

ESSAY

How do immunometabolites shape bacterial infections?

Griffin Gowdy , Alice Prince *

Department of Pediatrics, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, United States of America

* asp7@columbia.edu

OPEN ACCESS

Citation: Gowdy G, Prince A (2026) How do immunometabolites shape bacterial infections? PLoS Biol 24(1): e3003585. <https://doi.org/10.1371/journal.pbio.3003585>

Academic Editor: Claudio Mauro, University of Birmingham, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND

Published: January 5, 2026

Copyright: © 2026 Gowdy, Prince. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by National Institutes of Health grants R01HL170129 (A.P.) and 5T32DK0076 (G.G.) (<https://reporter.nih.gov>). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: I have read the journal's policy and one of the authors of this manuscript has the following competing interest: A.P. is an Academic Editor at PLOS Biology. The

Abstract

Metabolites generated by host and pathogen have a major impact on the severity and outcomes of infection. The metabolic response to infection shapes the nature and intensity of the immune response, both in bloodstream infections and, especially, in the pathogenesis of pneumonia. Some metabolites are closely linked to pro-inflammatory responses, whereas others act as immunomodulators in mitigating damage to the host, a common consequence of inflammation. Immunometabolites are also major factors in driving bacterial adaptation to the host, enabling pathogens acquired from environmental sources to modify their gene expression to optimize for persistent infection. In this era of diminishing antimicrobial efficacy, an appreciation of the immunometabolic responses to bacterial infection may provide novel targets for therapy.

Introduction

The study of metabolism, the biochemical mechanisms through which organisms transform substrates to harness energy and build structures, started with the mapping of metabolic networks, linking together metabolites through the enzymatic activities that connect them. Armed with these maps, the field branched into myriad directions, yielding tremendous insight into lines of inquiry ranging from the origin of life to the molecular mechanisms underpinning human diseases. Over the past two decades, immunometabolism has emerged as a powerful framework for understanding immune responses, tumor evolution, and pathogen adaptation [1–3]. The analysis of bacterial metabolic activity (which substrates are fermented or oxidized by a given organism) has been the basis for the classification of pathogens for many decades. However, it is now apparent that the metabolic activities of pathogens, as well as those of the host, shape the nature of the immune response and the eventual outcome of an infection.

There has been a striking increase in bacterial infections that arise as a complication of modern medical practices in hosts with underlying conditions. These are often caused by the *ESKAPE* pathogens (*Enterococcus faecium*, *Staphylococcus*

other authors have declared that no competing interests exist.

Abbreviations: CCR, carbon catabolite repression; CF, cystic fibrosis; DAMPs, damage-associated molecular patterns; EPS, extracellular polysaccharide; FH, fumarate hydratase; LPS, lipopolysaccharide; MDSCs, myeloid-derived suppressor cells; PHDs, prolyl-hydroxylases; ROS, reactive oxygen species; TCA, tricarboxylic acid.

aureus, *Klebsiella pneumoniae*, *Acinetobacter baumannii*, *Pseudomonas aeruginosa*, and *Enterobacter spp.*), antibiotic-resistant opportunists typically acquired in health-care settings [4–6]. Often, these infections are in patients who would otherwise have succumbed to an underlying disease, be it cancer, chronic lung disease, or an autoimmune disorder, but are instead surviving or even thriving as a result of advances in medical practices. The *ESKAPE* pathogens that infect these patients are readily cleared in healthy individuals, yet present challenges in the clinic. Each of these major pathogens has its own metabolic program and degrees of flexibility, giving them distinct advantages in adapting to different niches. An area of particular interest to the growing field of immunometabolism is the lung, in which the study of immunometabolites during pulmonary infection (often by *ESKAPE* pathogens) has helped to explain disease outcomes and identify potential targets for future therapy [3].

In this Essay, we discuss the role of metabolism and immunometabolites in bacterial infection, with a focus on bacterial pulmonary infection. We describe key immunometabolites that regulate the inflammatory tone of the lung and demonstrate their relevance in the pathogenesis of infection and how they drive host adaptation in selected clinically relevant pathogens.

Immunometabolites and infection

From single cells to complex mammals, organisms at all levels must defend against parasitism and infection in order to traverse their life cycles. Innate and adaptive functionalities of immune systems provide numerous and often redundant mechanisms of surveillance and communication for the complex host to defend itself and maintain homeostasis. The immune system detects pathogens through mechanisms ranging from highly specific to broad in scope: foreign antigens serve as substrates for receptors of the adaptive immune system; immune and stromal cells secrete and respond to cytokines and chemokines; common microbial products activate pattern recognition receptors; and activated host cells produce damage-associated molecular patterns (DAMPs) that elicit a robust, and ideally protective, response [7,8].

In contrast to the adaptive immune response, which is classically highly specific and able to discriminate among novel and previously experienced stimuli, metabolites can function more generally to evoke defense against potential pathogens. The products of metabolic activity, whether involved in oxidative phosphorylation, glycolysis, glutaminolysis, fatty acid oxidation or other major mechanisms to generate ATP at the cellular level, have major effects on immune function, hence the designation “immunometabolites” [1,7]. As these metabolites are secreted or released into the extracellular space, they can affect cells within a given environmental niche and influence the metabolic activity of local and recruited immune cells, either locally or systemically. Moreover, within specific niches, such as in the phagolysosome, immunometabolites such as itaconate can achieve high concentrations, much more so than those achieved in the blood stream [9,10]. Because the kinetics of receptor interactions and chemical reactions involving immunometabolites are dictated in part by local concentration, high compartmentalized abundance can enable biological activities that would not occur at systemic levels.

In the setting of bacterial pulmonary infection, metabolites released extracellularly into the infected airway by phagocytes have a major role in directing bacterial gene expression [3]. Bacteria possess numerous transport systems to import metabolites such as succinate and itaconate, which are potential carbon sources [11,12]. These metabolites, whether of host or pathogen origin, influence the responses of local and recruited immune cells as well as the bacteria themselves. Accumulation of these immunometabolites can push loci of infection toward pro-inflammatory or anti-inflammatory states. The accumulation of specific immunometabolites may yield an excessive pro-inflammatory response, resulting in the production of reactive oxygen species (ROS) and inadvertent host toxicity [13–18]. Alternatively, they may promote a more tolerant response that includes arginase-expressing immune cells such as the myeloid-derived suppressor cells (MDSCs) that produce IL-10 [19,20], a response more tolerant to foreign antigens and less toxic to the host [21–23].

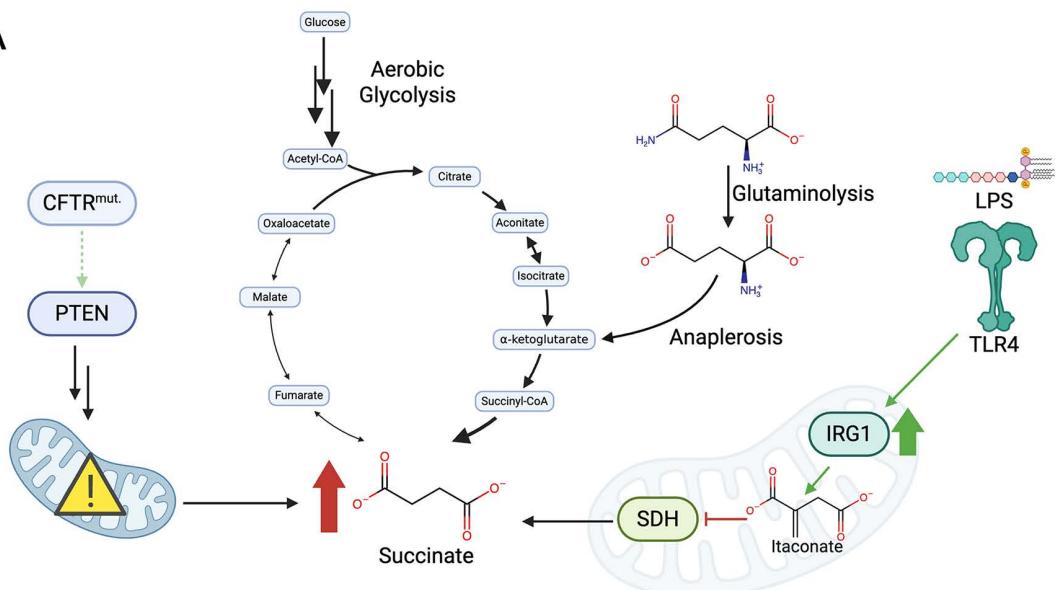
The systemic effects of accumulated immunometabolites, as released from stressed cells undergoing bioenergetic collapse, are best exemplified in severe bloodstream infection or sepsis (Box 1). The immunometabolic hallmarks of sepsis, an overwhelming and dysregulated immune response to microbial contamination of the bloodstream, are well characterized [8]. Immune cells shift into a highly anabolic metabolism, performing aerobic glycolysis to generate energy, reducing equivalents, and molecular building blocks as rapidly as possible in order to effectuate their antimicrobial functions. This swing from homeostasis towards inflammation and pathogen clearance is carried out by the activation of anti-inflammatory pro-resolving immune cell populations with predominantly catabolic metabolisms. Imbalanced pro- and anti-inflammatory programs can result in excessive deployment of immune effectors that destroy host tissues, immunosuppression that enables pathogen proliferation or a futile overlapping of opposing metabolic modes [8].

Box 1. The immunometabolism of sepsis

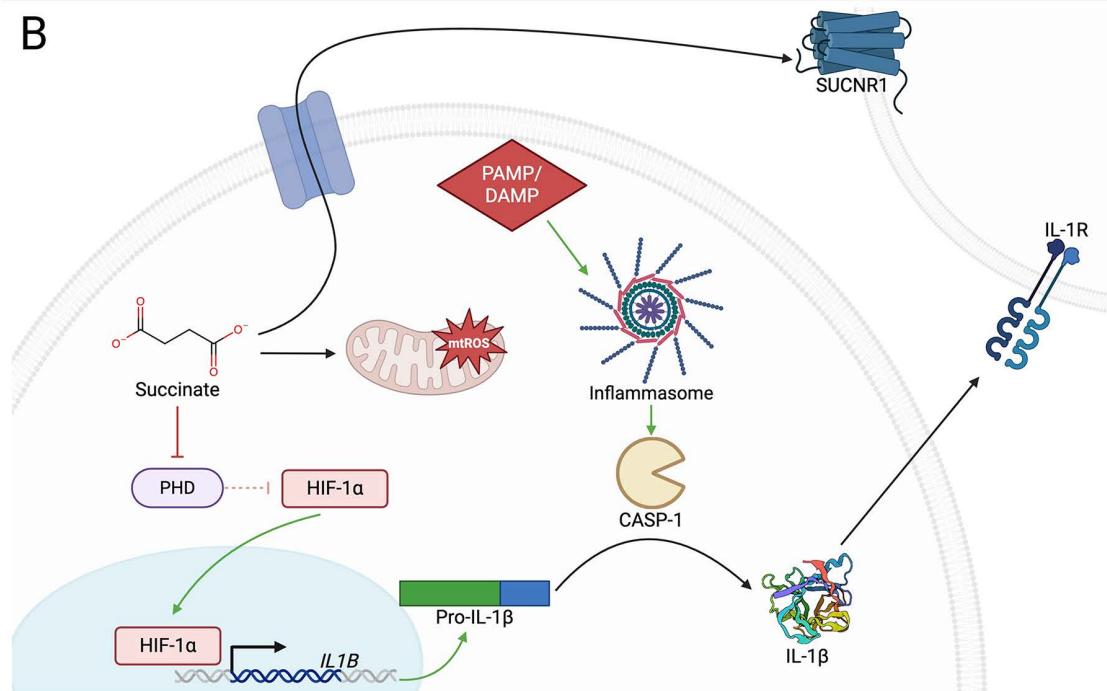
A major dimension of sepsis pathophysiology comprises a dysregulated immunometabolic response. In patients with sepsis, glycolysis produces pyruvate and protons which, in the absence of adequate renal function, results in acidosis and hyperlactatemia [24,25]. Lactate is produced from the reduction of pyruvate by lactate dehydrogenase and can accumulate due to reduced pyruvate utilization due to mitochondrial dysfunction [26] or pyruvate decarboxylase inhibition [27,28], as well as in the context of insufficient hepatic clearance of lactate [29,30]. This upregulation in glycolysis is driven by mTORC1, which promotes HIF-1 α expression [31,32]. HIF-1 α drives the expression of several glycolytic enzymes as well as the potent and often highly damaging cytokine IL-1 β [8]. While an essential component in productive immune responses in many circumstances, excessive IL-1 β in terms of abundance or chronicity of production can drive immunopathology [33]. Patients with sepsis often exhibit hypoxemia due to pulmonary damage, which at the cellular level impairs the electron transport chain [34], leading to the accumulation and release of succinate, which further stabilizes HIF-1 α and is itself highly pro-inflammatory [35]. Under homeostatic conditions, prolyl-hydroxylases (PHDs) act on HIF-1 α , targeting it for ubiquitination and proteasomal degradation. The reaction catalyzed by PHDs converts molecular oxygen and α -ketoglutarate to carbon dioxide and succinate; as a reaction product, succinate competitively inhibits PHD catalysis thereby stabilizing HIF-1 α [36–38]. Another important carboxylate in sepsis is β -hydroxybutyrate. While blood concentrations of β -hydroxybutyrate are predictive of survival in patients with sepsis [39], metabolic modes that favor resolution and repair, such as ketogenesis, are improperly regulated [8].

Immunometabolism and pulmonary defenses

The lung is a common site of infection by a variety of bacterial pathogens. Alveolar macrophages act as sentinels within the lumen of the airway to identify and respond to foreign inhalants as well as to endogenous materials, as the airway is continuously exposed to inhaled foreign material [40]. Alveolar macrophages take up and degrade lipid-rich surfactant coating the alveolar epithelium, cope with limited glucose [41], and rapidly phagocytose foreign antigens, cells, and


particulate matter [42]. Their steady-state phenotype is fueled by lipid catabolism and oxidative phosphorylation, which are intrinsically anti-inflammatory [43]. The ability of alveolar macrophages to clear debris without becoming activated is important in maintaining the relative sterility of the lung while avoiding tissue-damaging inflammation [44]. Alveolar macrophages promote immune responses to potential pathogens that are inhaled inadvertently and activate signals of danger for the host [40]. Such signals include the immunometabolites succinate [45], fumarate [46], and itaconate [47,48], each of which drives distinct metabolic and immune responses in both host and pathogen.

The environmental bacteria that are aspirated must escape mechanical clearance from the mucociliary escalator to persist in the airway long enough to initiate an infection [49]. Hence, such organisms often possess mechanisms that contribute to pathogenicity and the ability to evade immune clearance. They express a variety of gene products that activate pro-inflammatory signaling, cytokine production, and the release of succinate. Succinate is linked to the hyperinflammatory milieu in the lung that is characteristic of cystic fibrosis (CF). Due to limited interactions of the anion channel CFTR and the phosphatase PTEN [45,50], succinate accumulates both intracellularly and in the airway in patients with CF [45] (Fig 1). Additionally, *P. aeruginosa* lipopolysaccharide (LPS) activates macrophages and stimulates metabolic re-wiring, promoting aerobic glycolysis and the generation of succinate as a consequence of tricarboxylic acid (TCA) cycle interruption [51–53]. Succinate promotes the HIF-1 α –IL-1 β axis by inhibiting HIF-1 α degradation by prolyl hydroxylases [35]. IL-1 β itself is highly pro-inflammatory and activates adjacent cells through the ubiquitous IL-1 receptors to also release cytokines [54]. The activation of recruited neutrophils adds to the overall inflammatory response, and their production of proteases and release of toxic oxidants damages both the bacteria and adjacent tissues [55]. In addition to the action of IL-1 β indirectly bolstering ROS production, succinate itself directly contributes to mitochondrial production of ROS [53]. Production of reactive oxidants by immune cells is a major antimicrobial mechanism, as exemplified by the susceptibility to infection by *S. aureus* of patients with chronic granulomatous disease, whose phagocytes are unable to generate ROS [56]. However, oxidants also react with host biomolecules and, in excess, can damage membranes, DNA, and proteins of somatic cells [57,58].


As infection progresses into chronicity, microbial variants are selected that are less immunostimulatory, with decreased surface display of LPS, abrogated flagellar biosynthesis, and diminished secretion of toxins [65]. The interdependent alteration in bacterial gene expression within the host and the tolerance of the host for such host-adapted bacteria enables chronic infection [52]. These variants exhibit enhanced production of extracellular polysaccharide (EPS), the matrix component of the biofilm that protects organisms from oxidative stress [66] and impairs opsonization and phagocytosis [67,68]. Organisms that have adapted to form a biofilm either on tissues or on indwelling devices (such as catheters, tracheostomy tubes, heart valves and artificial joints) are a major cause of infections that are recalcitrant to eradication [69,70]. Such host-adapted variants may elicit different immunometabolites, such as less of the pro-inflammatory metabolite succinate but more fumarate and, especially, more itaconate [71].

Itaconate has a major role in defining the nature of the host response to infection, as has been discussed in depth elsewhere [47,48,72–74] (Fig 2). It is derived from the TCA cycle intermediate *cis*-aconitate through the action of aconitase decarboxylase (ACOD1; encoded by *IRG1*) and is produced solely by the host, specifically in immune cells [72]. Itaconate has an α,β -unsaturated carbonyl and is therefore capable of covalently binding to cysteine thiol residues on both bacterial and host proteins [75]. S-itaconation of target cysteine residues can result in either gain or loss of function [76]. Through this mechanism and due to its structural similarity and therefore competition with multiple central metabolites at enzyme active sites [59], itaconate exerts many signaling functions. As a weak electrophile it is also directly toxic to many bacteria, causing membrane stress [66]. Itaconate also promotes lysosomal biogenesis through the transcription factor TFEB to support phagocytic activity [77]. Yet, it impairs the action of bactericidal ROS as it stabilizes NRF2 via S-itaconation of the repressor KEAP1, enabling NRF2 translocation to the nucleus to drive antioxidant transcriptional programs [78]. In addition to these activities, itaconate redirects metabolic flux by directly interacting with core metabolic enzymes, especially those of the TCA cycle. It competitively inhibits succinate dehydrogenase [59] and targets glycolytic enzymes that

A

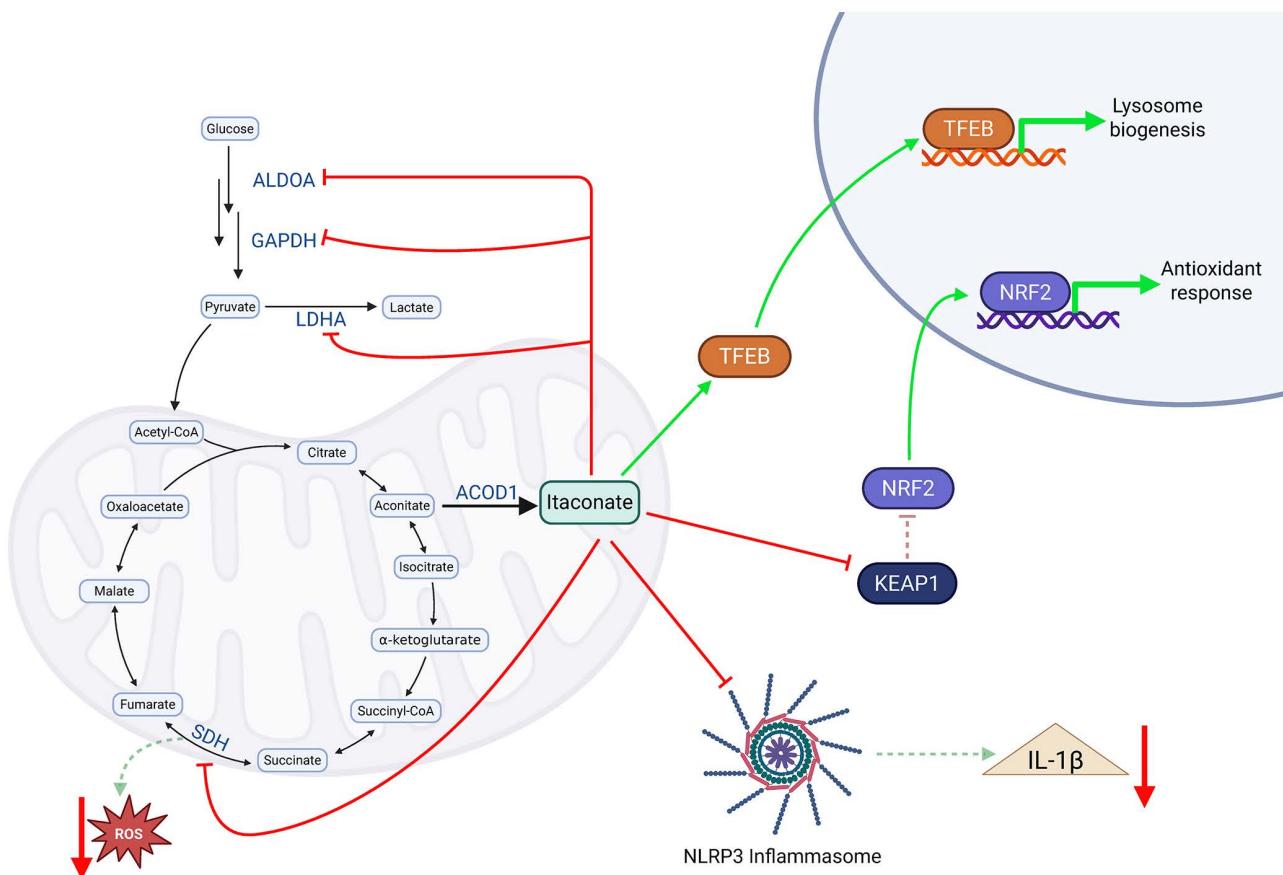

B

Fig 1. Accumulation and actions of the pro-inflammatory immunometabolite succinate in infection. (A) High levels of succinate generation under inflammatory contexts can occur through multiple mechanisms. In cystic fibrosis, the loss of association between the anion channel CFTR and the phosphatase PTEN drives mitochondrial dysfunction and inhibition of succinate dehydrogenase (SDH), resulting in accumulation of succinate [45]. Similarly, pathogen-associated molecular pattern (PAMP) detection by pattern recognition receptors (such as lipopolysaccharide (LPS) detection by TLR4) stimulates expression of *IRG1* in myeloid cells, generating itaconate which inhibits SDH [59,60]. The metabolic pathways engaged by activated immune cells also indirectly result in succinate generation, including aerobic glycolysis which fuels the tricarboxylic acid cycle through pyruvate as well as glutaminolysis and subsequent anaplerosis of glutamate to yield α -ketoglutarate. (B) Succinate acts as a pro-inflammatory signal intracellularly and extracellularly. Within cells, succinate can drive the production of reactive oxygen species in mitochondria (mtROS), which includes the superoxide radical and hydrogen peroxide [61–63]. Succinate also inhibits HIF-1 α prolyl-hydroxylases (PHDs), resulting in the de-repression of HIF-1 α , which subsequently translocates to the nucleus and promotes the transcription of myriad genes including *IL1B* [37,62]. In the presence of a second signal such as a PAMP or damage-associated molecular pattern (DAMP), inflammasome activation can then enable caspase-1-mediated cleavage of pro-IL-1 β into its active form,

which signals in autocrine, paracrine and endocrine fashions [54]. Succinate can also be exported from the cytosol via members of the monocarboxylate transporter or organic anion transporter families [62,64], and extracellular succinate can signal via the G protein-coupled receptor SUCNR1 [63]. Created with BioRender. <https://Biorender.com/6e57t1g>.

<https://doi.org/10.1371/journal.pbio.3003585.g001>

Fig 2. Itaconate polarizes host cells toward an anti-inflammatory phenotype. Itaconate exerts its effects on host cells through multiple mechanisms. It modulates central metabolism by inhibiting glycolytic enzymes aldolase (ALDOA) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), blocking pyruvate conversion to lactate by lactate dehydrogenase (LDHA), and implementing a break in the tricarboxylic acid cycle through succinate hydrogenase (SDH) inhibition. Itaconate alters the transcriptome by regulating transcription factors such as the lysosomal biogenesis regulator TFEB and NRF2, which promotes the antioxidant response to combat reactive oxygen species (ROS) and electrophilic stress. Another key target of itaconate is the NLRP3 inflammasome, resulting in decreased production of IL-1 β [80]. ACOD1, aconitate decarboxylase 1; KEAP1, Kelch-like ECH-associated protein 1. Created with BioRender. <https://Biorender.com/6e57t1g>.

<https://doi.org/10.1371/journal.pbio.3003585.g002>

would otherwise drive succinate production, aerobic glycolysis, and inflammation in response to infection [60]. In bacteria, itaconate is a major factor in driving bacterial metabolic adaptation to the host, imposing selection for variants that can metabolize substrates via pathways not impacted by itaconate [73,79].

Fumarate, the TCA cycle metabolite produced via the oxidation of succinate, is chemically similar to itaconate and likewise anti-inflammatory [48]. It also activates NRF2 to promote antioxidant pathways and can inhibit pyroptosis through covalent modification of gasdermin D [81]. High cytosolic concentrations of fumarate, however, can be pro-inflammatory, as inhibition of fumarate hydratase (FH) can impair IL-10 production and enhance type I interferon signaling [82].

As in sepsis, activation by pro-inflammatory stimuli causes phagocytes to utilize aerobic glycolysis to fuel their antimicrobial functions. To sustain high rates of glycolysis, NADH is recycled via the reduction of pyruvate to lactate, which is then exported. The effect of lactate on immune cells has recently been reviewed [83]. Mechanistically, lactate can signal to immune cells in multiple ways, including through the G protein-coupled receptors GPR81 and GPR132 [84–86] or through lactylation of proteins, including histones, which modulates gene expression [87,88] and HIF-1 α , which drives an M2-like proangiogenic phenotype in macrophages [89,90]. Bacteria can also sense, produce, and degrade lactate [91], as well as manipulate lactate metabolism by host cells [92,93]. Lactate dehydrogenase activity contributes to survival of *P. aeruginosa* phagocytosed by macrophages [94] and to the fitness of *Acinetobacter baumannii* in mice [95]. The role of lactate in directly coordinating virulence traits has also been described, exemplified by the enhancement of *S. aureus* alpha-toxin by lactylation [96] and the upregulation of capsule biosynthesis by lactate in *K. pneumoniae* [97].

Immunometabolites drive selection for host-adapted pathogens

The opportunists associated with persistent pulmonary infection must have the ability to adapt to local immunometabolites. In contrast to the pathogens associated with generally acute self-limiting infection such as *Streptococcus pneumoniae*, the *ESCAPE* pathogens have substantially greater metabolic flexibility and can adapt to cause less florid yet intractable pulmonary infections that are common in patients with ventilator-associated pneumonias, chronic-obstructive pulmonary disorder, CF, or pulmonary fibrosis. The properties of organisms that make up the lung microenvironment of such chronically infected individuals differ substantially from those of planktonic organisms isolated from the bloodstream during an acute infection. Strains from such acute infections have been typically used in experimental studies of pathogenesis. It has long been assumed that immune pressure is the driving force for the selection of host-adapted chronic isolates. Indeed, the production of EPS, suppression of pili and flagella expression, and diminished immunogenicity of LPS all serve to limit phagocyte activation and contribute to persistent infection [52]. Less well appreciated are the metabolic factors and the ability to withstand both endogenous and exogenous oxidative stresses that are paramount in driving the selection of bacteria that are successful in long-term infection. For example, EPS and biofilm form in response to oxidant stress even in the absence of phagocytes [98]. The metabolic preferences of common pathogens shape the nature of the immune response that is elicited, as illustrated below for a few common healthcare-associated organisms.

Pseudomonas aeruginosa

P. aeruginosa has tremendous metabolic capabilities and readily adapts to the airway/lung milieu, as well as other tissues. Succinate is a preferred carbon source for *P. aeruginosa* and is particularly abundant in the airway of patients with CF, a common site of *P. aeruginosa* chronic infection [99]. The pro-inflammatory signaling cascades associated with excessive succinate generation, including inflammasome activation, IL-1 β secretion, the oxidative burst, and the recruitment and activation of leukocytes [100], are damaging to both host and pathogen. There is therefore selective pressure on *P. aeruginosa* to reduce succinate levels in the respiratory tract and to become less immunostimulatory [79]. Phenotypic and genetic analyses of clinical *P. aeruginosa* strains harvested from chronic infections reveal that they have evolved to limit the display of LPS on the bacterial surface and to diminish the expression of cytotoxins and flagella [101], resulting in reduced activation of pro-inflammatory signaling through TLR4 [66]. Much of this adaptive process is a consequence of local immunometabolites such as itaconate [3,45,66].

Itaconate drives the selection for *P. aeruginosa* phenotypes that achieve homeostasis with the host, enabling persistent infection [79]. An immediate metabolic effect of itaconate is mediated by the covalent modification of cysteine residues on the σ^{54} transcriptional regulator RpoN [102], which enhances metabolic flux through pathways relevant to substrates present in the context of infection [103]. In addition, itaconate results in suppression of glucose [66] and succinate [79] consumption through competitive inhibition or S-itaconation of catalytic residues of metabolic enzymes and through direct metabolic assimilation of itaconate as a carbon and energy source [66] (Fig 2). In the presence of itaconate, *P. aeruginosa*

increases its utilization of the Entner–Doudoroff pathway to fuel the TCA cycle with gluconate rather than with glucose through Embden–Meyerhof–Parnas glycolysis [104], consistent with the increased concentrations of gluconate that are observed in airway fluids from patients with CF [105]. Itaconate also induces substantial membrane stress in *P. aeruginosa*, which favors selection for the *mucA22* mutations that are often observed in clinical isolates and that result in upregulated biosynthesis of the EPS alginate [79]. Such host-adapted strains also exhibit decreased synthesis of phenazines, redox-active metabolites of *P. aeruginosa* that can agonize the host aryl hydrocarbon receptor [106], enable bacterial respiration by shuttling electrons [107], and scavenge iron [108].

Longitudinal analyses of *P. aeruginosa* isolates from patients with chronic infection demonstrate how these organisms adapt to and promote the abundance of itaconate in the lung [109–113]. Diverse but clonally related organisms can be isolated from a single patient and reflect distinct metabolic activities, emphasizing the importance of work characterizing bacterial heterogeneity in complex communities and contexts [114]. Some variants retain the immunostimulatory properties associated with acute infection, while other variants display adaptation to itaconate: abundant production of EPSs such as alginate, which act as oxidant sinks by scavenging free radicals [115] while simultaneously providing structure and stability to biofilms, shield bacteria from direct contact with host cells and soluble immunological factors [79]. Such adapted strains drive a shift in the host immune response towards cytoprotective metabolic modes including ketogenesis and glutaminolysis [52]. Thus, itaconate in particular targets both host and pathogen to create a milieu conducive to coexistence in the form of persistent infection.

Staphylococcus aureus

S. aureus is another major pulmonary pathogen frequently associated with persistent infection. This Gram-positive opportunist elicits a neutrophil-dominated immune response, the predominant source of itaconate production in *S. aureus* infection [116]. To avoid the glycolytic blockade imposed by itaconate, *S. aureus* shunts carbon flux through the pentose phosphate pathway, producing EPS to form biofilm matrix [117]. *S. aureus* strains from hospitalized patients with pneumonia demonstrate major changes in gene expression that render these organisms less immunostimulatory and more able to cause protracted infection [118]. These clinical isolates often express mutations that result in downregulation of *agr* expression, a locus responsible for the control of many genes involved in pathogenesis such as toxins and adhesins [119]. *S. aureus* strains that persist within tolerant hosts often suppress the expression of pro-inflammatory gene products while upregulating those involved in immunosuppression or that impart resistance to antibiotics [120].

S. aureus, like *P. aeruginosa*, exhibits substantial metabolic flexibility [121]. Analysis of longitudinal isolates from young patients with CF illustrate metabolic adaptation to collagen and especially to proline, a major component of collagen [122]. In a setting of inflammatory lung damage, fibroblasts lay down collagen to maintain the structural integrity of the tissue, which in excess leads to fibrosis and a decline in tissue function [123]. Collagens, which are composed of glycine, proline, and hydroxyproline residues, comprise the major structural proteins of the extracellular matrix. Activated fibroblasts in the process of collagen production generate ample proline [124]. *S. aureus* preferentially consumes glucose and, in settings where multiple substrates are accessible, the choice of substrates is directed by the carbon catabolite repression (CCR) system [125,126]. This is a common bacterial regulatory mechanism that directs the utilization of the most favorable substrate. While functionally analogous, CCR systems are mechanistically diverse across microorganisms; common signaling motifs include small RNAs, cyclic nucleotides, and protein kinases [127]. CCR directs *S. aureus* proline catabolism in the lung due to the low abundance of glucose [41]. The CCR system of *S. aureus* clinical isolates directs bacteria to consume proline rather than glucose, which precludes competition with infiltrating neutrophils, a population of cells that avidly consumes glucose [122,128–133]. Moreover, these clinical isolates of *S. aureus* stimulate the production of collagen by fibroblasts as well as proteolytic activity that releases proline [122]. The net result of this metabolic adaptation to the lung is the selection of organisms that are less immunogenic and better tolerated by the host, the properties of bacteria that cause persistent infection.

Fumarate metabolism is another important facet of the pathophysiology of *S. aureus* pneumonia [46,121]. In response to fumarate, which impacts both glycolysis and the TCA cycle, *S. aureus* increases FH activity to convert fumarate into malate which, unlike fumarate, lacks an electrophilic alkene [46]. FH activity is enhanced in the presence of itaconate, illustrating that not only is fumarate flux an important regulatory node in the host [82], but also in the microbe [46]. Fumarate itself is anti-inflammatory and thus a fumarate-rich environment elicits immune cells that are more permissive of *S. aureus* [48]. The cumulative effects of host and bacterial regulation of fumarate generate a milieu that contributes to the homeostasis of persistent *S. aureus* infection in the lung.

Klebsiella pneumoniae

Immunometabolites also have a major role in selection of host-adapted *K. pneumonia* lineages. Of particular concern are the ST258 strains, multiply antibiotic-resistant organisms associated with global outbreaks of infection, especially in the setting of intensive care units [134,135]. Accumulating evidence supports the importance of itaconate in the selection of this epidemic sequence type via the generation and reinforcement of an immunotolerant milieu [136]. In contrast to “classical” or hypervirulent *K. pneumoniae* clones (hvKp), antibiotic-resistant host-adapted strains such as the ST258 strains cause less fulminant but persistent infection [137]. Thus, despite the relative indolence of infections caused by such strains, they impose substantial morbidity and mortality [134,135,138–140]. Although ST258 and the hvKp *K. pneumoniae* strains synthesize identically immunogenic LPS [141], the net metabolic response of the host to ST258 infection is entirely distinct from hvKp strains such as the bloodstream isolate KPPR1 [142]. ST258 infection promotes the usage of fatty acid oxidation and glutaminolysis in host cells for energy generation, which skew the immune response toward the recruitment of MDCSs [136]. A similar MDSC response is associated with foreign body infections caused by some staphylococcal strains [22].

The term MDSC encompasses multiple heterogeneous populations of cells with distinct ontological origin but similar phenotype properties: they are poorly phagocytic, secrete arginase, and express IL-10, promoting an anti-inflammatory response tolerant to infection [19,22,23,137,143]. IL-10 is not exclusively beneficial to the pathogen, as its absence can impair bacterial clearance and result in exacerbated tissue damage [144]. MDSCs impair T cell proliferation by altering lymphocyte tryptophan metabolism in response to hvKp isolates [145]. MDSCs have also been implicated in promoting *S. aureus* biofilm persistence in a fashion regulated by a glycolysis–HIF-1 α axis [21]. Ongoing studies of these myeloid cells are likely to yield helpful insights into the pathophysiology of infection by multiple *ESCAPE* pathogens that exploit immunometabolites to drive host tolerance and enable persistent infection.

Intracellular pathogens

In contrast to *P. aeruginosa* or *K. pneumoniae*, which are predominantly extracellular pathogens, some organisms, such as the *Mycobacteria* or *Salmonella*, are highly adapted to thrive within eukaryotic cells. *Mycobacterium tuberculosis* (*Mtb*) is an intracellular pathogen, subject to the conditions of its host. Itaconate is an integral component of the host response to *Mtb*, suppressing proliferation through the inhibition of central carbon metabolism at multiple points, as with *P. aeruginosa* and *S. aureus* [78]. *Mtb* possesses the enzymatic machinery required to degrade itaconate, and mutants deficient in such activity are impaired in causing infection [146]. Indeed, mice incapable of itaconate biosynthesis are more susceptible to infection by *Mtb* [146], illustrating the importance of specific immunometabolites in host defense.

While some intracellular bacterial pathogens live freely in the cytoplasm, many reside in subcellular compartments derived from phagosomes [147]. Mitochondrially-produced itaconate is delivered to such phagosomal compartments to kill compartmentalized pathogens such as *Legionella pneumophila* [148] and *Salmonella enterica* serovar Typhimurium [9,149]. Although *Salmonella* is not a typical pulmonary pathogen, its metabolic activity that enables persistence within human phagocytes is especially well characterized [150,151]. Moreover, its specific targets for itaconate have been mapped and their impact on purine metabolism provide a paradigm illustrating the complexities of host–pathogen

interactions [102]. It is important to appreciate that *Salmonella* also have the ability to thrive as extracellular pathogens in a setting with substantially less itaconate [152]. Direct exposure of intracellular bacteria to itaconate is complemented by itaconate-promoted TFEB activation, which drives lysosomal biogenesis and thus construction of potent bactericidal products [153]. The study of host–pathogen immunometabolic interactions in infection with intracellular bacteria is an experimentally challenging yet exciting frontier of research likely to garner new insights into medically relevant microorganisms.

Conclusions and future directions

The pathogens discussed in this Essay provide a few examples of how immunometabolites contribute to immune defenses against bacterial infection. Local abundance of specific metabolites direct immune responses and define environments available to colonizing organisms [154]. In oncology, the importance of tumor metabolic activity has long been appreciated and developed as a target for therapy, both to limit tumor growth directly and to enhance the host immunometabolic responses to specific tumor types [2]. Just as therapies for specific tumors have been developed to exploit specific metabolic activities, manipulation of metabolic pathways could be envisioned to prevent or eradicate infection, particularly those caused by the metabolically versatile *ESKAPE* pathogens. However, targeting the metabolic response to infection as an adjunctive therapy has not yet been widely explored, nor have the immunometabolic responses to specific bacterial infections been well characterized, something that will be crucial in defining the goals of such a therapy. Nonetheless, it is apparent that novel approaches to treating bacterial infections are urgently needed [155,156] and, although the concept of manipulating immunometabolic signals to control or prevent infection is at present mostly theoretical, it does hold promise.

Targeting specific metabolites will be challenging. Acute inflammatory responses, such as those mediated by aerobic glycolysis and activation of the inflammasome in many settings generates so much host-damaging IL-1 β that inhibition of this cascade enhances bacterial clearance [157]. The concept of titrating pro-inflammatory signaling in the setting of infection is under active investigation [158,159]. There are substantial efforts to develop congeners of itaconate for therapeutic use in autoimmune, cardiac, neurological, and other diseases in which excessive inflammation is pathological [160]. The anti-inflammatory activities of adenosine, generated by the ectonucleotidases CD39 and CD73 [161], have been studied for therapeutic potential [162]. Adenosine is especially important in the lung, which displays many types of purinergic receptors for this nucleoside [163]. However, although the anti-inflammatory properties of adenosine may help to protect the host, many bacteria readily metabolize adenosine as a carbon source [164,165]. In the setting of staphylococcal pneumonia, the availability of exogenous adenosine deactivates macrophage antimicrobial functions and actually promotes infection [166,167]. Thus, the therapeutic potential of many immunometabolites may be highly dependent upon the nature of the pathogen.

The management of sepsis perhaps best illustrates the attraction and challenges of such host-directed therapeutic approaches. The cytokine storm and excessive inflammation characteristic of septic shock, accompanied by mitochondrial failure and acidosis, are often lethal and make anti-inflammatory therapeutic strategies an appealing approach [168,169]. However, there is also a pronounced immuno-paralysis phase in many patients with sepsis in which immunosuppression is predominant [170]. Therapeutic attempts to further down-regulate already limited immune responses by manipulating host metabolic activity and the delivery of specific metabolites to tissues may not be uniformly beneficial.

A major challenge remains in determining when to escalate pro-inflammatory signaling and when to enhance anti-inflammatory signaling. Despite the risk of host damage, perhaps boosting pro-inflammatory signaling along the succinate–HIF-1 α axis to eradicate an offending pathogen is, in some cases, appropriate. Likewise, strategies to promote host tolerance of opportunistic pathogens may be powerful, quelling harmful inflammation while allowing an indolent infection to be maintained. Ideally, an optimal immunometabolic milieu could be identified to achieve homeostasis between host and commensal flora, as exists in the uninfected state. There is substantial progress being made to develop markers that reliably predict outcome from infection and sepsis [171]. These could be used to develop treatment algorithms for specific

conditions, and the potential for immunomodulation by altering metabolic activity [172]. The use of artificial intelligence to collate the large amount of data from such diverse patient groups to generate diagnostic and treatment targets for immunometabolic interventions is ongoing and may be a central component of treatment in the future [173].

Author contributions

Supervision: Alice Prince.

Writing – original draft: Griffin Gowdy.

Writing – review & editing: Alice Prince.

References

1. Ryan DG, Peace CG, Hooftman A. Basic mechanisms of immunometabolites in shaping the immune response. *J Innate Immun.* 2023;15(1):925–43. <https://doi.org/10.1159/000535452> PMID: 37995666
2. Dang Q, Li B, Jin B, Ye Z, Lou X, Wang T, et al. Cancer immunometabolism: advent, challenges, and perspective. *Mol Cancer.* 2024;23(1):72. <https://doi.org/10.1186/s12943-024-01981-5> PMID: 38581001
3. Tomlinson KL, Prince AS, Wong Fok Lung T. Immunometabolites drive bacterial adaptation to the airway. *Front Immunol.* 2021;12:790574. <https://doi.org/10.3389/fimmu.2021.790574> PMID: 34899759
4. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. *Lancet.* 2022;399(10325):629–55. [https://doi.org/10.1016/S0140-6736\(21\)02724-0](https://doi.org/10.1016/S0140-6736(21)02724-0) PMID: 35065702
5. GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. *Lancet.* 2024;404(10459):1199–226. [https://doi.org/10.1016/S0140-6736\(24\)01867-1](https://doi.org/10.1016/S0140-6736(24)01867-1) PMID: 39299261
6. World Health Organization. WHO bacterial priority pathogens list, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Geneva: World Health Organization. 2024. Available from: <https://www.who.int/publications/item/9789240093461>
7. Ryan TAJ, O'Neill LAJ, Zaslona Z. Metabolites as signals in immunity and inflammation. Academic Press; 2025.
8. Willmann K, Moita LF. Physiologic disruption and metabolic reprogramming in infection and sepsis. *Cell Metab.* 2024;36(5):927–46. <https://doi.org/10.1016/j.cmet.2024.02.013> PMID: 38513649
9. Chen M, Sun H, Boot M, Shao L, Chang S-J, Wang W, et al. Itaconate is an effector of a Rab GTPase cell-autonomous host defense pathway against *Salmonella*. *Science.* 2020;369(6502):450–5. <https://doi.org/10.1126/science.aaz1333> PMID: 32703879
10. Willenbockel HF, Williams AT, Lucas A, Reynolds MB, Joulia E, Ruchhoeft ML, et al. In vivo itaconate tracing reveals degradation pathway and turnover kinetics. *Nat Metab.* 2025;7(9):1781–90. <https://doi.org/10.1038/s42255-025-01363-1> PMID: 40931213
11. de Witt J, Ernst P, Gätgens J, Noack S, Hiller D, Wynands B, et al. Characterization and engineering of branched short-chain dicarboxylate metabolism in *Pseudomonas* reveals resistance to fungal 2-hydroxyparaconate. *Metab Eng.* 2023;75:205–16. <https://doi.org/10.1016/j.ymben.2022.12.008> PMID: 36581064
12. Mehboob J, Herman R, Elston RC, Afolabi H, Kinniment-Williams BE, van der Woude MW, et al. Itaconate utilisation by the human pathogen *Pseudomonas aeruginosa* requires uptake via the IctPQM TRAP transporter. *Biochem J.* 2025;482: 1277–88. <https://doi.org/10.1042/BCJ20253132>
13. Shastri MD, Shukla SD, Chong WC, Dua K, Peterson GM, Patel RP, et al. Role of oxidative stress in the pathology and management of human tuberculosis. *Oxid Med Cell Longev.* 2018;2018:7695364. <https://doi.org/10.1155/2018/7695364> PMID: 30405878
14. Janssen-Heininger YMW, Persinger RL, Korn SH, Pantano C, McElhinney B, Reynaert NL, et al. Reactive nitrogen species and cell signaling: implications for death or survival of lung epithelium. *Am J Respir Crit Care Med.* 2002;166(12 Pt 2):S9–16. <https://doi.org/10.1164/rccm.2206008> PMID: 12471083
15. Aaron SD, Angel JB, Lunau M, Wright K, Fex C, Le Saux N, et al. Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease. *Am J Respir Crit Care Med.* 2001;163(2):349–55. <https://doi.org/10.1164/ajrccm.163.2.2003122> PMID: 11179105
16. Braunstein I, Motohashi H, Dallenga T, Schaible UE, Benhar M. Redox signaling in innate immunity and inflammation: focus on macrophages and neutrophils. *Free Radic Biol Med.* 2025;237:427–54. <https://doi.org/10.1016/j.freeradbiomed.2025.06.006> PMID: 40484207
17. Wieczfinska J, Kleniewska P, Pawliczak R. Oxidative stress-related mechanisms in SARS-CoV-2 infections. *Oxid Med Cell Longev.* 2022;2022:5589089. <https://doi.org/10.1155/2022/5589089> PMID: 35281470
18. Chabot F, Mitchell J, Gutteridge J, Evans T. Reactive oxygen species in acute lung injury. *Eur Respir J.* 1998;11(3):745–57. <https://doi.org/10.1183/09031936.98.11030745>
19. Kak G, Van Roy Z, Heim CE, Fallet RW, Shi W, Roers A, et al. IL-10 production by granulocytes promotes *Staphylococcus aureus* craniotomy infection. *J Neuroinflammation.* 2023;20(1):114. <https://doi.org/10.1186/s12974-023-02798-7> PMID: 37179295

20. Zhu X, Pribis JP, Rodriguez PC, Morris SM Jr, Vodovotz Y, Billiar TR, et al. The central role of arginine catabolism in T-cell dysfunction and increased susceptibility to infection after physical injury. *Ann Surg.* 2014;259(1):171–8. <https://doi.org/10.1097/SLA.0b013e31828611f8> PMID: [23470573](#)
21. Horn CM, Arumugam P, Van Roy Z, Heim CE, Fallet RW, Bertrand BP, et al. Granulocytic myeloid-derived suppressor cell activity during biofilm infection is regulated by a glycolysis/HIF1a axis. *J Clin Invest.* 2024;134(8):e174051. <https://doi.org/10.1172/JCI174051> PMID: [38421730](#)
22. Heim CE, Vidlak D, Kielian T. Interleukin-10 production by myeloid-derived suppressor cells contributes to bacterial persistence during *Staphylococcus aureus* orthopedic biofilm infection. *J Leukoc Biol.* 2015;98(6):1003–13. <https://doi.org/10.1189/jlb.4VMA0315-125RR> PMID: [26232453](#)
23. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. *Nat Rev Immunol.* 2009;9(3):162–74. <https://doi.org/10.1038/nri2506> PMID: [19197294](#)
24. Gattinoni L, Vasques F, Camporota L, Meessen J, Romitti F, Pasticci I, et al. Understanding lactatemia in human sepsis: potential impact for early management. *Am J Respir Crit Care Med.* 2019;200(5):582–9. <https://doi.org/10.1164/rccm.201812-2342OC> PMID: [30985210](#)
25. Müller J, Radej J, Horak J, Karvunidis T, Valesova L, Kriz M, et al. Lactate: the fallacy of oversimplification. *Biomedicines.* 2023;11(12):3192. <https://doi.org/10.3390/biomedicines11123192> PMID: [38137413](#)
26. Hu D, Sheeja Prabhakaran H, Zhang Y-Y, Luo G, He W, Liou Y-C. Mitochondrial dysfunction in sepsis: mechanisms and therapeutic perspectives. *Crit Care.* 2024;28(1):292. <https://doi.org/10.1186/s13054-024-05069-w> PMID: [39227925](#)
27. Zeng Z, Huang Q, Mao L, Wu J, An S, Chen Z, et al. The pyruvate dehydrogenase complex in sepsis: metabolic regulation and targeted therapy. *Front Nutr.* 2021;8:783164. <https://doi.org/10.3389/fnut.2021.783164> PMID: [34970577](#)
28. Nuzzo E, Berg KM, Andersen LW, Balkema J, Montissol S, Cocchi MN, et al. Pyruvate dehydrogenase activity is decreased in the peripheral blood mononuclear cells of patients with sepsis. A prospective observational trial. *Ann Am Thorac Soc.* 2015;12(11):1662–6. <https://doi.org/10.1513/AnnalsATS.201505-267BC> PMID: [26356483](#)
29. Hernandez G, Regueira T, Bruhn A, Castro R, Rovegno M, Fuentealba A, et al. Relationship of systemic, hepatosplanchnic, and microcirculatory perfusion parameters with 6-hour lactate clearance in hyperdynamic septic shock patients: an acute, clinical-physiological, pilot study. *Ann Intensive Care.* 2012;2(1):44. <https://doi.org/10.1186/2110-5820-2-44> PMID: [23067578](#)
30. Takahashi N, Nakada T-A, Walley KR, Russell JA. Significance of lactate clearance in septic shock patients with high bilirubin levels. *Sci Rep.* 2021;11(1):6313. <https://doi.org/10.1038/s41598-021-85700-w> PMID: [33737668](#)
31. Hooftman A. Regulation of cytokine secretion by immunometabolites. *Metabolites as Signals in Immunity and Inflammation.* Elsevier; 2025. p. 191–208. <https://doi.org/10.1016/b978-0-443-15447-8.00009-x>
32. Bar-Or D, Carrick M, Tanner A 2nd, Lieser MJ, Rael LT, Brody E. Overcoming the warburg effect: is it the key to survival in sepsis? *J Crit Care.* 2018;43:197–201. <https://doi.org/10.1016/j.jcrc.2017.09.012> PMID: [28915394](#)
33. Boraschi D. What is IL-1 for? The functions of interleukin-1 across evolution. *Front Immunol.* 2022;13:872155. <https://doi.org/10.3389/fimmu.2022.872155> PMID: [35464444](#)
34. Yumoto T, Coopersmith CM. Targeting AMP-activated protein kinase in sepsis. *Front Endocrinol (Lausanne).* 2024;15:1452993. <https://doi.org/10.3389/fendo.2024.1452993> PMID: [39469575](#)
35. Mills E, O'Neill LAJ. Succinate: a metabolic signal in inflammation. *Trends Cell Biol.* 2014;24(5):313–20. <https://doi.org/10.1016/j.tcb.2013.11.008> PMID: [24361092](#)
36. Koivunen P, Hirsilä M, Remes AM, Hassinen IE, Kivirikko KI, Myllyharju J. Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. *J Biol Chem.* 2007;282(7):4524–32. <https://doi.org/10.1074/jbc.M610415200> PMID: [17182618](#)
37. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF- α prolyl hydroxylase. *Cancer Cell.* 2005;7(1):77–85. <https://doi.org/10.1016/j.ccr.2004.11.022> PMID: [15652751](#)
38. Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia-inducible factor 1 α is mediated by an O 2 -dependent degradation domain via the ubiquitin-proteasome pathway. *Proc Natl Acad Sci U S A.* 1998;95(14):7987–92. <https://doi.org/10.1073/pnas.95.14.7987> PMID: [9653127](#)
39. Acar R, Erturk I, Taskin G, Uyanik M, Tasci I, Basgoz BB. Association between beta-hydroxybutyrate levels and survival in sepsis patients. *Eur-Asian J Med Oncol.* 2021;5:39–44.
40. Malainou C, Abdin SM, Lachmann N, Matt U, Herold S. Alveolar macrophages in tissue homeostasis, inflammation, and infection: evolving concepts of therapeutic targeting. *J Clin Invest.* 2023;133(19):e170501. <https://doi.org/10.1172/JCI170501> PMID: [37781922](#)
41. Baker EH, Baines DL. Airway glucose homeostasis: a new target in the prevention and treatment of pulmonary infection. *Chest.* 2018;153(2):507–14. <https://doi.org/10.1016/j.chest.2017.05.031> PMID: [28610911](#)
42. Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. *Nat Rev Immunol.* 2014;14(2):81–93. <https://doi.org/10.1038/nri3600> PMID: [24445666](#)
43. Aegeuter H, Lambrecht BN, Jakubzick CV. Biology of lung macrophages in health and disease. *Immunity.* 2022;55(9):1564–80. <https://doi.org/10.1016/j.immuni.2022.08.010> PMID: [36103853](#)

44. Neupane AS, Willson M, Chojnacki AK, Vargas E Silva Castanheira F, Morehouse C, Carestia A, et al. Patrolling alveolar macrophages conceal bacteria from the immune system to maintain homeostasis. *Cell*. 2020;183(1):110-125.e11. <https://doi.org/10.1016/j.cell.2020.08.020> PMID: 32888431
45. Riquelme SA, Lozano C, Moustafa AM, Liimatta K, Tomlinson KL, Britto C, et al. CFTR-PTEN-dependent mitochondrial metabolic dysfunction promotes *Pseudomonas aeruginosa* airway infection. *Sci Transl Med*. 2019;11(499):eaav4634. <https://doi.org/10.1126/scitranslmed.aav4634> PMID: 31270271
46. Chen Y-T, Liu Z, Fucich D, Giulieri SG, Liu Z, Wadhwa R, et al. Regulation of airway fumarate by host and pathogen promotes *Staphylococcus aureus* pneumonia. *Nat Commun*. 2025;16(1):7050. <https://doi.org/10.1038/s41467-025-62453-y> PMID: 40745169
47. Peace CG, O'Neill LA. The role of itaconate in host defense and inflammation. *J Clin Invest*. 2022;132(2):e148548. <https://doi.org/10.1172/JCI148548> PMID: 35040439
48. Pålsson-McDermott EM, O'Neill LAJ. Gang of 3: how the Krebs cycle-linked metabolites itaconate, succinate, and fumarate regulate macrophages and inflammation. *Cell Metab*. 2025;37(5):1049–59. <https://doi.org/10.1016/j.cmet.2025.03.004> PMID: 40169002
49. Bustamante-Marin XM, Ostrowski LE. Cilia and mucociliary clearance. *Cold Spring Harb Perspect Biol*. 2017;9(4):a028241. <https://doi.org/10.1101/cshperspect.a028241> PMID: 27864314
50. Riquelme SA, Hopkins BD, Wolfe AL, DiMango E, Kitur K, Parsons R, et al. Cystic fibrosis transmembrane conductance regulator attaches tumor suppressor PTEN to the membrane and promotes anti *Pseudomonas aeruginosa* immunity. *Immunity*. 2017;47(6):1169-1181.e7. <https://doi.org/10.1016/j.immuni.2017.11.010> PMID: 29246444
51. Zhang W, Lang R. Succinate metabolism: a promising therapeutic target for inflammation, ischemia/reperfusion injury and cancer. *Front Cell Dev Biol*. 2023;11:1266973. <https://doi.org/10.3389/fcell.2023.1266973> PMID: 37808079
52. Tomlinson KL, Chen Y-T, Junker A, Urso A, Wong Fok Lung T, Ahn D, et al. Ketogenesis promotes tolerance to *Pseudomonas aeruginosa* pulmonary infection. *Cell Metab*. 2023;35(10):1767-1781.e6. <https://doi.org/10.1016/j.cmet.2023.09.001> PMID: 37793346
53. Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. *Cell*. 2016;167(2):457-470.e13. <https://doi.org/10.1016/j.cell.2016.08.064> PMID: 27667687
54. Weber A, Wasiliew P, Kracht M. Interleukin-1 (IL-1) pathway. *Sci Signal*. 2010;3(105):cm1. <https://doi.org/10.1126/scisignal.3105cm1> PMID: 20086235
55. Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. *Mol Med*. 2011;17(3–4):293–307. <https://doi.org/10.2119/molmed.2010.00138> PMID: 21046059
56. Yu H-H, Yang Y-H, Chiang B-L. Chronic granulomatous disease: a comprehensive review. *Clin Rev Allergy Immunol*. 2021;61(2):101–13. <https://doi.org/10.1007/s12016-020-08800-x> PMID: 32524254
57. Babior BM. Phagocytes and oxidative stress. *Am J Med*. 2000;109(1):33–44. [https://doi.org/10.1016/s0002-9343\(00\)00481-2](https://doi.org/10.1016/s0002-9343(00)00481-2) PMID: 10936476
58. Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Effects of oxidative stress on viral infections: an overview. *Npj Viruses*. 2025;3(1):27. <https://doi.org/10.1038/s44298-025-00110-3> PMID: 40295852
59. Cordes T, Wallace M, Michelucci A, Divakaruni AS, Sapcariu SC, Sousa C, et al. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. *J Biol Chem*. 2016;291(27):14274–84. <https://doi.org/10.1074/jbc.M115.685792> PMID: 27189937
60. Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E, et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. *Cell Metab*. 2016;24(1):158–66. <https://doi.org/10.1016/j.cmet.2016.06.004> PMID: 27374498
61. Quinlan CL, Orr AL, Perevoshchikova IV, Treberg JR, Ackrell BA, Brand MD. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. *J Biol Chem*. 2012;287(32):27255–64. <https://doi.org/10.1074/jbc.M112.374629> PMID: 22689576
62. Huang H, Li G, He Y, Chen J, Yan J, Zhang Q, et al. Cellular succinate metabolism and signaling in inflammation: implications for therapeutic intervention. *Front Immunol*. 2024;15:1404441. <https://doi.org/10.3389/fimmu.2024.1404441> PMID: 38933270
63. Tretter L, Patocs A, Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. *Biochim Biophys Acta*. 2016;1857(8):1086–101. <https://doi.org/10.1016/j.bbabi.2016.03.012> PMID: 26971832
64. Fremder M, Kim SW, Khamaysi A, Shimshilashvili L, Eini-Rider H, Park IS, et al. A transepithelial pathway delivers succinate to macrophages, thus perpetuating their pro-inflammatory metabolic state. *Cell Rep*. 2021;36(6):109521. <https://doi.org/10.1016/j.celrep.2021.109521> PMID: 34380041
65. Mould DL, Stevanovic M, Ashare A, Schultz D, Hogan DA. Metabolic basis for the evolution of a common pathogenic *Pseudomonas aeruginosa* variant. *Elife*. 2022;11:e76555. <https://doi.org/10.7554/elife.76555> PMID: 35502894
66. Riquelme SA, Liimatta K, Wong Fok Lung T, Fields B, Ahn D, Chen D, et al. *Pseudomonas aeruginosa* utilizes host-derived itaconate to redirect its metabolism to promote biofilm formation. *Cell Metab*. 2020;31(6):1091-1106.e6. <https://doi.org/10.1016/j.cmet.2020.04.017> PMID: 32428444
67. Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A, Williams SH, et al. *Staphylococcus aureus* biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. *J Immunol*. 2011;186(11):6585–96. <https://doi.org/10.4049/jimmunol.1002794> PMID: 21525381

68. Domenech M, Ramos-Sevillano E, García E, Moscoso M, Yuste J. Biofilm formation avoids complement immunity and phagocytosis of *Streptococcus pneumoniae*. *Infect Immun.* 2013;81(7):2606–15. <https://doi.org/10.1128/IAI.00491-13> PMID: 23649097
69. Ogunware AE, Kielian T. Immunometabolism shapes chronic *Staphylococcus aureus* infection: insights from biofilm infection models. *Curr Opin Microbiol.* 2025;86:102612. <https://doi.org/10.1016/j.mib.2025.102612> PMID: 40409167
70. Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. *Nat Rev Microbiol.* 2018;16(7):397–409. <https://doi.org/10.1038/s41579-018-0019-y> PMID: 29720707
71. Riquelme SA, Wong Fok Lung T, Prince A. Pulmonary pathogens adapt to immune signaling metabolites in the airway. *Front Immunol.* 2020;11:385. <https://doi.org/10.3389/fimmu.2020.00385> PMID: 32231665
72. McGettrick AF, Bourner LA, Dorsey FC, O'Neill LAJ. Metabolic messengers: itaconate. *Nat Metab.* 2024;6(9):1661–7. <https://doi.org/10.1038/s42255-024-01092-x> PMID: 39060560
73. O'Neill LAJ, Artyomov MN. Itaconate: the poster child of metabolic reprogramming in macrophage function. *Nat Rev Immunol.* 2019;19(5):273–81. <https://doi.org/10.1038/s41577-019-0128-5> PMID: 30705422
74. Domínguez-Andrés J, Novakovic B, Li Y, Scicluna BP, Gresnigt MS, Arts RJW, et al. The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity. *Cell Metab.* 2019;29(1):211–220.e5. <https://doi.org/10.1016/j.cmet.2018.09.003> PMID: 30293776
75. Liu Z, Wang C. Dissecting S-itaconation at host-pathogen interactions with chemical proteomics tools. *Curr Opin Microbiol.* 2025;83:102579. <https://doi.org/10.1016/j.mib.2025.102579> PMID: 39842211
76. Qin W, Zhang Y, Tang H, Liu D, Chen Y, Liu Y, et al. Chemoproteomic profiling of itaconation by bioorthogonal probes in inflammatory macrophages. *J Am Chem Soc.* 2020;142(25):10894–8. <https://doi.org/10.1021/jacs.9b11962> PMID: 32496768
77. Zhang Z, Chen C, Yang F, Zeng Y-X, Sun P, Liu P, et al. Itaconate is a lysosomal inducer that promotes antibacterial innate immunity. *Mol Cell.* 2022;82(15):2844–2857.e10. <https://doi.org/10.1016/j.molcel.2022.05.009> PMID: 35662396
78. Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. *Proc Natl Acad Sci U S A.* 2013;110(19):7820–5. <https://doi.org/10.1073/pnas.1218599110> PMID: 23610393
79. Chen Y-T, Lohia GK, Chen S, Liu Z, Wong Fok Lung T, Wang C, et al. A host-pathogen metabolic synchrony that facilitates disease tolerance. *Nat Commun.* 2025;16(1):3729. <https://doi.org/10.1038/s41467-025-59134-1> PMID: 40253414
80. Hooftman A, Angiari S, Hester S, Corcoran SE, Runtsch MC, Ling C, et al. The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation. *Cell Metab.* 2020;32(3):468–478.e7. <https://doi.org/10.1016/j.cmet.2020.07.016> PMID: 32791101
81. Humphries F, Shmuel-Galil L, Ketelut-Carneiro N, Li S, Wang B, Nemmara VV, et al. Succination inactivates gasdermin D and blocks pyroptosis. *Science.* 2020;369(6511):1633–7. <https://doi.org/10.1126/science.abb9818> PMID: 32820063
82. Hooftman A, Peace CG, Ryan DG, Day EA, Yang M, McGettrick AF, et al. Macrophage fumarate hydratase restrains mtRNA-mediated interferon production. *Nature.* 2023;615(7952):490–8. <https://doi.org/10.1038/s41586-023-05720-6> PMID: 36890227
83. Llibre A, Kucuk S, Gope A, Certo M, Mauro C. Lactate: a key regulator of the immune response. *Immunity.* 2025;58(3):535–54. <https://doi.org/10.1016/j.immuni.2025.02.008> PMID: 40073846
84. Khatib-Massalha E, Bhattacharya S, Massalha H, Biram A, Golan K, Kollet O, et al. Lactate released by inflammatory bone marrow neutrophils induces their mobilization via endothelial GPR81 signaling. *Nat Commun.* 2020;11(1):3547. <https://doi.org/10.1038/s41467-020-17402-2> PMID: 32669546
85. Chen P, Zuo H, Xiong H, Kolar MJ, Chu Q, Saghatelyan A, et al. Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis. *Proc Natl Acad Sci U S A.* 2017;114(3):580–5. <https://doi.org/10.1073/pnas.1614035114> PMID: 28049847
86. Errea A, Cayet D, Marchetti P, Tang C, Kluza J, Offermanns S, et al. Lactate inhibits the pro-inflammatory response and metabolic reprogramming in murine macrophages in a GPR81-independent manner. *PLoS One.* 2016;11(11):e0163694. <https://doi.org/10.1371/journal.pone.0163694> PMID: 27846210
87. Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. *Nature.* 2019;574(7779):575–80. <https://doi.org/10.1038/s41586-019-1678-1> PMID: 31645732
88. Heim CE, Bosch ME, Yamada KJ, Aldrich AL, Chaudhari SS, Klinkebiel D, et al. Lactate production by *Staphylococcus aureus* biofilm inhibits HDAC11 to reprogramme the host immune response during persistent infection. *Nat Microbiol.* 2020;5(10):1271–84. <https://doi.org/10.1038/s41564-020-0756-3> PMID: 32661313
89. Colegio OR, Chu N-Q, Szabo AL, Chu T, Rhebergen AM, Jairam V, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. *Nature.* 2014;513(7519):559–63. <https://doi.org/10.1038/nature13490> PMID: 25043024
90. Fang X, Zhao P, Gao S, Liu D, Zhang S, Shan M, et al. Lactate induces tumor-associated macrophage polarization independent of mitochondrial pyruvate carrier-mediated metabolism. *Int J Biol Macromol.* 2023;237:123810. <https://doi.org/10.1016/j.ijbiomac.2023.123810> PMID: 36868333
91. Jiang T, Gao C, Ma C, Xu P. Microbial lactate utilization: enzymes, pathogenesis, and regulation. *Trends Microbiol.* 2014;22(10):589–99. <https://doi.org/10.1016/j.tim.2014.05.008> PMID: 24950803
92. Llibre A, Grudzinska FS, O'Shea MK, Duffy D, Thickett DR, Mauro C, et al. Lactate cross-talk in host-pathogen interactions. *Biochem J.* 2021;478(17):3157–78. <https://doi.org/10.1042/BCJ20210263> PMID: 34492096

93. Jessop F, Borhnsen E, Schwarz B, Stromberg KA, Miltko M, Jones T, et al. Lactate metabolism is exploited by *Francisella tularensis* via its O-antigen capsule to limit macrophage-mediated activation and cell death. *mBio*. 2025;16(11):e0068125. <https://doi.org/10.1128/mbio.00681-25> PMID: [40981418](#)
94. Florek LC, Lin X, Lin Y-C, Lin M-H, Chakraborty A, Price-Whelan A, et al. The L-lactate dehydrogenases of *Pseudomonas aeruginosa* are conditionally regulated but both contribute to survival during macrophage infection. *mBio*. 2024;15(9):e0085224. <https://doi.org/10.1128/mbio.00852-24> PMID: [39162563](#)
95. Morris FC, Jiang Y, Fu Y, Kostoulias X, Murray GL, Yu Y, et al. Lactate metabolism promotes in vivo fitness during *Acinetobacter baumannii* infection. *FEMS Microbiol Lett*. 2024;371:fnae032. <https://doi.org/10.1093/femsle/fnae032> PMID: [38719540](#)
96. Wang Y, Liu Y, Xiang G, Jian Y, Yang Z, Chen T, et al. Post-translational toxin modification by lactate controls *Staphylococcus aureus* virulence. *Nat Commun*. 2024;15(1):9835. <https://doi.org/10.1038/s41467-024-53979-8> PMID: [39537625](#)
97. Zhu J, Wang G, Xi W, Shen Z, Wei Q, Fang X, et al. Lactate promotes invasive *Klebsiella pneumoniae* liver abscess syndrome by increasing capsular polysaccharide biosynthesis via the PTS-CRP axis. *Nat Commun*. 2025;16(1):6057. <https://doi.org/10.1038/s41467-025-61379-9> PMID: [40593854](#)
98. Lemire J, Alhasawi A, Appanna VP, Tharmalingam S, Appanna VD. Metabolic defence against oxidative stress: the road less travelled so far. *J Appl Microbiol*. 2017;123(4):798–809. <https://doi.org/10.1111/jam.13509> PMID: [28609580](#)
99. Riquelme SA, Prince A. *Pseudomonas aeruginosa* consumption of airway metabolites promotes lung infection. *Pathogens*. 2021;10(8):957. <https://doi.org/10.3390/pathogens10080957> PMID: [34451421](#)
100. Akbal A, Dernst A, Lovotti M, Mangan MSJ, McManus RM, Latz E. How location and cellular signaling combine to activate the NLRP3 inflammasome. *Cell Mol Immunol*. 2022;19(11):1201–14. <https://doi.org/10.1038/s41423-022-00922-w> PMID: [36127465](#)
101. Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O, Høiby N, et al. Adaptation of *Pseudomonas aeruginosa* to the cystic fibrosis airway: an evolutionary perspective. *Nat Rev Microbiol*. 2012;10(12):841–51. <https://doi.org/10.1038/nrmicro2907> PMID: [23147702](#)
102. Liu Z, Liu D, Wang C. In situ chemoproteomic profiling reveals itaconate inhibits de novo purine biosynthesis in pathogens. *Cell Rep*. 2024;43(9):114737. <https://doi.org/10.1016/j.celrep.2024.114737> PMID: [39277862](#)
103. Beg A, Liu Z, Chen Y-T, Talat A, Gowdy G, Miller J, et al. Sequestration of the phagocyte metabolite itaconate by *P. aeruginosa* RpoN promotes successful pulmonary infection. *Cold Spring Harbor Laboratory*; 2025. <https://doi.org/10.1101/2025.08.07.669126>
104. El Husseini N, Mekonnen SA, Hall CL, Cole SJ, Carter JA, Belew AT, et al. Characterization of the Entner-Doudoroff pathway in *Pseudomonas aeruginosa* catheter-associated urinary tract infections. *J Bacteriol*. 2024;206(1):e0036123. <https://doi.org/10.1128/jb.00361-23> PMID: [38047680](#)
105. Behrends V, Bell TJ, Liebeke M, Cordes-Blauert A, Ashraf SN, Nair C, et al. Metabolite profiling to characterize disease-related bacteria: gluconate excretion by *Pseudomonas aeruginosa* mutants and clinical isolates from cystic fibrosis patients. *J Biol Chem*. 2013;288(21):15098–109. <https://doi.org/10.1074/jbc.M112.442814> PMID: [23572517](#)
106. Moura-Alves P, Faé K, Houthuys E, Dorhoi A, Kreuchwig A, Furkert J, et al. AhR sensing of bacterial pigments regulates antibacterial defence. *Nature*. 2014;512(7515):387–92. <https://doi.org/10.1038/nature13684> PMID: [25119038](#)
107. Price-Whelan A, Dietrich LEP, Newman DK. Rethinking “secondary” metabolism: physiological roles for phenazine antibiotics. *Nat Chem Biol*. 2006;2(2):71–8. <https://doi.org/10.1038/nchembio764> PMID: [16421586](#)
108. Cullen L, Weiser R, Olszak T, Maldonado RF, Moreira AS, Slachmuylders L, et al. Phenotypic characterization of an international *Pseudomonas aeruginosa* reference panel: strains of cystic fibrosis (CF) origin show less in vivo virulence than non-CF strains. *Microbiology (Reading)*. 2015;161(10):1961–77. <https://doi.org/10.1099/mic.0.000155> PMID: [26253522](#)
109. Cornforth DM, Dees JL, Ibberson CB, Huse HK, Mathiesen IH, Kirketerp-Møller K, et al. *Pseudomonas aeruginosa* transcriptome during human infection. *Proc Natl Acad Sci U S A*. 2018;115(22):E5125–34. <https://doi.org/10.1073/pnas.1717525115> PMID: [29760087](#)
110. La Rosa R, Johansen HK, Molin S. Convergent metabolic specialization through distinct evolutionary paths in *Pseudomonas aeruginosa*. *mBio*. 2018;9(2):e00269-18. <https://doi.org/10.1128/mBio.00269-18> PMID: [29636437](#)
111. Dekker JP. Within-host evolution of bacterial pathogens in acute and chronic infection. *Annu Rev Pathol*. 2024;19:203–26. <https://doi.org/10.1146/annurev-pathmechdis-051122-111408> PMID: [37832940](#)
112. Yang L, Jelsbak L, Marvig RL, Damkær S, Workman CT, Rau MH, et al. Evolutionary dynamics of bacteria in a human host environment. *Proc Natl Acad Sci U S A*. 2011;108(18):7481–6. <https://doi.org/10.1073/pnas.1018249108> PMID: [21518885](#)
113. Bartell JA, Sommer LM, Haagensen JA, Loch A, Espinosa R, Molin S, et al. Evolutionary highways to persistent bacterial infection. *Nat Commun*. 2019;10(1):629. <https://doi.org/10.1038/s41467-019-10850-4> PMID: [30733448](#)
114. Evans CR, Kempes CP, Price-Whelan A, Dietrich LEP. Metabolic heterogeneity and cross-feeding in bacterial multicellular systems. *Trends Microbiol*. 2020;28(9):732–43. <https://doi.org/10.1016/j.tim.2020.03.008> PMID: [32781027](#)
115. Ueno M, Oda T. Biological activities of alginic acid. *Adv Food Nutr Res*. 2014;72:95–112. <https://doi.org/10.1016/B978-0-12-800269-8.00006-3> PMID: [25081079](#)
116. Tomlinson KL, Riquelme SA, Baskota SU, Drikic M, Monk IR, Stinear TP, et al. *Staphylococcus aureus* stimulates neutrophil itaconate production that suppresses the oxidative burst. *Cell Rep*. 2023;42(2):112064. <https://doi.org/10.1016/j.celrep.2023.112064> PMID: [36724077](#)

117. Tomlinson KL, Lung TWF, Dach F, Annavajhala MK, Gabryszewski SJ, Groves RA, et al. *Staphylococcus aureus* induces an itaconate-dominated immunometabolic response that drives biofilm formation. *Nat Commun.* 2021;12(1):1399. <https://doi.org/10.1038/s41467-021-21718-y> PMID: 33658521
118. Windmüller N, Witten A, Block D, Bunk B, Spröer C, Kahl BC, et al. Transcriptional adaptations during long-term persistence of *Staphylococcus aureus* in the airways of a cystic fibrosis patient. *Int J Med Microbiol.* 2015;305(1):38–46. <https://doi.org/10.1016/j.ijmm.2014.10.005> PMID: 25439320
119. Altman DR, Sullivan MJ, Chacko KI, Balasubramanian D, Pak TR, Sause WE, et al. Genome plasticity of agr-defective *Staphylococcus aureus* during clinical infection. *Infect Immun.* 2018;86(10):e00331-18. <https://doi.org/10.1128/IAI.00331-18> PMID: 30061376
120. Cörtes MF, Botelho AMN, Bandeira PT, Mouton W, Badiou C, Bes M, et al. Reductive evolution of virulence repertoire to drive the divergence between community- and hospital-associated methicillin-resistant *Staphylococcus aureus* of the ST1 lineage. *Virulence.* 2021;12(1):951–67. <https://doi.org/10.1080/21505594.2021.1899616> PMID: 33734031
121. Prince A, Wong Fok Lung T. Consequences of metabolic interactions during *Staphylococcus aureus* infection. *Toxins (Basel).* 2020;12(9):581. <https://doi.org/10.3390/toxins12090581> PMID: 32917040
122. Urso A, Monk IR, Cheng Y-T, Predella C, Wong Fok Lung T, Theiller EM, et al. *Staphylococcus aureus* adapts to exploit collagen-derived proline during chronic infection. *Nat Microbiol.* 2024;9(10):2506–21. <https://doi.org/10.1038/s41564-024-01769-9> PMID: 39134708
123. Jiang M, Bu W, Wang X, Ruan J, Shi W, Yu S, et al. Pulmonary fibrosis: from mechanisms to therapies. *J Transl Med.* 2025;23(1):515. <https://doi.org/10.1186/s12967-025-06514-2> PMID: 40340941
124. Karna E, Szoka L, Huynh TYL, Palka JA. Proline-dependent regulation of collagen metabolism. *Cell Mol Life Sci.* 2020;77(10):1911–8. <https://doi.org/10.1007/s00018-019-03363-3> PMID: 31740988
125. Brionesky D, Desgranges E, Corvaglia A, François P, Caballero CJ, Prado L, et al. A multifaceted small RNA modulates gene expression upon glucose limitation in *Staphylococcus aureus*. *EMBO J.* 2019;38(6):e99363. <https://doi.org/10.1525/embj.201899363> PMID: 30760492
126. Halsey CR, Lei S, Wax JK, Lehman MK, Nuxoll AS, Steinke L, et al. Amino acid catabolism in *Staphylococcus aureus* and the function of carbon catabolite repression. *mBio.* 2017;8(1):e01434-16. <https://doi.org/10.1128/mBio.01434-16> PMID: 28196956
127. Görke B, Stölke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. *Nat Rev Microbiol.* 2008;6(8):613–24. <https://doi.org/10.1038/nrmicro1932> PMID: 18628769
128. Britt EC, Qing X, Votava JA, Lika J, Wagner AS, Shen S, et al. Activation induces shift in nutrient utilization that differentially impacts cell functions in human neutrophils. *Proc Natl Acad Sci U S A.* 2024;121(39):e23212121. <https://doi.org/10.1073/pnas.2321212121> PMID: 39284072
129. Tan AS, Ahmed N, Berridge MV. Acute regulation of glucose transport after activation of human peripheral blood neutrophils by phorbol myristate acetate, fMLP, and granulocyte-macrophage colony-stimulating factor. *Blood.* 1998;91(2):649–55. <https://doi.org/10.1182/blood.v91.2.649>
130. Krysa SJ, Allen L-AH. Metabolic reprogramming mediates delayed apoptosis of human neutrophils infected with *Francisella tularensis*. *Front Immunol.* 2022;13:836754. <https://doi.org/10.3389/fimmu.2022.836754> PMID: 35693822
131. Li D-D, Jawale CV, Zhou C, Lin L, Trevejo-Nunez GJ, Rahman SA, et al. Fungal sensing enhances neutrophil metabolic fitness by regulating antifungal Glut1 activity. *Cell Host Microbe.* 2022;30(4):530–544.e6. <https://doi.org/10.1016/j.chom.2022.02.017> PMID: 35316647
132. Ancey P-B, Contat C, Boivin G, Sabatino S, Pascual J, Zangerer N, et al. GLUT1 expression in tumor-associated neutrophils promotes lung cancer growth and resistance to radiotherapy. *Cancer Res.* 2021;81(9):2345–57. <https://doi.org/10.1158/0008-5472.CAN-20-2870> PMID: 33753374
133. Ohms M, Ferreira C, Busch H, Wohlers I, Guerra de Souza AC, Silvestre R, et al. Enhanced glycolysis is required for antileishmanial functions of neutrophils upon infection with *Leishmania donovani*. *Front Immunol.* 2021;12:632512. <https://doi.org/10.3389/fimmu.2021.632512> PMID: 33815385
134. Gomez-Simmonds A, Greenman M, Sullivan SB, Tanner JP, Sowash MG, Whittier S, et al. Population structure of *Klebsiella pneumoniae* causing bloodstream infections at a New York City tertiary care hospital: diversification of multidrug-resistant isolates. *J Clin Microbiol.* 2015;53(7):2060–7. <https://doi.org/10.1128/JCM.03455-14> PMID: 25878348
135. Gomez-Simmonds A, Uhlemann A-C. Clinical implications of genomic adaptation and evolution of carbapenem-resistant *Klebsiella pneumoniae*. *J Infect Dis.* 2017;215(suppl_1):S18–27. <https://doi.org/10.1093/infdis/jiw378> PMID: 28375514
136. Wong Fok Lung T, Charytonowicz D, Beaumont KG, Shah SS, Sridhar SH, Gorrie CL, et al. *Klebsiella pneumoniae* induces host metabolic stress that promotes tolerance to pulmonary infection. *Cell Metab.* 2022;34(5):761–774.e9. <https://doi.org/10.1016/j.cmet.2022.03.009> PMID: 35413274
137. Ahn D, Peñaloza H, Wang Z, Wickersham M, Parker D, Patel P, et al. Acquired resistance to innate immune clearance promotes *Klebsiella pneumoniae* ST258 pulmonary infection. *JCI Insight.* 2016;1(17):e89704. <https://doi.org/10.1172/jci.insight.89704> PMID: 27777978
138. Lin X-C, Li C-L, Zhang S-Y, Yang X-F, Jiang M. The global and regional prevalence of hospital-acquired carbapenem-resistant *Klebsiella pneumoniae* infection: a systematic review and meta-analysis. *Open Forum Infect Dis.* 2023;11(2):ofad649. <https://doi.org/10.1093/ofid/ofad649> PMID: 38312215
139. Centers for Disease Control and Prevention (CDC). Vital signs: carbapenem-resistant Enterobacteriaceae. *MMWR Morb Mortal Wkly Rep.* 2013;62(9):165–70. <https://doi.org/10.15585/mmwr.mm62165a1> PMID: 23466435

140. Devinney K, Burton N, Alroy KA, Crawley A, Da Costa-Carter C-A, Kratz MM, et al. Notes from the field: increase in New Delhi metallo- β -lactamase-producing carbapenem-resistant enterobacterales—New York City, 2019–2024. *MMWR Morb Mortal Wkly Rep.* 2025;74(23):401–3. <https://doi.org/10.15585/mmwr.mm7423a2> PMID: 40568976
141. Bhushan G, Castano V, Wong Fok Lung T, Chandler C, McConville TH, Ernst RK, et al. Lipid A modification of colistin-resistant *Klebsiella pneumoniae* does not alter innate immune response in a mouse model of pneumonia. *Infect Immun.* 2024;92(6):e0001624. <https://doi.org/10.1128/iai.00016-24> PMID: 38771050
142. Ahn D, Bhushan G, McConville TH, Annavajhala MK, Soni RK, Wong Fok Lung T, et al. An acquired acyltransferase promotes *Klebsiella pneumoniae* ST258 respiratory infection. *Cell Rep.* 2021;35(9):109196. <https://doi.org/10.1016/j.celrep.2021.109196> PMID: 34077733
143. Yaseen MM, Abuharfeil NM, Darmani H, Daoud A. Recent advances in myeloid-derived suppressor cell biology. *Front Med.* 2021;15(2):232–51. <https://doi.org/10.1007/s11684-020-0797-2> PMID: 32876877
144. Peñaloza HF, Noguera LP, Ahn D, Vallejos OP, Castellanos RM, Vazquez Y, et al. Interleukin-10 produced by myeloid-derived suppressor cells provides protection to carbapenem-resistant *Klebsiella pneumoniae* sequence type 258 by enhancing its clearance in the airways. *Infect Immun.* 2019;87(5):e00665-18. <https://doi.org/10.1128/IAI.00665-18> PMID: 30804104
145. Xu Q, Liu X, Heng H, Wang H, Chen K, Chan EW-C, et al. Myeloid-derived suppressor cell inhibits T-cell-based defense against *Klebsiella pneumoniae* infection via IDO1 production. *PLoS Pathog.* 2025;21(3):e1012979. <https://doi.org/10.1371/journal.ppat.1012979> PMID: 40096073
146. Priya M, Gupta SK, Koundal A, Kapoor S, Tiwari S, Kidwai S, et al. Itaconate mechanism of action and dissimilation in *Mycobacterium tuberculosis*. *Proc Natl Acad Sci U S A.* 2025;122(4):e2423114122. <https://doi.org/10.1073/pnas.2423114122> PMID: 39841148
147. Petit TJP, Lebreton A. Adaptations of intracellular bacteria to vacuolar or cytosolic niches. *Trends Microbiol.* 2022;30(8):736–48. <https://doi.org/10.1016/j.tim.2022.01.015> PMID: 35168833
148. Naujoks J, Tabeling C, Dill BD, Hoffmann C, Brown AS, Kunze M, et al. IFNs modify the proteome of *Legionella*-containing vacuoles and restrict infection via IRG1-derived itaconic acid. *PLoS Pathog.* 2016;12(2):e1005408. <https://doi.org/10.1371/journal.ppat.1005408> PMID: 26829557
149. Lian H, Park D, Chen M, Schueder F, Lara-Tejero M, Liu J, et al. Parkinson's disease kinase LRRK2 coordinates a cell-intrinsic itaconate-dependent defence pathway against intracellular *Salmonella*. *Nat Microbiol.* 2023;8(10):1880–95. <https://doi.org/10.1038/s41564-023-01459-y> PMID: 37640963
150. Jiang L, Wang P, Song X, Zhang H, Ma S, Wang J, et al. *Salmonella Typhimurium* reprograms macrophage metabolism via T3SS effector SopE2 to promote intracellular replication and virulence. *Nat Commun.* 2021;12(1):879. <https://doi.org/10.1038/s41467-021-21186-4> PMID: 33563986
151. Cheng Z-L, Zhang S, Wang Z, Song A, Gao C, Song J-B, et al. Pathogen-derived glyoxylate inhibits Tet2 DNA dioxygenase to facilitate bacterial persister formation. *Cell Metab.* 2025;37(5):1137–1151.e5. <https://doi.org/10.1016/j.cmet.2025.01.019> PMID: 40037360
152. Harrell JE, Hahn MM, D'Souza SJ, Vasicek EM, Sandala JL, Gunn JS, et al. *Salmonella* biofilm formation, chronic infection, and immunity within the intestine and hepatobiliary tract. *Front Cell Infect Microbiol.* 2021;10:624622. <https://doi.org/10.3389/fcimb.2020.624622> PMID: 33604308
153. Schuster E-M, Epple MW, Glaser KM, Mihlan M, Lucht K, Zimmermann JA, et al. TFEB induces mitochondrial itaconate synthesis to suppress bacterial growth in macrophages. *Nat Metab.* 2022;4(7):856–66. <https://doi.org/10.1038/s42255-022-00605-w> PMID: 35864246
154. Rosenberg G, Riquelme S, Prince A, Avraham R. Immunometabolic crosstalk during bacterial infection. *Nat Microbiol.* 2022;7(4):497–507. <https://doi.org/10.1038/s41564-022-01080-5> PMID: 35365784
155. Macesic N, Uhlemann A-C, Peleg AY. Multidrug-resistant Gram-negative bacterial infections. *Lancet.* 2025;405(10474):257–72. [https://doi.org/10.1016/S0140-6736\(24\)02081-6](https://doi.org/10.1016/S0140-6736(24)02081-6) PMID: 39826970
156. Bertagnolio S, Dobrevska Z, Centner CM, Olaru ID, Donà D, Burzo S, et al. WHO global research priorities for antimicrobial resistance in human health. *Lancet Microbe.* 2024;5(11):100902. [https://doi.org/10.1016/S2666-5247\(24\)00134-4](https://doi.org/10.1016/S2666-5247(24)00134-4) PMID: 39146948
157. Cohen TS, Prince AS. Activation of inflammasome signaling mediates pathology of acute *P. aeruginosa* pneumonia. *J Clin Invest.* 2013;123(4):1630–7. <https://doi.org/10.1172/JCI66142> PMID: 23478406
158. Dal Ben D, Antonioli L, Lambertucci C, Fornai M, Blandizzi C, Volpini R. Purinergic ligands as potential therapeutic tools for the treatment of inflammation-related intestinal diseases. *Front Pharmacol.* 2018;9:212. <https://doi.org/10.3389/fphar.2018.00212> PMID: 29593540
159. Gross CM, Kovacs-Kasa A, Meadows ML, Cherian-Shaw M, Fulton DJ, Verin AD. Adenosine and ATPyS protect against bacterial pneumonia-induced acute lung injury. *Sci Rep.* 2020;10(1):18078. <https://doi.org/10.1038/s41598-020-75224-0> PMID: 33093565
160. Lin J, Ren J, Gao DS, Dai Y, Yu L. The emerging application of itaconate: promising molecular targets and therapeutic opportunities. *Front Chem.* 2021;9:669308. <https://doi.org/10.3389/fchem.2021.669308> PMID: 34055739
161. Zimmermann H, Zebisch M, Sträter N. Cellular function and molecular structure of ecto-nucleotidases. *Purinergic Signal.* 2012;8(3):437–502. <https://doi.org/10.1007/s11302-012-9309-4> PMID: 22555564
162. Bowser JL, Phan LH, Eltzschig HK. The hypoxia-adenosine link during intestinal inflammation. *J Immunol.* 2018;200(3):897–907. <https://doi.org/10.4049/jimmunol.1701414> PMID: 29358413
163. Barletta KE, Cagnina RE, Burdick MD, Linden J, Mehrad B. Adenosine A(2B) receptor deficiency promotes host defenses against gram-negative bacterial pneumonia. *Am J Respir Crit Care Med.* 2012;186(10):1044–50. <https://doi.org/10.1164/rccm.201204-0622OC> PMID: 22997203
164. Cronstein BN. Adenosine, an endogenous anti-inflammatory agent. *J Appl Physiol (1985).* 1994;76(1):5–13. <https://doi.org/10.1152/jappl.1994.76.1.5> PMID: 8175547

165. Urso A, Prince A. Anti-inflammatory metabolites in the pathogenesis of bacterial infection. *Front Cell Infect Microbiol*. 2022;12:925746. <https://doi.org/10.3389/fcimb.2022.925746> PMID: 35782110
166. Thammavongsa V, Kern JW, Missiakas DM, Schneewind O. *Staphylococcus aureus* synthesizes adenosine to escape host immune responses. *J Exp Med*. 2009;206(11):2417–27. <https://doi.org/10.1084/jem.20090097> PMID: 19808256
167. Kim HK, Thammavongsa V, Schneewind O, Missiakas D. Recurrent infections and immune evasion strategies of *Staphylococcus aureus*. *Curr Opin Microbiol*. 2012;15(1):92–9. <https://doi.org/10.1016/j.mib.2011.10.012> PMID: 22088393
168. Li Q, Song X-C, Li K, Wang J. Gut-lung immunometabolic crosstalk in sepsis: from microbiota to respiratory failure. *Front Med (Lausanne)*. 2025;12:1685044. <https://doi.org/10.3389/fmed.2025.1685044> PMID: 41244772
169. Melegari G, Arturi F, Gazzotti F, Villani M, Bertellini E, Barbieri A. Sepsis biomarkers: what surgeons need to know. *Anesth Res*. 2025;2(4):23. <https://doi.org/10.3390/anesthres2040023>
170. Silva EE, Skon-Hegg C, Badovinac VP, Griffith TS. The calm after the storm: implications of sepsis immunoparalysis on host immunity. *J Immunol*. 2023;211(5):711–9. <https://doi.org/10.4049/jimmunol.2300171> PMID: 37603859
171. Bourika V, Rekoumi E-A, Giamparellos-Bourboulis EJ. Biomarkers to guide sepsis management. *Ann Intensive Care*. 2025;15(1):103. <https://doi.org/10.1186/s13613-025-01524-1> PMID: 40685448
172. Hai L, Jiang Z, Zhang H, Sun Y. From multi-omics to predictive biomarker: AI in tumor microenvironment. *Front Immunol*. 2024;15:1514977. <https://doi.org/10.3389/fimmu.2024.1514977> PMID: 39763649
173. Gururaj AE, Scheuermann RH, Lin D. AI and immunology as a new research paradigm. *Nat Immunol*. 2024;25(11):1993–6. <https://doi.org/10.1038/s41590-024-01974-y> PMID: 39367122