We modelled the probability of reporting to have heard any word as a func-
tion of trial number, the word’s probability given the speaker and remaining acoustic biases of morphs. Participants
reported to hear the word consistent with the speaker’s semantic context (generalised linear mixed model (GLMM),
𝛽 = 1.64, s.e. = 0.12, z = 13.11,p = 2.71e−39,odds-ratio = 5.16), and this effect increased over trials (𝛽 = 0.43, s.e. =
0.03, z = 12.77,p = 2.41e−37,odds-ratio = 1.54). Correspondingly, participants relied on acoustic unambiguities initially
(GLMM, 𝛽 = −0.62, s.e. = 0.11, z = −5.81,p = 6.26e−9,odds-ratio = 0.54), but reliance on these decreased over trials
(GLMM, 𝛽 = 0.39, s.e. = 0.06, z = 6.09,p = 1.14e−9,odds-ratio = 1.48; see S1 Table, S1 Fig).

In experiment two (different N2 = 35, see Participants), we directly replicated these behavioural findings (see Fig 1C,
S2 Table, S1 Fig) while also recording EEG responses. Together, these behavioural results demonstrate that listeners
can learn and apply speaker-specific semantic priors to aid disambiguation in speech perception when speaker-context
associations are reinforced with speaker-specific feedback (see Fig 1D). These behavioural findings cannot speak to the
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Fig 1. Paradigm and behaviour. A Stimuli. Sixty word pairs were created (e.g., sea-tea) where words within a pair sounded similar and could each
be associated with one of six semantic contexts (e.g., sea-tea corresponding to nature-food). To decrease clarity and to induce ambiguity, words were
slightly degraded to sound like a whisper and morphed into an intermediate acoustic signal between two words from two different contexts. Morphs were
validated in a separate validation experiment (see Stimulus creation). B EEG part one with morphed words. Trials began with a fixation cross, followed
by a visual speaker cue. Morphs were presented binaurally. Participants then indicated the word they had heard by button press. Finally, feedback
was given in a speaker-specific manner such that each speaker could be associated with one specific semantic context. Faces were generated using
FaceGen [29]. C Participants were more likely to report hearing a word when it was highly probable given the respective speaker (see Modeling choice
behaviour). This preference increased over time. Lines are model predictions. Shaded areas around lines are 95%-confidence intervals. ∗∗∗ indicates
p ≤ 1e−3. DWe tested two potential forms of priors (large dots) that might influence neural responses to words (small dots): First, participants may apply
one general, i.e., speaker-invariant, prior reflecting general semantic expectations. Second, participants may learn and apply speaker-specific priors, i.e.,
six distinct priors, reflecting expectations about the individual speaker contexts. E In Bayesian models of the brain, there are two competing hypotheses
about the application of priors: Firstly, prior expectations may pull neural representations towards the expected information (sharpening), i.e., when the
speaker talking about nature is expected the representation of the morph (sea-tea) is shifted towards expected words (e.g., sea). Secondly, prior expec-
tations may push neural representations towards more unexpected information (prediction error), i.e., when the speaker talking about nature is expected
the representation of the morph (sea-tea) is shifted towards unexpected words (e.g., tea). Data and code supporting these findings are available from
https://doi.org/10.17605/OSF.IO/SNXQM.

https://doi.org/10.1371/journal.pbio.3003588.g001

computational mechanisms at play, as speaker-specific feedback rendered consistent behavioural errors unlikely and
neural mechanisms underlying representation may diverge from simple behavioural read-outs [17].

2.2 EEG analysis reveals that speaker-specific acoustic predictions sharpen sensory representations

Next we used EEG to investigate whether speaker-specific semantic priors modulate early sensory processing or high-
level decision-making and whether they sharpen expected stimulus representations or induce prediction errors instead
(see Fig 1D, 1E), potentially across different time points and stages of the processing hierarchy. To determine whether
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speaker-specific semantic priors influence low-level sensory representations early into the neural processing hierarchy,
we employed an approach combining stimulus reconstruction models and within-item composite representational similar-
ity analysis (cRSA). In this combined approach, stimulus reconstruction models allowed us to isolate sensory represen-
tational content (see Stimulus reconstruction of morphs), and cRSA enabled a comparison of the geometry of this sen-
sory content jointly with predictors in different representational formats such as acoustics and semantics (see Modeling
acoustic expectations as top-k predictions; Regressing composite representational similarity).

First, gammatone filters, which model the human auditory system [30], were used to generate spectrograms reflecting
the time-frequency representation of all morphed auditory stimuli. The high temporal resolution of EEG then enabled us to
isolate sensory representations in the recorded neural data by correspondingly reconstructing gammatone spectrograms
from EEG data following the presentation of the morphs (see Fig 2A, Stimulus reconstruction of morphs). We confirmed
that spectrogram reconstruction from EEG was successful, as reconstruction performance, measured as the correlation
between reconstructed spectrograms from the EEG and audio spectrograms from the corresponding morphs, was above
chance-level overall (two-sided one-sample t-test, M = 0.06, s.d. = 0.02, t(34) = 17.06,p = 8.96e−17; see Fig 2C) and in all
individual frequency bands (two-sided one-sample t-test, all p ≤ 2.53e−6, see S2 Fig, S3 Table).

In a within-item cRSA approach, we computed cosine similarities of the reconstructed spectrograms from EEG signals
following presentation of the identical morph in different contexts (e.g., sea-tea|nature, sea-tea|food, see Fig 2B) with the
real audio spectrograms of the corresponding original words (e.g., sea, tea) to obtain a similarity matrix of the composite
sensory representations (i.e., sensory cRSM).

We therefore measured within-item similarity, as opposed to between-item similarity as used in conventional RSA [20].
This approach was chosen because conventional RSA requires a commitment to specific mathematical formulations of
the proposed computations for the construction of hypothesis RDMs [20]. However, theories of predictive processing
allow for extremely high degrees of freedom in the precise formulation of their computations [7,8,31–33] which have been
repeatedly criticised for hindering falsification [34–36]. Our experimental design, instead, aimed at differentiating between
families of computations (see Fig 1A, 1B, 1D, 1E): Do sensory representations drift towards (i.e., common to sharpening
computations) or away from predictions (i.e., common to prediction error computations)? Anchoring decoded representa-
tional content to real constituent acoustic spectrograms allowed us to directly test for directional shifts in representational
content given the same auditory stimulus in different speaker contexts (see Regressing composite representational simi-
larity) rather than testing geometric signatures of specific mathematical formulations in second-order comparisons used in
conventional RSA [20]. While anchoring decoded representational content in real acoustic spectrograms may inflate abso-
lute scores in cRSA regressions, relative explained variance between predictors on which our conclusions rely remains
unbiassed.

To be able to assess the representational content in sensory cRSMs, we built two types of hypothesis cRSMs: Firstly,
we built acoustic hypothesis cRSMs from spectrograms of clear words that were predictable from participants’ speaker-
specific and -invariant semantic priors. Specifically, we selected the five most probable words under a speaker prior and
combined them into one probability-weighted audio spectrogram (for analysis of the influence of the number of predicted
words, see S3 Fig, S4 Fig, S4 Table, S5 Table). This was done because predictions in the brain are inherently distribu-
tional [1]: The brain cannot truly foresee the target word at each trial. Given the potential acoustic heterogeneity even for
semantically related words, predictions should reflect the distribution of expected acoustic features instead of the target
word exclusively (see Modeling acoustic expectations as top-k predictions). Secondly, we generated semantic hypothesis
cRSMs by comparing the semantic embeddings of the constituent words (e.g., sea, tea for morph sea-tea) with the cur-
rent estimates of the speaker-specific and speaker-invariant semantic priors from free-energy models (see Fig 2B, see
also Estimating real-time semantic models). Correlations between hypothesis cRSMs were confirmed to be low, ruling out
significant variance inflation (see S5 Fig). We systematically regressed hypothesis cRSMs on sensory cRSMs in a hierar-
chical manner to assess the unique contributions of each hypothesis cRSM on sensory cRSMs, controlling for low-level
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Fig 2. Sensory sharpening at the acoustic level. A Stimulus reconstruction models were used to decode acoustic signals ŝ from neural activity X
during presentation of the same morph s given both of its potential speaker contexts (e.g., nature and food for morph sea-tea, see Stimulus reconstruc-
tion of morphs). This allowed us to compare sensory content of neural representations directly in a within-item composite representational similarity
analysis (see Regressing composite representational similarity). Faces were generated using FaceGen [29]. B Composite sensory representational
similarity matrices (cRSMs) were computed from the reconstructions of the identical morph given two speaker contexts (e.g., nature and food) and the
two spectrograms of the audio files of the original word pair. A set of hypothesis cRSMs were computed from the raw morph, top-5 acoustic predictions,
and the current semantic predictions. Hypothesis cRSMs were systematically regressed on sensory cRSMs to test which combination of predictors best
explained the similarity structure of decoded neural representations (see Regressing composite representational similarity). C Stimulus reconstruction
models performed significantly above chance level. The inlay shows the average pattern that reconstruction models decoded in z-scored EEG signals.
D cRSM regression revealed that both speaker-invariant and speaker-specific acoustic cRSMs improved the similarity structure of decoded neural
representations, and that purely semantic cRSMs failed to do so. Improvements in out-of-sample prediction are visualised relative to baseline models.
Circles indicate group means with error bars on circles indicating 95%-confidence intervals thereof. Transparent dots indicate single subjects. ∗∗∗, ∗∗,
and ∗ indicate p ≤ 1e−3, p ≤ 1e−2 and p ≤ 5e−2, respectively. Note that significantly worse performance indicates evidence against a specific model,
not in favour of its antithesis. Bold black lines between groups indicate p ≤ 5e−2. All p-values were corrected using the Bonferroni-Holm procedure. E
Time-resolved coefficients of speaker-specific acoustic cRSMs in regressions showed consistently positive signs, indicating that neural representa-
tions were sharpened towards the more expected information present in hypothesis cRSMs. Lines represent means, with shaded areas around lines
indicating 95%-confidence intervals. Bold black lines indicate p ≤ 5e−2. Grey dots represent the median on- and offsets of the first and last phonemes,
respectively, with 95%-highest density intervals around them. Data and code supporting these findings are available from https://doi.org/10.17605/OSF.
IO/SNXQM.

https://doi.org/10.1371/journal.pbio.3003588.g002

acoustic features and general linguistic statistics that were independent of the semantic priors manipulated in our exper-
iment (see Fig 2B; see also Regressing composite representational similarity). We hypothesised that speaker-specific
semantic priors generate predictions at the acoustic level, i.e., acoustic predictions, which either pull sensory representa-
tions towards the expected signal, i.e., make the representation more similar to the expected words (sharpening), or push
them away from it, i.e., render the representation more similar to the unexpected words (prediction error, see Fig 1D, 1E).
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cRSM regression revealed an effect of both speaker-specific and speaker-invariant semantic priors on acoustic rep-
resentations. The sensory cRSMs were predicted more accurately when accounting for speaker-invariant and speaker-
specific acoustic predictions (two-sided paired samples t-test, invariant-baseline: t(34) = 22.40,p = 1.47e−20, specific-
baseline: t(34) = 25.12,p = 4.04e−22). Yet, speaker-specific acoustic predictions explained sensory cRSMs better than
speaker-invariant acoustic predictions, indicating an increased reliance on speaker-specific information (two-sided paired
samples t-test, specific-invariant: t(34) = 4.18,p = 2.11e−3). Crucially, combining both types of acoustic cRSMs revealed
their effects to be additive, with significantly better out-of-sample predictions than using either alone (two-sided paired
samples t-test, both-baseline: t(34) = 31.67,p = 2.33e−27, both-invariant: t(34) = 17.87,p = 1.33e−17, both-specific: t(34) =
15.03,p = 2.35e−15; see Fig 2D). While differences in correlation coefficients reported here were relatively small, differ-
ences were highly consistent across participants, and absolute differences were comparable to those commonly reported
in RSA [17,20]. These findings suggest that predictions based on both speaker-invariant and speaker-specific semantic
priors clearly shape the acoustic representations of heard words, though with a greater importance of speaker-specific
priors.

To assess the specificity of these predictions to the acoustic level, we also tested whether purely semantic predic-
tions would yield the same results. We entered the semantic embeddings used for top-5 predictions as semantic hypoth-
esis cRSMs in the model, but omitted the step of generating specific acoustic predictions from these embeddings. Crit-
ically, purely semantic hypothesis cRSMs failed to improve out-of-sample predictions (two-sided paired samples t-
test, invariant-baseline: t(34) = −2.19,p = 0.25, specific-baseline: t(34) = −10.88,p = 1.66e−11, both-baseline: t(34) =
−7.93,p = 3.69e−8; see Fig 2D). These results indicate that speaker-specific semantic priors alter sensory representations
at the acoustic level.

Next, we asked how speaker-specific predictions are combined with the incoming sensory signals at the acoustic level.
We examined whether the neural representations reflected sharpening or prediction error by using the best regression
model’s 𝛽-coefficients, i.e., the model incorporating both speaker-invariant and -specific acoustic hypothesis cRSMs. Our
hypothesis cRSMs were designed to reflect a pattern wherein more expected information is represented in positive val-
ues. In turn, due to the geometry of cosine similarities, this means that a negative sign inverts this pattern to represent
more unexpected information (see Fig 2E). Consequently, positive and negative coefficients in our models naturally cor-
respond to sharpening and prediction error computations, respectively, which allowed us to directly test the directionality
of the effect of acoustic predictions on sensory representations. Cluster-based permutation tests revealed significant pos-
itive coefficients for speaker-specific acoustic predictions (p ≤ 8.00e−4) which corresponded to a cluster between 165ms-
1000ms (M = 0.22, s.d. = 0.04; see Fig 2E). These findings demonstrate that speaker-specific semantic priors sharpen
neural representations by pulling neural representations towards the expected acoustic signal.

We addressed several potential confounding factors: To rule out that our results depend on, firstly, the specific num-
ber of predicted words, we refit the best cRSM regression model while systematically varying the number of top-k pre-
dictions from 1 to 19, as there were 20 words per speaker. This analysis revealed significant stepwise improvements in
out-of-sample performance, with diminishing returns for larger k (see S3 Fig, S4 Table). We verified that our results were
robust by repeating all previous analyses using k = 19 predictions (see S4 Fig, S5 Table). Secondly, we confirmed that
top-k acoustic predictions captured meaningful acoustic expectations of participants that could not be explained equally
well by top-k predictions that were not participant-specific (see Modeling acoustic expectations as top-k predictions, Val-
idating top-k acoustic predictions, S6 Fig, S6 Table). Further, we replicated our key finding of the dominance of acoustic
sharpening at the sensory level in a conventional between-item RSA using k = 1 to rule out results being dependent on,
thirdly, anchoring of hypothesis and sensory cRSMs to the same real spectrograms or, fourthly, averaging of spectrogram
features (see Conventional representational similarity analysis, S7 Fig, S7 Table). Finally, we also verified results do not
depend on the length of acoustic predictions (see Conventional representational similarity analysis, S8 Fig, S8 Table).
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2.3 Speaker-specific semantic priors induce prediction error representations at higher levels

Building on our finding that speaker-specific semantic priors sharpen low-level sensory representations, we next exam-
ined whether prediction errors emerge at higher levels of the speech-processing hierarchy instead. To do this, we built
encoding models (i.e., multivariate temporal response functions [19,21,22], mTRFs) of single-trial EEG signals that
allowed us to probe signatures of acoustic and semantic prediction errors in the broadband EEG response. Critically,
modeling broadband EEG responses rather than decoded sensory representations allowed us to probe whether prediction
errors still co-occurred at, for example, the acoustic or semantic levels as abstract information theoretic signals (i.e., sur-
prisal) disjoint from sensory representations. Here, mTRF models were chosen in lieu of more complex cRSM regression
because information theoretic measures are known to be directly detectable and are commonly probed in single-trial EEG
signals [37,38]. Since single-trial EEG signals are strongly influenced by stimulus properties such as acoustic envelopes
and edges and general information theoretic measures like general phonotactic, lexical and semantic prediction errors,
irrespective of the priors in our experiment [4,15], we implemented baseline encoding models to control for these general
properties and language-specific prediction errors.

However, measuring prediction errors for morphs at levels higher than acoustics presents a unique challenge, as these
stimuli are ill-defined at the phoneme and word level. To address this, we utilised recent advances in pretrained trans-
formers [23], which allowed us to approximate general prediction error signals by feeding the raw audio of the morphs
into these models and extracting 5-dimensional subspace projections of their layer activations [39,40]. Before feeding pro-
jected activations into encoding models, we verified that projected model activations were sensitive to general phonotac-
tic, lexical and semantic prediction errors, and selected the best layer through back-to-back decoding [41]. This allowed
us to disentangle the unique variance explained by each measure of prediction error in spite of existing correlations, in an
independent auditory dataset (see Pretrained transformers as statistical surrogates, see also S9 Fig).

In line with prior research [4,15], we framed prediction errors in terms of surprisal, i.e., the negative log probability. We
then tested whether single-trial EEG signals could be predicted from speaker-specific or -invariant acoustic or semantic
surprisal beyond baseline models that included general stimulus properties and projected transformer activations that con-
trolled for general surprisal, irrespective of the semantic priors in our experiment (see Fig 3A, Encoding of single-trial EEG
data).

Results revealed that prediction errors emerged only at higher levels and only with respect to speaker-specific seman-
tic priors. Concretely, speaker-invariant surprisal failed to improve encoding performance, irrespective of the hierarchical
level (two-sided paired samples t-test, acoustic-baseline: t(34) = −1.58,p = 0.49, semantic-baseline: t(34) = 1.11,p = 0.55,
both-baseline: t(34) = 0.16,p = 0.87). Crucially, speaker-specific surprisal improved encoding performance, but only at the
semantic level (two-sided paired samples t-test, acoustic-baseline: t(34) = −6.30,p = 1.78e−6, semantic-baseline: t(34) =
5.33,p = 1.90e−5, both-baseline: t(34) = 1.81,p = 0.08, see Fig 3B). This suggests that while sharpening of speaker-
specific representations occurs at the acoustic level, the brain computes prediction errors not at the acoustic level, but at
the semantic level where predictions had been generated instead.

To probe the spatiotemporal dynamics of speaker-specific semantic surprisal, we systematically eliminated the influ-
ence of speaker-specific semantic surprisal from the full model at temporal lags 𝜏 = {−0.1, … , 0.8}s, and measured the
change in encoding performance of the full model over the reduced model relative to total encoding improvement of the
full model over the baseline model, which yields an estimate of the variance explained at any time point and channel (see
Estimating spatiotemporal contributions of predictors). This knock-out procedure allowed us to directly test which temporal
lags had a robust impact on encoding performance rather than having to rely on mTRF coefficients that may also reflect at
least some degree of overfitting [42]. Cluster-based permutation tests revealed significant variance explained by speaker-
specific semantic surprisal (p ≤ 1.80e−3) corresponding to a cluster spanning all sensors between 150ms-630ms (see
Fig 3C). This spatiotemporal cluster aligns with the interpretation that speaker-specific prediction errors emerge primarily
at levels higher than acoustics within the linguistic hierarchy, such as at the phonological and semantic levels.
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Fig 3. Prediction errors at the semantic level. A Pretrained transformers were employed to obtain control predictors for general phonotactic, lexical
and semantic surprisal (see Pretrained transformers as statistical surrogates). Single-trial encoding of EEG responses was then applied to reconstruct
observed EEG signals from control predictors and hypothesised speaker-invariant and speaker-specific surprisal predictors (see Encoding of single-trial
EEG data). Faces were generated using FaceGen [29]. B Encoding models revealed that only speaker-specific semantic surprisal could significantly
improve model performance. Encoding improvements are visualised relative to baseline models. Note that significant negative effects indicate that
models failed to produce generalisable improvements. Circles indicate group means with error bars indicating 95%-confidence intervals thereof. Trans-
parent dots represent subjects. ∗∗∗, ∗∗, and ∗ indicate p ≤ 1e−3, p ≤ 1e−2 and p ≤ 5e−2, respectively. Bold black lines between groups indicate p ≤ 5e−2.
All p-values were corrected using the Bonferroni-Holm procedure. C Spatiotemporally resolved contributions of speaker-specific semantic surprisal
were estimated using a knock-out procedure (see Estimating spatiotemporal contributions of predictors). Speaker-specific semantic surprisal explained
variance significantly with a corresponding cluster spanning a wide array of channels between 150ms-630ms. Lines indicate the mean of variance
explained, with shaded areas around them representing 95%-confidence intervals. Bold black lines indicate p ≤ 5e−2. The topography shows variance
explained within each sensor, with channels contributing to the cluster highlighted in black. Data and code supporting these findings are available from
https://doi.org/10.17605/OSF.IO/SNXQM.

https://doi.org/10.1371/journal.pbio.3003588.g003

Finally, we verified the robustness of these findings in two complementary analyses. First, increasing the dimension-
ality of the transformer activation subspace to 10 [39] to ensure that results were not an artefact of under-specified con-
trol predictors yielded consistent results (see S10 Fig, S9 Table). Second, we also verified that deriving control predic-
tors for general properties and prediction errors from the target word rather than the morph’s activation in the transformer
produced consistent results to ensure that effects were not an artefact of poor performance of the transformer for mor-
phed words (see S11 Fig, S10 Table). Together, these analyses confirm the reliability of our results and the emergence of
speaker-specific prediction errors at the higher levels.

2.4 Flexible deployment of speaker-specific semantic priors

To test the flexibility of how speaker-specific semantic priors are applied during speech perception, we conducted an addi-
tional experimental task (EEG part two, see Fig 4A) in which we manipulated the degree to which the incoming sensory
evidence conflicted with the preceding priors. Using real-time semantic models, we selected clear words where word1 and
word2 were either highly congruent or highly incongruent with the speaker’s expected semantics (e.g., salad vs. senate for
food). Participants identified vocoded, but unmorphed, words following a speaker cue (see Fig 4A).

Participants were significantly slower in incongruent trials, suggesting increased surprisal or decisional conflict (linear
mixed model (LMM), 𝛽 = 0.10, s.e. = 0.02, t(1606) = 5.41,p = 7.30e−8, see Fig 4B; see also Modeling behaviour in congru-
ent and incongruent trials). Crucially, reaction times scaled with the probability of a word given the speaker in congruent
trials (estimated marginal trends (EMT) at 𝔼 [p(word|speaker)], 𝛽 = −0.12, s.e. = 0.02, t(9) = −5.53,p = 3.33e−4), but not
in incongruent trials (EMT, 𝛽 = −0.02, s.e. = 0.02, t(14) = −0.89,p = 0.39; see Fig 4B). For incongruent trials, this effect
emerged only over trials (LMM, congruence × trial × p(word|speaker): 𝛽 = −0.03, s.e. = 0.02, t(3976) = −2.07,p = 3.83e−2).
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Fig 4. Double dissociation between semantic congruency and prior specificity. A EEG part two with congruent and incongruent words. A fixation
cross was displayed, followed by the presentation of a visual speaker-cue. Highly congruent or incongruent vocoded words under the speaker prior
were presented. Participants reported the word they heard. Faces were generated using FaceGen [29]. B Participants incurred a processing cost in
incongruent trials. However, reaction times scaled with speaker-specific semantic surprisal only in congruent trials. Circles indicate group means with
error bars indicating 95%-confidence intervals. Transparent dots indicate single subjects. Bold black lines between groups indicate p ≤ 5e−2. Shaded
areas around lines indicate 95%-confidence intervals. C Encoding models revealed a double dissociation: In incongruent trials, only speaker-invariant
semantic surprisal significantly improved encoding performance, whereas in congruent trials only speaker-specific semantic surprisal significantly
boosted encoding performance. Encoding improvements are visualised relative to baseline models. Significant negative effects indicate that models
failed to produce generalisable improvements. Circles indicate group means with error bars on circles showing 95%-confidence intervals. Transpar-
ent dots show individual participants. Bold black lines between groups indicate p ≤ 5e−2. ∗∗∗, ∗∗, and ∗ represent p ≤ 1e−3, p ≤ 1e−2 and p ≤ 5e−2,
respectively. The downward-facing triangles indicate the best models by congruence. All p-values were corrected using the Bonferroni-Holm proce-
dure. D Knock-out analysis of coefficients revealed significant variance explained by speaker-invariant semantic surprisal in incongruent trials (top) as
well as by speaker-specific semantic surprisal in congruent trials (bottom). Speaker-invariant semantic surprisal was associated with a cluster across
all channels between 170ms-345ms, and speaker-specific semantic surprisal was associated with a cluster across all channels between 190ms-
635ms. Lines indicate means with shaded areas representing 95%-confidence intervals. Inlaid topographies show variance explained across sensors,
with sensors contributing to clusters marked in black. Bold black lines indicate p ≤ 5e−2. Data and code supporting these findings are available from
https://doi.org/10.17605/OSF.IO/SNXQM.

https://doi.org/10.1371/journal.pbio.3003588.g004

Thus, while participants continued to leverage speaker-specific priors, they seemed to discard them initially when encoun-
tering highly improbable words, incurring a switch cost.

EEG encoding models mirrored this pattern: In incongruent trials, only speaker-invariant semantic surprisal boosted
encoding performance (semantic-baseline: t(34) = 3.03,p = 1.88e−2; see Fig 4C), whereas in congruent trials only
speaker-specific semantic surprisal significantly improved encoding performance (semantic-baseline: t(34) = 8.39,p =
3.39e−8; see Fig 4C, see also S11 Table). Knock-out analyses revealed significant variance explained by speaker-
invariant semantic surprisal in incongruent trials (p ≤ 1.40e−3), corresponding to a cluster across all channels between
170ms-345ms, and significant variance explained by speaker-specific semantic surprisal in congruent trials (p ≤ 1.40e−3),
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corresponding to a cluster across all channels between 190ms-635ms (see Fig 4D). This double dissociation of semantic
congruency and specificity of the semantic priors demonstrates that listeners dynamically deploy and discard speaker-
specific priors depending on contextual plausibility.

3 Discussion

In this study, we investigated whether listeners utilise speaker-specific semantic priors to facilitate speech comprehension,
and how such priors influence processing at different levels of the processing hierarchy. Specifically, we aimed to resolve
a long-standing debate on whether predictive processing operates primarily via prediction error or sharpening mecha-
nisms [1,10,13,17,18]. Our findings provide clear evidence for an integrated account in which both mechanisms coexist at
distinct levels of the hierarchy, as suggested by more recent accounts of the Bayesian brain [17,18].

First, we demonstrate that listeners can apply speaker-specific semantic priors to disambiguate acoustically ambigu-
ous words when speaker-context associations are consistently reinforced through feedback (see Fig 1C). Second, we
show that these priors sharpen low-level sensory representations, actively shifting them towards the expected acoustic
signal (see Fig 1E, Fig 2D, 2E). Third, while sharpening occurs at the acoustic level, prediction errors emerge at higher
linguistic levels, such as semantics (see Fig 3B, 3C, Fig 4C, 4D). Finally, we find that speaker-specific semantic priors are
not applied indiscriminately: when the likelihood of a given input under a speaker prior is exceedingly low, listeners flex-
ibly discard the prior rather than generating extreme prediction errors and, consequently, potentially deleterious model
updates (see Fig 4C, 4D).

These findings align with recent refinements of Bayesian models of the brain, which propose that sharpening occurs at
lower levels while prediction errors dominate higher levels of the neural hierarchy [2,18]. This nuanced view departs from
traditional models of hPC, which posit that only prediction errors should be propagated within the hierarchy [1,7]. Instead,
our results support a synergistic account, wherein sharpening enhances perceptual robustness while prediction errors
may enable adaptive updating of internal models [18].

This interpretation is supported by prior work in speech perception demonstrating sharpening to occur at the sensory
level [9,12], though here explicit source modeling is lacking, and prediction errors in regions associated with higher-level
processing such as phonology or semantics [13–15,38,43], though prediction errors were also identified in regions typ-
ically associated with acoustics [44]. Analogously, prior work in vision supports sharpening in sensory regions such as
V1 [10,45], but there are conflicting reports about prediction errors through-out the processing hierarchy [17,46,47]. More
recent work in vision suggests that both sharpening and prediction errors may occur in deep and superficial laminae of
V1, respectively [48,49], which may partly explain conflicting prior findings and complement the view that sharpening and
prediction errors co-occur in cortical layers but dominate at different levels of the neural hierarchy [17,18]. However, lami-
nar differences remain untested in speech comprehension, and cannot fully explain discrepancies between dominance of
sharpening or prediction errors without assuming some kind of gain modulation thereof [50].

Here, we report empirical support for sharpening at the acoustic level (see Fig 2E). Notably, the temporal extent of
sharpening suggests that sharpening is not constrained to times of high uncertainty, for example, only for the disam-
biguating phonemes of a morph such as /t/ or /s/ for morph tea-sea, but occurs in parallel with the temporally unfolding
acoustic signal instead. Sharpening at the acoustic level stands in contrast with previous findings emphasising the role of
prediction error in speech processing [3,4,13–15]. This discrepancy may stem at least partly from methodological differ-
ences: whereas previous studies primarily analysed broadband EEG or BOLD responses, we employed speech decod-
ing models [19] to isolate changes in low-level sensory representations. Supporting this view, evidence of sharpening in
monologic contexts has previously been reported using similar sensory decoding approaches [9,12], albeit only for speech
envelopes rather than low-level acoustic representations as captured with full spectrograms.

Our task was carefully constructed to test facilitation of speech comprehension through speaker-specific semantic
priors that were reinforced through explicit speaker-specific feedback. Therefore, it is also conceivable that other tasks
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demanding attention towards unexpected features, such as deviation detection, might shift low-level representations
towards prediction error representations [50]. In complementary RSA analyses over decoded sensory representations, we
also found some evidence of possible co-occurring prediction errors at the acoustic level that were, however, considerably
weaker than sharpening responses (see S7 Fig, S8 Fig) and not apparent in the broadband EEG signal (see Figs 3–4).
This would be in line with the view that sharpening and prediction error computations co-occur in sensory regions at differ-
ent laminae [48,49] where we might expect task- or context-based gain modulation [50] to dictate the dominance of sharp-
ening or prediction error at the sensory level. We speculate that, even in this view, sharpening should dominate in natural,
dialogic settings, in line with a synergistic account of sharpening and prediction errors [18].

Yet, while these supplementary RSA results hint at weakly co-occurring acoustic prediction error at the sensory level
(see S7 Fig, S8 Fig), we do not find evidence thereof in regressions of sensory cRSMs (see Fig 2D) or encoding mod-
els of broadband EEG responses (see Fig 3). In the case of cRSM regression, this is expected given that supplementary
RSA results show acoustic sharpening to be considerably stronger than acoustic prediction errors (see S7 Fig): When
investigating the directionality of the representational shift overall, the stronger sharpening effect should dominate the
weaker prediction error effect. That encoding models of broadband EEG responses do not support acoustic prediction
errors (see Fig 3D; Fig 4) demonstrates the critical role that analysis granularity may play. As with sharpening, it is pos-
sible that multivariate sensory prediction errors are not easily detectable in commonly employed broadband encoding of
univariate distance metrics [15,38]. In all, investigating predictive processing in natural speech by incorporating a wider
array of methodologies, particularly, placing greater importance on representational content, laminar resolution of activity,
and task-demands, may allow comparing and disentangling sharpening and prediction error computations at the acoustic
level across monologic and dialogic contexts more thoroughly. Within regions, sharpening and prediction errors may be
represented in deep and superficial layers, respectively [48,49], and across regions sharpening may dominate prediction
errors at the sensory level [18] unless task-demands place greater importance on deviation detection [50].

Interestingly, here we find that speaker-specific prediction errors emerge relatively early, with clusters around 150ms-
630ms and 190ms-635ms after stimulus onset in the main task testing perception of morphed, i.e., ambiguous words,
and the follow-up task testing congruent and incongruent words, respectively (see Fig 3C, Fig 4D). Differences in tempo-
ral extent of these clusters are difficult to interpret, given that cluster-based permutation testing does not guarantee sig-
nificance at specific time points [51,52]. However, peak latencies showed no differences between tasks, with peaks con-
sistently around 252ms post stimulus onset (see S12 Fig). This is striking given that semantic prediction errors are typi-
cally thought to peak around 400ms post onset [53,54]. While semantic processing has previously been reported around
250ms [55,56], an alternative interpretation may be that prediction errors induced by semantic priors arise at multiple
intermediate and higher-level stages, first at the phonemic and then the semantic levels, which would be in agreement
with the prolonged time course of speaker-specific prediction errors. While this would also be consistent with hPC where
prediction errors are propagated along the processing hierarchy [1,18], there is a long-standing debate whether EEG com-
ponents around this time can even be separated into functionally distinct phonemic and semantic components [53,57].
Given the limited size of the stimulus set in this study, we cannot derive appropriate estimates of speaker-specific phone-
mic surprisal, leaving this question open for future research. Crucially, this does not change the interpretation of our find-
ings with respect to hierarchical processing in models of the Bayesian brain.

With respect to both sharpening and prediction error computations reported here, two further avenues are of interest
that fall beyond the scope of this paper: Firstly, source estimates would allow identification of their neural loci which we
would expect to peak in A1, reflecting early auditory processing, and more distributed frontal and temporoparietal sources,
reflecting later stages of semantic processing, respectively [53,54,58]. Secondly, theories of predictive coding have
hypothesised distinct oscillatory signatures of predictions in lower and prediction errors in higher frequency bands [59,60]
that may be investigated using MEG with individualised head casts to improve source estimates [61,62].
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Our findings also highlight a key theoretical gap in predictive models: while it is commonly assumed that the brain con-
structs multiple types of priors at all levels of the processing hierarchy [1,7,18], the precise mechanism by which com-
peting priors are selected remains unclear. The coexistence of priors at the same level, such as speaker-specific and
speaker-invariant semantic priors, may be crucial for tracking multiple relevant statistical regularities, yet our results sug-
gest that not all priors are applied simultaneously. Instead, we find a double dissociation of prior congruency and speci-
ficity at higher levels of the neural hierarchy, where priors are selected dynamically based on their relative likelihood.
Specifically, a speaker-specific prior was only applied when the incoming word was congruent with that prior. This has
important implications for predictive coding models, particularly in the context of world model updates [1,7]: Firstly, allow-
ing, for example, detection of a new semantic topic when listening to the identical speaker. Secondly, if all high-level priors
were applied and updated indiscriminately, they would risk collapsing into a single, undifferentiated representation. Thus,
priors must be selectively updated, potentially through precision-weighting mechanisms that govern their influence.

Most previous studies on predictive processing have primarily examined speech perception in monologic contexts such
as audiobooks [3,4,15], leaving open the question of how semantic predictions may operate in speaker-specific conver-
sational settings. Our study investigated how predictions are shaped not only by general linguistic statistics but also by
speaker-specific characteristics. Thereby, our approach extends and links to previous experimental findings showing that
listeners adapt to individual speakers at, for example, the phonetic [63–65] and lexical levels [66–68]. Here we show for
the first time that listeners also adapt to semantic patterns of individual speakers. As such, our findings also advance our
understanding of how listeners may deal with common sources of uncertainty in the speech signal such as loud environ-
ments or poor phone lines [6].

Beyond theoretical implications, our findings have direct relevance for clinical applications, particularly in neural speech
decoding and brain-computer interfaces (BCIs). Decoding approaches hold promise of restoring communicative abilities
for patients with conditions such as aphasia, anarthria, or locked-in syndrome [69]. While recent advances have improved
speech decoding accuracy [70–73], current methods remain data-intensive and lack the precision needed for seamless
communication [72,73]. Our results suggest that incorporating individualised speaker-specific models could enhance
decoding accuracy, particularly in interactive settings with clinicians or family members, where strong priors may shape
communication. Furthermore, an intriguing question arising from our study is whether speaker-specific semantic priors
also influence speech production. If listeners adjust their own speech to match their semantic expectations of a conver-
sational partner, this adaptation could be leveraged in BCIs to improve bidirectional communication and hence may have
significant implications for speech rehabilitation and augmentative communication technologies.

In conclusion, we show that listeners learn and apply speaker-specific semantic priors, which actively shape their per-
ceptual experience and sharpen low-level sensory representations towards the expected acoustic signals. Prediction
errors, in contrast, emerge at higher levels of the linguistic hierarchy, supporting a complementary role of sharpening and
prediction errors in predictive processing. These findings refine our understanding of predictive processing in the brain
and suggest new directions for clinical applications, as in the development of dialogic brain-computer interfaces.

4 Methods

The series of experiments of this study was preregistered [25–27]. Across an online and subsequent EEG experiment,
participants learned to associate six distinct speakers with six unique semantic contexts (see Fig 1A). Participants heard
identical degraded and morphed auditory stimuli given different speaker contexts (see Fig 1B), allowing us to probe the
influence of speaker-specific semantic priors on neural representations along the speech processing hierarchy (see
Fig 1D, 1E). In the EEG experiment, participants completed a subsequent follow-up task including degraded unmorphed
words that were either particularly congruent or incongruent with their perceived semantic model of any given speaker,
which allowed us to test the limits of prior application (see Fig 4A).
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4.1 Participants

In the validation experiment, 40 volunteers were recruited through Prolific and completed the experiment online (20
female, age range 19-40, M = 28.35 ± 6.27). Participants that failed to pass an initial headphone test [74] or failed to
respond on ten of the preceding twenty trials were excluded in real-time. A priori power analysis suggested that this would
yield sufficient power for 𝜒2-tests to detect deviations by at least 0.15 from chance-level in individual morphs [27].

In experiment one, 35 different volunteers were recruited through Prolific and participated in the experiment online (17
female, age range 22-39, M = 29.46 ± 4.78). Again, participants were excluded in real-time based on headphone and
attention tests. Participants received £9/hr in compensation for their time. Sample size was determined through power
simulations using PyMC5 [75] and ArviZ [76] based on previous experimental data that indicated sufficient power to detect
behavioural effects bigger than log odds 0.15 [25].

In experiment two, 36 different volunteers completed the study in the EEG laboratory. One participant was excluded
from the analysis due to excessive muscle-related artifacts. The final sample included 35 participants (20 female, age
range 20-39, M = 28.09 ± 5.29). Participants were compensated with 13€/hr. Sample size was determined through power
simulations based on pilot recordings (N = 2) using PyTorch [77] that indicated sufficient power to detect moderate effect
sizes in the neural data [26].

In all experiments, all participants were right-handed, native speakers of German, and reported no history of neurolog-
ical disorders, ADHD, ASD, dyslexia, impaired hearing, or face or colour blindness. The study followed the Declaration of
Helsinki, all experimental procedures were approved by the Ethics Committee of the Chamber of Physicians in Hamburg
(approval no. PV7210), and participants provided written informed consent.

4.2 Stimulus creation

An initial list of 210 target words was created by searching the neighbourhood of six semantic contexts (food, fashion,
technology, politics, arts, and nature) seeded at the embedding of the context’s label in a GloVe embedding pretrained
on German Wikipedia articles [78,79]. For each target word, one alternative word corresponding to one of the other five
semantic contexts was chosen. Targets and alternatives were chosen such that phonemic differences would be minimal,
although not all formed minimal pairs (e.g., sea/tea in food/nature). We purposefully selected pairs of words with minimal
acoustic differences, each of which fit into one of six semantic contexts. This allowed us to balance the stimuli symmet-
rically: Either member of a word pair was used as the target while the other served as the alternative, depending on the
preceding context (e.g., target for sea-tea|nature: sea, but target for sea-tea|food: tea).

A professional female speaker produced two enunciations of all words (duration: M = 970ms ± 144ms). Audio files
were pitch-corrected to roughly 170Hz to minimise cues about gender using Praat [80] and sound pressure levels were
normalised to –20LUFS to control for loudness. Next, we used a combination of vocoding and morphing the words twice
to obtain two optimal 50%-morphs per pair, each with different noise profiles. Specifically, audio files were vocoded using
twelve bands of white noise to remove most of the remaining voice properties from the signal [28]. This level of noise-
vocoding was chosen because it has previously been shown to be intelligible, particularly given prior knowledge [13].
From the recorded utterances, we generated four 50%-morphs using TandemSTRAIGHT [81] after application of dynamic
time warping [82,83] over constant-Q transformed [84] audio data that aligned targets and alternatives in time. We com-
puted cosine similarities between morphs and clear words and selected the least biassed morph per pair.

Within each pair, perception of a morph as one word or the other was controlled in a preregistered validation experi-
ment [27]. Participants (see Participants) listened to all morphs and had to indicate which of the two visually presented
options they had heard by button press. In total, participants completed 468 trials (6 contexts × 2 practice items + 2 repe-
titions × 120 morphs +2 repetitions × 6 contexts × 3 control items). Per morph, we computed a descriptive statistic 𝜅 that
captured the remaining perceptual bias of participants to perceive one word or the other within the pair underlying each
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morph:

𝜅 = p(alternative|morph) − 𝜇
1 − 𝜇

Note that 𝜇 represents chance level 0.50 here. We then dropped all morphs that did not meet 0.15 ≤ 𝜅 ≤ 0.85 to remove
biassed morphs that did not lead to ambiguous perception.

Next, for each target and alternative, the best semantic fits among the six candidate contexts were determined to find
the subset of word pairs that maximised the coherence of each semantic context. To do this, we computed cosine similar-
ities between all targets and all alternatives from all contexts (e.g., sea-tea= 0.12, sea-wattage= −0.06, sea-boat= 0.31,
...) and averaged them by context (e.g., sea-nature= 0.38, sea-food= 0.14, sea-fashion= −0.08, ...). We then ranked each

pair by the semantic fit to either potential contexts Rt,Ra and computed geometric means across ranks as (RtRa)
1

2 for
each pair. We selected word pairs to minimise the geometric means, yielding a total of 60 pairs where word1 was coherent
with one of the six contexts and word2 was coherent with another (see Fig 1). As a result of this procedure, we obtained
twenty words per context (6 × 20 = 120 words overall), each of which was morphed with one other word, yielding sixty
morphs with two different noise profiles that showed no systematic perceptual biases (duration: M = 867ms ± 144ms;
for an overview, see S13 Fig; S12 Table). For all, i.e., unmorphed and morphed, words, we generated annotations of
phoneme on- and offsets using MAUS [85].

Finally, a set of six face images was created using FaceGen [29] to obtain one visual cue per speaker-specific semantic
context. Speaker images were crossed with six distinctive features (two types of glasses, scars, piercings each) to ease
recognition and images were luminance-corrected.

4.3 Procedure

Stimuli were presented using jsPsych [86] in online experiments, whereas PsychoPy [87] was used in the EEG laboratory.
Before all experiments, participants were introduced to the six speakers, each represented by a face and a one-sentence
summary of their interests. The online experiment lasted ∼45 minutes, whereas the EEG experiment lasted ∼2.5 hours,
including briefing, setup, passive listening (∼20 minutes, not reported here), EEG part one with morphed words (∼35
minutes), EEG part two with congruent and incongruent words (∼15 minutes) and debriefing.

All experiments followed the same trial structure: Each trial began with a fixation cross (500ms), followed by the visual
presentation of a speaker (750ms). Next, a vocoded morph was played (M = 867ms ± 144ms and, in EEG, 400ms delay)
in the online experiment and EEG part one, whereas a vocoded congruent or incongruent word was played in EEG part
two (M = 990ms ±147ms and 400ms delay). Participants were subsequently shown two word options, one congruent with
the speaker’s semantic context and one from a different context, and selected the word they perceived via button press
(response window: 3000ms online, 2000ms in EEG). To reinforce speaker-specific semantic associations, participants
received immediate speaker-specific feedback: their selection was highlighted in green if correct under the speaker and
red if incorrect under the speaker (750ms, see Fig 1B). Feedback was omitted in the EEG part two. The inter-trial inter-
val was randomly jittered between 1.0s–1.4s. In the online experiment and EEG part one, participants completed a total of
270 trials (6 practice trials, 24 control trials, 2 repetitions × 2 contexts × 60 morphs main trials), with optional breaks every
20 trials. In EEG part two, participants completed 120 trials (60 congruent, 60 incongruent).

During the EEG experiment, real-time estimates of each participant’s semantic priors were computed using a free-
energy approach that were leveraged for sampling of congruent and incongruent stimuli in part two (see Estimating
real-time semantic models). After completion of task one, individual semantic priors were used to sample subject- and
speaker-specific word pairs. Each pair contained one word strongly congruent with a speaker’s semantic context (i.e.,
contexta) and another word strongly incongruent with a different context (i.e., contextb). To maximize the difference in
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semantic fit, word pairs were selected based on the following criterion:

arg max
word, context

p(word1|contexta) − p(word2|contextb)

This ensured that word1 was highly congruent with contexta, whereas word2 was particularly incongruent with contextb.
The sampling procedure also ensured that each context contained ten congruent-incongruent word pairs. This modifica-
tion made the stimuli clearly identifiable as either congruent or incongruent, allowing us to test how speaker-specific priors
are applied when word probability is either very high or very low for a given speaker.

4.4 EEG acquisition

EEG data were acquired using a 64-channel Ag/AgCl active electrode system (ActiCap64; Brain Products) that was
placed according to the extended 10-20 system [88]. A total of sixty electrodes were placed centrally, with reference and
ground electrodes at FCz and Iz, respectively. Four additional electrodes were placed to record the vertical and horizontal
electrooculogram. Recordings were made with impedances ≤ 10kΩ. Data were sampled at 1000Hz.

4.5 Estimating real-time semantic models

To dynamically track how participants formed and updated speaker-specific semantic priors during the experiment, we
employed a real-time modeling approach based on free-energy optimisation [24]. This was done because the low com-
putational cost allowed us to continuously estimate trial-by-trial shifts in participants’ inferred semantic representations
of speaker-specific and speaker-invariant priors 𝜋 for any given speaker i in real-time. To do this, we sought to infer 𝜋 by
maximising p(𝜋|S) for some semantic input S.

For efficiency in model estimation, we reduced the original 300-dimensional GloVe embeddings [78,79] to a 50-
dimensional subspace that spanned all S. Briefly, we preprocessed demeaned embeddings by applying principal compo-
nent analysis (PCA), and removing the top D = 7 components, and projected data to 50 dimensions, followed by a second
iteration of the PCA-based preprocessing. This approach has been shown to improve embedding quality [89,90].

For simplicity, we assumed that 𝜋 follows a 50-dimensional Gaussian distribution per speaker, with mean 𝜇i and vari-
ance 𝜎i. Since finding exact solutions for

p(𝜋|S) = p(𝜋)p(S|𝜋)
∫p(𝜋)p(S|𝜋)d𝜋

is prohibitively expensive to compute, we approximated only the most likely values of 𝜋, denoted 𝜙, using a free-energy
approach. This involved optimising the free-energy

F = ln f(𝜙; 𝜇i, 𝜎i) + ln f(S; 𝜙, 𝜎)

where f denotes the density. We modeled this as a simple set of nodes comprising the current estimate 𝜙, an error term
for sensory inputs 𝜀S, and an error term for priors 𝜀p, evolving as

̇𝜙 = 𝜀S − 𝜀p
̇𝜀S = S − 𝜙 − ΣS𝜀S
̇𝜀p = 𝜙 − 𝜇iI − Σp𝜀p
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with parameter updates obtained via gradient ascent:

𝜕F
𝜕𝜇i

= I𝜀p,
𝜕F
𝜕ΣS

= 1
2
(𝜀2S − Σ−1S ), 𝜕F

𝜕Σp
= 1
2
(𝜀2p − Σ−1p )

For further details on derivations, see [24].
Before the experiment, 𝜇i was initialised to the mean of the full GloVe space, and variances Σp and ΣS were drawn

from a uniform distribution. After each trial, posterior estimates were updated via Euler’s method based on the seman-
tic embedding of the word the participant reported. This approach was applied separately to both speaker-invariant and
speaker-specific priors, with the former modelled using a single speaker across all contexts. Crucially, whenever prior
estimates were used outside this estimation procedure, they were based on the posterior of the previous trial within that
context to prevent incorporation of future information.

4.6 Modeling choice behaviour

Behavioural responses from experiments one and two were analysed in R (version 4.03) [91] using lme4 [92] and
emmeans [93]. Generalised linear mixed models were fit using the ‘bobyqa’ optimiser with a maximum of 2e5 iterations.
To increase generalisability, a maximal model fitting procedure was followed [94,95] to identify the maximal random
effects structure that allowed the model to converge without singular fit. Residuals within the identified maximal model
were inspected using DHARMa [96].

Behavioral choices were modeled as

p(chose word) ∼ t × 𝜅 + t × p(word|speaker) + (1|participant)

where trial number t, perceptual bias 𝜅 and the probability of the word given the speaker p(word|speaker) were scaled to
have zero mean and unit variance. Note that probabilities of the word given the speaker were computed as the cosine
similarity between the word’s embedding and the priors (see Estimating real-time semantic models). For the random
effects structure, we tested all reasonable permutations that included these predictors as well as the position of the word
on screen, the semantic context, the speaker, and their distinguishing visual feature.

The maximal identifiable model included the following random effects structure for data from experiment one:

(0 + 𝜅 + p(word|speaker)|participant)+
(1|speaker × context1 × context2)+

(1|participant × context1 × context2)

and for data from experiment two:

(1 + t + 𝜅 + p(word|speaker)|participant × context) +
(1|face × feature)

Note that, while random effects structures differ slightly between experiments, all maximal models included the critical
random slopes by 𝜅 and p(word|speaker).
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4.7 Preprocessing EEG data

EEG data were preprocessed using MNE [97] following a preregistered [26], standard preprocessing pipeline [98]. Line
noise was removed with a notch filter at 50Hz and harmonics. Channels were demeaned and visually inspected for exces-
sive noise. Noisy channels were interpolated (N = 0 ± 1). To identify rare excessive muscle activity, data were bandpass
filtered (110-140Hz, IIR filter), epoched from -500 to 2500ms, z-scored, and visually inspected. Bad trials were flagged.
EEG data were then bandpass filtered (0.5-50Hz, IIR filter) and epoched (-500 to 2500ms relative to audio onset). Inde-
pendent component analysis [99] was employed to remove ocular, cardiac, and muscle-related artifacts. Epochs were
re-referenced to the global average and underwent a final visual inspection for trial selection (trials dropped in part one:
N = 8 ± 6, part two: N = 5 ± 3). Crucially, this trial selection was applied only for single-trial EEG encoding models where
severe artifacts would degrade measured encoding quality. To preserve the critical structure of identical morphs being
perceived given different speaker contexts (see Fig 1), no trials were dropped in the cRSA regression approach. For
single-trial modeling of EEG responses, we applied an additional lowpass filter (≤ 15Hz, IIR filter) [15]. All data were
downsampled to 200Hz to speed-up subsequent analysis steps.

4.8 Stimulus reconstruction of morphs

To probe the content of low-level sensory representations, we decoded gammatone spectrograms from neural responses
following presentation of a morph. To do this, gammatone spectrograms were extracted from raw audio signals at 200Hz
across 28 logarithmically spaced frequency bands between 50–11025Hz, analogous to previous work [100]. To improve
estimation, spectrograms were smoothed with a 100ms boxcar kernel [101].

We then trained subject-level multivariate stimulus reconstruction models [19] mapping from neural data X to gamma-
tones s:

ŝ(t) =∑
n

∑
𝜏
r(t + 𝜏, n)g(𝜏, n)

Here, ŝ(t) is the reconstructed gammatone representation at time point t, r(t + 𝜏, n) is the neural response X at t and
channel n time-lagged by 𝜏, and g(𝜏, n) is the spatial filter at lag 𝜏. We used a time window of 𝜏 = {0, ..., 250}ms. We solved
for spatiotemporal filters G using sklearn [102], sklearn-intelex [103] and PyTorch [77]:

argmin
G

∑
t

(st −GTRt)2 + 𝛼G||G||2

where optimal ridge penalties 𝛼G were found using leave-one-out cross-validation to test 20 logarithmically spaced values
between 1e–5–1e10. Inputs X and s were standardised to have zero mean and unit variance. Models were estimated using
5-fold cross-validation. Out-of-sample performance was measured as the Pearson correlation between real spectrograms
s and reconstructed spectrograms ŝ in the held-out test set, averaged over frequency bins and time points. Decoded pat-
terns were computed following [104]. To improve robustness, this procedure was repeated over 100 permutations of the
data. Final estimates were obtained by averaging out-of-sample performance, decoded patterns and stimulus reconstruc-
tions.

Statistical inference. To determine overall reconstruction performance, we performed a two-sided one-sample t-test
over performance averaged over frequency bands. Further, we tested reconstruction performance in individual frequency
bands using two-sided one-sample t-tests. Bonferroni-Holm corrections were applied to adjust for multiple comparisons.

4.9 Modeling acoustic expectations as top-k predictions

Our experimental design was tailored to address the question: How do expectations shape neural representations? Princi-
pally, a morph sea-tea given speaker context nature may be represented more like sea than tea, or vice versa. However,
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it is unlikely that the brain makes predictions that are this concrete, as it would require, for example, predicting sea at trial
t (sea-tea|nature) but immediately thereafter kayak at trial t + 1 (kayak-cognac|nature). In reality, the brain is assumed to
make distributional predictions instead [1]. For example, the distributional expectation for nature q(nature) may be:

q(nature) =
⎡
⎢
⎢
⎢
⎣

p(sea|nature)
p(kayak|nature)

⋮
p(tea|nature)

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0.14
0.10
⋮

0.02

⎤
⎥
⎥
⎥
⎦

(1)

where p(wordi|context) is computed from semantic embeddings of individual words ei and semantic priors obtained from
free-energy models 𝜋:

p(wi|𝜋) =
1
2p̄

( ei ⋅ 𝜋
||ei|| ||𝜋||

+ 1) where p̄ =
k

∑
i=0

p(wi|𝜋)

In other words, the probability of any word given a context is the normalised cosine similarity ∠̃ ∈ [0,1] between the
semantic embedding of that word and the semantic embedding of the context obtained from free-energy models that
evolve over the experiment, measuring their probability as a function of how similar a word is to a given prior. Note that,
following prior work [37], we use cosine similarity rather than the likelihood of ei under𝒩(𝜇𝜋 , 𝜎2𝜋) as a computational sim-
plification that works particularly well in high-dimensional semantic embeddings. Note also that context subsumes not only
speaker-specific priors, but also speaker-invariant priors (i.e., context across the experiment).

Generally, we may then obtain an estimate of the prediction as:

𝔼f(𝜋) =
N

∑
i=0

p(wi|𝜋)f(wi) where
N

∑
i=0

p(wi|𝜋) = 1

where f describes some feature we are interested in (for example, acoustic spectrograms), 𝜋 refers to the speaker-
specific or speaker-invariant semantic prior we are applying, and wi is word i of N total words.

While this simplifies the prediction problem by assuming only a fixed vocabulary over stimuli included in the study, we
can be reasonably certain that these truly reflect expected words. This is because, during stimulus creation, categories
in semantic space were sampled densely, including those words that most closely aligned with any category. Therefore,
these words should inherently reflect the most predictable words given any context.

When modeling semantic feature predictions, this approach could be approximated by comparing a morph sea-tea to
its constituent words because semantic contexts reflect strong categorical structure whereby any word in nature is more
similar to other words of nature than other contexts. Critically, words that are similar in meaning can be highly heteroge-
neous in acoustic features and vice versa (e.g., dog-canine or bear-bare). Consequently, modeling acoustic expectations
requires a more explicit commitment to distributional predictions.

Therefore, here we model acoustic predictions as:

𝔼s(𝜋) =
k

∑
i=0

p(wk|𝜋)s(wk)

where s refers to spectrograms of individual words. While the resulting acoustic template 𝔼s(𝜋) may not correspond to a
naturalistic waveform, the use of non-negative spectrogram magnitudes ensures that there is no destructive interference:
Energy patterns of different words are mixed rather than cancelled, highlighting the spectral regularities between words as
a function of their probability.
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To illustrate the conservation of energy here, consider a decoder with a linear decision function:

fc(x) = wT
cx + bc

with the expected top-k template:

x̄𝜋 = 𝔼[x|𝜋] =∑
w

p(w|𝜋)xw

Then for every feature c:

fc(x̄𝜋) = wT
c (∑

w

p(w|𝜋)xw) + bc

=∑
w

p(w|𝜋)wT
cxw + bc

=∑
w

p(w|𝜋)(wT
cxw + bc) + (1 −∑

w

p(w|𝜋))bc

=∑
w

p(w|𝜋)fc(xw) since ∑
w

p(w|𝜋) = 1

In other words, decoding features from top-k predictions (probability-weighted spectrogram templates) is formally
equivalent to decoding features from each of the k individual words, weighted by their probabilities. This equality holds
even with intercepts and affine transformations. An empirical validation thereof as well as an extension to representational
similarity is provided in a Jupyter notebook (topk_spectrogram_validation) available on GitHub [105].

Consequently, this approach allows us to create acoustic templates that reflect statistics of expected acoustic features
that are predictable given a semantic prior. One caveat with this approach is the implicit simplifying assumption that words
are predicted in full. Contrary to this assumption, we would expect the brain to make highly transient and auto-regressive
predictions that are updated as the acoustic signal unfolds. For example, if we originally predict <crave>, <crane>, and
<crowd>, once has been heard, <crowd> should be neglected–and predictions should be reweighted accordingly.
This simplification was made for computational tractability.

4.10 Regressing composite representational similarity

To determine whether semantic expectations influenced the representation of morphed words at the acoustic level, we
computed within-item composite representational similarity matrices [20] comparing reconstructed spectrograms based
on the recorded EEG data of the morphed stimuli with the real spectrograms of the audio files making up the respective
morphs (e.g., and for morph ). The observed cRSM for each morph n at time point t was defined as:

where f denotes cosine similarity computed over the frequency bins of gammatone spectrograms. This yielded a cRSM of
size 120 × 2 × 2 × 200 (morph pairs × contexts × words × time points) per participant.

Note that this departs from conventional RSA [20] where RSMs are computed between items, which would have
yielded an RSM of size 240 × 240 × 200 (morphs × morphs × time points). Here, we opted for this approach because our
research question and design pose a contrast at the within-item level: What is the direction in which predictions change
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the sensory representations of the same acoustic morph given different speaker contexts–towards or away from predic-
tions (see Fig 2)? Representational similarity allowed us to jointly model the influence of predictions in different modalities
(i.e., acoustics and semantics), while anchoring decoded neural representations directly to real words allowed us to test
this directly, without strong mathematical commitments to specific formulations underlying these computations that remain
debated [8] but would have been required in a conventional second-order comparison through RSA [20]. Converging evi-
dence from conventional RSA is presented in the supplement (see Conventional representational similarity analysis, S7
Fig, S8 Fig).

We then generated hypothesis cRSMs to assess which representational structures best explained the observed
cRSMs. We formulated three core hypotheses to test how acoustic representations changed as a function of the speaker
context (see Fig 2B). For each prior-dependent hypothesis, predictions were derived from both speaker-specific and
speaker-invariant priors. Both speaker-specific and -invariant hypotheses were therefore computed following the same
procedure, with the only difference being the exact semantic prior distribution 𝜋, derived from speaker-specific or speaker-
invariant free-energy models (see Estimating real-time semantic models), that was used.

Prior-independent morph-based representation. First, as a baseline, if presented morphed words are processed
based on the pure, i.e., expectation-free, acoustics of the morph, representational similarity should reflect the direct com-
parison between the morph’s gammatone spectrogram (e.g., ) and the respective real spectrogram making up the
morph (e.g., and ).

Prior-dependent acoustic representation. If semantic priors influence the processing of the morphed words already
at an acoustic stage, within-item similarity should reflect expected acoustics derived from the semantic priors. We esti-
mated these expectations by computing the top-k predicted words:

argmax
word

k

∑
i

p(wordi|𝜋)

where 𝜋 is a speaker-specific or -invariant semantic prior distribution derived from free-energy models (see Estimating
real-time semantic models). Normalised probabilities were then used to compute a prior-weighted template from the top-k
words that reflected expected acoustic features:

s(predicted|𝜋) =
k

∑
i

p(wordi|𝜋)s(wordi)

Since spectrogram magnitudes are inherently non-negative, there is no destructive interference here. Instead, this
weighted procedure aggregates spectral energy from individual word predictions that together form an expected template
that reflects predicted acoustic features (see Modeling acoustic expectations as top-k predictions, Regressing compos-
ite representational similarity; see also S6 Fig). Expected acoustic templates were then compared with the respective real
spectrograms making up the morph (e.g., and ).

Because language exhibits strong baseline predictability [3,37], we controlled for general acoustic expectations that
participants may have about German. To do this, we repeated the exact procedure for top-k predictions outlined above,
but generated predictions from non-specific priors sampled from an isotropic Gaussian around the vector space’s centroid
at every trial. Across large numbers of trials and k, this therefore approximates general statistical regularities of German,
allowing us to control for general predictive processes that were irrespective of our experiment.

Prior-dependent semantic representation. If semantic priors influence the processing of the morphed words at
higher-level processing stages—for example, shifting sensory representations uniformly per semantic context—composite
representational similarity should reflect direct comparisons between the prior distribution of the semantics given the
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speaker 𝜋(speaker) or speaker-invariant prior 𝜋 (see Estimating real-time semantic models) and the word embeddings
of the words making up the morph (e.g., sea and tea). As before, we computed an additional control predictor to capture
more global statistical regularities.

Modeling approach. To test whether speaker context shifted participants’ perception of the same acoustic morphs, we
used ridge regressions mapping from hypothesis cRSMs X to sensory cRSMs y for each participant:

ŷ(t) = 𝛽tXt + 𝜖

where 𝛽t are the coefficients at time point t. We constructed a temporally expanded design matrix D and temporally
expanded outcomes Y, and solved for the full model 𝛽 using sklearn [102], sklearn-intelex [103] and PyTorch [77]:

argmin
𝛽
∑
i

(Yi − 𝛽TDi)2 + 𝛼𝛽 ||𝛽||2

Ridge penalties 𝛼𝛽 were optimised using leave-one-out cross-validation to test 20 logarithmically spaced values
between 1e–5–1e10 [102]. Models were estimated using 5-fold cross-validation with 50 repetitions [106] and all outcomes
and predictors were scaled to have zero mean and unit variance based on the training set to prevent data leakage. Out-
of-sample performance was defined as the Pearson correlation between observed sensory cRSMs y(t) and predicted sen-
sory cRSMs ŷ(t) in the held-out test set [100,101]. To ensure comparability across models, we normalised coefficients
as:

̂𝛽j,t =
𝛽j,t

maxt∑j |𝛽j|

Thus, ̂𝛽j represents the relative contribution of predictor j to the variance explained [107], while meaningfully preserving
signs.

Candidate models. Baseline models predicted sensory cRSMs from hypothesis cRSMs based on audio spectrograms
of morphs as well as audio spectrograms and semantic embeddings from general language-specific expectations. We
then performed step-wise inclusion of speaker-specific and speaker-invariant acoustic and semantic hypothesis cRSMs.

Statistical inference. Improvements in out-of-sample predictions for each hypothesis cRSM were tested using
two-sided paired t-tests, with Bonferroni-Holm corrections applied for multiple comparisons. Significance of temporally
resolved variance explained by ̂𝛽 was assessed through cluster-based permutation tests [51]. To compensate for the
number of predictors, Bonferroni corrections were applied.

4.11 Validating top-k acoustic predictions

If speaker-specific acoustic top-k predictions truly captured meaningful acoustic expectations of participants, disrupting
these predictions should similarly deteriorate model performance.

To test this, we refit speaker-invariant and speaker-specific semantic priors (see Estimating real-time semantic models)
for each participant while randomising their responses. This meant that semantic priors were now fit over the semantically
coherent words in only 50% of trials. The remaining 50% of trials fell into one of five distinct alternative contexts (each with
10% chance). Because these were five disparate contexts that, jointly, were not semantically coherent, the newly esti-
mated semantic priors still converged to coherent speaker-specific semantic priors that reflected a plausible estimate of
the target context. Critically, however, they no longer represented the true semantic prior of any participant at any point in
time.

Because this procedure preserved the overall semantic structure of priors but disrupted the degree to which participant-
specific expectations were captured, we expected that model performance should be degraded for speaker-specific
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acoustic predictions, but that speaker-invariant acoustic predictions should remain largely unaffected given that
experiment-specific statistics remain comparable.

To test this, we generated speaker-invariant and -specific acoustic and semantic top-k predictions from these foil pri-
ors. In accordance with our main analysis, we set k = 5. We then regressed foil cRSMs on sensory cRSMs, mirroring the
procedure from our main findings (see Regressing composite representational similarity). We performed paired samples
t-tests between performance of models using true and foil semantic priors with Bonferroni-Holm corrections applied.

4.12 Conventional representational similarity analysis

To ensure that our finding of dominant sharpening at the acoustic level did not depend on the choice of analysis method
(within-item composite RSM regression) or spectrogram averaging, we also conducted a conventional between-item rep-
resentational similarity analysis (RSA) [20]. In this analysis we computed full representational similarity matrices (RSMs)
for decoded sensory representations and all hypotheses from the original analysis (see Regressing composite represen-
tational similarity). Between-item RSA is typically used to compare representational geometries across systems [20]. As
previously discussed (see Results), this requires a commitment to specific mathematical formulations of the computa-
tions of interest, which is challenging for predictive processing where a particularly high number of potential formulations
exist [7,8,31–33]. To reduce degrees of freedom [34–36], we adopted two common mathematical formulations of sharpen-
ing and prediction error that are mathematically simplified by assuming no precision weighting [8,14]:

sharpening(observation ∣ expectation) = observation × expectation
prediction error(observation ∣ expectation) = observation − expectation

Sensory RSMs were computed from cosine similarity between reconstructed spectrograms, and hypothesis RSMs
were computed from: 1) morph spectrograms, 2) speaker-specific and speaker-invariant top-k acoustic predictions, and
3) speaker-specific and speaker-invariant semantic predictions. For this analysis we set k = 1 to avoid averaging across
spectrograms. For semantic RSM computations, sharpening and prediction error formulations required disambiguation of
morphs towards the target word (e.g., observation(sea-tea|nature) = sea) that were paired with their respective seman-
tic priors (e.g., expectation(sea-tea|nature) = 𝜋(nature)); see Estimating real-time semantic models). In all, this yielded
RSMs of size 240 × 240 × 200 (morphs × morphs × time points) of which the upper triangles were used for regressions
(28,680 × 200).

To assess the influence of individual hypothesis RSMs, we used ridge regressions mapping from hypothesised RSMs X
to observed sensory RSMs y for each participant:

ŷ(t) = 𝛽tXt + 𝜖

where 𝛽t are coefficients at time point t, Xt are hypothesis RSMs and ŷ are predicted sensory RSMs. We solved for mod-
els 𝛽 using PyTorch [77] and MVPy [108]:

argmin
𝛽t

∑
i

(yi − 𝛽Tt Xt)2 + 𝛼𝛽 ||𝛽t||2

Ridge penalties 𝛼𝛽 were optimised using leave-one-out cross-validation, testing 20 logarithmically spaced values
between 1e–5–1e10 [102]. All models were estimated with 5-fold cross-validation and 50 repetitions. Predictors were
scaled to have zero mean and unit variance, based on training sets to prevent data leakage. Model performance was
measured as out-of-sample Pearson correlation between y(t) and ŷ(t) in the held-out test sets, mirroring the procedure
followed in our main analysis (see Regressing composite representational similarity).
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Out-of-sample prediction performance between models was compared using two-sided paired t-tests with Bonferroni-
Holm corrections, mirroring the original model comparison procedure in cRSM regressions (see Regressing composite
representational similarity). For results from this analysis, see S7 Fig and S7 Table. For results from this analysis while
restricting the temporal window to that of the shortest possible prediction (0.0–0.48s), see S8 Fig and S8 Table.

4.13 Pretrained transformers as statistical surrogates

For modeling of single-trial EEG responses, we required estimates of speaker-prior independent surprisal that are known
to modulate neural responses [15]. Since phonotactic, lexical, and semantic surprisal are undefined for morphed words,
we assessed how well these properties were captured by activations of pretrained transformers in a separate analysis.

To achieve this, an excerpt of a larger narrative (Alice in Wonderland, produced by the same speaker)–wherein phono-
tactic, lexical, and semantic surprisal were well-defined–was fed into ‘Wav2Vec2.0-large-xlsr-53-german‘ [23,109] using
PyTorch [77] and Transformers [110]. Layer-specific activations were extracted for narrative data. For computational effi-
ciency, we performed layer-wise principal component analysis over narrative data and projected activations onto a 5-
dimensional subspace. For layer selection and to confirm that the resulting activations included the relevant information
theoretic measures, we built back-to-back decoding models [41]. In a first step, we built models mapping from layer acti-
vations X to observed measures y through a filter G:

argmin
G

∑
i

(yi −GTXi)2 + 𝛼G||G||2

where yi is a feature at trial i, Xi is the corresponding layer-specific activation and 𝛼G is a regularisation parameter. These
models were fit over the first half of the narrative data. The remaining half was then used to find the unique variance
explained by each feature by mapping from decoded features ŷ to observed features y through a filter H:

argmin
H

∑
i

(yi − HTŷi)2 + 𝛼H||H||2

In both cases, we solved for filters G and H using sklearn [102] and PyTorch [77]. Optimal ridge penalties 𝛼G, 𝛼H
were found using leave-one-out cross-validation to test 20 logarithmically spaced values between 1e–5–1e10 [102]. This
approach was employed for all time points from 0ms-500ms following phoneme onset, averaging over time to obtain an
estimate of the causal contribution of each feature. To improve robustness, this procedure was repeated for 50 permu-
tations of the narrative data [106]. Finally, we computed the proportion of variance explained by each feature to facilitate
interpretation [107]:

R2 = H

maxL∑
F
i Hi

where L are all layers of the transformer and F refers to all features. To identify the layer that was maximally sensitive to
joint surprisal measures, we then ranked all layers per feature and took the geometric mean across features. The best
layer was then selected by taking the median across permutations. For full results, please see S9 Fig. Features were
operationalised as follows:

Phonotactic surprisal. The probability of a phoneme given its preceding context was estimated using CLEAR-
POND [111]. At each word position, all phonotactically consistent words (e.g., /t/: tea, tear, trousers, ...) were identified,
and the probability of the next phoneme (e.g., ) given all observed next phonemes x was computed as:

p(phoneme) = N−1
N

∑
i

1(xi = phoneme)
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Lexical surprisal. The probability of a word was estimated using its relative frequency f in CLEARPOND [111] as
p(word) = log10 f.

Semantic surprisal. The probability of a word was derived from the cosine similarity of its GloVe embedding g relative
to the mean embedding 𝔼[G]:

p(word) = 1 + g ⋅ 𝔼[G]
||g|| ||𝔼[G]||

For all features, surprisal was defined as − log2 p. Results revealed that, across an array of d-dimensional projections
of model activations, layer 19 (transformer layer 12) was consistently sensitive to prior-independent phonotactic, lexical
and semantic surprisal (see S9 Fig).

Finally, we fed all morphs into the model and extracted model activations at layer 19. Model activations were projected
into 5- and 10-dimensional subspaces and stored for later use as surrogate predictors that jointly controlled for measures
of surprisal that were otherwise undefined for morphs when modeling single-trial EEG responses.

4.14 Encoding of single-trial EEG data

To investigate whether participants showed neural signatures of speaker-specific acoustic or semantic surprisal, we built
encoding models [19,21,22] mapping from stimulus features X to the recorded neural data y through multivariate temporal
response functions (mTRFs) for each participant:

r(t,n) =∑
𝜏
w(𝜏, n)s(t − 𝜏) + 𝜖(t,n)

Here, r(t, n) is the reconstructed neural signal in channel n at time point t, w(𝜏, n) are the 𝛽-estimates at lag 𝜏, s(t−𝜏)
are the corresponding stimulus features, and 𝜖(t,n) are the residuals. For 𝜏, we chose a window between –100ms and
800ms. Continuous predictors (e.g., acoustic envelopes, wav2vec2.0 activations) were averaged within each linguistic unit
to create discrete predictors at the phoneme and word levels. For features without explicit segmentation (e.g., wav2vec2.0
activations), we constructed both phoneme- and word-level spike regressors in this way. We solved for the forward model
W using sklearn [102] and PyTorch [77]:

argmin
W

∑
t

(yt −WTSt)2 + 𝛼W||W||2

where optimal ridge penalties 𝛼W were found using leave-one-out cross-validation to test 20 logarithmically spaced val-
ues between 1e–5–1e10. All models were estimated using 5-fold cross-validation with 50 repetitions [106] and all outcomes
and predictors were scaled to have zero mean and unit variance based on the training set to prevent data leakage. For
predictors, standardisation was applied after lag expansion (i.e., each column of the lagged design matrix St was z-scored
within the training fold) to ensure that ridge regularisation penalised all lags comparably. Out-of-sample performance was
defined as the Pearson correlation between observed neural signals y(t, n) and reconstructions thereof r(t, n) in the held-
out test set [19].

Candidate models. Baseline models included predictors for acoustic envelopes

envelope(t) =
F

∑
i

|s(i, t)|0.6
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where F are all frequency bands and t refers to time points in gammatone spectrogram s, as well as acoustic edges [112]

edge(t) =
√√√
√

1
2Δt

∫
t+Δt

t−Δt

(envelope(𝜏) − 𝔼[envelope(𝜏)])2d𝜏

where 𝔼[envelope(𝜏)] is the mean envelope over t ± Δt. Baseline models also included predictors controlling for general
phonotactic, lexical and semantic surprisal. Generally, control predictors were derived from pretrained transformer acti-
vations (see Pretrained transformers as statistical surrogates). However, to rule out the possibility of performance of pre-
trained transformers given morphs confounding results, we also conducted a second set of analyses where control predic-
tors were computed as direct measures of phonotactic, lexical and semantic surprisal by disambiguating the morph to the
target word.

We then performed step-wise inclusion of speaker-specific and speaker-invariant acoustic and semantic surprisal mea-
sures, derived from the predicted acoustic s(predicted|speaker) and semantic features p(speaker):

surprisalacoustic = − log2 [1 + f(s(stimulus), s(predicted|speaker))]

surprisalsemantic = − log2 [1 + f(g,p(speaker))]

where f denotes cosine similarity and g represents the target word embedding.
Predictors were entered as impulse responses at phoneme or word onsets, depending on feature type. Projected trans-

former activations, lacking explicit linguistic segmentation, were entered as both.
Statistical inference. Encoding performance improvements were tested using two-sided paired t-tests, with

Bonferroni-Holm corrections applied for multiple comparisons. Specifically, we tested for within-participant differences
between models, e.g. t(baseline, speaker-specific acoustic). Encoding performance of baseline models–measured as
the Pearson correlation between observed neural responses y and reconstructions thereof r–was confirmed to be above
chance using one-sample t-tests (main task: M = 0.18, s.e. = 0.01, t(34) = 26.48,p = 2.80e−24; exemplar task: M = 0.15,
s.e. = 0.01, t(34) = 20.92,p = 5.36e−21).

4.15 Estimating spatiotemporal contributions of predictors

To obtain a clearer view of the spatiotemporal contributions of the predictors of interest, we employed a knock-out proce-
dure.

We first estimated the performance of the full model, rfull, by computing the Pearson correlation between the observed
EEG signals y(t, n) and reconstructed signals ŷ(t,n|S), where S is the full time-resolved design matrix (see Encoding
of single-trial EEG data). To isolate the influence of a given predictor at a specific time lag 𝜏, we generated a knock-out
design matrix S𝜏 in which the corresponding coefficient at 𝜏 was set to zero. We then computed the knock-out model’s
performance, rknock-out, as the correlation between observed signals y(t, n) and reconstructed signals ŷ(t,n|S𝜏). The spa-
tiotemporal contribution of the predictor at each lag was quantified as:

Δr𝜏 = rfull − rknock-out

To ensure robustness, models were trained using 5-fold cross-validation and evaluated over 50 permutations of the
data. The estimated spatiotemporal contributions Δr𝜏 were then averaged across folds and permutations. Finally, we nor-
malised these contributions relative to the improvement of the full model over the baseline model’s performance, rbaseline,
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yielding a spatiotemporally resolved measure of the variance explained:

R2
𝜏 =

Δr𝜏
𝔼[rfull − rbaseline]

Statistical inference. Significance of spatiotemporal variance explained was tested using cluster-based permutation
tests [51]. To compensate for the number of coefficients within each model, Bonferroni corrections were applied.

4.16 Modeling behaviour in congruent and incongruent trials

Reaction times were analysed in R (version 4.03) [91] using lme4 [92] and emmeans [93]. Linear mixed models were fit
with default parameters. A maximal modelling procedure was followed [94]. Residuals of the identified maximal model
were inspected visually.

Reaction times were modeled as

logRT ∼ t × congruence × p(word|speaker) + (1|participant)

where trial number t and the probability of the word given the speaker p(word|speaker) were scaled to have zero mean
and unit variance. For the random effects structure, we included all reasonable permutations of these predictors as well as
the position of the word on screen, the semantic context, the speaker and their distinguishing visual feature. The maximal
identifiable model included:

(1 + t + p(word|speaker)||participant)
+ (1 + p(word|speaker)||context)
+ (1 + p(word|speaker)||stimulus)
+ (1 + p(word|speaker)||position)
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Supporting information

S1 Fig. Results from behavioural analysis. Summary of key behavioural results from online experiment one (top row)
and EEG experiment two (bottom row). In both experiments, participants initially relied on remaining acoustic proper-
ties (i.e., morph bias to one of the words within each word pair), but decreased this reliance over time (left). Participants
increasingly relied on the probability of the word given the speaker instead (right). Lines represent means, with shaded
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areas representing 95%-confidence intervals. For details, see S1 Table and S2 Table. Data and code supporting these
findings are available from https://doi.org/10.17605/OSF.IO/SNXQM.
(TIFF)

S2 Fig. Stimulus reconstruction by frequency band. Accuracy of stimulus reconstruction models [19] in all 28 individ-
ual frequency bands. Bold dots indicate means, with 95%-confidence intervals around them. Small dots represent indi-
vidual participants. Inlaid topographies show the decoded pattern for this frequency band. ∗∗∗, ∗∗, ∗ represent p ≤ 1e−3,
p ≤ 1e−2 and p ≤ 5e−2, respectively. For details, see S3 Table. Data and code supporting these findings are available from
https://doi.org/10.17605/OSF.IO/SNXQM.
(TIFF)

S3 Fig. Influence of the number of predicted words on cRSA regression performance.We systematically refit mod-
els with increasing k to test whether the brain makes a specific number of predictions k. Big dots represent group means,
with 95%-confidence intervals around them. Small dots indicate individual participants. Big black bars on top indicate
p ≤ 5e−2 for any contrast. For more details, see S4 Table. Data and code supporting these findings are available from
https://doi.org/10.17605/OSF.IO/SNXQM.
(TIFF)

S4 Fig. cRSM regressions using top-19 predictions. Similarity encoding models using k = 19 predictions, because
increasing the number of predictions k yielded significant improvements in performance. Left: Results show that both
speaker-invariant and speaker-specific acoustic predictions improve model performance, with the best model incorpo-
rating both at once. Critically, purely semantic predictions failed to improve performance. This is in line with our results
based on k = 5, reported in Fig 2. Big dots represent group means, with 95%-confidence intervals around them. Small
dots represent individual participants. ∗∗∗, ∗∗, ∗ indicate p ≤ 1e−3, p ≤ 1e−2, and p ≤ 5e−2, respectively. The downward-
facing triangle marks the best model overall. Big black bars between groups indicate p ≤ 5e−2. Right: Coefficients
for speaker-specific acoustic predictions showed, again, that there was significant sharpening of neural representa-
tions, with a cluster between 0ms-1000ms. Lines indicate mean, with shaded areas around them representing 95%-
confidence intervals. Big black lines indicate p ≤ 5e−2. Data and code supporting these findings are available from
https://doi.org/10.17605/OSF.IO/SNXQM.
(TIFF)

S5 Fig. Correlations between predictors in cRSA regression. Correlations between all hypothesis cRSMs used
in regressing sensory cRSMs for top-k predictions where k = 5. Hypothesis cRSMs included baseline morphs (BM),
baseline acoustic predictions (BA), baseline semantic predictions (BS), speaker-invariant acoustic predictions (IA),
speaker-specific acoustic predictions (SA), speaker-invariant semantic predictions (IS), and speaker-specific seman-
tic predictions (SS). Baseline predictors were included in all models to control for acoustic properties of the morph (BM)
as well as general acoustic (BA) and semantic predictions (BS) that were irrespective of our experiment. Left: Corre-
lations were computed between all hypothesis cRSMs and averaged over time points. Individual cells contain means
and standard errors computed over subjects. Right: Correlations were computed between all hypothesis cRSMs, but
not averaged over time points. In each cell, time points (0.0-1.0s) are plotted on the x-axis, whereas correlations (-1 - 1)
are plotted on the y-axis. Per cell, we plot chance level (dashed lines) and mean over subjects (solid lines) with confi-
dence intervals indicated by shaded areas around means. Data and code supporting these findings are available from
https://doi.org/10.17605/OSF.IO/SNXQM.
(TIFF)

S6 Fig. Top-k predictions capture meaningful acoustic expectations. Validation analysis using foil priors that dis-
rupted participant-specificity of semantic priors. To confirm that performance of top-k acoustic predictions depended on
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the trial-specific top-k predictions, we compared performance of predictions from the true speaker-invariant and -specific
semantic priors with coherent but not trial-specific foil semantic priors in cRSM regressions (see Validating top-k acoustic
predictions). In accordance with our main analysis, we set k = 5. As expected, this confirmed that speaker-specific acous-
tic predictions depended on the trial-specific predictions, indicating that they captured meaningful acoustic predictions.
Note that, for visual clarity, we restricted the y-axis to a smaller range. Individual bars represent group means, with black
lines indicating 95%-confidence intervals around the mean. Big bars between groups indicate p ≤ 5e−2. Data and code
supporting these findings are available from https://doi.org/10.17605/OSF.IO/SNXQM.
(TIFF)

S7 Fig. Conventional RSA corroborates findings from cRSA. Between-item RSA regression models using k = 1 pre-
dictions to validate results using a conventional approach and without spectrogram averaging (see Conventional rep-
resentational similarity analysis). Results confirm the dominance of acoustic sharpening (sh) over acoustic prediction
errors (pe), as well as the dominance of acoustic over semantic sharpening. Unlike the within-item cRSM regression,
this approach also shows modest additive variance explained by both acoustic prediction errors and semantic sharpen-
ing and prediction errors, though variance uniquely attributable to either is comparatively smaller (see S7 Table). There-
fore, this does not change our interpretation that acoustic sharpening is the dominant computation at the sensory level,
but suggests that multiple computations may co-occur at the same level to varying degrees. Individual bars represent
group means, with black lines indicating 95%-confidence intervals around the mean. ∗∗∗, ∗∗, ∗ p ≤ 1e−3, p ≤ 1e−2, and p ≤
5e−2 for model comparisons against baseline, respectively. Big bars between models indicate p ≤ 5e−2. Data and code
supporting these findings are available from https://doi.org/10.17605/OSF.IO/SNXQM.
(TIFF)

S8 Fig. Length of acoustic predictions does not explain RSA results. Between-item RSA regression models, setting
k = 1 to avoid averaging and restricting the temporal window of the analysis to the shortest possible prediction (0.0-0.48s)
such that differences in length could not affect results (see Conventional representational similarity analysis). Results cor-
roborate the pattern observed without temporal restrictions (see S7 Fig), ruling out prediction length as a confounding fac-
tor (see S8 Table). Individual bars represent group means, with black lines indicating 95%-confidence intervals around the
mean. ∗∗∗, ∗∗, ∗ indicate p ≤ 1e−3, p ≤ 1e−2, and p ≤ 5e−2, respectively. Big bars between groups indicate p ≤ 5e−2. Data
and code supporting these findings are available from https://doi.org/10.17605/OSF.IO/SNXQM.
(TIFF)

S9 Fig. Layer selection in pretrained transformer. To identify the layer within word2vec2.0 that best captured phono-
tactic, lexical and semantic surprisal, we performed back-to-back decoding [41] over an independent set of narrative stim-
uli (see Pretrained transformers as statistical surrogates). Here, we show the relative causal contribution of each feature
across layers, for a number of PCA projections with dimensionality d. Small dots represent means, with 95%-confidence
intervals around them. Downward-facing triangles represent the best layer overall for each d. Crucially, for all d tested,
layer 19 (transformer layer 12) was identified as the most informative layer. This is in accordance with recent results find-
ing that middle layers of transformers tend to reflect neural processing best [3]. Data and code supporting these findings
are available from https://doi.org/10.17605/OSF.IO/SNXQM.
(TIFF)

S10 Fig. Encoding models are robust to increased transformer dimensionality. To test the robustness of the effect
of speaker-specific semantic surprisal, we refit the models using d = 10 features from transformer activations. Left: This
revealed that, again, only speaker-specific semantic surprisal improved encoding performance—though here results var-
ied more strongly, likely due to the now relatively high number of predictors within the model. Big dots represent group
means, with 95%-confidence intervals around them. Small dots represent individual participants. ∗∗∗, ∗∗, ∗ indicate p ≤
1e−3, p ≤ 1e−2, and p ≤ 5e−2, respectively. The downward-facing triangle marks the best model overall. Big bold lines
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indicate p ≤ 5e−2. Right: As before, speaker-specific semantic surprisal explained significant variance, with a cluster
across a wide array of sensors around 110ms-400ms. The inlaid topography shows variance explained at each sensor
position within the cluster, with channels contributing to the cluster highlighted in black. Lines indicate means, with 95%-
confidence intervals as shaded areas around them. Bold black lines indicate p ≤ 5e−2. Data and code supporting these
findings are available from https://doi.org/10.17605/OSF.IO/SNXQM.
(TIFF)

S11 Fig. Results from encoding models are not contingent on transformers. To further probe the robustness of
speaker-specific semantic surprisal, we refit the models using control predictors derived from the word that was more
likely under the speaker prior. Consequently, these models were implicitly biassed against speaker-specific semantic sur-
prisal, as this disambiguation of the morph meant some speaker-specific information was already encoded in the control
models. Left: Again, we find that speaker-specific semantic surprisal was the only predictor that significantly improved
model performance. Big dots represent group means, with 95%-confidence intervals around them. Small dots represent
individual participants. ∗∗∗, ∗∗, and ∗ represent p ≤ 1e−3, p ≤ 1e−2, and p ≤ 5e−2, respectively. The downward-facing trian-
gle marks the best model overall. Big black lines indicate p ≤ 5e−2. Right: Again, we find that speaker-specific semantic
surprisal explains significant variance, with a cluster across all sensors between –100ms-410ms. The inlaid topography
shows variance explained at each sensor position, with sensors contributing to the cluster marked in black. Lines indi-
cate means, with 95%-confidence intervals around them. Big bold lines indicate p ≤ 5e−2. Data and code supporting these
findings are available from https://doi.org/10.17605/OSF.IO/SNXQM.
(TIFF)

S12 Fig. No systematic differences in peak latency of semantic surprisal responses. Peak latencies of semantic
surprisal effects across morph, congruent and incongruent trials, demonstrating that there was no significant difference
between peak latencies. Note that these represent raw latency estimates over the temporal extent of the cluster. No jack-
knife procedure was applied. Big dots indicate group means, with 95%-confidence intervals around them. Small dots rep-
resent individual participants. Data and code supporting these findings are available from https://doi.org/10.17605/OSF.IO/
SNXQM.
(TIFF)

S13 Fig. Overview of stimulus materials. A Visualisation of the semantic space spanned by the words used in this
experiment, as projected into two dimensions using PCA. Dots represent individual words, coloured by the seman-
tic context they were most likely under. B Gaussian approximation of the distribution of perceptual bias of morphs
across the experiment, showing that stimuli exhibit no systematic bias. C Perceptual bias of morphs for individ-
ual contexts. Big dots indicate context means, with 95%-confidence intervals around them. Small dots represent
individual morphs. Again, no systematic biases exist. Data and code supporting these findings are available from
https://doi.org/10.17605/OSF.IO/SNXQM.
(TIFF)

S1 Table. Behavioural analysis in online experiment. A generalised linear model revealed that participants reported
hearing words as a function of their probability given the speaker prior (fit), remaining perceptual differences (𝜅), and trial
number (t).
(PDF)

S2 Table. Replication of behavioural analysis in EEG experiment. Effects of the probability of a word given the
speaker prior (fit), remaining perceptual differences (𝜅), and trial number (t) on the reported word were replicated in the
EEG experiment.
(PDF)
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S3 Table. Stimulus reconstruction per frequency band. Across all 28 frequency bands of the gammatone filterbank,
stimulus reconstruction performance was significantly above chance level.
(PDF)

S4 Table. Influence of the number of predicted words on cRSA regression performance. Results from consecutive
contrasts of top–k within-item cRSM regression models showed consistent increases in model performance, albeit with
diminishing returns for larger k.
(PDF)

S5 Table. cRSM regressions using top-19 predictions. Results from contrasts in within-item cRSM regression models
using k = 19 confirmed the pattern reported for k = 5.
(PDF)

S6 Table. Top-k predictions capture meaningful acoustic expectations. Comparing cRSM regressions using top-k
predictions derived from participant-specific and plausible foil priors showed better performance of participant-specific
priors (see Validating top-k acoustic predictions). This indicates that they captured meaningful acoustic predictions by
participants.
(PDF)

S7 Table. Conventional RSA corroborates findings from cRSA. Results from between-item RSA regression models
using k = 1 (see Conventional representational similarity analysis) mirrored results obtained from cRSA regressions.
(PDF)

S8 Table. Length of acoustic predictions does not explain RSA results. Results from between-item RSA regression
models using k = 1 and restricting the temporal window to 0.0-0.48s to rule out prediction length as a confounding factor
(see Conventional representational similarity analysis).
(PDF)
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