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Abstract 

Despite early assumptions of neutrality, numerous mechanisms are now thought 

to cause selection on synonymous mutations, commonly supported by a low evo-

lutionary rate at synonymous sites (K
s
). This has been best evidenced in the first 

~10 codons of genes in E. coli, where K
s
 is less than around half that of the gene 

body. Diverse lines of evidence support the hypothesis that these first ~10 codons 

are under selection for high AT content which causes low mRNA stability that in turn 

enables ribosomal initiation. There remains one enigmatic discrepancy, however, 

namely that the low K
s
 domain extends far beyond the first 10 codons. Here we ask 

why this is. As we see no evidence that the zone influencing protein levels has been 

misestimated, we consider three further hypotheses: that reduced K
s
 is a) owing 

to overlapping genes, b) reflects an extended slow translational “ramp,” and c) is 

mutational. We reject the first two as in both E. coli and Bacillus sp. the extended 

low K
s
 domain persists on analysis of non-overlapping genes and in Bacillus, where 

fast optimal codons tend to be A/T-ending, a fast-to-slow codon trend is seen. We fail 

to falsify the third hypothesis. Employing mutation accumulation data for E. coli we 

show that the 5′ end has a lower mutation rate, with the first 10 codons having a rate 

around half that of the gene body, this then steadily increasing following the trend 

seen for K
s
. Compositional variation is likely to explain some of the difference, the 5′ 

end lacking GC-rich runs while these are most mutagenic. We conclude that even a 

highly reduced K
s
 is not always adequate to substantiate selection on synonymous 

mutations. This result has broad implications for inference of the causes of evolution-

ary rate variation.
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Introduction

Owing to the degeneracy of the genetic code, many coding sequence (CDS) muta-
tions change the identity of a codon but not the encoded amino acid. As they leave 
the protein sequence unchanged, such synonymous mutations were commonly 
assumed to be evolutionarily neutral [1,2], hence also originally being termed “silent” 
mutations. However, subsequently, over-usage, especially in highly expressed 
genes (HEGs), of the synonymous codons that match the more abundant tRNAs 
was observed in many organisms, leading both to the concept of the translationally 
“optimal” codon and to the understanding that synonymous mutations can be under 
selection [3–6]. It remains a matter of debate as to whether selection on such optimal 
codons is mediated by selection on ribosomal speed or ribosomal accuracy (see, 
e.g., [7–11]). Since then, there has been evidence for many further mechanisms by 
which synonymous mutations, and in turn codon choice, influences gene expression 
or more generally can be under selection (see reviews, e.g., [12–16] and references 
therein). A non-exhaustive list of these mechanisms includes modulation of splicing 
[17–19], destruction of functionally relevant miRNA pairing sites [20] or their creation 
[21], modulation of RNA stability and structure [22–25], and modulation of protein 
folding via alteration of ribosomal velocity (see reviews, e.g., [26,27]). More gen-
erally, RNA or DNA binding by proteins or RNAs can be affected by synonymous 
mutations, including intra mRNA self-pairing affecting mRNA stability [22,25,28,29]. 
Most of these mechanisms operate locally within CDSs, potentially causing localized 
sequence conservation [30,31], but selection for “optimal” codons can apply across 
the bulk of a gene’s CDS. Understanding these mechanisms is important not just 
for understanding the modes of selection operating on gene sequences, above and 
beyond classical selection on the protein product, but also for improved diagnostics, 
disease etiology determination, and transgene (heterologous gene) design.

Classically, a central piece of evidence that particular genes, or gene regions, are 
subject to stronger selection on synonymous mutations is a low synonymous rate of 
evolution (K

s
), this being expected when synonymous mutations are removed from 

populations by purifying selection. For example, lower K
s
 in genes with higher codon 

usage bias [32], in alternatively spliced exons [31], in exonic splice enhancer motifs 
[18,33], or in miRNA binding sites [20,34] has been employed to infer the action of 
such purifying selection. Similarly, the degree of conservation at any given synony-
mous site is employed in tools to infer the likely pathogenicity of synonymous muta-
tions [35–37], and methods that don’t employ conservation as an input variable report 
that predictions nonetheless correlate with conservation [38].

Here, we revisit the best-evidenced incidence of selection on synonymous muta-
tions and in the process question whether a reduced K

s
 is adequate to substantiate 

selection on synonymous mutations. Our exemplar concerns the 5′ CDS end of 
genes in Escherichia coli (E. coli). Here, molecular evolutionary analysis, in silico 
analysis of native genes, and, importantly, many experimental manipulations of native 
and transgenes all reinforce the same narrative. It was first observed that the first 10 
or so codons of E. coli native genes have a distinct nucleotide content compared to 
those more downstream in the CDS, as they are characterized by high A/T content, 

alone is paid via the grant. The funders had 
no role in study design, data collection and 
analysis, decision to publish, or preparation of 
the manuscript.

Competing interests: I have read the journal’s 
policy and the authors of this manuscript have 
the following competing interests: LDH is 
on the SAB of ExpressionEdits and is on the 
Editorial Board of Plos Biology.

Abbreviations: CAI, Codon Adaptation Index; 
CDS, coding sequence; HEGs, highly expressed 
genes; LOESS, locally estimated scatterplot 
smoothing; MA, mutation accumulation; MMR, 
mismatch repair; SEM, standard error of the 
mean; WT, wild-type.



PLOS Biology | https://doi.org/10.1371/journal.pbio.3003569  December 15, 2025 3 / 42

especially A, and low G/C content, especially G [39]. The same analysis identified a much lower synonymous substitution 
rate (K

s
) in the 5′ end, consistent with functionality and purifying selection on synonymous mutations to maintain the high 

AT content [39]. We estimate that the minimum K
s
, seen at codon 2, is less than a quarter of that seen in the gene body, 

with the average K
s
 across the first 10 codons about a half that of the gene body (see below). In turn, it was suggested 

that this high A/low G content may reflect selection for reduced mRNA stability in this domain [39], a trend now considered 
to be phylogenetically universal [40].

This low stability effect and the influence of the first ~10 codons have been repeatedly confirmed in E. coli large-scale 
transgene experiments [41–47]. While the degree to which the transcript as a whole employs translationally optimal 
codons is either not a significant predictor of protein level or a very weak one at most [41,43], the stability of the 5′ region 
is highly influential. For example, in comparing over 100 GFP transgenes varying exclusively at synonymous sites, that 
differed by orders of magnitude in their protein output, RNA stability of the region −4 bp to +37 bp around the start codon 
(i.e., the first 12 or so codons in the CDS) was found to be highly correlated with protein abundance [43]. Similarly, Good-
man and colleagues [42] showed that when the synonymous codon usage of the first 10 codons was altered, the pre-
dicted RNA stability in this domain, across 14,000 transgenes, strongly predicted protein level. This was confirmed in an 
even larger scale analysis of 244,000 transgenes where the 5′ stability spanning the first 10 codons was seen to be the 
strongest predictor of protein abundance by some magnitude [41]. All such studies indicate that the first 8–12 codons are 
influential in determining protein levels [41–47], but for brevity we refer to the first ~10 codons. In native mRNAs, the local 
folding energy in the first ~30 CDS nucleotides is weaker than downstream [48,49], as would then be predicted.

While there seems little doubt that low stability is influential, the exact mechanistic logic of the low stability effects 
remains debated with multiple mutually compatible reasons as to why low 5′ mRNA stability might promote translation: 
it is less energetically demanding for the ribosome’s helicase activity [50]; strong folds may obscure the Shine-Dalgarno 
sequence [51]; RNA folding mediates susceptibility to degradation [52] or it modulates ribosomal velocity and efficient 
queuing [53].

Recent evidence provides additional support to the model that the high AT content at 5′ ends is owing to the activity of 
selection favoring A and T. Notably, from mutation accumulation (MA) experiments, Long and colleagues [54] determined 
E. coli’s neutral-mutation bias equilibrium [54], deviations from which imply the action of some process other than drift 
[54]. Consistent with selection favoring AT at the 5′ end, they find neutral equilibrium AT content to be 0.52 for E. coli [54], 
which is lower than the observed at synonymous sites in native genes which in the 5′ CDS reaches up to 0.62 at codon 
third sites (see [39] and our analysis below). This is consistent with selection favoring G/C->A/T mutations. More recently, 
average nucleotide diversity among native E. coli genes at 4-fold synonymous sites was also shown to be low at 5′ ends, 
also in accordance with strong purifying selection [63].

While the above evidence provides what appears to be an unusually complete and robust understanding of selec-
tion favoring A/T at synonymous sites at 5′ ends, there remains at least one unexplained discrepancy: while both 
mononucleotide usage trends and transgene studies point to the first ~10 codons as being influential, early studies showed 
that synonymous site conservation trends in E. coli don’t follow this “10-codon” rule [39]. It is true that rates of synonymous 
substitutions start exceptionally low in proximity of the initiating 5′ start codon [39]. However, they plateau further down-
stream around codon 30 [39] (in our analysis below, we see until codon 60). Similarly, the nucleotide diversity among native 
E. coli genes at 4-fold synonymous sites increases within approximately the first ~60 codons, after which it stabilizes [63]. 
Understanding the causes of this anomaly is of importance in transgene design as it raises the question of whether mod-
ifications further downstream than codon 10 can further optimize protein production. It also questions whether the low K

s
 

values are necessarily indicative of selection on synonymous mutations or at least in the manner proposed.
Under the philosophy that one should treasure one’s exceptions [64] (or at least anomalies), here we consider a series 

of possible explanations for the extended low K
s
 domain. One possible explanation is that we have misunderstood the 

size of the 5′ domain that affects protein titer (meaning either absolute protein levels or protein per mRNA molecule). To 
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address this, we first examine why the first ~10 codons are considered distinct. These analyses reinforce the centrality of 
the first ~10 codons not least on its influence on protein levels.

As we see no clear evidence that the functionally distinct domain extends far beyond the first ~10 codons, we consider 
three further hypotheses to explain the much longer domain of reduced K

s
: that it reflects the impact of gene-gene over-

laps (where the 5′ end of any given CDS overlaps with the start or end of a neighboring CDS); that it reflects selection for 
an extended “ramp” of slow translating codons (explained more fully below); that it is mutational in origin.

The overlap model is intrinsically attractive. As gene-gene overlaps are likely to be more common in proximity to the 
start codon than further into the gene body, they could predict a gradually rising K

s
, especially if the overlaps involve 

non-synonymous sites in one gene being synonymous in the other (and vice versa). The effect may be of significance as 
one third of bacterial annotated genes are overlapping [65] and genes containing overlaps are more conserved [66]. To 
examine this, we derive the trend in K

s
 as a function of distance from the start codon in both E. coli and Bacillus sp. and 

ask whether the extended 5′ domain remains when overlapping genes are excluded. We find that not only is the extended 
K

s
 domain also seen in Bacillus, but that in neither species do overlapping genes explain the extended K

s
 domain.

The discovery that the 60-codon low K
s
 domain is also seen in Bacillus permits a novel means to interrogate the sec-

ond hypothesis, namely that the extended K
s
 domain accords with a hypothesized translational “ramp” that, given trends 

in codon usage, is conjectured to extend up to around codon 50–60 [53,67,68]. Given that codon adaptation is reduced 
towards the 5′ end of genes in E. coli (i.e., there is over-use of non-optimal codons), Tuller and colleagues hypothesized 
that this was an adaptation to slow ribosomes to enable a more orderly initiation process (a “ramp” [67]). The ramp model 
was extended to include positive charge on the N-terminal peptide, this hypothesized to slow ribosomes owing to an inter-
action with the negatively charged exit tunnel [53].

While potentially attractive in proposing effects running into the gene body, we consider the ramp model to be not 
especially likely, as it has met with considerable challenges. The original central evidence, namely that ribosome protec-
tion assays report higher ribosome density towards the 5′ end, was found to be both an artifact of higher initiation rates of 
shorter peptides [69] and of sample preparation (and not replicated when the method of ribosome stalling was adjusted 
[70]). The positive charge effect can be accounted for as an epiphenomenon of the fact that membrane proteins orientate 
so that excess positive charge near hydrophobic membrane-spanning regions is on the cytoplasmic side of the mem-
brane, the positive-inside rule [71]. Importantly in the current context, any trend for non-optimal codon usage is argued to 
be a necessary correlate of CDS A/T richness, predominantly associated with RNA stability effects [72], E. coli’s optimal 
codons being mostly G/C-ending. Consistent with this, in pairwise consideration of constructs of different codon optimality 
controlling for RNA stability, there are no deterministic effects on transgene output [72]. In large-scale transgene data, pro-
tein output is independent of 5′ codon non-optimality when allowing for RNA stability [42]. Osterman and colleagues also 
altered tRNA availability and saw no effect of the influence of the relevant codons to transgene output [47]. We recently 
showed in multiway partial correlation analysis of 244,000 transgenes that, if anything, higher codon adaptation in the first 
10 codons is predictive of higher protein production, although the effect is extremely weak [73].

It was further noticed that the trend to prefer non-optimal codons in the first 10 codons applied exclusively to cases 
where the optimal codon is G/C-ending [72]. When the optimal codon is A/T-ending, it is enriched at 5′ ends, indicating 
A/T presence, not codon non-optimality, to be the key force. In this same context, Bacillus provides an exceptional test 
case as its optimal codons are most commonly A/T-ending. Wei and colleagues [74] determine from transcriptional levels 
of tRNAs (as opposed to tRNA copy numbers [75]), paired with enrichment patterns in HEGs, the unambiguously trans-
lationally optimal codon for any given codon block, i.e., set of synonymous codons (see their Table 1 [74]). For 17 blocks 
that had agreement between measures in E. coli, only 4 optimal codons are A/T-ending [74]. A 5′ A preference thus leads 
to on average over-use of rare/non-optimal codons, as noticed [72]. By contrast, in Bacillus, of 14 resolvable blocks, only 
4 optimal codons are G/C-ending [74]. Thus, if patterns of codon preference/avoidance are driven by ribosomal slowing, 
Bacillus should have G/C-rich third sites at 5′ ends to provide low usage of optimal codons, while if codon optimality is 
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irrelevant and A/T content (potentially for low RNA stability) matters, then it should have high codon optimality at the 5′ end 
and hence have the very opposite of a ramp: fast codons should give way to slower ones. We see over-use of “fast” opti-
mal codons running until about codon 10–15. After this, there is no change in codon usage despite the low K

s
 persisting to 

around codon 60. Comparing between synonymous codons, third site nucleotide content robustly predicts the observed 
patterns, with A/T-ending codons preferred at CDS ends, G/C ones avoided, regardless of optimality. The Bacillus data 
thus contradicts all expectations of the ramp model. Neither model accounts for the dimension of the K

s
 domain (up to 

codon 60) in either species.
Our final hypothesis is that the reduced K

s
 reflects differences in the mutation rate. We test this using MA data in E. coli [56]. 

From this, we discover that indeed, the first 60 codons have an unusually low mutation rate, with the first 10 codons having a 
rate around a half that of the gene body, the rate then gradually rising. This proportional difference is comparable to that seen 
for the synonymous rate of evolution. We replicate this result using independent data sets. In part, this effect is explained in 
E. coli by skewed nucleotide content at the 5′ end as this is AT-rich and the more mutable nucleotide runs are GC-rich. Taken 
together the analyses question inferences drawn from classical analysis of reduced synonymous rates of evolution.

Results

The first ~10 codons are unusual in both nucleotide content and in their influence on protein levels

Before asking about possible alternative explanations, we start by asking whether there is evidence that the 5′ zone that 
may be considered distinct may have been misestimated. We consider trends in nucleotide usage, in RNA stability, in 
influence on protein expression, and on cellular growth of 5′ CDS codons.

The first 10 codons of native genes show distinct nucleotide content trends compared to downstream 
codons.  For completeness and the convenience of the reader, we start by illustrating AT content variation across the 
5′ regions of 5,098 native E. coli genes, similar to that done previously (e.g., [39]). At all codon positions there is low 
GC content in the first few codons, which gradually increases up to codon 10 (Fig 1A). Beyond this region, AT content 
stabilizes and remains relatively uniform across nucleotide positions (Fig 1A). We note that this pattern holds true across 
all three codon sites, although in the 5′ domain the second site is the most AT-rich, an observation we return to later (see 
Discussion and S1 Text) as this is indicative of protein-level effects [76] (see S1 Fig for content by codon position relative 
to the start codon, by position within codons, i.e., sites 1, 2, and 3, for all four nucleotides individually).

We also illustrate the nucleotide trends only at synonymous sites in the strictest sense by finding average content at 
third sites of 4-fold degenerate codons by position (Fig 1B). There is a difference in 5′ nucleotide content when compared 
to core in all four nucleotides, with 5′ ends characterized by high A/T and low G/C, all plateauing around codon 10. Codon 
usage at codon positions 2–10 is significantly different to downstream, with an over-representation of A-ending codons 
independent of the amino acid used [77]. As reported (e.g., [39]), we also find that the bigger differences are in A and G 
content, compared to T and C (Fig 1B).

The first 10 codons of native genes show lower mRNA stability compared to downstream codons.  Given that 
the nucleotide content is different at 5′ ends and in gene cores, we seek to confirm the previously reported explanation 
thought to underpin this: mRNA stability trends within the CDS. Through computational prediction of mRNA stability using 
a 30 bp sliding window approach, we find the predicted stability by codon position. We observe that predicted stability is 
lowest at 5′ ends and gradually increases until plateauing shortly after codon 10 (Fig 1C), consistent with previous mRNA 
stability and secondary structure studies, both computational [43,67] and experimental [49], as well as nucleotide content 
trends (Fig 1A and 1B). We note that minimum of low stability is around codon 3, in agreement with experimental mRNA 
stability data [49] (Fig 1C).

The first 10 codons are most influential on transgene expression.  The above analyses highlight (and confirm) the 
distinct nature of the first ~10 codons. We next look at the influence of 5′ codons as regards transgene protein production. 
For this analysis, we employ data from the large-scale study by Cambray and colleagues [41], which includes 244,000 
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transgenes expressed in E. coli with randomized codon usage in the 5′ CDS up to codon 33. Given the variability in 
expression levels associated with synonymous codon usage, we investigate which codon positions have the greatest 
influence on the protein per mRNA (protein/RNA) measures they report.

Using a Relative Importance of Regressors in Linear Models (relaimpo) analysis [78], we assess the influence of GC 
content at each codon position while accounting for the effects of other positions. Although Cambray and colleagues [41] 
provide sequences for each transgene of 33 codons, as a relaimpo analysis becomes exponentially more computation-
ally intensive for each codon position added, we consider the first 20 codons following the start codon (with 21 variables, 
relaimpo analysis considers in excess of 1019 different models, with 30 variables it goes beyond most computing power at 
1032). We nonetheless opt to employ relaimpo as it comes with the advantage that it allows us to evaluate the explanatory 
contribution of each predictor, while considering covariances between each. Results indicate that codons 2–9 exhibit the 
highest relative influence on expression, with codon 3 showing the greatest impact (Fig 1D). The centrality of codons 2–4 
broadly supports experimental analyses [44,79].

Fig 1.  Examination of the uniqueness of the first ~10 codons in Escherichia coli CDSs. A. AT content by nucleotide position, divided into the three 
codon sites. B. Content for each of the four nucleotides by position at third sites of 4-fold degenerate codons. In both A and B, content is averaged at 
each nucleotide position across 5,098 native genes. The x axis represents nucleotide positions relative to the start codon (i.e., the first nucleotide of 
the codon after the start codon is at position 1). Error bars indicate the standard error of the mean (SEM). Dashed vertical black line marks the first 10 
codons. Locally estimated scatterplot smoothing (LOESS) regression lines are included. C. Average mRNA stability by codon position. Stability was 
determined by two measures. First, in blue, it was computationally predicted using ViennaRNA R package [55] through a sliding window approach 
scanning the CDS of native genes (starting at nucleotide position −15). The x axis represents the position at the middle of each 30 bp window. Second, 
experimental PARS data was employed (in pink), data from Del Campo and colleagues [49]. Dashed vertical black line marks the first 10 codons. A 
polynomial regression of order 10 is shown for both. For ease of comparison, in both cases Z normalized data is employed with a low (negative) figure 
indicating lower stability. D. Relative influence of GC content at each codon position on protein per RNA levels (protein/RNA) in transgene constructs. 
Relaimpo analysis was conducted using the lmg model with 1,000 bootstraps, 90% bootstrap confidence intervals are shown as error bars. Codon posi-
tions on the x axis refer to absolute numbers (where start codon is 1). Transgene data from Cambray and colleagues [41]. E. Full Spearman correlations 
between GC content and protein per RNA (protein/RNA) levels in transgenes for each codon position. F. Partial Spearman correlations controlling for 
the influence of all other codon positions in the available construct sequence (codons 2–30) such that, for instance, the relation between transgene 
expression (as protein/RNA) and GC content at codon 2 is found independently of the relation with GC content in codons 3–30. In E, F, colored points 
represent rho values with a P-value ≤ 0.05, while gray points are non-significant. Locally estimated scatterplot smoothing (LOESS) regression lines are 
included. Codon positions on the x axis refer to absolute codon numbers (e.g., the start codon is codon 1). Dashed vertical black line marks the first 10 
codons. Transgene data from Cambray and colleagues [41]. Plots D–F were repeated using Cambray protein levels only, not normalized by RNA (see 
S2 Fig). The data underlying this Figure can be found in htps://doi.org/10.5281/zenodo.17378284.

https://doi.org/10.1371/journal.pbio.3003569.g001

htps://doi.org/10.5281/zenodo.17378284
https://doi.org/10.1371/journal.pbio.3003569.g001
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To further investigate the positional effects observed in the relaimpo analysis, particularly those beyond codon 21, and 
to determine directionality of effects, we consider Spearman correlations between protein/RNA levels and GC content for 
each codon position (S1 Table). We consider both full (Fig 1E) and partial (Fig 1F) Spearman correlations, with the latter 
controlling for the effects of other codon positions. As expected, correlations were significantly negative for codons 2–14, 
consistent with the 5′ AT preference in native bacterial genes (Fig 1A and 1B). Notably, correlations plateau near zero 
around codon 15 (Fig 1E and 1F). For both modes of analysis, comparable results are observed employing protein level 
(unnormalized to mRNA levels) (S2 Fig).

We then ask whether the correlation between observed nucleotide content and expression (protein per RNA) is also 
translated into mRNA stability. We thus split the sequence provided by Cambray and colleagues [41] for each transgene 
and find the correlation between predicted mRNA stability of each sequence subset and transgene expression. We find 
the computationally predicted stability within the first 10 codons to be significantly more positively correlated to expression 
when compared to predicted stability of the two sequence subsets (of the same size) downstream (S2 Table).

The transgene analysis comes with the caveat that we are considering influence on protein per RNA (or protein level), 
while the fitness costs of protein manufacture may be more relevant. However, replacing protein measures with effects on 
cellular growth rates, we find that GC content—the variable most obviously changing across the 5′ domain—has almost 
no predictive power, the GC content of codons 2–33 explaining ~2%–3% of variation in fitness (adjusted r2 = 0.028). In 
replacing codon GC content with Codon Adaptation Index (CAI), the effect is weaker still (adjusted r2 = 0.018). Spearman 
and Spearman partial correlations suggest no obvious significant trend as regards influence on fitness (S3 Fig).

From the above, we surmise that there is no good evidence that the functionally important domain extends far beyond 
the first 10 codons (for consideration, and rejection, of the ramp model see below). The mystery thus remains as to why 
conservation at synonymous sites extends far beyond the first 10 codons [39]. We now consider our three further hypoth-
eses, starting with the gene-gene overlap hypothesis.

Extended synonymous site conservation is not explained by gene–gene overlaps

Prior to consideration of the effects of gene overlap, we first seek to describe K
s
 trends using close comparators across 

all genes (not available to prior analyses [39]). We performed ortholog alignments between three closely related species 
that provide a “sweet spot” of K

s
 estimation (one where the amount of change is low enough that neither alignment nor 

saturation are an issue, but where there is enough change to be informative), these being E. coli, Escherichia fergusonii 
(E. fergusonii), and Salmonella enterica (S. enterica). We reconstructed via maximum likelihood the ancestral sequence 
of the E. coli and E. fergusonii common ancestor with S. enterica as outgroup species. To determine conservation by 
codon position (relative to the start codon), we separately extract each codon for each ortholog and concatenate it to the 
codons at that same position for all other orthologs. We do this for the first 150 codons following the start codon to give 
150 codon-specific alignments, each containing sequences of at least 1,400 codons (one per ortholog that is at least 
180 codons in length so as to avoid capturing 3′ effects). We exclude (rare) cases where all three species have different 
codons, as it is likely for there to be uncertainty in the ancestral sequence reconstruction at those positions. For each 
codon position, we then find the synonymous substitution rate (K

s
) between the focal species and the ingroup common 

ancestor from the by-codon position alignment. We can also compute non-synonymous substitution rates (K
a
), and the 

ratio between the two (K
a
/K

s
), the latter permitting us to address the question of the extent to which the low K

s
 might distort 

measures of protein-level selection.
We find synonymous substitution rates (K

s
) to be lowest at the most 5′ codons and increase until approximately codon 

60, after which they asymptote (Fig 2A). This is slightly more downstream than the plateauing around codon 30 that was 
previously reported from highly diverged E. coli–Salmonella sequence [39]. K

a
 rates do not show as clear of a trend (Fig 

2B), and K
a
/K

s
 ratios appear to be primarily driven by K

s
 rather than K

a
 levels (Fig 2C), which if anything are actually 

higher in the first few codons than the ones slightly 3′ (Fig 2B). While the most 5′ codons do have the lowest K
s
 values, 



PLOS Biology | https://doi.org/10.1371/journal.pbio.3003569  December 15, 2025 9 / 42

there is no evident change in regression slope around or immediately after codon 10 (Fig 2A). Similar substitution rate 
patterns were observed when comparing the ancestor to E. fergusonii (S4 Fig). Trends for 4-fold degenerate codons (S5 
Fig) are similar to those resulting from consideration of all codons (Fig 2). We also see high similarity in trends between 
operonic and non-operonic genes (S6 Fig). For the set of genes that have an ortholog, the 5′ GC trends are the same as 
the broader native gene set (S7 Fig).

With this benchmark, next we consider the influence of overlapping CDSs. To account for this, we consider reference 
genome annotations and repeat the conservation analysis for E. coli orthologous genes only considering those that are 
not overlapping (meaning no other CDS is fully or partially encoded by the 5′ sequence of the focal CDS). We perform 
the same conservation analysis as above only for non-overlapping orthologous genes (2,027 of 2,385 orthologs) and find 
that, although absolute K

s
 values are marginally higher, the K

s
 trend is unaffected (Fig 2D–2F, as above we plot those that 

Fig 2.  Substitution rates by 5′ codon position comparing the Escherichia coli– Escherichia fergusonii ancestor to E. coli. A. Synonymous sub-
stitution rates (K

s
); B. non-synonymous substitution rates (Ka), and C. the ratio between the two (K

a
/K

s
). A–C plots include orthologs that are at least 180 

codons in length (n = 1,443). D–F. same as A-C but only including non-overlapping orthologous genes that are at least 180 codons in length (n = 1,310). 
For all panels, the x axis represents absolute codon position (i.e., the start codon is codon 1). Dashed vertical black line marks the first 10 codons. 
Locally estimated scatterplot smoothing (LOESS) regression lines are included. Note that codon position here is by reference to the codon position in the 
alignment. Removal of alignment indels in the focal lineage prior to codon position categorization makes no meaningful difference (Pearson correlation 
between K

s
 with indels v K

s
 without = 0.99 P-value = 1.31 × 10−142, likewise for K

4
: S8 Fig). The data underlying this Figure can be found in https://doi.

org/10.5281/zenodo.17378284.

https://doi.org/10.1371/journal.pbio.3003569.g002

https://doi.org/10.5281/zenodo.17378284
https://doi.org/10.5281/zenodo.17378284
https://doi.org/10.1371/journal.pbio.3003569.g002
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are at least 180 codons in length). This is consistent with the hypothesis that conservation at synonymous sites is not fully 
explained by gene overlaps. In no small part, this reflects the fact that among native genes the majority are not overlap-
ping (669 of 4494 genes show 5′ overlaps, around 15%), and of those that are, most involve small 5′ overlaps (median 
overlap size = 3 bp, see S9 Fig).

While the above 15% figure is approximately as expected if 30% of genes show an overlap [65] (the others being 3′ 
overlaps), to determine the generality of results we ask whether the results are replicated in other species. We identified 
one set of Bacillus species with appropriate in and outgroup distances (B. toyonensis (focal ingroup) and B. anthracis, 
with B. mycoides as outgroup). This also allows us to test whether we observe the same trends in gram-positive bacteria, 
which differ from gram-negative bacteria (such as E. coli) in a number of ways, including lack of co-transcriptional transla-
tion in Bacillus sp. [80] and a previously reported different codon usage (specifically for Bacillus subtilis (B. subtilis) when 
compared to E. coli) [81].

Among the Bacillus species, we observe the same trends in all genes and in non-overlapping orthologous genes (2,970 
of 3,305 orthologs): K

s
 starting low 5′ and gradually increasing until plateauing around codon 60 (Fig 3A–3F). For the 

distribution of overlaps at 5′ ends in native B. toyonensis genes see S10 Fig: as for E. coli, most genes are not overlap-
ping (479 of 5229 genes show 5′ overlaps, around 9%) and overlaps are commonly short (median overlap size: 3 bp). B. 
toyonensis also replicates similar native GC content along the CDS as in E. coli, i.e., plateauing around codon 10 (S11 
Fig), suggesting the K

s
 trends cannot be explained by different mononucleotide trends in orthologous genes. We further 

confirm that the extended conservation trend cannot be explained by gene overlaps and furthermore that it is not unique 
to E. coli (or gram-negative bacteria).

Extended synonymous site conservation cannot be explained by a translational ramp

Having established that in Bacillus and Escherichia there is both an extended window of low K
s
 and that this cannot 

obviously be explained by overlapping genes, we sought to consider a further prominent model. Given that translationally 
optimal codon usage is reduced towards the 5′ end of genes in E. coli, Tuller and colleagues hypothesized that this was 
an adaptation to slow ribosomes to enable a more orderly initiation process, what they call a ramp [67]. To investigate 
this, we consider the trends in usage of unambiguously translationally optimal codons, these matching the most abundant 
tRNA in the transcriptome and showing classical HEG enrichment patterns.

We employed the optimal codon calls of Wei and colleagues [74] (see Methods). Plotting the usage of optimal codons 
against position we see, as previously seen, a tendency in E. coli to relatively underuse optimal codons in the 5′ end, this 
starting to plateau after about codons 10–20 (Fig 4A). It continues up to and past codon 150. In Bacillus, optimal codons 
tend to be A/T-ending so provide a highly informative test case. Indeed, the ramp model still predicts avoidance of optimal 
codons, while the low stability-A/T epiphenomenon model predicts the opposite of the slow-to-fast ramp. As predicted by 
the low stability-high A/T model, codon adaptation is extremely high in the 5′ end of Bacillus (Fig 4B). After codon 10–20, 
the trend is flat to negative. Both trends are the opposite of the predictions of the ramp model. As regards optimal codon 
usage and GC3, in both Bacillus and E. coli, the trends in operonic genes are the same as those in non-operonic genes 
(S12 Fig) indicative of effects beyond the ribosome engaging the most 5′ end of the polycistronic RNA.

The centrality of nucleotide content above codon optimality is underscored by analysis of further species in which 
codon optimality can be defined by reference to tRNA levels [74]. There are four other species for which we have a good 
definition of optimal codons that reflect a broad range of GC contents: Leptospira interrogans GC3 ~29%, Bacteroides 
thetaiotaomicron GC3 ~45%, Synechocystis sp. GC ~50% and Mycobacterium tuberculosis with GC3 ~80%. In contrast 
to E. coli and Bacillus, these are all slow-growing [74]. We consider trends in both GC3 and optimal codon usage as a 
function of distance from the start codon. All four species show GC3 steeply going from low to high in the first ~10 codons 
(S13 Fig). For patterns of optimal codon usage there is no similar uniformity. Mycobacterium resembles E. coli with codon 
adaptation running from low to high, then gently further rising. Bacteroides resembles Bacillus with codon usage bias 
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running high to low, again contra the ramp hypothesis. In the other two species, within the first 10 codons the regression 
line is negative (high to low) but not significantly so and codon adaptation more broadly appears to monotonically gently 
rise. These results further support the importance of low GC content in proximity to the initiating codon, and underscore 
that lack of generality of the E. coli pattern of optimal codon usage that inspired the ramp hypothesis.

The trend for AT content of the third site rather than codon optimality to be predictive of usage trends [72] is especially 
well reinforced when considering analysis of the trends on optimal codon usage within each synonymous block, in the first 
~10 codons. Indeed, while the overall trends are opposite in E. coli and Bacillus (Fig 4A and 4B), what unifies both is that 
nucleotide content (for trends see Fig 4C and 4D), not codon optimality, is strongly predictive: in both species, when the 
optimal codon is G/C-ending there tends to be an increase in its usage moving 5′ to 3′ across the first ~10 codons, while 
when it is A/T-ending the trend is reversed.

Fig 3.  Substitution rates by 5′ codon position comparing the Bacillus toyonensis–Bacillus anthracis ancestor to B. toyonensis. A. Synony-
mous substitution rates (K

s
); B. non-synonymous substitution rates (K

a
), and C. the ratio between the two (K

a
/K

s
). A–C plots include orthologs that are at 

least 180 codons in length (n = 1,933). D–F. Same as A–C but only including non-overlapping orthologs that are at least 180 codons in length (n = 1,703). 
For all panels, the x axis represents absolute codon position (i.e., the start codon is codon 1). Dashed vertical black line marks the first 10 codons. 
Locally estimated scatterplot smoothing (LOESS) regression lines are included. Note that codon position here is by reference to the codon position in the 
alignment. Removal of alignment indels in the focal lineage prior to codon position categorization makes no meaningful difference (Pearson correlation 
between K

s
 with indels v K

s
 without = 1 P-value = 2.08 × 10−156, while for K

4
 = 0.99 P-value 8.81 × 10−146: S8 Fig). The data underlying this Figure can be 

found in https://doi.org/10.5281/zenodo.17378284.

https://doi.org/10.1371/journal.pbio.3003569.g003

https://doi.org/10.5281/zenodo.17378284
https://doi.org/10.1371/journal.pbio.3003569.g003
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Specifically, in E. coli, there are 5 of the 17 synonymous codon blocks nominated by Wei and colleagues [74] where 
the translationally optimal codon is A/T-ending. In all 5, the correlation between codon position and relative usage is 
negative, significantly so in 3 (S14 Fig). By contrast, of the 12 G/C-ending optimal codons, the trend is positive in 11, 
significantly so in 10. The one exception is serine’s TGC that shows no obvious trend. If we consider the trends being 
predicted by nucleotide content as being a “success”, then this pattern (16 successes, 1 fail) is highly significant (binomial 
test P-value = 0.00028). Similarly, in Bacillus, of 4 G/C-ending optimal codons, all show a positive slope, 3 significantly so 
(S15 Fig). Of the remaining 10 A/T-ending ones, 8 have a negative slope, 5 of which are significant (S15 Fig). The two 
exceptions are leucine’s 4-fold block and valine, neither of which are significant. Applying the same rules as in E. coli, 
this amounts to 12 in agreement with the nucleotide model and 2 against (binomial test P-value = 0.01). A simple model in 
which A/T-ending codons are highly used at 5′ ends, this decaying as one moves out of the 5′ domain, while G/C-ending 
optimal codons are under employed, this decaying as ones moves out, has overall strong support (28 in support, 3 
against: P-value = 5 × 10−6), even though we take a conservative approach and consider any trend whether significant or 
not. Just considering cases where the trend is significant (at P < 0.05), the split is 21-0 (P-value = 9 × 10−7). Thus, codon 
usage trends within the first ~10 codons are predicted by nucleotide content of the synonymous base, not by translational 
optimality, in contradiction of the ramp model’s original claims [67].

Fig 4.  Deviation in usage of optimal codon trends as a function of distance from the CDS start for A. Escherichia coli, B. Bacillus subtilis. 
Linear regression and Pearson correlation with respective P-value displayed. Lines, points, and statistics in pink consider the first 10 codons (inclusive), 
those in blue are for all other codon positions. C. Trends in AT content at codon third sites across all native E. coli genes. D. Same as C, but for B. sub-
tilis. Note that the x axes in all four panels match in terms of position within the CDS as codon position refers to absolute number (where the start codon 
is codon 1); nucleotide position 1 refers to that following the start codon. Dashed vertical black line marks the first 10 codons. The data underlying this 
Figure can be found in https://doi.org/10.5281/zenodo.17378284.

https://doi.org/10.1371/journal.pbio.3003569.g004

https://doi.org/10.5281/zenodo.17378284
https://doi.org/10.1371/journal.pbio.3003569.g004
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The ramp model not only attempts to explain slow codons (non-optimal) giving way to faster codons, but it also sug-
gests that ribosomes will gradually accelerate after the first section of the CDS [67]. There should thus be a tendency for 
a positive slope on optimal codon usage by the position after the initial ~10 codons. In E. coli, whose codon usage was 
employed to inspire (rather than test) the model, there may be such a tendency (Fig 4A). At the level of the codon block, 
all but 2 (of 17) show increasing usage of the optimal codon, the two exceptions both ending in A/T (S14 Fig). Bacillus 
data, however, strongly contradicts the model. There is no evidence for a positive trend overall and, if anything, the trend 
is the reverse of that predicted (Fig 4B). Indeed, considered at the codon block level (S15 Fig), the trend in the down-
stream section is for ribosomal deceleration (a negative slope for codon optimality) when the optimal codon is A/T-ending 
(9 of 10 blocks), and acceleration (positive slope) when the optimal codon is G/C-ending (3 of 4 blocks) (prediction from 
nucleotide content binomial test: P-value = 0.01, 12-2 split, 10 of 14 show deceleration, opposite of the prediction). This too 
suggests that in the downstream domains it is also nucleotide content, not optimality, that matters.

We conclude that the Bacillus data rejects all aspects of the ramp model: there is no preference for slow codons as 
such, no trend for early codons to be rarer than downstream and the trend after the first ~10–20 codons is not for increas-
ing codon adaptation. As the synonymous substitution rate does nonetheless increase well beyond the limited ~10–20 
codon domain, the ramp hypothesis provides no explanation for trends in Bacillus. In addition, while in E. coli K

s
 plateaus 

at codon 60, codon adaptation keeps monotonically increasing. For all these reasons, we reject the ramp as a viable 
explanation both for codon usage trends in 5′ domains and for the zone of reduced K

s
 in both species.

A mutational model for E. coli is not falsified

Although selection was the first explanation considered for the low 5′ synonymous substitution rate [39], spontaneous 
mutation may yet explain variation in rates. We start by employing data from MA experiments in E. coli [56]. We divide all 
CDSs in windows and for each window determine the sum number of mutations observed in that window across all genes 
and the sum number of base pairs within such windows. We can then determine the density of mutations per window (i.e., 
mutations per kb of sequence across all MA lines). We find that the first 10 codons have a density of 0.115 per kb which 
compares with 0.231 for the gene body (post-codon 70), the former being 50% of the latter (Fig 5A). We note that this is 
quantitatively similar to the ratio of the mean K

4
 (i.e., K

s
 at 4-fold degenerate sites) for the first 10 codons (excluding the 

start codon) and the mean of those post-70 codons (for K
4
, ratio = 0.0853/0.185 = 0.46). The first 60 codons have a pos-

itive slope on the line while the mutational density after that point is not significant (Fig 5A), mirroring that which is seen 
for K

4
 (Fig 5B). The same trend is seen when considering genes without overlaps (S16 Fig). We have replicated the low 

5′ mutation rate using Zhang and colleagues’s [57] higher resolution spontaneous mutation data generated with Duplex 
Sequencing that employs 3.5 × 104–3.8 × 104 reads (but may be biased [59]), and MA data from Foster and colleagues 
[58] (S17 Fig). The same trend is not, however, so in evidence in Zhang and colleagues’s samples sequences at “lower” 
depth (<1,500 reads) for reasons unclear (S17D–S17F Fig). Nonetheless, these results ensure that we cannot reject the 
hypothesis that the K

s
 trends running until codon 60 is a consequence of low mutation rate. Low K

s
 therefore need not be 

indicative of purifying selection.

Mismatch repair does not fully explain reduced 5′ mutation rates

Given the low 5′ mutation rate, the next question is what might be causing it? It is classically reported in E. coli that mis-
match repair (MMR) is directed to the genes [58,82], this giving intergenic sequence a higher density of observed muta-
tions (see S18C Fig). Might something similar explain the especially low rate at 5′ ends? MMR via mutS and mutL are 
transcriptionally coupled [83]. In transcription-coupled repair (not involving MMR), a stalled RNA polymerase is the signal 
for the recruitment of repair enzymes (reviewed in [84]). If we suppose there to be some constant rate at which an RNA 
polymerase will prematurely abort (e.g., encounter with a DNA polymerase), thus not signal 3′ errors, then it is possible 
that 5′ mismatches are more likely to be repaired, rather than resolved as mutations (post-replication).
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Fig 5.  Mutation profile as a function of distance from the gene’s start. A. Mutation density (mutations per kilobase, kb) as a function of within gene posi-
tion. The amount of sequence with each genic window, across all CDS, was determined, the density then being the number of mutations per bp, here scaled 
to kb. The blue line is a polynomial regression of degree 4. Yellow dashed line and yellow statistic is for the first 60 codons, dark purple dashed line and dark 
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To address this issue, we consider the mutational profile in MA lines that have MMR deleted [56]. This data was provided in 
the same experiment as our original wild-type (WT) MA data [56], thus controlling for numerous potential confounding vari-
ables. In this data, the first 10 codons have a mutational density of 10.6 per kb, which compares with 11.7 in the gene body 
(post-codon 60), i.e., about 90% of the rate. While the contrast between 50% (as above in the WT) and this 90% figure seems 
at first sight indicative of a role for MMR, caution is required in this interpretation. A statistical consequence of an absolutely 
higher rate is that the difference in relative mutational density between 5′ and gene body regions could trivially be lesser. 
Consider, for instance, that in the WT the 5′ end has a mutation rate x (per unit of sequence), the gene body then having a rate 
2x. Now imagine that loss of MMR forces all sites to have 100x more mutations (approximately as seen). The 5′ end will then 
have 100x + x mutations and the gene body 100x + 2x mutations. The relative mutation rates in the 5′ end are now not 50% 
that of the gene body but 101/102 the rate. Thus the transition from WT having 50% of the rate to the MMR knockout having 
over 90% of the rate could be explained by nothing more than an equal increase in the absolute number of mutations, but with 
the 5′ having a lower—in absolute terms—mutation rate (the difference between 5′ and gene body would be x in both cases). 
That the ratio is ~90% not 99% could, nonetheless, be consistent with MMR operating differentially across gene bodies.

That this naïve model is incomplete is suggested by the fact that in the WT the absolute difference in mutation rate is 
of the order of 0.1 per kb, while in MMR-deficient lines it is ~1 per kb, i.e., not a simple addition. As the absolute difference 
is in fact higher in the absence of MMR, one could conclude that MMR if anything suppresses the differences between 
5′ and gene body. We suggest, however, that close analysis of the dynamics of MMR would be needed to address these 
issues. We thus are agnostic as to effects of MMR on the 5′ v gene body difference.

What, however, is clearer is that MMR alone is not adequate to explain all the deviation seen in mutation rates. To enable 
comparison with the WT lines, we convert data to deviation from expected, where in each genome we consider the total 
number of mutations in the genome as a whole and the amount of sequence in each gene window summed across all genes. 
From the proportion of sequence in any given window we then derive the expected number of mutations as the product of 
the proportion of sequence within a window, multiplied by the total number of mutations. From this, we compute (Observed − 
Expected)/Expected ((O − E)/E), this being relatively insensitive to sample sizes. As can be seen, MMR-deficient lines have 
(O − E)/E values close to zero across the gene body (Fig 5C). The WT data is a transposition of that in Fig 5A with deviation 
scores that are highly negative in gene bodies, this reflecting MMR’s activity in gene bodies (and the consequential higher 
intergenic rate). While the trend in the MMR-deficient condition in the first 60 codons is marginally not significant (Pearson 
correlation r = 0.78, P-value = 0.07) there are significantly fewer mutations in the first window than expected by chance. There 
are 1,398 of 48,141 mutations that occur in CDS in the first 10 codons. These same 30 bp are 3.227% of all CDS and as such 
we would expect 1556 mutations if the distribution were random. The observed number is lower than this (χ2 = 16.583, P-value 
<0.00005, df = 1). If we sum all mutations across the 5′ end, only when we get to the window ending at codon 60 does the 5′ 
end not have fewer mutations than expected (at P-value<0.05), allowing for multiple testing.

Compositional variation likely explains some of the variance in evolutionary rates

The above evidence suggests that even if MMR is more efficient in the 5′ domain, even allowing for this, there is still a 
lower mutational density than expected under a model of mutations being randomly distributed within genes. What else 

purple statistics is for the rest of the gene. Pearson correlation provided. B. Comparison of K
4
 values by codon and mutation density from wild-type (WT) lines. 

Mutation density is in blue with positions specified by middle position of the window. K
4
 data per codon is in pink. Lines reflect polynomial regression of degree 

4. To determine pseudo-significance, we interpolate values for each codon by fitting to the blue polynomial line. These values are then correlated against the 
observed K

4
 values (Pearson correlation shown). C. Deviation from null (O − E)/E for WT (alternative metric for data in panel A) in blue and from MA lines that 

have MMR deleted in pink. The first 60 codons are positively correlated for the WT data (statistics as panel A), but the MMR deletion data is not (Pearson 
correlation r = 0.78, P-value = 0.06). Dark purple dashed line is regression for data post-60 codons for MMR-deficient data, yellow dashed line for data within 
60 codons. The pink line is the polynomial regression (of order 4) for MMR-deficient, the blue for WT. The horizontal gray line marks (O − E)/E = 0. In all panels 
mutational data from Wei and colleagues [56]. The data underlying this Figure can be found in https://doi.org/10.5281/zenodo.17378284.

https://doi.org/10.1371/journal.pbio.3003569.g005
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might affect this? One possibility is GC-associated mutation bias. To appraise this, in the first instance we predict, given 
the observed genomic mutational frequencies for each nucleotide, the mutation rates at each codon position normalized 
by the nucleotide content at the same position across all E. coli genes. Our expectation is that this positional trend is 
unlikely to replicate the K

s
 trend (that plateaus at codon 60) as it is simply going to follow nucleotide content trends (that 

alter at codon ~10–15) and represent their known mutability. To determine the per nucleotide rates, we determine the 
number of mutations for each nucleotide genomically, dividing it per occurrence of the ancestral nucleotide in the E. coli 
reference genome. We then scan each reference CDS and find the expected by-position mutation rates by multiplying 
nucleotide counts at each position across all genes by the observed genomic mutational frequencies previously calcu-
lated. Predictably, we find expected mutational frequencies to follow nucleotide trends of native genes, representing the 
known nucleotide mutagenicity (S19 Fig). Indeed, as C is known to be highly mutagenic and A to be lowly mutagenic [85], 
and that native genes are A-rich at 5′ ends especially in their first ~10 codons (Fig 1), the predicted mutation rates follow 
the 10-codon effect (S19 Fig). We see the same trend at all three codon sites (S19A–S19C Fig). This hints at why the 5′ 
domain might have a low K

s
. For potentially better resolution of mutational properties, we also consider the larger muta-

tional sample of Zhang and colleagues [57] and observe similar trends (S19D–S19F Fig).
One key weakness with the above approach is that we have determined observed and predicted mutational rates at 

each codon position only considering mononucleotide context. However, as mutation rates are influenced by immediate 
flanking nucleotides [54,86], we also perform a trinucleotide mutation analysis considering all instances where a trinucleo-
tide N

1
N

2
N

3
 mutates to N

1
M

2
N

3
, M being a point mutation. N

1
, N

2
, and N

3
 can be any one the four nucleotides and need not 

be the same as each other. We analyze all 64 possible trinucleotides across the genome.
We first determine which trinucleotides are most prone to mutation by finding their genomic mutation frequencies nor-

malized to their ancestral (pre-mutational) occurrence (Fig 6). We find that the E. coli genomic mutational profile is largely 
dominated by GC-rich trinucleotides (Fig 6A), consistent with previous findings (see, e.g., [57,87]). The most commonly 
mutating trinucleotide for Wei and colleagues data is GCC (Fig 6A), and trinucleotide mutation frequency is significantly 
positively correlated to trinucleotide GC content (Pearson correlation r = 0.42, P-value = 0.0005, Fig 6B). Considering 
Zhang and colleagues data, the most mutating trinucleotides are also GC-rich and especially CpG-containing, CpG indi-
cating the dinucleotide (S20A Fig). The mutation frequency distribution is less homogeneous compared to that of Wei and 
colleagues data. Indeed, the four most commonly mutating trinucleotides (per occurrence of the trinucleotide) in Zhang 
and colleagues are CpG-containing and account for 61% of normalized mutation rates (S20 Fig). The two most mutating 
are GCG and CGC (accounting for 48%) which are more likely to be creating further CpG dinucleotides if flanked by G 
or C (S20A Fig). Here, we expand the analysis to Bacillus as well, and compute observed trinucleotide mutation rates for 
B. subtilis MA data [62]. We find that the tendency for GC richness among the most commonly mutating trinucleotides 
persists (Fig 6F and 6G).

We then ask how trinucleotide mutation rates translate in terms of expected by-position mutation rates as done above 
(S19 Fig) for mononucleotides. To capture solely synonymous mutation trends, we only consider cases where the mutated 
base occurs at a third site of 4-fold degenerate codons. We find the resulting trend (Fig 6C) to replicate the form of the K

s
 

trend, with expected trinucleotide mutational rates starting low at the 5′ end and increasing until plateauing around codon 
60 (Fig 6D and 6E). We observe the same whether we consider Zhang and colleagues’s [57] E. coli samples sequenced at 
higher (S20A–S20E Fig) or lower (S20F–S20J Fig) depth. The trends also match when considering K

s
 and 4-fold trinucle-

otide mutability in Bacillus sp. (Fig 6F–6J). In both species, the observed K
s
 and trinucleotide predicted rates are strongly 

correlated (Fig 6E and 6J). Observing the difference in expected trinucleotide mutation frequencies by position at 5′ ends 
and gene body, we see that the average mutation frequency in codons 2–10 is around 91% that of codons 60+ in E. coli MA 
data (~95% for Bacillus). Although this does not replicate the 50% difference seen in the observed trinucleotide mutation 
rates trends (Fig 5), this suggests we can use underlying trinucleotide trends to explain at least in part the lower mutational 
density of 5′ windows. A GC effect likely explains why in MMR-deficient lines the 5′ end still has a low mutation rate.
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Fig 6.  The influence of trinucleotide context on mutation and substitution. A. Observed genomic trinucleotide mutational frequencies rank-ordered 
from most to least frequent in E. coli. Mutational data for E. coli from Wei and colleagues [56]. Mutation frequency refers to mutation count per occur-
rence of ancestor trinucleotide. Trinucleotide mutations are such that the middle base is the mutated base. Trinucleotides on the x axis are rank-ordered 
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Our approach, extrapolating from well-resolved genome-scale data, comes with a caveat in that we have assumed that 
the 5′ end and CDS core have the same mutational properties, and that they are also the same as what we see genomically. 
We can test this in several ways, but only in E. coli mutational data from Zhang and colleagues as this uniquely has a high 
enough number of mutational calls. First, we consider the observed mutational rates at 5′ and core in E. coli, separating 
the observed mutations in the two regions (i.e., not by taking the global sample). Given the yet limited mutational sample 
size, we are unable to consider mutations only in the first 10 codons and thus consider the lowest round number of codons 
from genes’ start that allows analysis: the first 20 codons, while we consider gene cores as the rest of the CDS. We find 
the two mutational profiles to be significantly positively correlated (S21D Fig, Spearman rho = 0.8, P-value = 3.5 × 10−13). The 
correlation is also positive for Wei and colleagues [56] data though, likely due to lack of data resolution as mentioned above, 
not significant (S21A Fig, Spearman rho = 0.15, P-value = 0.44). Moreover, as above for genomic frequencies, we find the 
observed trinucleotide mutational frequencies given their ancestral occurrence in each gene region, and also find that the 
higher mutation rates tend to be in GC-rich trinucleotides (S21E and S21F Fig). We consider 5′ and core mutations at 
the level of the dinucleotide and consider the predicted mutational equilibrium (i.e., if the only activity was mutational bias and 
neutral evolution). For this, we see no difference between the 5′, the core and the global genomic predicted equilibria (P > 0.2 
in all pairwise comparisons, S3 Table; we return to this below). We thus find no evidence for different normalized mutational 
profiles in the 5′ and core. The observed differences in expected mutation rates are thus better explained as owing to differ-
ences in relative frequencies of different trinucleotides, not the mutational properties of those trinucleotides.

No robust evidence for selection for high AT from mutational equilibrium analysis

While we can account for the trend in K
s
 as a function of spontaneous mutation rates, can we exclude the hypothesis 

that synonymous mutations at the 5′ end are under selection? The transgene data strongly suggest that synonymous 
mutations can have a meaningful effect on protein levels (see [41–43] and Fig 1D and 1E) and the commonality of GC3 
running from low to high in the first 10 codons in species with both high and low GC content (S13 Fig) is indicative of a 
selectively crafted GC profile.

An alternative way to ascertain whether there is selection (or biased gene conversion) acting at 5′ ends in favor of 
AT mutations is to determine the AT content expected at neutral mutational equilibrium and compare it to the AT content 
observed in native genes. Assuming the species is at nucleotide content equilibrium, an observed AT content higher than 
that predicted at mutational equilibrium would be consistent with selection on G/C->A/T mutations, if lower it would be 
consistent with selection favoring A/T->G/C mutations, while if the equilibrium is approximately the same as the observed 
composition then there is no need to evoke selection [54,87,88,89]. Long and colleagues [54] determined from MA data 
a genomic AT content at mutational equilibrium (AT*) of 0.52 for E. coli and therefore lower than natively observed at 5′ 
ends, this being consistent with selection favoring a higher AT content, the canonical model, as we discussed in the Intro-
duction. With more data, we can now return to this issue. While we find that few mutational data sets are consistent with 
selection favoring G/C->A/T mutations (the canonical model), we unfortunately discover that different sets predict strikingly 
different equilibrium nucleotide contents, rendering strong conclusions impossible.

by frequency and bars are color-coded by trinucleotide GC content. B. The same genomic mutation frequencies as in A, plotted against trinucleotide GC 
content. Line represents linear regression and Pearson correlation with respective P-value is also shown. C. Expected trinucleotide mutation rates by 
codon position, predicted by trinucleotide genomic mutational rates and genomic trinucleotide content. Trinucleotide mutations are such that the middle 
base is the mutated base, and it occurs at third sites in 4-fold degenerate codons. D. Comparison of expected mutational rates in C with E. coli conser-
vation trends by codon position at 4-fold degenerate sites (4-fold K

s
, K

4
, as seen in S5 Fig). Both metrics are normalized by Z score. E. Comparison of 

expected trinucleotide mutation rates and K
4
 by position without Z transformation. Pearson correlation data is shown. Line is the orthogonal (major axes) 

regression line. F–J as A–E but for Bacillus sp., with mutational data for B. subtilis from Sung and colleagues [62], and conservation trends at 4-fold 
sites in B. toyonensis. For C–D and H–I position on the x axis refers to absolute number of codons (where the start codon is position 1), and the dashed 
vertical black line marks the first 10 codons. Locally estimated scatterplot smoothing (LOESS) regression lines are also shown. The data underlying this 
Figure can be found in https://doi.org/10.5281/zenodo.17378284.

https://doi.org/10.1371/journal.pbio.3003569.g006
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In E. coli, we estimate the equilibrium AT content to range from 0.55 to 0.89 depending on the experiment (Table 1). 
The highest figures (0.86 and 0.89) are derived from Duplex Sequencing approaches, but even the MA line data esti-
mates (0.55 and 0.65) are significantly different one from another (Table 1), and all higher than the prior estimate of 0.52 
[54]. The average observed AT3 content at the 5′ end is 0.55 with a maximum at any codon position of 0.62 (Table 1). If 
the lowest MA estimate (AT* = 0.55) is correct, then selection on G/C->A/T mutations could be evoked to account for the 
codon position with 0.62 AT content. If we instead believe the higher estimates, these would be indicative of selection 
being directed A/T->G/C, otherwise the observed AT content in E. coli is close to neutral on the average (i.e., around 
0.55). In B. subtilis, MA experiments with more limited data estimate the equilibrium to be around 0.56 [54], while AT3 in 
the first 10 codons is a bit higher (Table 1), also consistent with weak selection favoring G/C->A/T mutations.

While these data are strikingly contradictory, we can exclude the possibility that the discrepancies are owing to prob-
lems in the methods to estimate the equilibria. Above we perform the simplest model that considers the ratio of G/C->A/T 
mutations per G/C to the sum of G/C->A/T mutations per G/C and A/T->G/C mutations per A/T (as performed by Long 
and colleagues [54], see Methods). For larger data sets, we can also consider a more complex mononucleotide-based 
method considering all 12 possible mutational classes and solving the relevant simultaneous equations (see Methods), 
as well as a dinucleotide model with a 16 x 16 mutational matrix with 256 parameters (mutations from one dinucleotide to 
another, per ancestral occurrence of the focal dinucleotide, see Methods). All methods applied to Zhang and colleagues’s 
mutational data [57] agree that the AT*~85% (for full genomic data from the samples sequenced at higher depth, AT* by 
simpler G/C<->A/T method = 0.86; AT* by full mononucleotide method = 0.86, AT* by dinucleotide method = 0.85, see S3 
Table and S2 Text).

While some AT* estimates above (Table 1) suggest a model of selection in favor of A/T->G/C mutations, albeit weak, this 
comes with the caveat that we assume the mutational biases are identical in all gene regions. We can also employ Zhang 
and colleagues’s higher resolution spontaneous mutation data [57] to ask whether there might be possible differences 
in mutational spectra in different genomic/gene regions. To this end, we derive AT* content by considering a) the global 
genomic mutational profile, b) the profile of mutations seen in the first 20 codons of genes, and c) the profile of mutations 
seen in the gene cores (everything in CDS after the first 20 codons). For the genomic AT*, we estimate a value of 0.85 ± 
0.015 (standard deviation of 1,000 bootstraps), for the gene cores we estimate AT* = 0.84 ± 0.027 and for the 5′ domain 
AT* = 0.87 ± 0.12. All three (Fig 7A) are considerably higher than observed AT contents (Fig 7B) and none significantly dif-
ferent from any other (see bootstrap error bars in Fig 7A). As an additional check, we also perform the mutational equilibria 
test considering samples sequenced at a lower depth, and find that the predicted AT content also remains high (AT* = 0.88 ± 
0.028 genomically, 0.93 ± 0.013 at 5′ ends and 0.88 ± 0.016 at cores, P-value = 0.54 for test of difference between the two, 
see S3 Table). We thus see no reason to suppose that we cannot extrapolate from genomic mutational profiles.

There are multiple possible explanations as to why AT* estimates might be so variable, none of which we can satisfac-
torily resolve (S2 Text). We note, however, that estimates of mutational equilibria from MA lines are relatively close to the 
observed AT content of intergenic sequence (E. coli AT* ~0.6, intergenic AT=0.58; Bacillus AT* ~0.56, intergenic AT=0.64; 
Mycobacterium smegmatis AT* = 0.43, intergenic AT = 0.39; Table 1). This inclines us to suppose that the MA data is 
more likely to be nearer the truth. Nonetheless, given the large variation in mutation equilibrium estimates, even between 
MA line estimates (0.55 and 0.65), the safer conclusions are that a) in this instance, the deviation from equilibrium test 
appears to be too highly contingent on some details of experimental protocol to make for robust inference and b) we see 
no robust evidence for G/C->A/T mutations being favored by selection, with alternative estimates consistent with neutrality 
or with selection favoring AT->GC mutations.

High 5′ GC3 in AT-rich organisms supports selection for raised GC

If the AT content is actually lower than expected, as some values of the mutational equilibrium estimates would suggest, 
this would be consistent with selection in favor of A/T->G/C mutations (the opposite of the canonical model). This could 
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mean that the process is so heavily biased at equilibrium for AT that, while higher AT and lower stability are favored 
at 5′ ends compared with gene cores, 5′ ends nonetheless are under selection for a non-minimized stability and non-
maximized AT. Were such a model correct, we might also expect that bacteria with extreme AT pressure might evolve 
5′ ends with a higher GC3 content than the gene core (most bacteria have GC3 of the 5′ end lower than that of the core 
[40]). We thus determine trends in average GC3 across 1,355 bacteria species (see S4 Table for species list). We confirm 

Fig 7.  AT content within and across genomes and its influence on transgene activity. A. Estimated AT content expected at mutational equilibrium 
determined from rates of spontaneous mutation at 5′ ends, at gene cores and overall genomically in Zhang and colleagues data [57]. Nucleotide content 
determined using a dinucleotide approach for both samples sequenced at low and high depth, see Methods. Error bars represent standard deviation of 
the mutational equilibria calculation for 95% bootstrap bounds of 1,000 re-samplings. B. Observed AT in E. coli native genes. Error bars represent stan-
dard error of the mean (SEM). In both panels A and B 5′ ends are taken to be the first 20 codons and gene core is the rest of the CDS, while genomic 
refers to the whole genome (including non-protein-coding sequences). Legend describing gene regions applies to panels A and B exclusively. C. GC3 
trends at 5′ ends and gene core in 1,355 bacterial species. The linear pink line represents a line of slope 1 and intercept 0 (i.e., perfect correlation 
between the two gene regions). The blue line is a quadratic fit to the plotted values. Error bars represent SEM. D–F. Expression levels of transgenes as 
a function of 5′ GC4 content for D. protein per RNA E. protein and F. RNA. GC4 refers to GC content at third sites of 4-fold degenerate codons. We take 
the 5′ end to mean the first 10 codons following the start codon. Each bin contains either 15,522 or 15,523 transgenes. Error bars represent SEM. Trans-
gene data retrieved from Cambray and colleagues [41]. The data underlying this Figure can be found in https://doi.org/10.5281/zenodo.17378284.

https://doi.org/10.1371/journal.pbio.3003569.g007
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this expectation observing that GC3 at the 5′ end is higher than that at the core when core GC3 is lower than about 35% 
(Fig 7C). We note that the same effect was tested for, but not found, by Allert and colleagues, who report high 5′ AT in 
AT-poor genomes using a more limited sample of genomes (n = 816) [45].

Selection for higher GC content is not expected to increase protein production

The next natural question is then whether higher GC content at 5′ ends might influence gene expression. Perhaps max-
imal gene expression is also found when the AT content is high, but not exceptionally high? To answer this, we consider 
again the transgene data by Cambray and colleagues [41] and ask whether those constructs with very low levels of 5′ 
GC at 4-fold degenerate sites produce lower levels of protein per RNA than those transgenes with slightly higher GC. 
We find that they do not (Fig 7D). Rather, transgene expression (protein per RNA) steadily decreases as 5′ GC4 content 
increases. Interestingly, this trend seems to be driven by protein levels rather than RNA, as GC4 poor constructs tend to 
produce the highest levels of protein (Fig 7E), though the lowest of RNA (Fig 7F). Nonetheless, our results suggest that if 
there is selection acting on 5′ ends towards GC, it is not simply favoring higher protein expression per RNA. Other factors 
such as ribosomal usage efficiency or noise reduction may also be playing a role, as previously discussed for both bacte-
ria and eukaryotes [90–92]. This observation could also be pointing to an alternative explanation to selection for GC, as 
lower AT content could also simply be a result of biased gene conversion directed towards GC [87].

Analysis of Mycobacterium smegmatis suggests that Ks is more likely to mislead when mutation and selection 
operate in the same direction

In E. coli (and Bacillus sp.), it seems likely that part of the lower rate of mutation at 5′ ends is owing to compositional differ-
ences. This is in no small part because the 5′ end is AT-rich and AT residues in these two species are less mutagenic than 
GC-rich residues. Thus, in the case of E. coli, as mutational bias at the 5′ end is in the same direction as putative selection 
for low stability (G/C->A/T), by Ocham’s razor we should not interpret the low K

s
 as unambiguous evidence for selection 

on synonymous mutations. As seen above, however, at extremes of nucleotide content the conclusions drawn from E. 
coli need not apply: in very AT-rich genomes the 5′ ends are more GC-rich than the gene cores (Fig 7C). Potentially the 
most interesting case comes when the mutation bias is anticorrelated to the direction of selection. To consider what might 
happen in this instance, we consider an unusual species in which the mutation bias is the reverse of the common GC->AT 
bias. M. smegmatis is exceptional in that it has lost mutL and mutS and has a mutation bias that is highly AT->GC biased 
[61]. While it has lost two key MMR enzymes, it has gained a replacement in NucS [60]. The unusual mutation bias is 
likely reflected in part in it having an exceptionally high GC content (around 80% GC, Table 1). We find that its 5′ CDS is 
also GC-rich, just not as GC-rich as the gene core (Fig 8A). Thus, like E. coli and B. subtilis, it too has accelerating GC 
content (and hence decelerating AT content) moving 5′ to 3′, consistent with selection for reduced mRNA stability.

With MA mutational data [60,61] we have also determined the mutability of all trinucleotides and unusually, the GC-rich 
ones are not the most mutagenic (Fig 8B, Pearson correlation for trinucleotide GC content v trinucleotide mutability: 
r = 0.04, P-value = 0.756). The predicted mutational equilibrium of this species is an AT* of 0.43 (Fig 8C and 8D, Table 1, 
see also Discussion; Long and colleagues report AT* = 0.42 [54]). Employing the observed 5′ CDS, we can then predict 
the expected profile of substitutions under a mutation bias model (Fig 8E). Exceptionally, this then predicts a higher rate 
of mutation at the 5′ end, it being less GC-rich. This is supported by MA data [60,61], although the trend is much less 
clear than in E. coli (S22 Fig). Despite this, the first 60 codons have a mutation rate higher than the rest of the gene body 
(χ2 = 8.96, P-value = 0. 0027, df = 1). Thus, unlike E. coli, the 5′ domain appears to have a higher mutation rate owing to the 
reversed mutation bias, but a preference for AT richness (relative to the gene body).

If in this species K
s
 reflects the mutation process alone, then it should be higher at the 5′ end. By contrast, if there is selection 

for higher 5′ relative AT content, then selection (low K
s
) should be especially in evidence as it runs counter the mutation bias. 

We find that the profile of substitutions (K
s
) shows a reduced K

s
 in the 5′ end (Figs 8F, 8G, and S23), consistent with selection 
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opposing the mutation bias. However, while the predicted mutational equilibrium of this species is an AT* of 0.43, through all 
parts of gene bodies, including 5′ ends, the observed AT is much lower than this (Table 1). This is consistent with selection, 
but selection (or biased gene conversion) in the direction of the mutation bias favoring A/T->G/C mutations, the strength of the 
effect is just weaker in the 5′ end than on the gene body. Why this species has such a dramatically high GC content in the CDS 
is unclear. Considering MA lines with NucS deleted, we find that variation in mutation rate across the gene body disappears, 
implicating mutational repair bias in the intragenic variation in mutation rate (χ2 = 0.36, P-value = 0.548, df = 1; S22 Fig).

Discussion

Synonymous codon usage has a direct influence on protein levels, making it a focus in transgene design for optimiz-
ing protein production [43,45,46,93–95]. Notably, the 5′ end of the CDS in bacteria plays a particularly significant role 

Fig 8.  Mycobacterium smegmatis mutation and conservation analysis. A. AT content by nucleotide position in native M. smegmatis genes. The x 
axis represents nucleotide positions relative to the start codon (i.e., the first nucleotide of the codon after the start codon is at position 1). Error bars indi-
cate the standard error of the mean (SEM). Dashed vertical black line marks the first 10 codons, and a locally estimated scatterplot smoothing (LOESS) 
regression line is shown. B. Observed genomic trinucleotide mutational frequencies rank-ordered from most to least frequent in M. smegmatis. Muta-
tional data from Kucukyildirim and colleagues [61]. Mutation frequency refers to mutation count per occurrence of ancestor base. Trinucleotide mutations 
are such that the middle base is the mutated base. Trinucleotides on the x axis are rank-ordered by frequency and bars are color-coded by trinucleotide 
GC content. C. Estimated AT content expected at mutational equilibrium determined from rates of spontaneous mutation overall genomically in MA data 
from Kucukyildirim and colleagues [61]. Nucleotide content determined for WT samples using a simultaneous equations approach for mononucleotide 
changes, see Methods. Error bars represent standard deviation of the mutational equilibria calculation for 95% bootstrap bounds of 1,000 re-samplings. 
D. Observed AT content in the M. smegmatis native genome. Error bars represent SEM. 5′ ends are taken to be the first 20 codons and gene core is 
the rest of the CDS, while genomic refers to the whole genome (including non-protein-coding sequences). Legend color-coding gene regions applies to 
panels C and D exclusively. E. Expected trinucleotide mutation rates by codon position, predicted by trinucleotide genomic mutational rates and genomic 
trinucleotide content. Trinucleotide mutations are such that the middle base is the mutated base, and it occurs at third sites in 4-fold degenerate codons. 
F. Comparison of expected mutational rates in C with M. smegmatis conservation trends (obtained from three-way analysis with M. goodii and M. sep-
ticum as outgroup) by codon position at 4-fold degenerate sites (4-fold K

s
, K

4
, as seen in S5 Fig). Both metrics are normalized by Z score. For panels E 

and F, position on the x axis refers to absolute number of codons (where the start codon is position 1), and the dashed vertical black line marks the first 
10 codons. Locally estimated scatterplot smoothing (LOESS) regression lines are also shown. G. Comparison of expected trinucleotide mutation rates 
and K

4
 by position without Z transformation. Pearson correlation data is shown. Line is the orthogonal (major axes) regression line. The data underlying 

this Figure can be found in https://doi.org/10.5281/zenodo.17378284.

https://doi.org/10.1371/journal.pbio.3003569.g008

https://doi.org/10.5281/zenodo.17378284
https://doi.org/10.1371/journal.pbio.3003569.g008
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by affecting mRNA stability and translation initiation [42–46]. Evidence for this has come from many angles, not least of 
which is the much-reduced K

s
 at 5′ ends [39], consistent with selection to preserve an AT-rich low stability mRNA. How-

ever, despite the established importance of this region, the nature of selection on synonymous sites is not as clear-cut as 
the simplest narrative purports, as the low K

s
 extends well beyond the claimed zone of influence (the first ~10 codons) to 

approximately codon 60 in our analysis (Fig 2). As we found no evidence to suppose that the zone of influence affecting 
protein level wasn’t the first ~10 codons (Fig 1), we considered a series of possible explanations. We report no evidence 
consistent with the gene overlap hypothesis (Figs 2 and 3) and the data from Bacillus reject the ramp hypothesis (Fig 4), 
as does the evidence from the other well-resolved bacteria that all show strong GC trends in the first few codons but no 
consistent pattern of bias in optimal codon usage (S13 Fig). By contrast, for E. coli, the best resolved case, we cannot 
reject a mutational model and multiple independent data sets report a low mutation rate extending through to the gene 
body past codon 10. The magnitude of the difference in mutation accords with the difference in K

s
 (Figs 5 and 6). Broadly, 

this result supports evolutionary models [96] that suppose that, in attempting to explain variation, be it phenotypic [97] or 
molecular [96], the role of mutational biases needs to be incorporated.

The causes of this low 5′ mutation rate appear in part to be a trinucleotide base mutation bias. As K
s
 and the 

mutation bias—both observed and predicted from genomic trinucleotide mutational profiles—are so well correlated, 
by Ocham’s razor we have no need to evoke selection to explain the K

s
 trend seen in E. coli. By contrast, in M. 

smegmatis, where the observed and trinucleotide predicted mutational trends are opposite to the K
s
 trend (Fig 8), 

here we cannot exclude selection acting on synonymous mutations at the 5′ end. More generally, the interpretation 
of K

s
 trends are problematic when the mutation bias and presumed selection bias both are in the same direction 

(GC->AT), as in E. coli.
While we conclude that even the dramatically low K

s
 at E. coli 5′ ends is not necessarily evidence for selection on syn-

onymous mutations, the fact that K
s
 trends are replicated by mutational ones does not necessarily imply the absence of 

selection, it simply indicates that K
s
 may not be a sensitive or appropriate measure for it. Indeed, as exposed by the case 

of M. smegmatis, when as in E. coli the direction of mutation and of selection are coaligned, in the absence of selection 
the expected profile of the substitutional process is the same as that in the presence of selection. A further possible expla-
nation is that if selection is weak, we expect a time lag between a mutation appearing and it being eliminated by purifying 
selection [98]. Employment of K

s
 between closely related species may not provide adequate time to resolve such weak 

selection, especially when the mutational and selective processes co-align. Thus, it is quite possible that there is weak 
selection on a multiplicity of features (RNA stability, DNA structure [99], translational optimality, etc.), while at the same 
time K

s
 is too weak a test to resolve such effects. Indeed, our result underscores the importance of considering the com-

plex nucleotide context of synonymous sites, and associated mutational biases, when attempting to interpret K
s
 results 

and evolutionary rates more generally, as they have the potential to provide a misleading signal. Indeed, as synonymous 
rate estimators tend to be either mononucleotide [100,101] or codon [102] dependent, mutational determinants that span 
codons will not be explicitly considered, even if rate variation is permitted [103,104]. Codon pair biases are, however, bio-
logically important and their alternation has fitness consequences [105].

While variation in mutation rate in E.coli may well affect synonymous substitution rates, such mutations often being 
under weak selection, we do not expect the mutation rate to greatly affect the rate of non-synonymous substitution as 
this is subject to stronger selection, this being evidenced by K

a
/K

s
 typically being much less than one (e.g., Fig 3C and 

3F). Variation in the strength of selection across sites then is expected to be the dominant cause of variation of non-
synonymous rates of evolution. It is nonetheless notable that the low mutation rate in affecting K

s
, inflates K

a
/K

s
 leading to 

artefactual evidence of relaxed purifying selection or an increased rate of adaptive evolution on 5′ ends.
While this presents a salutary cautionary tale, we still need to ask why, then, is GC content at the 5′ end so low (Figs 1 

and 7)? While the simple model would be that GC increases RNA stability that in turn is counter-selected, A content at the 
most influential codon site (the second site) as regards the physicochemical properties of amino acids [76,106], is higher 
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than at the much freer to evolve synonymous sites (Fig 1). This suggests that selection for particular properties of protein 
N-terminal regions may explain some of the nucleotide skew. There are indeed skews in the physicochemical properties 
of N-terminal regions [76,77], although there is some disagreement as to what form it takes, with some reports indicating 
enrichment of hydrophilic amino acids [77], some the opposite [76]. We find enrichment of hydrophilic amino acids com-
pared to downstream (S1 Text). More generally, such skews in amino content squeeze out GC-rich runs thus forcing low 
synonymous rates of evolution in E. coli, comparable results being seen in Bacillus (S1 Text). The low mutability of 5′ ends 
in E. coli is explained not solely by selection on nucleotide content to enable low RNA stability, but rather, or additionally, 
for certain amino acid features that happen to force out mutable GC-rich runs (S1 Text).

While the K
s
 trend in E. coli and Bacillus appears to be driven in part by complex differential mutabilities, there may 

yet be selection that acts differentially on synonymous mutations at 5′ ends, as implied by the results from M. smegma-
tis (Figs 8, S22, and S23). However, if the higher AT equilibrium predictions in E.coli are to be believed (AT*>0.65), the 
nature of this selection may be the opposite of what has been presumed, i.e., it may be favoring A/T->G/C mutations 
rather than the opposite. Curiously, in M. smegmatis, the equilibrium analysis supports the same and the cross-species 
analysis also supports this, revealing that species with lower GC3 in gene cores tend to have higher GC3 at 5′ ends (Fig 
7C). We find, however, that significantly low GC4 in transgene 5′ ends confers higher protein expression per RNA (Fig 
7D), meaning that there could be additional selective pressures shaping nucleotide content at 5′ synonymous sites, poten-
tially related to noise reduction, ribosomal retention, or maintenance of transcription factors and ribosome binding motifs 
[39,90–92]. An alternative explanation for a pressure to promote A/T->G/C mutations is biased gene conversion, but why 
this would operate more strongly on gene cores than 5′ ends is less than transparent.

At least one further set of enigmas is unresolved by our analysis, these concerning trends on codon adaptation extend-
ing in the gene body. In E. coli, codon adaptation increases monotonically up to codon 150 (where it doesn’t asymptote, 
Fig 4A). By contrast, in B. subtilis, after the 10 codon initial section, codon adaptation is flat (Fig 4B) and, when seen 
at the codon block level (S15 Fig), any weak trends accord with optimal codon A/T termination, with A/T being avoided 
towards gene cores and G/C being favored. These trends are not obviously anything related to a ramp, not least because 
the ramp predicts increasing codon adaptation not seen in B. subtilis (or Bacteroides). In both E. coli and Bacillus these 
trends are largely uncoupled from K

s
 trends. In part, these trends may be considered to reflect different utilization of opti-

mal codons, E. coli being overall well optimized, B. subtilis less so [81], despite both being considered to be fast replica-
tors [74]. Why this is remains obscure. Understanding this difference and why codon adaptation monotonically increases 
in E. coli will likely hold important truths about the biology of these two species. For now, we suggest the discrepancy to 
not seem to be attributable to the mutational profile in B. subtilis, as data from MA experiments show similar trends as 
in E. coli (Fig 6). Similar analysis in other bacterial species would permit further generalization of the explanation of the 
reduced K

s
 rate until codon 60.

Perhaps the greatest enigma revealed by our analysis is the diversity of equilibrium estimates, for which there may be 
multiple causes (S2 Text). For example, deep Duplex Sequencing may find errors that will not be resolved as mutations as 
they may have been repaired after the sequencing has been performed, a problem unlikely to affect accumulated muta-
tions down MA lines. However, we see that in the deepest analyses the (more MMR affected) CDS still has lower muta-
tion rates than intergenic sequences, consistent with repair-resolved mutations (S2 Text). Analysis of the best resolved 
mutations confirms the same (S2 Text). As we cannot resolve the causes of the variation, in the interim, we suggest that 
the current evidence does not robustly support a model of selection for high AT content, this also being consistent with 
what is seen in the AT-rich bacteria (Fig 7), but this issue requires further verification. That in E.coli we observe K

s
 trends 

aligning with mutational data regardless of the mutation experiment design (Duplex Sequencing, MA), seen also for pre-
dicted mutational profile in Bacillus (Figs 6 and S20), suggests that the variation between data sets in mutation equilibrium 
predictions does not invalidate our suggestion that K

s
 may not be a reliable metric for reporting selection on synonymous 

sites when selection and mutation bias align. This is likely because in all data sets in E. coli and Bacillus, the GC-rich runs 
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are the most mutagenic, there is just disagreement about how much more mutagenic. Note also that mutation equilibrium 
estimates are based on G/C<->A/T mutation counts, while K

s
 trends will also factor in A<->T and G<->C mutations.

That estimates of mutational equilibria from MA lines are relatively close to the GC content of intergenic sequence (E. 
coli AT* ~0.6, intergenic AT 0.58; Bacillus AT* ~0.56, intergenic = 0.64; M. smegmatis AT* = 0.43, intergenic 0.39: Table 
1) inclines us to suppose that the MA data is more likely to be nearer the truth than the results from Duplex Sequencing. 
More generally, here we have restricted analysis to consideration of the relationship between variation in K

s
 across genes 

and mutability of the trinucleotides. We can also ask about whether similar problems will impact inferences of evolutionary 
rates of other classes of sequence, the most comparable of which is likely to be intergenic DNA, non-synonymous muta-
tions commonly being under stronger purifying selection, as evidenced by low K

a
/K

s
 ratios [107] (although see Figs 2 and 

3 for incidences where classical K
a
/K

s
 has the potential to mislead owing to distorted K

s
). As regards the absolute rates 

of mutation of non-coding sequence, while above we have controlled for trinucleotide content in comparing relative rates 
of mutation, this partially disguises a secondary effect, namely genic sequences in E. coli have a higher GC content than 
intergenic sequences (Table 1) and so would be expected to have a raw mutation rate that, if all else were equal, would 
be higher than in intergenic sequences. More generally, the relative trinucleotide content of intergenic DNA and CDS are 
moderately correlated, as expected given selection on amino acid content (correlation of trinucleotide occurrence rates 
in intergenic sequences versus genic sequences, Pearson correlation r = 0.39, P-value = 0.0016, S18C Fig). The relative 
evolutionary divergence of non-coding DNA will then be a complex interplay of a lower mutation rate owing to their relative 
AT richness, a higher mutation rate owing to lesser repair, purifying selection, for example, on ribosomal binding sites and 
non-coding RNAs [108], and possibly adaptive evolution in promoters [108]. Allowance for trinucleotide differential mutabil-
ity in the interpretation of divergence data would be important in this context too.

Methods

Nucleotide content trends by codon position in native genes

Reference genomes were retrieved from RefSeq NCBI [109]. For E. coli, native gene analysis were performed on the 
reference genome downloaded on 13th September 2023 with accession GCF_000008865.2. For B. subtilis, the reference 
genome was downloaded on 16th May 2025 with accession GCF_000186085.1, and for B. toyonensis on 16th January 
2025 with accession GCF_016605985.1. For M. smegmatis, the reference genomes were downloaded with accession 
GCF_000283295.1.

All genes underwent the necessary sequence checks: starting with a start codon (any allowed by translation table 11 
[110]), ending in a stop codon, being in multiple of three, containing only canonical bases and no internal stops. Average 
nucleotide content was then determined for each codon position along the CDS, with division into the three codon sites. 
For 4-fold content, the average content for each nucleotide was determined as a proportion of all 4-fold degenerate sites.

mRNA stability prediction for native genes

mRNA stability was predicted using the ViennaRNA R package v 2.0 [55] using a sliding window approach with windows 
of 30 bp and shifts of 3 bp (to give a by codon mRNA stability prediction). The analysis was conducted from base pair 
-15 until codon position 150. This was conducted for all E. coli native genes and an average per codon position was 
determined.

Evaluating impact of codon position on transgene expression levels

All protein and RNA transgene expression data, as well as transgene sequences, was retrieved from Supplementary 
Data 15 of Cambray and colleagues [41]. PNI was used as protein measure and RNA

SS
 as RNA measure. The R package 

relaimpo (v 2.26) [78] was used to assess the relative influence of GC content on PNI per RNA
SS

 (protein/RNA) for each 5′ 



PLOS Biology | https://doi.org/10.1371/journal.pbio.3003569  December 15, 2025 26 / 42

codon position until 20 codons after the start codon (with lmg model protein/RNA ~ GC_codon_2 + GC_codon_3, etc.). This 
approach quantifies the contribution of each predictor variable while accounting for covariance among them. The analysis 
was also repeated using protein only rather than protein/RNA.

Correlation and partial correlation analysis

The Spearman correlation between PNI/RNA
SS

 and GC content was found by codon position for the first 32 codons 
following the start codon (maximum length of sequence provided by Cambray and colleagues for each of their 244,000 
constructs) using the rcorr function in the R package Hmisc [111]. A partial correlation was also determined to examine 
the effect, while accounting for the influence of all other codon positions, using the R package ppcor [112]. Similarly, a 
correlation and partial correlation analysis was performed between GC content and cell fitness (Cambray and colleagues’s 
W

RI
 [41]), and CAI values taken to represent the enrichment of a codon relative to its synonyms in the 10 codons at genic 

cores in highly compared to lowly expressed native genes (nHEGs v nLEGs) according to amassed protein abundance 
data [113]. CAI is represented through log odds ratios such that a higher value means higher usage in nHEGs.

The same packages were used to determine Spearman correlation and partial correlation between predicted mRNA 
stability and transgene expression. mRNA stability was predicted using the ViennaRNA R package v 2.0 [55]. Correlation 
with expression was separately found between stability of three transgene sequence regions (codons 2–11, 12–21, and 
22–31), provided by Cambray and colleagues [41].

Calculation of optimal codon enrichment trends

Wei and colleagues [74] (their Table 1) provide a list, for E. coli and B. subtilis separately, of translationally optimal codons 
for any given block of codons coding for the same amino acid. Unusually, they determine the optimal codon by reference 
to the abundance of iso-acceptor tRNAs within the transcriptome (as opposed to copy number [75]) and require that the 
nominated optimal codon confirm with classical patterns expected of optimal codons (HEG enrichment, etc.). Their metric 
is thus comparable to tAI [75,114,115] but outperforms prior measures. They nominate 17 such optimal codons in E. coli 
and 14 in B. subtilis. As in E. coli, they could define one for the 3-fold degenerate isoleucine block, their codons belong to 
groups that are either 2-, 3-, or 4-fold degenerate. In B. subtilis, groups are either two- or 4-fold degenerate. We make the 
classical presumption, as assumed by the supporters of the ramp hypothesis [67], that codon optimality equates to faster 
processing.

To define the degree of usage of optimal codons in any set of codons (e.g., in a CDS), we implement the following 
approach. For every codon nominated as optimal, we recover both its identity (from their Table 1 [74]) and the degree of 
redundancy of the block of synonyms. We add to a list of optimal codons the nominated optimal codon and add to a list 
of qualifying codons all codons within in the same block (i.e., that code for the same amino acid). For example, if TGC is 
nominated as optimal for cysteine, TGC is added to the list of optimal codons, and both TGC and TGT are added to the 
list of qualifying codons, and both classed as belonging to the 2-fold degenerate class of codons. Blocks with no nomi-
nated optimal codon are ignored.

We then consider any relevant list of codons and score optimal usage within this list. For example, to determine 5′ to 3′ 
codon optimality trends in native genes, we employ all second site codons, all third site codons, etc. up to codon 150 for 
genes longer than 450 bases. In this instance, all second site codons are added to one list, all third site codons their own 
list, etc. For each such list, we consider each codon in turn and ask whether it exists within the list of qualifying codons for 
that species. If it does, we add one to the count of codons of that codon’s block degeneracy (d) giving us a count of the 
total number of qualifying codons of each relevant degeneracy (T

d
). If it belongs to the optimal codon group, we add one 

to the count of optimal codons for the relevant degeneracy (O
d
). For example, if, as in E. coli, TGC is optimal for cysteine, 

each time we encounter TGC we add one to the optimal codon count of 2-fold degeneracy and one to the list of 2-fold 
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qualifying codons. Occurrence of TGT increments the latter count and not the former. At the end of the process, T
d
 is a 

count of the total number of qualifying codons of degeneracy d and O
d
 the count of optimal codons of degeneracy d.

The meaning of counts of O
d
 of different degeneracy has different meanings dependent on degeneracy: a null expecta-

tion is that 4-fold optimal codons will be proportionally employed (O
d
/T

d
), just less than 2-fold ones because there are more 

alternatives for 4-fold codons. Thus, for each degeneracy block of class d, we calculate deviation, D
d
 = (O

d
 − (T

d
/d))/(T

d
/d). 

In principle, unlike χ2, this metric should not be biased by sample sizes. As a simple example, if we record 100 usages of the 
optimal codon in all 4-fold degenerate groups with 400 instances of usages of any 4-fold degenerate codon, the O

d
 = 100, 

T
d
 = 400, d = 4, so we record D

4
 = 0. To determine the mean deviation, we considered the weighted mean D value across 

all applicable degeneracy classes (d = 2,3,4 for E. coli, d = 2,4 for B. subtilis). Thus, for B. subtilis, weighted mean (D) = 
(D

4
.T

4
 + D

2
.T

2
)/(T

4
 + T

2
). Employment of weighted means is desirable as the proportion of 4-fold degenerate codons varies by 

codon position. The weighted mean provides our metric of the usage of optimal codons for any given list of codons.
We repeat these analysis for the four others species whose optimal codons are defined using the genome accession 

numbers as provided by Wei and colleagues [74] (their Table 2) i.e., Mycobacterium tuberculosis (NC_000962), Synecho-
cystis sp. (NC_017277), Bacteroides thetaiotaomicron (NC_004663), and Leptospira interrogans (AE016823).

Orthologous database retrieval

To perform a conservation analysis, RefSeq genomic coding and protein sequences were firstly downloaded from NCBI 
[109]. For gram-negative bacteria: Escherichia coli (GCF_000005845.2), Escherichia fergusonii (GCF_020097475.1), and 
Salmonella enterica (GCF_000006945.2) downloaded on 18th October 2024. For gram-positive bacteria: Bacillus toyonensis 
(accession: GCF_016605985.1), Bacillus anthracis str. ‘Ames Ancestor’ (accession: GCF_000008445.1), Bacillus mycoides 
(accession: GCF_000832605.1) downloaded on 16th January 2025. For Mycobacteria: Mycobacterium smegmatis (acces-
sion: GCF_000283295.1), Mycobacterium goodii (accession: GCF_022370755.2), Mycobacterium septicum (accession: 
GCF_046506965.2). Bacterial proteomes were processed with OrthoFinder (v 2.5.5) under standard configurations [116]. 
The species tree utilized for posterior K

a
/K

s
 calculations was directly obtained in this step from the OrthoFinder output [117].

Alignment of orthologous sequences

Putative orthologous protein sequences were matched to the corresponding RefSeq CDS using their protein IDs. Sub-
sequent three-way alignments were performed for each orthogroup corresponding to single-copy genes using MAFFT 
(v 7.526) under standard configurations for nucleotide and protein sequences [118]. Codon-based alignments were 
performed using PAL2NAL (v 14) software [119]. All aligned orthologous genes then underwent necessary sequence 
checks: starting with a start codon (any allowed by translation table 11 [110]), ending in a stop codon, being in multiple of 
three, containing only canonical bases and no internal stops. We also limited the analysis to orthologous genes that were 
at least 180 codons long (to see trends in the first 150 codons without capturing 3′ effects). The orthologs that passed 
checks were then used to reconstruct the ancestral state between E. coli and E. fergusonii (with S. enterica as outgroup), 
and between B. toyonensis and B. anthracis (with B. mycoides as outgroup) for gram-negative and gram-positive bacteria, 
respectively. We used a codon-based maximum likelihood approach implemented in iqtree2 [120] under -asr mode. We 
repeat the analysis for M. smegmatis, reconstructing the ancestral state between it and M. goodii (with M. septicum as 
outgroup).

Conservation analysis by codon position

For our conservation analysis, we consider E. coli and the ancestral state, B. toyonensis and the ancestral state, and M. 
smegmatis and the ancestral state. To determine conservation by codon position, we separately extract each codon for 
each ortholog and concatenate it to the codons at that same position for all other orthologs. We do this for the first 150 
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codons following the start codon. This results in 150 codon-specific files. We exclude cases where all three species have 
different codons, as it is likely for there to be uncertainty in the ancestral sequence reconstruction at those positions. 
We repeat the process extracting only those codons coding for 4-fold degenerate amino acids. Since not all orthologous 
genes have 4-fold degenerate codons at every position, the resulting codon-specific files vary in sequence lengths. We 
then determine the synonymous (K

s
) and non-synonymous (K

a
) nucleotide substitution rates, and the ratio between the 

two (K
a
/K

s
) using the CODEML program in PAML (v 4.10.7) [121]. Performing the process for each codon-specific file 

allows us to then assess substitution rates per codon position.

Conservation analysis for non-overlapping genes

We repeat the conservation analysis considering only genes that do not present overlaps. We consider reference genome 
annotations and repeat the same conservation analysis as described above for orthologous genes only considering those 
that are not overlapping.

Conservation analysis of operonic and non-operonic genes

Annotation of operonic genes for E. coli is from Mao and colleagues [122] with the data file downloaded from Supplement 
File 1. E. coli annotation is from GCF_000005845.2 to correspond. Seven genes are called in the operon file that aren’t in 
the reference genome. By manual inspection, these were present in NC_000913.3 but have been discontinued. B. subtilis 
operon annotation was from Geissler and colleagues [123] and downloaded from https://zenodo.org/records/4305872. 
From file BSGatlas-v1.1.xlsx, we employed the operon sheet of the Excel file and converted to csv. We obtained the cor-
responding genome file (CDS) for ASM904v1 from NCBI [109] along with the annotation GFF file.

Mutation accumulation and spontaneous mutation data retrieval

We employ different sources of MA data for E. coli. Our main analysis employs that of Wei and colleagues [56], which con-
tains mutation records for both WT and MMR-deficient E. coli (RefSeq accession GCF_000005845.2). We also employ MA 
data of Foster and colleagues [58] merging mutation records from three E. coli strains PFM2, ED1a, and IAI1 (all considered 
WT and referred back to the same reference genome, GCF_000005845.2). We obtain spontaneous mutation data from 
Zhang and colleagues [57], who use E. coli strain ATCC 8,739 (RefSeq accession GCF_026016785.1). Their experimental 
design involves parallel samples grown from separate single colonies which are then sequenced via Duplex Sequencing 
at very high depth, allowing them to output a large catalog of spontaneous mutations across the whole E. coli genome. 
Zhang and colleagues data contains 12 independent samples, all of which are sequenced with “lower” depth (>1,500) and 
two of which are also sequenced at “higher” depth (3.5 × 104–3.8 × 104) [57]. Except for where it is indicated, e.g., predicting 
AT content at mutational equilibrium, we perform our main analysis with those higher depth samples as deeper sequencing 
allows to capture even the rarest mutations before selection had any filters on them. We employ another set of spontaneous 
mutation data recorded via Duplex Sequencing by Bhawsinghka and colleagues (for E. coli GCF_013166975.1) [59].

We additionally perform mutational data analysis for B. subtilis (GCF_000186085.1) employing MA data from 
Sung and colleagues [62]. For M. smegmatis we combine WT MA data from Kucukyildirim and colleagues [61] and 
Castañeda-Garcia and colleagues [60] (GCF_000283295.1). From Castañeda-Garcia and colleagues we also employ MA 
data for MMR-deficient M. smegmatis.

Analysis of mutation trends along the CDS

To determine observed mutational trends along the CDS, we divide all CDSs into fixed-size windows. For each window, we 
find its mutation density as the total number of mutations observed across all genes normalized by the total number of base 
pairs within that window (i.e., mutations per kb of sequence). Where possible, we do this both for WT and MMR-deficient 
mutation data (see above for data retrieval and RefSeq accessions of reference data downloaded from NCBI [109]).

https://zenodo.org/records/4305872
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To enable better comparison with the WT lines, we also convert data to represent deviations from expected values. 
For each genome, we first consider the total number of observed mutations in the entire genome and the total sequence 
length of each gene window summed across all genes. We then calculate the expected number of mutations in a given 
window as the product of the window’s proportion of the total sequence and the total number of mutations. We subse-
quently compute the deviation as (Observed − Expected)/Expected (i.e., (O − E)/E). As this metric expresses relative 
deviation, it is largely independent of differences in total mutation counts or sample sizes across genomes.

We next consider mutational trends relative to the sequences’ underlying nucleotide content. We first determine 
observed trinucleotide mutation frequencies, where the mutated base is the middle base of the trinucleotide. This allows 
to control for flanking nucleotides. For each of the 64 possible trinucleotides, we find the mutation counts and divide them 
per occurrence of the trinucleotide to give the trinucleotide mutation frequencies. Given the limited mutational sample size, 
we are unable to find observed frequencies for trinucleotides by codon position or codon site. For Wei and colleagues 
[56] and Zhang and colleagues [57] data, we instead differentiate between mutations at 5′ ends (first 20 codons follow-
ing the start codon) and those gene cores (rest of the CDS). We also consider the total genomic trinucleotide mutation 
frequencies.

Although higher data resolution would be required to directly assess mutation frequencies by codon positions or codon 
site, we can infer positional trends along the CDS by estimating the expected mutation frequencies at each codon position 
based on the observed genome-wide mutation frequencies. In order to do this, we first determine the genomic frequencies 
by finding the number of mutations for each mononucleotide and dividing it per occurrence of the ancestral base in the  
E. coli reference genome. We then scan each reference CDS and find the expected by-position mutation rates by multi-
plying nucleotide counts at each position by the observed genomic mutational frequencies previously calculated. We also 
perform the same test for trinucleotides where the mutated (central) base is at third sites of 4-fold degenerate codons.

As repair is directed to the genes, we also ask whether the mutation rate of any given central base of each of the 64 
possible trinucleotides is higher in intergenic sequence compared to annotated genes. We consider anything annotated 
within the full E. coli reference genome as a possible gene, including RNA, and define intergenic as the regions between 
these (extracted using Gff-Ex v2.3 [124]). For both classes of sequences, we determine using bedtools (v 2.31) [125] (via 
pybedtools v 0.12.0 [126]) whether a mutation was intergenic or genic, and compute for each trinucleotide their rate of 
mutation per occurrence of that trinucleotide in the relevant sequence class. We thus derive two 64-element vectors (each 
entry being a trinucleotide), one for normalized mutation rates for genic and one for intergenic sequence. We then com-
pare via paired t test.

We determine trends in observed and expected mutation frequencies for E. coli, B. subtilis, and M. smegmatis (see 
above for data set information).

Native trends in trinucleotides

Analyses on native trinucleotide usage were performed on the reference genome downloaded for E. coli ATCC 8,739 
on 28th November 2024 from RefSeq NCBI [109] with accession GCF_026016785.1, as linked to mutational data from 
Zhang and colleagues [57]. For each codon position, we find the summed content of trinucleotides ANT, ANA, TNT, TNA 
(where N is any of the four nucleotides). We consider the instances where the middle base of the trinucleotide is located 
at codon third sites, and we retain the codon position of that base to find trends along the CDS.

Analysis of amino acid chemical properties by codon position

We determine the average score at each codon position across eight amino acid chemical properties, four that Jin and 
colleagues [76] have previously found to be associated to second sites (hydropathy, chemical composition of the side 
chain, molecular volume, polarity), and four that supposedly aren’t associated (molecular weight, melting point, isoelectric 
point, refractivity). We first retrieved the reference scale for each property: hydropathy scores determined according to 
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the Kyte–Doolittle scale where low values represent hydrophilic amino acids (see Table 2 in [127]). Scales were retrieved 
from [128] for isoelectric point, defined as the pH at which the amino acid loses the electric charge, melting point, polarity, 
molecular volume, and chemical composition of the sidechain, defined as the atomic weight ratio of hetero (noncarbon) 
elements in end groups or rings to carbons in the side chain. For molecular weight, scale retrieved from [129]. Finally, 
for refractivity, defined as the amount of refraction per gram of amino acid, the scale was retrieved from McMeekin and 
colleagues [130] in Jones [131].

For each chemical property, we find the average index for each codon position taking into account the observed amino 
acid frequencies at that position across native genes of E. coli (reference genome downloaded on 25th November 2024 
from RefSeq NCBI [109], accession: GCF_000008865.2). We also find the average index for each codon position taking 
into account the amino acid frequencies expected from mononucleotide, calculated as probabilities based on the frequen-
cies of mononucleotides found at the codon third site of 4-fold degenerate amino acids. A comparison between observed 
and expected allows to determine whether observed trends are present just by considering the codon distribution that 
occurs by chance (expected).

Predicting AT content at mutational equilibrium

The neutral AT equilibrium can be estimated using a simple method which involves finding the relative mutation rates of G/C 
to A/T and A/T to G/C. However, we also apply a more comprehensive approach also used by Rice and colleagues [132] that 
treats each base as an independent state and allows to determine the equilibrium frequencies of all four nucleotides while 
also accounting for nucleotide skews [133]. The method can be illustrated by consideration of the mononucleotide model. We 
for instance define G as the frequency of G and T as the frequency of T. The mutation rate from G to T is denoted as G2T, 
expressed per occurrence of the ancestral base. We describe frequencies for each nucleotide N after a given period (N′) 
and, to determine equilibrium frequencies, we solve for conditions where N′ = N, leading to the following equations:

G (1 − G2T − G2C − G2A) = A (A2G) + T (T2G) + C (C2G)
C (1 − C2T − C2G − C2A) = A (A2C) + T (T2C) + G (G2C)
A (1 − A2T − A2C − A2G) = G (G2A) + T (T2A) + C (C2A)
T (1 − T2G − T2C − T2A) = A (A2T) + G (G2T) + C (C2T)

Here, the left-hand side of each equation represents the loss rate given the current nucleotide abundance, while the right-
hand side represents the gain rate at equilibrium (i.e., we solve for the state where gain = loss). The 12 flux parameters 
(i.e., G2T, C2G, etc.) are derived from the mutation profile, calculated as the observed number of mutations per occur-
rence of the ancestral nucleotide. For any given mutational matrix, we solve for four simultaneous equations, ensuring that 
one nucleotide frequency is determined as 1 minus the sum of the other three (e.g., T = 1 − A − C − G). The equations are 
solved using NumPy [134]. To resolve the ambiguity of which strand the mutation is happening on, we consider A + T and 
G + C expected content at equilibrium rather than the four nucleotides separately.

To estimate confidence intervals, we perform a bootstrap resampling procedure, drawing different sets of mutations 
with replacement from the original set of mutations. We repeat this 1,000 times. For each resampled data set, equilibrium 
frequencies are recalculated, allowing us to establish confidence bounds.

For the central analysis, we expand this approach and consider 16 × 16 mutational matrixes including each dinucleotide 
mutating to each other, rather than mononucleotides. This results in 15 simultaneous equations which we solve for. For 
equations and means to solve them see scripts at https://doi.org/10.5281/zenodo.17378284.

We repeat the whole process for 5′ ends (which, due to data sample limits, we take to be first 20 codons following 
the start codon, i.e., the lowest round number that allows analysis), gene cores (the rest of the CDS), intergenic regions 
(mutations with annotated positions that fall in between CDSs), as well as genomically (including everything, also non- 
protein-coding sequences). For completeness, we perform the analysis for both those samples in Zhang and colleagues 

https://doi.org/10.5281/zenodo.17378284
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[57] that were sequenced with a higher and lower depth (S3 Table). The other mutation data sets described above lack 
sufficient resolution for a by region analysis.

As a sanity check, we also perform the test through the simpler G/C<->A/T approach considering mutations that were 
called with different significance (that Zhang and colleagues [57] report). We divide the mutations by quartiles of muta-
tional calling P-value (Q1 meaning lowest P-value, i.e., higher significance), and find the estimate neutral AT content for 
each mutation group separately (S2 Text).

We perform a further test repeating the analysis employing a separate data set by Bhawsinghka and colleagues [59], 
who collect spontaneous mutation data with Duplex Sequencing in WT E. coli as well as mutants defective in stress 
response-related mechanisms (mutL and mutT). For this data, we compute mutation equilibrium AT content using the full 
simultaneous equations method considering mononucleotides, as explained above.

We estimate mutational equilibrium nucleotide content through the simplest mononucleotide method for E. coli MA 
data [56,58], as well as E. coli spontaneous mutation data recorded via Duplex Sequencing [57,59]. For B. subtilis, using 
data from Sung and colleagues [62], and for M. smegmatis, combining data from Kucukyildirim and colleagues [61] and 
Castañeda-Garcia and colleagues [60]. See Table 1 for all AT* results computed using the simple method. For M. smegmatis 
merged data, we also compute AT* using the full simultaneous equations method based on mononucleotide changes (Fig 8C).

Cross-species nucleotide content by codon position

For the analysis of 5′ and core GC3 content across bacteria species, we firstly retrieved all reference CDSs for 1,355 bac-
terial species (see S4 Table for full list of species names and accession). Sequences were downloaded on 13th Septem-
ber 2023 from RefSeq NCBI [109]. These represent a selection of all the available reference genomes on RefSeq NCBI, 
keeping one species per genus. For each species, we then found the average GC content at codon third sites across all 
genes for 5′ ends (first 10 codons following the start codon) and gene cores (rest of the CDS).

Comparison between transgene GC4 content and expression

For the analysis of 5′ GC4 content and transgene expression, we used data from Cambray and colleagues [41], as above. 
For each transgene, we found the average GC content at third sites of 4-fold degenerate codons for the first 10 codons 
following the start codon. We also retrieved an expression measure as protein per RNA where PNI was used as protein 
measure and RNA

SS
 as RNA measure (see Supplementary Data 15 in Cambray and colleagues [41]).

Z score normalization

For value normalization, we use a Z score approach, i.e., (observed − mean)/standard deviation.

Supporting information

S1 Fig. Nucleotide content trends across 5′ codons in native E. coli genes. For all four nucleotides, content is aver-
aged at each nucleotide position across 5,098 native genes. The x axis represents nucleotide positions relative to the 
start codon (i.e., the third nucleotide of the start codon is labeled as position 0). Error bars indicate the standard error of 
the mean (SEM). Dashed vertical black line marks the first 10 codons. Locally estimated scatterplot smoothing (LOESS) 
regression lines are included. The data underlying this Figure can be found in https://doi.org/10.5281/zenodo.17378284.
(PDF)

S2 Fig. The extent to which codon GC content by position is associated with protein level. As with in-text Fig 
1D–1F, except that the metric is protein level not protein per RNA. A. Relaimpo analysis. The model explains 7.4% of 
the variation in protein level. B. Spearman correlation analysis. C. partial Spearman correlation. The data underlying this 
Figure can be found in https://doi.org/10.5281/zenodo.17378284.
(PDF)

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3003569.s001
https://doi.org/10.5281/zenodo.17378284
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3003569.s002
https://doi.org/10.5281/zenodo.17378284
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S3 Fig. Spearman correlations between cell fitness and GC content or CAI in transgenes for each 5′ codon posi-
tion. A. Full Spearman correlations for GC content. B. partial Spearman correlations for GC content controlling for the 
influence of all other codon positions in the available construct sequence (codons 2–30) such that, for instance, the rela-
tion between transgene expression and GC content at codon 2 is found independently of the relation with GC content in 
codons 3–30. C, D same as A, B, but for Codon Adaptation Index (CAI) at each position. Here, CAI measures the enrich-
ment of a codon relative to its synonyms in the 10 codons at genic cores in highly compared to lowly expressed native 
genes (nHEGs v nLEGs) according to amassed protein abundance data. CAI is represented through log odds ratios such 
that a higher value means higher usage in nHEGs. In all plots, colored points represent rho values with a P-value ≤ 0.05, 
while gray points are non-significant. Locally estimated scatterplot smoothing (LOESS) regression lines are included. 
Codon positions on the x axis refer to absolute codon numbers (e.g., the start codon is codon 1). Dashed vertical black 
line marks the first 10 codons. Transgene data from Cambray and colleagues [41]. The data underlying this Figure can be 
found in https://doi.org/10.5281/zenodo.17378284.
(PDF)

S4 Fig. Substitution rates by 5′ codon position comparing the Escherichia coli–Escherichia fergusonii ances-
tor to E. fergusonii. A. Synonymous substitution rates (K

s
); B. non-synonymous substitution rates (K

a
), and C. the ratio 

between the two (K
a
/K

s
). The x axis represents absolute codon position (i.e., the start codon is codon 1). A–C plots include 

orthologs that are at least 180 codons long (n ~ 1,400). Dashed vertical black line marks the first 10 codons. Locally 
estimated scatterplot smoothing (LOESS) regression lines are included. The data underlying this Figure can be found in 
https://doi.org/10.5281/zenodo.17378284.
(PDF)

S5 Fig. Substitution rates by 5′ codon position for 4-fold degenerate codons comparing the Escherichia coli–
Escherichia fergusonii ancestor to E. coli. A. Synonymous substitution rates (K

s
); B. non-synonymous substitution 

rates (K
a
), and C. the ratio between the two (K

a
/K

s
). The x axis represents absolute codon position (i.e., the start codon is 

codon 1). Dashed vertical black line marks the first 10 codons. Locally estimated scatterplot smoothing (LOESS) regres-
sion lines are included. The data underlying this Figure can be found in https://doi.org/10.5281/zenodo.17378284.
(PDF)

S6 Fig. Substitution rates by 5′ codon position comparing the Escherichia coli–Escherichia fergusonii ancestor 
to E. coli. A. Synonymous substitution rates (K

s
); B. non-synonymous substitution rates (K

a
), and C. the ratio between the 

two (K
a
/K

s
). A–C plots include operonic orthologs that are at least 180 codons in length (n = 1,080). D–F. Same as A–C but 

only including non-operonic orthologous genes that are at least 180 codons in length (n = 473). For A–F panels, the x axis 
represents absolute codon position (i.e., the start codon is codon 1). Dashed vertical black line marks the first 10 codons. 
Locally estimated scatterplot smoothing (LOESS) regression lines are included. Note that codon position here is by ref-
erence to the codon position in the alignment. G. The K

s
 trends seen in operonic (A) and non-operonic (D) genes plotted 

against each other. Orthogonal regression line and Pearson correlation shown. The data underlying this Figure can be 
found in https://doi.org/10.5281/zenodo.17378284.
(PDF)

S7 Fig. GC content trends across 5′ codons in orthologous E. coli genes. GC content is averaged at each nucleotide 
position across orthologs that are at least 180 codons long (n ~ 1,400). The x axis represents nucleotide positions relative 
to the start codon (i.e., the third nucleotide of the start codon is labeled as position 0). Error bars indicate the standard error 
of the mean (SEM). Dashed vertical black line marks the first 10 codons. Locally estimated scatterplot smoothing (LOESS) 
regression lines are included. The data underlying this Figure can be found in https://doi.org/10.5281/zenodo.17378284.
(PDF)
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S8 Fig. Comparison of K4 and Ks values for alignments with and without indels in the focal lineage alignment. 
For E. coli (A–G) and Bacillus (H–N), we calculate K by codon in one instance assigning codon position by posi-
tion within the alignment and in the second instance by first removing aligned codons where the focal lineage has 
an indel. In each group, the first Figure (A, H) is K

s
 for the full alignment, the second (B, I) K

s
 for the indel removed 

case with the following figure (C, J) a scatter plot comparing the two with orthogonal regression lines and Pearson 
correlation. The following sets (D, E, F), (K, L, M) are the same, but for K

4
. Plots G and N show the proportion of 

genes/alignments with an indel at each codon position. The data underlying this Figure can be found in https://doi.
org/10.5281/zenodo.17378284.
(PDF)

S9 Fig. Distribution of size of 5′ overlaps in Escherichia coli native genes. Plot includes all 5′ overlapping genes in 
the reference genome (669 of 4494 genes, around 15%). The x axis represents base pairs (bp) for which each gene is 
overlapping another one, and the y axis the number of genes that overlap by that bp length. Median overlap size is 3 bp. 
The data underlying this Figure can be found in https://doi.org/10.5281/zenodo.17378284.
(PDF)

S10 Fig. Distribution of size of 5′ overlaps in Bacillus toyonensis native genes. Plot includes all 5′ overlapping genes 
in the reference genome (479 of 5229 genes, around 9%). The x axis represents base pairs (bp) for which each gene is 
overlapping another one, and the y axis the number of genes that overlap by that bp length. Median overlap size is 3 bp. 
The data underlying this Figure can be found in https://doi.org/10.5281/zenodo.17378284.
(PDF)

S11 Fig. GC content trends across 5′ codons in orthologous Bacillus toyonensis genes. GC content is averaged 
at each nucleotide position across orthologs that are at least 50 codons long (n = 2,809). The x axis represents nucleotide 
positions relative to the start codon (i.e., the third nucleotide of the start codon is labeled as position 0). Error bars indicate 
the standard error of the mean (SEM). Dashed vertical black line marks the first 10 codons. Locally estimated scatterplot 
smoothing (LOESS) regression lines are included. The data underlying this Figure can be found in https://doi.org/10.5281/
zenodo.17378284.
(PDF)

S12 Fig. Comparison of codon usage bias and GC content in E. coli and B. subtilis between operonic genes. For 
E. coli, A. is non-operonic genes’ GC3 by position, B. the operonic GC3, and C. the comparison of the two employing 
orthogonal regression and Pearson correlation. D–F is the same, but for codon usage bias. G–L are the same as A–F, but 
for B. subtilis. The data underlying this Figure can be found in https://doi.org/10.5281/zenodo.17378284.
(PDF)

S13 Fig. Trends in GC3 content and codon usage bias for four species of bacteria: A and B for Mycobacterium 
tuberculosis, C and D for Synechocystis sp., E and F for Bacteroides thetaiotaomicron, and G and H for Lepto-
spira interrogans. Codon optimality scores obtained from Wei and colleagues [74]. The data underlying this Figure can 
be found in https://doi.org/10.5281/zenodo.17378284.
(PDF)

S14 Fig. Deviation in usage of optimal codon trends as a function of distance from the CDS start, by amino acid 
block, for Escherichia coli. Linear regression lines (and respective displayed Pearson correlation and P-value) in color 
consider the first 10 codons (inclusive), those in black are for all other codon positions. Plots with lines, statistics, and 
titles in pink show those amino acid blocks where the optimal codon is A/T-ending, those in blue have a G/C-ending opti-
mal codon. Optimal codons and degeneracy for each block are indicated in the plot title. Note the 6-fold degenerate amino 
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acids are divided into a 4-fold and a 2-fold block. The data underlying this Figure can be found in https://doi.org/10.5281/
zenodo.17378284.
(PDF)

S15 Fig. Deviation in usage of optimal codon trends as a function of distance from the CDS start, by amino acid block, 
for Bacillus subtilis. Linear regression lines (and respective displayed Pearson correlation and P-value) in color consider 
the first 10 codons (inclusive), those in black are for all other codon positions. Plots with lines, statistics, and titles in pink show 
those amino acid blocks where the optimal codon is A/T-ending, those in blue have a G/C-ending optimal codon. Optimal 
codons and degeneracy for each block are indicated in the plot title. Note the 6-fold degenerate amino acids are divided into a 
4-fold and a 2-fold block. The data underlying this Figure can be found in https://doi.org/10.5281/zenodo.17378284.
(PDF)

S16 Fig. Mutation profile as a function of distance from the gene’s start. Same as Fig 5, but for E. coli non-
overlapping genes only. A. Mutation density (mutations per kilobase, kb) as a function of within-gene position. The amount 
of sequence with each genic window, across all CDS, was determined, the density then being the number of mutations 
per bp, here scaled to kb. The blue line is a polynomial regression of degree 4. Yellow dashed line and yellow statistic 
are for the first 60 codons, dark purple dashed line and dark purple statistic are for the rest of the gene. Pearson cor-
relation provided. B. Comparison of K

4
 values by codon and mutation density from WT lines. Mutation density is in blue 

with positions specified by mid-position of the window. K
4
 data per codon is in pink. Lines reflect polynomial regression of 

degree 4. To determine pseudo-significance, we interpolate values for each codon by fitting to the blue polynomial line. 
These values are then correlated against the observed K

4
 values (Pearson correlation shown). C. Deviation from null (O 

− E)/E for WT (alternative metric for data in panel A) and from MA lines that have MMR deleted. The first 60 codons are 
positively correlated for the WT data (statistics as panel A), but the MMR deletion data is not (Pearson correlation r = 0.78, 
P-value = 0.06). Dark purple dashed line is regression for data post-60 codons for MMR-deficient data, yellow dashed line 
for data within 60 codons. The pink line is the polynomial regression for MMR-deficient the blue for WT. The horizontal 
gray line marks (O − E)/E = 0. In all panels mutational data from Wei and colleagues [56]. The data underlying this Figure 
can be found in https://doi.org/10.5281/zenodo.17378284.
(PDF)

S17 Fig. Mutation profile as a function of distance from the gene’s start. Same as Fig 5, but for WT E. coli muta-
tional data from Zhang and colleagues [57] for high-depth samples (A–C), and for low-depth samples (D–F), and for E. 
coli mutational data from Foster and colleagues [58] (G–I). In all, panels yellow dashed lines and yellow statistic consider 
the first 50 codons, while dark purple considers the rest of the gene (unlike the codon 60 threshold set in Fig 5). The data 
underlying this Figure can be found in https://doi.org/10.5281/zenodo.17378284.
(PDF)

S18 Fig. Trinucleotide centered mutability in genic and intergenic sequence. Observed trinucleotide mutation 
frequencies in A. genic regions and B. intergenic regions. Mutation frequency refers to mutation count per occurrence of 
ancestor base. Trinucleotide mutations are such that the middle base is the mutated base. Trinucleotides on the x axis 
are rank-ordered from most to least frequent. Mutation data for E. coli from Wei and colleagues [56] WT samples. C. The 
same trinucleotide frequencies in A and B, plotted against each other. Pink is a linear regression line, Pearson correlation, 
and respective P-value displayed. Dark gray line is a regression line with slope 1 and intercept 0 (i.e., perfect correlation 
between the two regions). Note if the pink line sits above the perfect correlation line, it represents higher trinucleotide 
mutation frequencies in intergenic regions. D–E. The same trinucleotide frequencies in A–B, plotted against trinucleotide 
GC content for genic and intergenic trends, respectively. Pearson correlation and respective P-value displayed. F–J same 
as A–E, but for MMR-deficient Wei and colleagues [56] samples. K–O same as A–E, but for mutation data for Escherichia 
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coli from Zhang and colleagues [57] for samples sequences at higher depth. P–T same as K–O, but for samples 
sequenced at lower depth. The data underlying this Figure can be found in https://doi.org/10.5281/zenodo.17378284.
(PDF)

S19 Fig. Mutational rates by codon position expected by genomic mutational rates. Mutation refers to mononu-
cleotide changes. Position on the x axis refers to codons. Dashed vertical black line marks the first 10 codons. For A–C, 
mutation data for E. coli from Wei and colleagues [56], and for D–F mutational data for E. coli from Zhang and col-
leagues [57] samples sequenced at higher depth. The data underlying this Figure can be found in https://doi.org/10.5281/
zenodo.17378284.
(PDF)

S20 Fig. The influence of trinucleotide context on mutation and substitution. A. Observed genomic trinucleotide 
mutational frequencies rank-ordered from most to least frequent in Escherichia coli. Mutational data for E. coli from Zhang 
and colleagues [57] samples sequenced at higher depth. Mutation frequency refers to mutation count per occurrence of 
ancestor base. Trinucleotide mutations are such that the middle base is the mutated base. Trinucleotides on the x axis are 
rank-ordered by frequency and bars are color-coded by trinucleotide GC content. B. The same genomic mutation fre-
quencies as in A, plotted against trinucleotide GC content. Line represents linear regression and Pearson correlation with 
respective P-value is also shown. C. Expected trinucleotide mutation rates by codon position, predicted by trinucleotide 
genomic mutational rates and genomic trinucleotide content. Trinucleotide mutations are such that the middle base is the 
mutated base, and it occurs at third sites in 4-fold degenerate codons. D. Comparison of expected mutational rates in C 
with E. coli conservation trends by codon position at 4-fold degenerate sites (4-fold K

s
, as seen in S5 Fig). Both metrics 

are normalized by Z score. E. Comparison of expected trinucleotide mutation rates and K
4
 by position without Z trans-

formation. Pearson correlation data is shown. Line is the orthogonal (major axes) regression line. F–J as A–E, but for E. 
coli from Zhang and colleagues [57] samples sequenced at lower depth. For panels C, D, H, and I, position on the x axis 
refers to absolute number of codons (where the start codon is position 1), and the dashed vertical black line marks the 
first 10 codons. Locally estimated scatterplot smoothing (LOESS) regression lines are also provided. The data underlying 
this Figure can be found in https://doi.org/10.5281/zenodo.17378284.
(PDF)

S21 Fig. Trinucleotide mutational frequencies at 5′ ends and gene cores. A. Comparison between each possible trinucle-
otide mutation in the two gene regions. Points are color-coded by ancestral base. B. Trinucleotide mutational frequencies at 5′ 
ends rank ordered from largest to smallest. C. Trinucleotide mutational frequencies in gene cores rank-ordered from largest to 
smallest. Bars in B and C are color-coded by GC content within the trinucleotide. For all plots, trinucleotide mutations are such 
that the middle base is the mutated base. For A–C mutational data from Wei and colleagues [56], and D–F are the same but 
with mutation data from Zhang and colleagues [57]. For all panels 5′ ends include the first 20 codons, while gene cores refer to 
the rest of the CDS. The data underlying this Figure can be found in https://doi.org/10.5281/zenodo.17378284.
(PDF)

S22 Fig. Mutation profile as a function of distance from the gene’s start for Mycobacterium smegmatis. A. Muta-
tion density (mutations per kilobase, kb) as a function of within gene position. The amount of sequence with each genic 
window, across all CDS, was determined, the density then being the number of mutations per bp, here scaled to kb. The 
blue line is a polynomial regression of degree 4. Yellow dashed line and yellow statistic are for the first 60 codons, dark 
purple dashed line and dark purple statistic are for the rest of the gene. Pearson correlation provided. B. Comparison 
of K

4
 values by codon and mutation density from WT lines. Mutation density is in blue with positions specified by mid-

position of the window. K
4
 data per codon is in pink. Lines reflect polynomial regression of degree 4. To determine pseudo-

significance, we interpolate values for each codon by fitting to the blue polynomial line. These values are then correlated 
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against the observed K
4
 values (Pearson correlation shown). C. Deviation from null (O − E)/E for WT (alternative metric for 

data in panel A) and from MA lines that have MMR deleted. The first 60 codons are positively correlated for the WT data 
(statistics as panel A), but the MMR deletion data is not (Pearson correlation r = 0.78, P-value = 0.06). Dark purple dashed 
line is regression for data post-60 codons for MMR-deficient data, yellow dashed line for data within 60 codons. The pink 
line is the polynomial regression for MMR-deficient, the blue for WT. The horizontal gray line marks (O − E)/E = 0. In all 
panels mutational data for WT is combined from Castañeda-Garcia and colleagues [60] and Kucukyildirim and colleagues 
[61], while data for MMR-deficient samples is from Castañeda-Garcia and colleagues [60] only. The data underlying this 
Figure can be found in https://doi.org/10.5281/zenodo.17378284.
(PDF)

S23 Fig. Substitution rates by 5′ codon position comparing the Mycobacterium smegmatis-M. goodii ancestor 
to M. smegmatis. A. Synonymous substitution rates (K

s
); B. non-synonymous substitution rates (K

a
), and C. the ratio 

between the two (K
a
/K

s
). A–C plots include orthologs that are at least 180 codons in length (n = 1,698). For A–C, the 

x axis represents absolute codon position (i.e., the start codon is codon 1). Dashed vertical black line marks the first 
10 codons. Locally estimated scatterplot smoothing (LOESS) regression lines are included. Note that codon position 
here is by reference to the codon position in the alignment. D–I Comparison of K

4
 and K

s
 values for alignments with 

and without indels in the focal lineage alignment. We calculate K by codon in one instance assigning codon position 
by position within the alignment and in the second instance by first removing aligned codons where the focal lineage 
has an indel. D is K

s
 for the full alignment, E K

s
 for the indel removed case, and F a scatter plot comparing the two 

with orthogonal regression lines and Pearson correlation. The following set (G, H, I) are the same but for K
4
. Note 

removal of alignment indels in the focal lineage prior to codon position categorization makes no meaningful difference. 
J. Proportion of genes/alignments with an indel at each codon position. The data underlying this Figure can be found in 
https://doi.org/10.5281/zenodo.17378284.
(PDF)

S1 Table. Spearman correlation (top panel) and partial correlation (bottom panel) between transgene protein 
per RNA levels and GC content for each codon position. Transgene data from Cambray and colleagues [41]. Partial 
Spearman correlations are controlling for the influence of all other codon positions in the available construct sequence 
(codons 2–30) such that, for instance, the relation between transgene expression (as protein/RNA) and GC content at 
codon 2 is found independently of the relation with GC content in codons 3–30. Stars represent P-value (p < 0.0001 = **** 
p < 0.001 = *** p < 0.01 = ** p < 0.05 = * p > 0.05 = no stars); “protein_by_RNA” refers to PNI/RNAss measures reported by 
Cambray and colleagues. Codon positions refer to absolute codon numbers (e.g., the start codon is codon 1). The data 
underlying this Figure can be found in https://doi.org/10.5281/zenodo.17378284.
(CSV)

S2 Table: Spearman and partial Spearman correlations between ViennaRNA stability predictions at different 
gene regions and transgene protein/RNA levels. Transgene data from Cambray and colleagues [41]. “stability_
first10” refers to predicted stability in the first 30 bp in each transgene construct after the start codon (codons 2–11), 
“stability_mid” to predicted stability of the following 30 bp section within each transgene construct (codons 12–21), “sta-
bility_last10” to the 30 bp following that (codons 22–31). Partial Spearman correlations are controlling for the influence 
of stability in the other construct regions such that, for instance, the relation between transgene expression (as protein/
RNA) and predicted RNA stability in region stability_first10 is found independently of the relation with predicted RNA 
stability in regions stability_mid and stability_last10. Number of start indicates significance such that p <0 .0001 = “****”, 
p < 0.001 = “***”, p < 0.01 = “**”, p < 0.05 = “*”, p > 0.05 = no stars. The data underlying this Figure can be found in https://
doi.org/10.5281/zenodo.17378284.
(CSV)
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S3 Table. Estimated AT content at mutational equilibrium determined by full method. Method involves consideration 
of all possible mutational classes and solving the relevant simultaneous equations, see Methods. “seq_depth” differenti-
ates the samples into those sequenced with higher or lower depth by Zhang and colleagues [57]. “mut_size” refers to the 
approach by which the mutational matrix was generated, i.e., counting mononucleotide or dinucleotide mutations. “region” 
refers to 5′ ends (i.e., the first 20 codons following the start codon), gene cores (i.e., the rest of the CDS), intergenic (i.e., 
non-CDS mutations), or genomic (i.e., the whole genome including non-protein coding sequences). “pred_AT” is the 
predicted AT content at mutational equilibrium. “mean_boot_ATestimate” and “std” are the mean and standard deviation 
of repeating the nucleotide content estimate calculation (i.e., “pred_AT”) for 1,000 bootstraps. The data underlying this 
Figure can be found in https://doi.org/10.5281/zenodo.17378284.
(CSV)

S4 Table. List of bacteria species used for the 5′ versus core GC3 cross-species analysis. “assembly_accession” 
refers to the accession number for sequence retrieval from RefSeq NCBI [109].
(CSV)

S1 Text. Amino acid usage at the 5′ ends of genes forces out GC rich runs. 
(PDF)

S2 Text. Why are mutational equilibrium estimates so diverse ?
(PDF)
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