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Abstract 

The Klebsiella pneumoniae species complex inhabits a wide variety of hosts and 

environments, and is a major cause of antimicrobial resistant infections. Genomics 

has revealed the population comprises multiple species/sub-species and hundreds of 

distinct co-circulating sub-lineage (SLs) that are associated with distinct gene com-

plements. A substantial fraction of the pan-genome is predicted to be involved in met-

abolic functions and hence these data are consistent with metabolic differentiation at 

the SL level. However, this has so far remained unsubstantiated because in the past 

it was not possible to explore metabolic variation at scale. Here, we used a combina-

tion of comparative genomics and high-throughput genome-scale metabolic model-

ing to systematically explore metabolic diversity across the K. pneumoniae species 

complex (n = 7,835 genomes). We simulated growth outcomes for each isolate using 

carbon, nitrogen, phosphorus, and sulfur sources under aerobic and anaerobic condi-

tions (n = 1,278 conditions per isolate). We showed that the distributions of metabolic 

genes and growth capabilities are structured in the population, and confirmed that 

SLs exhibit unique metabolic profiles. In vitro co-culture experiments demonstrated 

reciprocal commensalistic cross-feeding between SLs, effectively extending the 

range of conditions supporting individual growth. We propose that these substrate 

specializations may promote the existence and persistence of co-circulating SLs by 

reducing nutrient competition and facilitating commensal interactions. Our findings 

have implications for understanding the eco-evolutionary dynamics of K. pneumoniae 
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and for the design of novel strategies to prevent opportunistic infections caused by 

this World Health Organization priority antimicrobial resistant pathogen.

Introduction

Klebsiella pneumoniae is a ubiquitous gram-negative bacterium and major cause 
of opportunistic healthcare-associated infections with significant global burden [1]. 
Novel prevention and control strategies are urgently required to target this organism, 
in particular the growing numbers of multi-drug resistant strains that cause infec-
tions that are extremely difficult to treat [2]. However, our capacity to design effective 
control measures is complicated by the extraordinary diversity among K. pneumoniae 
and gaps in our knowledge about how key types of variation, such as metabolic vari-
ation, intersect with ecology, and population structure.

Isolates identified as K. pneumoniae in clinical laboratories include K. pneumoniae 
sensu stricto in addition to six other taxa (species and sub-species) collectively known 
as the K. pneumoniae species complex (KpSC) [3]. These species are separated by 
3%–4% nucleotide divergence in their core genes, and each is further subdivided 
into hundreds or thousands of phylogenetically distinct sub-lineage (SLs) separated 
by ~0.5% nucleotide divergence [3,4], but with access to a highly diverse shared 
gene pool. It is well known that gene content differences play a role in driving differ-
ential SL epidemiologies, i.e., where a subset is recognized as globally-distributed 
multi-drug resistant agents of healthcare-associated infections or as ‘hypervirulent’ 
community-acquired pathogens (usually drug-susceptible) [3]. It has also been shown 
that total gene content is nonrandomly distributed between SLs and that up to 37% of 
the total KpSC gene pool encodes proteins contributing to cellular metabolism [4].

We therefore hypothesized that SLs differ in terms of metabolic capabilities, which 
likely contributes to their epidemiological behaviors and may facilitate the mainte-
nance of diverse SLs within the population. A similar hypothesis was proposed for the 
gram-positive bacterial pathogen, Streptococcus pneumoniae [5], and is consistent 
with genomic studies of other organisms that have implicated a nonrandom distri-
bution of metabolic traits within the population [6–10]. However, the complexities of 
cellular metabolism make systematic prediction of phenotypes from genome data 
difficult, limiting capacity for large-scale analyses of population metabolism.

Genome-scale metabolic models attempt to encapsulate the total metabolic poten-
tial of an organism and can be used to predict metabolic phenotypes [11]. Compar-
ative metabolic modeling analyses can be utilized to probe diversity within bacterial 
species populations, and recent larger-scale studies (n = 50–3,083 genomes) have 
highlighted the power of these approaches to identify industrially relevant, ecology-, 
drug-resistance- and pathogenicity- associated metabolic traits [12–18]. While a 
recent study of 2,773 metabolic models confirmed that Escherichia coli phylogroups 
(which are approximately as diverse as KpSC species) are associated with unique 
metabolic reactions [19]. However, none of these works have attempted to investi-
gate the interplay between phenotypic diversity and fine-scale population structure, 
i.e., to understand how diversity is distributed within and between phylogenetic SLs. 
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Such information is crucial to understanding the interaction between metabolism, ecology and evolution within species, 
and in turn for design of broad-acting control strategies that seek to exploit metabolic vulnerabilities.

Here, we describe a population-level analysis of 7,835 KpSC genomes to evaluate the distribution and diversity of 
metabolism in the context of the population structure, first at the level of species, then SLs within species. We performed 
quantitative analyses of metabolic gene content, and constructed metabolic models from which we predicted 1,278 meta-
bolic phenotypes for each isolate. This approach allowed us to directly infer the phenotypic impact of genetic variation and 
explore phenotype variation within a single species in the context of the established KpSC population genomics frame-
work [3] and at a scale that was not previously possible. We validated a subset of these phenotypes via experimental 
assays. Our data reveal considerable variation between and within species that is nonrandomly distributed across SLs. 
Notably, we show for the first time that KpSC SLs, including multi-drug resistant and hypervirulent clones, are associated 
with distinct substrate usage profiles that appear to facilitate commensal interactions and which we hypothesize may pro-
mote co-existence.

Materials and methods

Genome acquisition, quality filtering, and genotyping

Genomes were included from 29 medium-large-scale studies [4,20–46] that comprised diverse KpSC collections (S1 
Data). Outbreak investigations were explicitly excluded to reduce clonal oversampling and genomes were de-replicated to 
minimize sampling biases for overrepresented SLs (see method: Genome dereplication). Reads were acquired from the 
European Nucleotide Archive using the enaDataGet and enaGroupGet scripts from enaBrowserTools v1.6 [47], trimmed 
with Trim Galore v0.5.0 using -q 20 option [48], then assembled with Unicycler v0.4.7 with the --keep 0 option [49]. Assem-
blies failing the established KlebNET-Genomic Surveillance Platform inclusion criteria were excluded (>500 contigs, total 
length <4,969,898 or >6,132,846 bp). Graphical Fragment Assembly (GFA) files were analyzed to count GFA dead ends 
using getUnicyclerGraphStats.py from Unicycler [49]

Assemblies were annotated with Bakta v1.1.1 [50] with the ‘--gram –’ option and Bakta database (date accessed: 
1/09/2021), while Kleborate v2.0.4 [51] was used to identify species and Sequence Types (STs). Pathogenwatch (https://
pathogen.watch/) and BIGSdb (https://bigsdb.pasteur.fr/) [52,53] were used to assign LIN codes [54] and SLs. LIN codes 
are assigned using core genome MLST profiles that consider variation in 629 core KpSC genes. The third position in the 
LIN code is used to infer SL membership [54] and results in groupings that correspond to well-recognized deep-branching 
monophyletic clades within species. Notably, these SL assignments do not rely on de novo cluster analysis, and are stable 
with the addition of new genomes [55]. Pairwise ANI was calculated using FastANI v1.33 [56] using --fragLen 3000.

Genome dereplication

We noticed that several SLs were vastly overrepresented in the dataset (e.g., due to dense sampling in specific geog-
raphies or inclusion of transmission clusters within larger collections). In order to minimize the impact of these sampling 
biases we de-replicated the dataset using a similar approach to that described in [51]. Initially, popPUNK v2.4.0 [57] was 
used to finely cluster isolates. The ‘create-db’ function was used with the following options: ‘--sketch-size 1000000 --min-k 
15 --max-k 29 --qc-filter prune’. Then the ‘fit-model’ function was used with the following options: ‘dbscan --ranks 1,2,3,5 
--graph-weights’. Finally, the ‘fit-model’ function was used again, with the options: ‘refine --graph-weights --unconstrained’. 
Additionally, the ‘poppunk_visualise’ function was used, with the ‘--distances’ and ‘--previous-clustering’ utilizing the 
refined model fit, to output a neighbor-joining core tree.

Isolates which shared the same popPUNK cluster, isolation source and country were sorted using newfangled_untan-
gler.py v1.0.4 (https://github.com/bananabenana/newfangled_untangler/) then de-replicated via Assembly-Dereplicator 
v0.1.0 [58] with the following options: ‘--threshold 0.0003’. Code also available at Figshare (https://doi.org/10.6084/
m9.figshare.24503737).

https://pathogen.watch/
https://pathogen.watch/
https://bigsdb.pasteur.fr/
https://github.com/bananabenana/newfangled_untangler/
https://doi.org/10.6084/m9.figshare.24503737
https://doi.org/10.6084/m9.figshare.24503737


PLOS Biology | https://doi.org/10.1371/journal.pbio.3003559  December 12, 2025 4 / 22

Pan-genome analysis

The 7,835 filtered and dereplicated KpSC genomes were split into species, then Panaroo v1.2.8 [59] was run with the 
following options: ‘--clean-mode sensitive -a core --aligner mafft --no_clean_edges --core_threshold 0.98 --merge_paralogs 
--remove-invalid-genes’. Due to computational limits, the 6,676 K. pneumoniae genomes were split into two groups of 3,338 
(based on closest genetic distance) and run separately on Panaroo. The output graphs for all species were then merged 
using the panaroo-merge command with the following options: ‘--merge_paralogs’ to obtain the final pan-genome.

Metabolic gene identification and analysis

To analyze metabolic pathways, the pan_genome_reference.fa file from Panaroo was translated using the transeq tool 
from EMBOSS v6.6.0 [60] with the following options: “-table 11 -frame 1.” Translated sequences were analyzed using 
kofam_scan v1.3.0 (https://github.com/takaram/kofam_scan), the command line version of KEGG’s [61] kofamKOALA 
[62]. KEGG release 94.0 ver. 2020-04-02.

Genes with an e-value of ≤0.001 were retained and analyzed using KEGG Mapper (https://www.genome.jp/kegg/
mapper/reconstruct.html) to identify pathway information. Using the BRITE tab, genes which fell under the ‘metabolism’ 
subheading were used to classify genes as metabolic or nonmetabolic. KEGG ortholog assignments were used to convert 
the Panaroo gene presence/absence matrix into a metabolic ortholog matrix. This allowed grouping of functional isozymes 
which would otherwise have an identical KEGG function. Pairwise metabolic ortholog Jaccard similarities were calculated 
using the vegdist function from R package vegan v2.5-7 [63].

Twilight [64] was used to classify distribution of metabolic orthologs among KpSC taxa and 48 common K. pneumoniae 
SLs (n ≥ 15 genomes each, defined by LIN codes) using the -s 5 and -s 20 commands, respectively. ‘Core’: ≥95% preva-
lence. ‘Intermediate’: <95% and >15% prevalence. ‘Rare’: ≤15% and >0% prevalence. ‘Absent’: 0% prevalence.

Metabolic modeling

Metabolic models were generated via Bactabolize v1.0.1 [65] using the draft_model command with the following options: 
“--media_type m9 --atmosphere_type aerobic --min_coverage 25 --min_pident 80.” The KpSC-pan v2.0 model [66] was used 
as the input reference. One-hundred and sixty of 7,835 models (2.0%) required gap-filling to enable simulation of growth on M9 
minimal media with glucose (median: 1 reaction added, range: 1–23), using flux balance analysis to optimize the most recent 
version of the biomass objective function “BIOMASS_Core_Feb2022.” We have previously shown that models gap-filled to 
simulate growth in minimal media plus glucose can accurately predict a range of other substrate growth phenotypes [65].

Flux balance analysis was used to predict growth phenotypes for all possible carbon, nitrogen, phosphorus, and sulfur 
sources supported by the reference model as sole sources of carbon, nitrogen, phosphorus, or sulfur in M9 minimal media 
defined in silico, in both aerobic and anaerobic conditions. These analyses were performed using Bactabolize’s fba com-
mand with the following option: “--fba_spec_name m9.” All growth lower bounds and default substrate sources used in this 
analysis are available at https://github.com/kelwyres/Bactabolize. Models were considered capable of simulating growth 
when the optimized biomass value was ≥0.0001.

Pairwise Jaccard similarities and population distribution of positive growth phenotypes were calculated as described 
above for metabolic orthologs.

To evaluate co-occurrence of metabolic traits and control for population structure, genomes were randomly subsampled 
to a maximum of 10 per SL (n = 2,427 genomes), then predicted aerobic growth phenotypes analyzed using Coinfinder 
v1.2.0 [67] with the --associate option.

In vitro growth experiments

To validate substrate usage predictions from the metabolic models, 13 isolates (S2 Data) were selected from our 
in-house collections [4,26,68] and tested in triplicate on each of nine substrates in minimal media, aerobic conditions. Two 

https://github.com/takaram/kofam_scan
https://www.genome.jp/kegg/mapper/reconstruct.html
https://www.genome.jp/kegg/mapper/reconstruct.html
https://github.com/kelwyres/Bactabolize


PLOS Biology | https://doi.org/10.1371/journal.pbio.3003559  December 12, 2025 5 / 22

experiments were performed: i) endpoint OD
600

 at 24- and 48-hours; ii) 3-day substrate coaxing to induce gene expression 
[69] for predicted false-negative growth results in the endpoint experiment. Isolates were coaxed onto the testing substrate 
via sub-culturing into progressively lower amounts of D-glycerol, which all isolates can use as a carbon source (10 mM on 
subculture 1, 5 mM on subculture 2, 0 mM on subculture 3).

Nine growth substrates were tested: seven as sole sources of carbon (methanol, L-hydroxyproline, xylitol, butyrate, 
acetoacetate, D-glycerol, and D-glucose), one as a sole source of nitrogen (allantoin) and one as a sole source of sulfur 
(methanesulfonate).

For endpoint experiments, isolates were grown overnight in 2 mL M9 media + 10 mM D-glycerol. M9 media was pre-
pared by using 1X M9 Minimal Salts (Sigma) and adding 2 mM MgSO

4
 and 0.1 mM CaCl

2
 after autoclaving. 1 mL of culture 

was pelleted at 8,000 x g for 10 min, supernatant discarded, then centrifugally washed using 1 mL 0.9% NaCl to remove 
excess carbon/nitrogen/sulfur. Isolates were then diluted 1:100 using 0.9% NaCl and 5 µL sub-cultured into 96-well plates 
(CLS3603, Corning) containing 200 µL M9 + substrate. Substrates were tested at the following concentrations: 400 mM 
methanol, 20 mM L-hydroxyproline, 20 mM xylitol, 20 mM sodium butyrate, 20 mM acetoacetate, 20 mM D-glucose, 10 mM 
D-glycerol 20 mM methanesulfonate, 60 mM allantoin, all at pH 7.0 and 0.2 µm filter sterilized. For allantoin as a nitro-
gen source, custom nitrogen-negative M9 was prepared (34 mM NaH

2
PO

4
, 64 mM K

2
HPO

4
, 1 µM FeSO

4
, 2 mM MgSO

4,
 

and 0.1 mM CaCl
2
). For methanesulfonate as a sulfur source, sulfur-negative M9 was prepared (2 mM MgCl

2
 instead of 

MgSO
4
). Isolate negative and carbon positive controls were performed for each media. Plates were incubated at 37 °C, 

shaking at 150 RPM and optical density read every 24 hours at OD
600

 absorbance using an infinite 200Pro and i-control 
v2.0.10.0 (Tecan). Each experiment was performed in biological triplicate. Each well was blanked with a no-isolate control, 
then the mean used to determine growth, with a cutoff of 0.05 (limit of detection).

Coaxing experiments were performed as above, over 3 days. Isolates were added to media containing the tested 
substrate plus D-glycerol 10 mM on subculture day 1, 5 mM on subculture day 2, and 0 mM on subculture day 3. Prior to 
sub-culturing, cells were centrifugally washed as above and 5 µL transferred to 200 µL total media. Only subcultures on 
day 3 were used for analysis (0 mM D-glycerol).

Co-culture experiments

We selected three pairs of SLs and three corresponding pairs of substrates (four total substrates) for which one was 
predicted as a SL-specific core trait in SL A and the other predicted as a SL-specific core trait in SL B. For each SL, three 
isolates were selected from our in-house collections [4,26,70] and treated as biological replicates (S3 Data).

Isolate pairs were grown in single and co-culture using 0.4 µm pore Transwells (Sigma) and 24-well plates (Costar, 
Corning). Co-culture results were compared to single cultures and log

2
-fold-change OD

600
 values calculated.

To rule out strain-strain antagonism prior to co-culturing, a primary inoculum was streaked onto LB agar plates and 
grown for 8 hours at 37 °C. Then, primary inoculums of additional isolates were streaked perpendicularly. Plates were 
incubated for 16 hours at 37 °C and no growth inhibition of the perpendicular streaks was observed.

Co-culture results were compared to single cultures using OD
600

 of pairs of isolates (S3 Data) that were physically 
separated by 0.4 µm pores using 24-well Transwells (Sigma). All cultures were grown at 37 °C, 100 RPM. Substrates 
were used in 1X M9 media at the following concentrations: 20 mM for galactitol, L-sorbose, L-tartrate, and 5 mM for 
L-hydroxyproline.

M9 media plus the tested substrate was added to the Transwell (100 µL) and the main well (800 µL). Isolates were 
grown overnight in 1X M9 containing 10 mM D-glycerol, then centrifugally washed as above. Cultures were diluted 1:100 
in 0.9% NaCl, and 5 µL added to wells. The prototroph was added to the Transwell while auxotroph added to the main 
well. Cultures were grown and 75 µL was taken from wells at time point for OD

600
 measurements. For isolate-substrate 

combinations where we observed slow growth rates, 24, 48, and 72-hour time points were used, otherwise time points at 
0, 24, and 36 hours were used. OD

600
 values were blanked using no-isolate media controls. For log

2
 fold-change analysis, 



PLOS Biology | https://doi.org/10.1371/journal.pbio.3003559  December 12, 2025 6 / 22

values of 0 were transformed to 1x10−5, but kept raw for other statistical analyses. After co-culture, isolates were then 
plated onto LB agar, confirmed uniform, distinct colony morphology, then re-grown under the same nutrient conditions in 
single culture.

Co-culture simulations

In silico co-culture experiments were performed using MICOM v0.32.2 [71] with the relevant K. pneumoniae metabolic 
models. Community models were built using the build function, then communities were grown in growth media matching 
co-culture experiments (M9 minimal media with various carbon sources) with tradeoff set to 0.5. Metabolite and reaction 
flux were then analyzed to determine metabolite sharing from prototrophs to auxotrophs.

Preparation of samples for metabolomics analysis

We used an untargeted Liquid Chromatography-Mass Spectrometry (LC-MS) approach to explore the metabolites pres-
ent in the culture supernatant of putative cross-feeding prototrophs. We selected one representative prototroph for each 
SL-growth substrate combination: AJ155, INF359, INF120 (galactitol), INF171 (L-hydroxyproline), INF225 (L-sorbose), 
and INF354 (L-tartrate) and compared to no-isolate controls for each substrate. Briefly, overnight cultures in M9 minimal 
media + 20 mM glucose were washed twice in 0.9% NaCl, centrifuged at 8,000 x g for 10 min. Cultures were then stan-
dardized to McFarland Standard 0.45–0.55 in 0.9% NaCl, then inoculated into 5 mL M9 minimal media + substrates (as 
previously described in co-culture experiments). Performed with four biological replicates except negative controls which 
were performed in triplicate. Independent cultures were grown aerobically at 37 °C, shaking at 200 RPM for 18 hours. 
Cells were pelleted at 8,000 x g for 10 min, then supernatant filtered through a Acrodisc Supor PES Membrane 0.2 μm 
syringe filter (Pall). Supernatant was transferred to a new vial and frozen at −80 °C prior to transfer to the Monash Pro-
teomics and Metabolomics Platform for LC-MS analysis, where 20 µL of cell culture supernatant was treated with 180 µL 
of ice-cold methanol containing a mixture standard isotope labeled amino acids acting as internal standards. The sample 
was then mixed at 4 °C for 10 min on a thermomixer before being subjected to centrifugation at 21,000 x g for 10 min at 4 
°C. 900 µL of the supernatant was then transferred to an LC-MS vial for analysis.

LC-MS analysis of metabolites

We used both hydrophilic interaction liquid chromatography (HILIC) coupled to high-resolution mass spectrometry 
(HRMS). Samples were analyzed on a Vanquish Horizon coupled to Exploris 480 orbitrap mass spectrometer (Thermo 
Scientific). Chromatography was performed using an iHILIC-(P) Classic, (PEEK, 150 x 4.6 mm, 5µm, 200Å; HILICON, 
Sweden) with a gradient elution of 20 mM ammonium carbonate (A) and acetonitrile (B) (linear gradient time-%B as fol-
lows: 0 min-80%, 15 min-50%, 18 min-5%, 21 min-5%, 24 min-80%, 32 min-80%) at a flow rate of 500 µL/min. The mass 
spectrometer was operated in polarity switching modes with a resolution at 120,000. The electrospray conditions were: 
ionization voltage was 3.5 kV in positive and −2.5 kV in negative mode, ion transfer tube temperature = 325 °C; sheath 
gas = 60; Aux gas = 15; sweep gas = 2; vaporizer temp = 350 °C.

For accurate metabolite identification, a standard library of ~400 metabolites was analyzed before sample testing and 
accurate retention time for each standard was recorded. This standard library also forms the basis of a retention time pre-
diction model used to provide putative identification of metabolites not contained within the standard library [72]. Acquired 
LC-MS/MS data was processed in an untargeted fashion using opensource software IDEOM [73], which initially used 
msConvert (ProteoWizard) [74] to convert raw LC-MS files to mzXML format and XCMS [75] to pick peaks to convert to 
peakML files. Mzmatch was subsequently used for sample alignment and filtering [76]. Peak intensities were compared 
for each prototroph versus the matched no-isolate control using a Wilcox Rank Sum test with Benjamini-Hochberg multi-
ple testing correction. Missing and zero peak intensity data were imputed as 20% of the minimum peak intensity for each 
prototroph-control pair.
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Data visualization and code availability

Statistical analysis and graphical visualization were performed using R v4.0.3 [77], RStudio v1.3.1093 [78], with the fol-
lowing software packages: tidyverse v1.3.1 [79], viridis v0.5.1 [80], RColorBrewer v1.1-2 [81], ggpubr v0.4.0 [82] ggpmisc 
v0.4.4 [83], aplot v0.1.6 [84], colorspace v2.0-2 [85], ggtree v2.4.1 [86], vegan v2.5-7 [63], rstatix v0.7.0 [87], and ggnews-
cale v0.4.5 [88].

All code used to generate metabolic models and simulate growth phenotypes, including media definitions, is available 
at https://github.com/kelwyres/Bactabolize. The KpSC pan-reference metabolic model is available at https://github.com/
kelwyres/KpSC-pan-metabolic-model. All code used to generate figures, simulations, and perform statistical analysis can 
be found at (https://doi.org/10.6084/m9.figshare.24503737), alongside all metabolic models used in analyses.

Results

Metabolic traits are bimodally distributed across the population

The study dataset included 7,835 high-quality KpSC genomes covering all seven taxa in the complex (Fig 1A) and 1,931 
STs (S1 Data). Pan-genome analysis [59] identified 61,595 gene clusters, 11,184 (18.2%) of which were matched to 
a total of 2,601 unique KEGG Orthologs [61] with associated substrate-reaction data. This represented a lower bound 
estimate of the proportion of ‘metabolic genes’ in the KpSC pan-genome, as 38.9% of gene clusters could not be assigned 
functional annotations (hypothetical proteins). Metabolism-associated KEGG Orthologs (hereafter ‘metabolic orthologs’) 
were bimodally distributed (Fig 1B and S4 Data), with 1,499 orthologs (57.4%) present in ≥95% of genomes and 899 rare 
orthologs present in <15% of genomes. This bimodal distribution is consistent with the general distribution of accessory 
genes in the KpSC [4], and other bacterial species with similarly large effective population sizes [64,89].

To analyze the phenotypic diversity across the KpSC, a strain-specific metabolic model was generated for each 
genome using Bactabolize [65], which was previously shown to produce models with overall 93.2% and 78.1% predictive 
accuracies in aerobic and anaerobic conditions, respectively (data for 37 diverse KpSC each tested for growth using 124 
distinct carbon substrates via the Omnilog microarray; range 5.4%–100.0%, median 100.0% accuracy per substrate in 
aerobic conditions; range 0.0%–100.0%, median 88.9% accuracy per substrate in anaerobic conditions [66]). Growth phe-
notypes were predicted for 345 carbon, 192 nitrogen, 68 phosphorus, and 34 sulfur substrates as sole sources in minimal 
media under aerobic and anaerobic conditions (a total of 1,278 conditions). Individual strain-specific models comprised a 
mean of 1677.0 genes ± 17.3 (standard deviation, SD) and 3330.1 reactions ± 13.5 (SD). Individual isolates were predicted 
to grow in a mean of 678.2 ± 17.9 (SD) conditions. Seventeen isolates were identified as outliers with fewer positive growth 
phenotypes in anaerobic conditions, likely due to sequencing coverage issues rather than genuine biological deficiencies 
[90] (S5 Data, S1A Fig, and S1 Text).

The distribution of positive growth predictions mirrored that for metabolic gene content. At the population-level, 643 
conditions (47.6%) were predicted to support growth for ≥95% isolates (‘core’, Fig 1C and S5 Data) and were comprised 
of 349 aerobic and 294 anaerobic conditions, which systematically confirmed the facultative anaerobe status of the KpSC. 
These 643 core conditions consisted of 207 total substrates (note that some substrates can be tested as sole sources of 
multiple elements, e.g., carbon and nitrogen), with at least 204 of these being known human metabolites, 134 diet-related 
compounds, and 203 gut microbiome metabolites (S5 Data). In contrast, 509 modeled growth conditions (43.6%) did not 
support growth of any isolates (224 aerobic and 285 anaerobic conditions). Carbon substrate usage displayed the great-
est variability, with 41 aerobic and 37 anerobic conditions predicted to support growth in <95% isolates (Figs 1C and S1B).

Metabolic variation is structured within and between species

The set of core growth conditions for each KpSC taxon was greater than the species complex as a whole (11–39 addi-
tional conditions each). Each taxon was associated with a distinct core growth profile mirrored by distinct core metabolic 

https://github.com/kelwyres/Bactabolize
https://github.com/kelwyres/KpSC-pan-metabolic-model
https://github.com/kelwyres/KpSC-pan-metabolic-model
https://doi.org/10.6084/m9.figshare.24503737
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ortholog profiles as expected [70,91] (S2–S4A Figs, S4 Data, S5 Data, and S1 Text), and there was evidence of special-
ization at the level of macromolecular functions as determined by COG analysis (S5 Fig, S1 Data, and S1 Text). These 
predicted growth capabilities were generally consistent with biochemical tests described in formal species definitions 
[92–95]. However, there were a small number of notable discrepancies that indicate that species identification protocols 
should be revisited (see S1 Text and S6 Data for details).

While individual KpSC taxa are clearly defined by distinct metabolic profiles, there was also clear evidence of intra-
taxon variation (S2 and S3 Figs). Four taxa were represented by sufficient genomes for comparisons (n > 200 each); 
K. pneumoniae (hereafter Kp, n = 6,652), Klebsiella quasipneumoniae subsp. quasipneumoniae (Kqq, n = 201), K. qua-
sipneumoniae subsp. similipneumoniae (Kqs, n = 285), and Klebsiella variicola subsp. variicola (Kvv, n = 672). In Kp, 938 
metabolic orthologs were variably present in <95% genomes (544, 586, and 738 orthologs variable among Kqq, Kqs, and 
Kvv, respectively) and 79 conditions were predicted to support variable growth (81, 78, and 67 for Kqq, Kqs, and Kvv). We 

Fig 1.  Population-level metabolic diversity in the K. pneumoniae species complex. A: Neighbor-joining tree of the 7,835 KpSC genomes used in 
this study. Tip colors indicate species as labeled. An interactive version found at https://microreact.org/project/pcTMwQZAGCsqqhbEZzaj11-a-metabol-
ic-atlas-of-the-klebsiella-pneumoniae-species-complex. B: Stacked bars show pan-genome content by metabolic gene (KEGG) category as indicated in 
legend (left). Population distribution of KEGG orthologs associated with metabolic genes (‘metabolic orthologs’, right). The light gray background shows 
rare orthologs (>0–15%), the medium gray shows intermediate orthologs (>15–<95%) while the dark gray shows core orthologs (≥95%). C: Stacked bars 
show population frequency categories for predicted substrate usage, coloured by substrate type as indicated in legend. The data and phylogeny underly-
ing this Figure can be found at Figshare (https://doi.org/10.6084/m9.figshare.24503737) and S4 Data and S5 Data.

https://doi.org/10.1371/journal.pbio.3003559.g001

https://microreact.org/project/pcTMwQZAGCsqqhbEZzaj11-a-metabolic-atlas-of-the-klebsiella-pneumoniae-species-complex
https://microreact.org/project/pcTMwQZAGCsqqhbEZzaj11-a-metabolic-atlas-of-the-klebsiella-pneumoniae-species-complex
https://doi.org/10.6084/m9.figshare.24503737
https://doi.org/10.1371/journal.pbio.3003559.g001
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hypothesized that this variation is not randomly distributed in the population, and our analysis of all-vs-all genome pairs 
within taxa showed statistically significant positive relationships between pairwise Average Nucleotide Identity (ANI, gener-
ally indicative of ancestral relatedness) and pairwise Jaccard similarity across metabolic genes (general linear hypoth-
esis test, p < 2 × 10−16 for each of the four well-sampled taxa, s 2A). Comparison of the regression gradients indicated 
significant differences between taxa; however, the R2 values, which indicate how well the models fit the data, were low 
(range 0.04–0.48), suggesting a large amount of variation in metabolic gene Jaccard similarities was not explained by the 
relationship with ANI.

Next, we used the recently established core-genome Life Identifier Number (LIN) code scheme to assign genomes to 
SLs [54]. These SLs represent deep-branching phylogenetic clades, separated by hundreds of years of evolutionary diver-
gence (with notable exceptions discussed below). Of the 7,835 genomes, 7,833 were assigned to 1,418 distinct SLs and 
two were unassigned due to insufficient alleles detected.

Pairwise Jaccard similarities for metabolic ortholog profiles were significantly higher within SLs (median 0.956, IQR 
0.947–0.965) than between SLs within the same species (median 0.923, IQR 0.914–0.932), p < 0.0001 (Kruskal–Wallis 
test). Mirroring this, pairwise Jaccard similarities for predicted substrate usage profiles were significantly higher for pairs 
within SLs (median 0.990, IQR 0.983–0.997) than between SLs (median 0.97, IQR 0.96–0.98) for both aerobic and anaer-
obic substrate usage (p < 0.0001 for all comparisons, Kruskal–Wallis test with Holm correction, followed by Dunn’s post-
hoc, Fig 2B).

Fig 2.  Metabolic heterogeneity within taxa is nonrandomly distributed. A: Pairwise Average Nucleotide Identity (ANI) vs. pairwise Jaccard similarity 
of metabolic orthologs within each of the well-sampled taxa (n > 200 genomes). B: Distributions of pairwise (all vs. all) Jaccard Similarity of simulated 
substrate usage for pairs of genomes within vs. between SLs in the same species. Significance asterisks excluded as each group was significantly dif-
ferent from every other group (p < 2 × 10−16), calculated using a nonparametric Kruskal–Wallis test with Holm correction, followed by Dunn’s post-hoc test. 
The data underlying this Figure can be found at Figshare (https://doi.org/10.6084/m9.figshare.24503737).

https://doi.org/10.1371/journal.pbio.3003559.g002

https://doi.org/10.6084/m9.figshare.24503737
https://doi.org/10.1371/journal.pbio.3003559.g002
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Finally, we sought to explore structuring among accessory metabolic traits, using a co-occurrence analysis. Twelve 
pairs of co-occurring substrate-usages were identified and 11 of these pairs were mechanistically-linked, e.g., the same 
substrate tested as different element sources (n = 5 pairs) or substrates for which the catabolic pathways are overlapping 
(n = 4 pairs, see S1 Text). Just one co-occurring phenotype pair (formamide and Fe(III)dicitrate as sources of carbon) was 
not obviously mechanistically-linked, indicating that they may be co-selected or encoded by genes that are physically 
linked in the genome or on plasmids. Accordingly, we have identified the genes enabling use of formamide and Fe(III)dic-
itrate as sources of carbon co-located on plasmids in the completed genomes of multiple unrelated strains, e.g., INF008 
(SL221), INF044 (SL258), and INF119 (SL17).

Major SLs are defined by unique metabolic profiles

To explore the association between metabolism and population structure at higher-resolution, we calculated the rela-
tive prevalence of predicted growth phenotypes within 48 Kp SLs that were each represented by genomes from broad 
geographies and time-spans (≥15 genomes, 3–12 geographic regions, 5–86 years). These included SLs correspond-
ing to globally-distributed multi-drug resistant (SL14, SL15, SL17, SL29, SL37, SL101, SL147, SL258, and SL307) and 
hypervirulent clones (SL23, SL25, SL65, and SL86) [3]. The data showed that each SL is associated with a distinct, core 
metabolic fingerprint, indicating metabolic specialization (Figs 3, S4B, S6, and S5 Data), with 253–316 core aerobic and 
198–223 core anaerobic conditions each. Note that in some cases the SL-specific core was smaller than the Kp spe-
cies core reported above using the ≥95% genome threshold (363 aerobic, 307 anaerobic conditions), because most SLs 
represent far less than 5% of the total Kp genome collection. This contradiction highlights the influence of sample size and 
diversity on core definitions, which should be considered as indicative of the general trends in the population. We tested 
for the impact of sampling biases on our SL comparisons. The data show no correlation between the number of SL core 
traits and either of sample size or temporal range (S7A and S7B Fig, Pearson’s product moment correlation, r = 0.20 and 
0.04, p = 0.1751 and 0.7774, respectively). There was a moderate positive correlation between the number of SL core 
traits and number of geographic regions represented (S7C Fig, r = 0.49, p = 0.0004). However, the latter is counter intui-
tive and seems to be driven by a small number of SLs that have a low number of core traits, rather than a genuine trend 
(S7C Fig). We are therefore confident that the trends we describe are not the result of sampling biases. Nonetheless, we 
acknowledge that the precise sets of SL-specific core traits listed here should be considered an approximation, because 
the addition of further diverse genomes for any given SL could result in the removal of a minority of traits from its core list.

No pair of SLs shared the same core growth profile, even pairs that are thought to share relatively recent common 
ancestry, such as SL14 and SL15 (common ancestor ~45 years ago [4]) and SL65 and SL25 (common ancestor yet 
to be dated) [96] (Figs 3 and S6). However, there was also clear evidence of diversity within SLs, with 3–102 variable 
growth phenotypes each, a pattern that was replicated by metabolic ortholog distributions (S3, S6 Figs, and S1 Text). 
After excluding growth conditions predicted to support growth among ≥95% (46/48) K. pneumoniae SLs (n = 615 condi-
tions, 340 aerobic and 275 anerobic, corresponding to 202 total substrates) and those that did not support any growth 
among the 48 SLs (n = 525 conditions), the data support a broad classification of phenotypes as follows: i) 89 that were 
core in some SLs (range = 1–45 SLs) but variably present in others (range = 1–17) which we call ‘SL-specific core traits’; 
ii) 13 that were not core in any SL (accessory in 3–46 SLs, including the only pair of co-occurring phenotypes that was 
not mechanistically-linked) (Figs 3 and S6). The SL-specific core traits could be further divided into those that were core 
to the majority (≥66%) of SLs (n = 57 phenotypes that we call ‘majority SL-specific core traits’), those that were core to 
an intermediate number of SLs (≥25%–<66%, n = 13 phenotypes, corresponding to six substrates, that we call ‘common 
SL-specific core traits’) and those that were core in only very few SLs (<25%, n = 13 ′rare SL-specific core traits’, eight 
aerobic and five anerobic, corresponding to seven total substrates).

We have previously tested the predictive accuracy of 16 of 68 variable aerobic growth phenotypes, 14 of which 
were estimated ≥70%, including 12 estimated ≥90% (see Fig 3), while the accuracy for 11 of 16 tested anaerobic 
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growth phenotypes was estimated ≥70%, including three estimated ≥90% (see S6 Fig). We propose that the major-
ity SL-specific core traits and the accessory traits are unlikely to play a major role in defining SL-specific evolutionary 
trajectories or ecological interactions, and hence we focused our follow-up investigations here on the common and rare 
SL-specific core traits. Our prior work had confirmed predictive accuracies ≥97% for five of the six common SL-specific 
core substrates; L-sorbose, L-tartrate, galactitol, D-tagatose, and L-galactonate as sole sources of carbon in aerobic 
conditions [66] (tested using the Omnilog phenotyping microarray, for 37 diverse KpSC isolates). The sixth, fructose-
lysine, is not present in the Omnilog array and could not be tested here due to its high cost. One of the seven rare 
SL-specific core substrates, allantoin, was previously tested as a sole source of carbon in aerobic conditions, for which 
the predictive accuracy was 89.2% (37 isolates tested [66]). Here, we tested growth using allantoin as a sole source of 
nitrogen and found the model accuracy was much lower (15% for 13 isolates tested). We also tested the six other rare 
SL-specific core growth substrates (13 isolates tested for each), confirming high accuracy (85%) for L-hydroxyproline 
as a carbon source, 77% accuracy for each of butyrate and methanol as sources of carbon, 46% for xylitol as a source 
of carbon, 31% for methanesulfonate as source of sulphur, and 15% for acetoacetate as a source of carbon (S2 Data, 
see S1 Text for more details, Fig 3).

Fig 3.  Distinct metabolic fingerprints of SLs within species. Heatmap showing frequency of variable aerobic substrate usage across 48 global K. 
pneumoniae sub-lineages (SL). Rows are ordered by phylogeny. SL labels are coloured to indicate the globally-distributed clones described in [3]: Blue 
shows hypervirulent while red shows multi-drug resistant. Substrate shown along X-axis. The element source of each substrate is semi-colon separated 
and abbreviated for brevity: C = Carbon, N = Nitrogen, and S = Sulfur. O2 indicates aerobic conditions. Frequency of substrate usage indicated by shading 
as shown in legend. Where available, substrate-specific prediction accuracies are indicated in coloured circles below the X-axis. Number of isolates per 
each SL shown in bars. Anaerobic growth predictions shown in S6 Fig. The data underlying this Figure can be found in S5 Data.

https://doi.org/10.1371/journal.pbio.3003559.g003

https://doi.org/10.1371/journal.pbio.3003559.g003
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SLs co-operate through cross-feeding metabolites

We have shown substrate usage varies across the KpSC and some of this variation is SL-dependent. We hypothesized 
that such diversity promotes the maintenance of distinct SLs by limiting inter-lineage competition and/or promoting com-
mensalism. We tested this hypothesis using in vitro co-culture experiments.

We selected four carbon substrates (galactitol, L-tartrate, L-sorbose, and L-hydroxyproline) for use in three indepen-
dent substrate combinations and corresponding SL pairs for which predicted substrate-usages were mutually exclusive 
SL-specific core traits. One isolate from each SL was selected for co-culture aerobically in each of two conditions (minimal 
media plus each of the SL-specific core substrates), such that each experiment contained one isolate that was able to 
utilize the substrate as a sole carbon source (the prototroph) and one that was not (the auxotroph). In short, Strain A as 
an auxotroph and Strain B as a prototroph, after which we then swapped their roles via use of another substrate, so that A 
would be a prototroph and B would be an auxotroph. This was done within each pair to evaluate reciprocal cross-feeding 
between SLs under different conditions. Growth of the auxotroph was measured using OD

600
 and compared to the same 

isolate growing in monoculture in the same media. Co-cultured isolates were physically separated by a Transwell mem-
brane but had shared access to the growth medium (Fig 4A). A unique aspect of this experiment was the use of indepen-
dent isolates from the same SLs as biological replicates rather than replicates of the same isolate. This allowed us to limit 
the impact of strain-specific growth biases while demonstrating conserved behavior across a greater number of indepen-
dent isolates. SLs representing clinically-relevant clones were selected (multi-drug resistant SL37 versus hypervirulent 
SL29, hypervirulent SL86 versus hypervirulent SL23, and multi-drug resistant SL17 versus SL29).

Fig 4.  Nutrient prototrophic lineages support growth of auxotrophic lineages. Co-culture growth assays between prototrophs and auxotrophs 
under various substrate usage conditions. Time points captured were at 0, 24, 36, 48, and 72 hours depending upon the substrate pair (Materials and 
methods). A: Graphic demonstrating the experimental design measuring commensalism between an auxotrophic strain unable to utilize a carbon source 
and a prototrophic strain which can. The growth of the auxotroph was compared in single vs. co-culture conditions. B: Growth results (OD

600
) over time 

for each auxotrophic strain in the bottom well (n = 3 strains per SL as biological triplicates) in single and co-culture with a prototroph for the substrate. C: 
Log

2
-fold-change distribution of growth results (OD

600
) at each time point under different culture conditions. Statistical significance comparing the OD

600
 

values of co-culture to single culture is shown above plot (Dunn’s post-hoc with Holm correction, *p < 0.05, **p < 0.01, ***p < 0.001). The data underlying 
this Figure can be found in S3 Data.

https://doi.org/10.1371/journal.pbio.3003559.g004

https://doi.org/10.1371/journal.pbio.3003559.g004
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Our data showed that co-culturing auxotrophs with prototrophs in the presence of a SL-specific core substrate signifi-
cantly increased the OD

600
 of the auxotrophs (Fig 4B) with mean log

2
-fold-change 3.78 ± 2.64 SD at 24 hours, p = 0.0128; 

4.02 ± 2.34 SD at 36 hours, p = 0.0001; 4.94 ± 1.14 SD at 48 hours, p = 0.0039; and 4.35 ± 1.27 at 72 hours p = 0.0039; Kru-
skal–Wallis + Dunn’s post-hoc with Holm correction (Fig 4C). To confirm this phenomenon only occurred in the presence 
of a cross-feeding partner and eliminate the possibility of contamination or horizontal transfer of the genes conferring the 
prototroph phenotype, aliquots from each co-culture well were plated onto LB agar to confirm a single, distinct colony mor-
phology. Colonies were then inoculated into M9 minimal media plus the auxotrophic substrate as a sole carbon source, 
confirming the original growth behavior of each isolate (S3 Data).

To further explore these pairwise strain interactions, we performed in silico co-culture simulations, which indicated 
that prototrophs were likely cross-feeding the auxotrophs by catabolising the sole carbon substrates, then exporting 
metabolites that were capable of supporting auxotroph growth (see S1 Text). Subsequent metabolomics analysis of 
representative prototroph culture supernatants supported the presence of many of the implicated metabolites (S6 Data, 
S8 Data, and S8 Fig): Between two and 13 metabolites predicted to be involved in cross-feeding were detected with 
significantly higher peak intensity in the prototroph culture supernatant compared to the no-isolate controls (p < 0.05 by 
two-tailed Wilcox Rank Sum Test with Benjamini-Hochberg multiple testing correction). Among these, between two and 
11 metabolites were each detected with >1 log

2
 fold intensity increase, indicating a substantial increase in the quantity 

of the metabolite present in the prototroph supernatant as compared to the matched control (S6 Data). Metabolites with 
substantial intensity changes included those involved in central carbon metabolism and/or that have been previously 
shown to support growth for all or almost all KpSC, e.g., alanine, aspartate, glycerate, glutamate, lactate, malate, and 
pyruvate [70] (labeled in S8 Fig).

We cannot rule out the possibility that the putative cross-feeding metabolites were released following cell lysis; how-
ever, we note that the associated peak intensity shifts were among the most prominent of all metabolites tested, includ-
ing ubiquitous intracellular metabolites, e.g., other amino acids (see S8 Fig). Therefore, it is unlikely that cell lysis alone 
explains the metabolite quantities we detected. Furthermore, each of the substrates named above is known to be actively 
exported by the closely related organism E. coli [97–102], and a tBLASTn search showed that all six of the representative 
prototrophs carried orthologs of genes encoding the relevant substrate exporter proteins characterized from E. coli (ala-
nine, glutamate, malate, lactate, and pyruvate) or Tetragenococcus halophila (aspartate). (We were unable to identify any 
known exporters of glycerate. Also see S1 Text.)

Discussion

Here, we present a bacterial population metabolism study of the K. pneumoniae species complex, in which we used 
quantitative metabolic modeling to predict and compare growth phenotypes for >7,000 members of a single species com-
plex, and contextualized the results against an established population genomics framework [3]. This approach allowed 
us to identify key metabolic differences that are indicative of metabolic fingerprints at both the species and sub-species 
(sub-lineage) levels. Our subsequent in vitro co-culture experiments (Fig 4) provide evidence that these metabolic differ-
ences can facilitate co-operation between SLs.

Our data shows that metabolic capabilities are structured in the population: we observed significant positive correla-
tions between pairwise ANI and metabolic gene Jaccard similarity among each of the four well-sampled KpSC taxa (Fig 
2A), indicating that closely related strains (high ANI) generally share a greater overlap of metabolic genes than more dis-
tantly related strains (low ANI). However, the proportion of variation explained was low (≤0.48 for all taxa). While there is 
likely a small impact of unavoidable assembly and/or annotation artifacts, we hypothesize the dominant driver is horizontal 
gene transfer; i) chromosomal recombination, which can introduce nucleotide variation into core genes and inflate ANI 
values for otherwise closely related genomes that share common metabolic genes; and ii) movement of mobile genetic 
elements, driving acquisition or loss of genes among closely related genomes (high ANI) and/or acquisition of common 
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sets of genes by distantly related genomes (low ANI). This is further supported by the comparison of pairwise growth 
prediction Jaccard similarities for isolate pairs within versus between SLs (Fig 2B, wherein the distributions were overlap-
ping but shifted towards higher values for within SL pairs) and by our exploration of 48 common SLs (Figs 3 and S6). The 
latter showed that each SL was associated with a distinct set of core traits (metabolic orthologs and growth phenotypes), 
alongside clear evidence of variation within SLs, mirroring variations in total gene content that have been reported previ-
ously [4,96].

SL-specific core traits likely represent those vertically inherited from the SL common ancestor, whereas variable traits 
within SLs reflect acquisitions and/or losses through evolutionary time. Interestingly, several predicted growth phenotypes 
were observed only as accessory traits, i.e., they were not core to any single SL, most likely due to acquisition on mobile 
genetic elements rather than vertical inheritance followed by repeated losses in diverse strain backgrounds. Accordingly, 
we identified the genes associated with the two co-occurring accessory growth phenotypes, formamide and Fe(III)dici-
trate, co-located on plasmids in genomes representing multiple distinct SLs. A plasmid born lactose utilization operon has 
been reported previously among KpSC [4], and E. coli plasmids have been shown to carry a variety of metabolic genes 
[103], but the potential role for plasmids in driving metabolic diversity within species has not been fully appreciated.

Our co-culture experiments indicated that metabolic variation, including SL-specific core growth capabilities, can enable 
co-operation between KpSC wherein an isolate which cannot metabolize a given substrate (an auxotroph), is supported 
to grow by the breakdown of the substrate by another isolate (a prototroph) (Fig 4). These findings were replicated for 
each of three distinct isolate pairs, representing three distinct and distantly related SL pair combinations, each tested for 
two different substrates. In each case, substrates predicted to support growth of the auxotroph were identified within the 
culture supernatant of one of the prototrophs, and include those ubiquitously metabolized by KpSC. We therefore predict 
that this capacity for ‘cross feeding’ is a common phenomenon among KpSC, although we cannot comment on its true fre-
quency in natural environments nor in the context of the broader microbial communities within which KpSC exist. Further 
work leveraging microbial community models in representative conditions, and/or using in vivo models will be required to 
explore these intra-species dynamics.

Intriguingly, our data may shed light on the question of how so many SLs can be maintained within the KpSC popu-
lation. In the most intuitive scenario, the ability to consume different substrates may enable KpSC SLs to inhabit distinct 
metabolic niches within spatially overlapping environments, thereby reducing the impact of nutrient competition. Sup-
porting this hypothesis, it has been shown previously that metabolic niche differentiation can support the co-existence of 
multiple strains of E. coli in an in vivo model of mouse gut colonization [104]. In a more complex scenario, the ability to 
consume a substrate that cannot be consumed by a competitor can provide a selective advantage resulting in a relative 
frequency increase. This in turn can result in a depletion of the food resource and shift in selective pressure to favor the 
competitor. Although comparatively understudied, commensal interactions such as the metabolite cross-feeding implicated 
by our co-culture experiments (Fig 4), can also drive similar frequency-dependent selective shifts [106]. Over time, such 
fluctuations may prevent the exclusion of SLs and facilitate a stable equilibrium of co-existence. Notably, a similar model 
of negative frequency-dependent selection has been proposed previously as a driver for the maintenance of diverse SLs 
(entities) within bacterial populations [105,106]. However, this model is notoriously difficult to substantiate [106], requiring 
a long-term dataset from the same location over time and/or laboratory protocols that are beyond the scope of the current 
work, and therefore it remains to be confirmed.

Niche range no doubt further complicates the eco-evolutionary dynamics within Kp populations, e.g., where SLs 
are exposed to fluctuating selective pressures due to transient migration between niches, and/or where SLs undergo 
niche-adaptation. Recent analyses of contemporaneous Kp collections have suggested that some SLs may not be 
equally distributed between different hosts and environmental sources, which may indicate some level of niche-adaptation 
[107–109]. However, the same studies also identify near-identical strains from multiple sources and a subset of SLs 
that appear to occur frequently in diverse environments, which is indicative of niche migration. Importantly, the available 
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evidence suggests that wherever KpSC are sampled there exists substantial SL diversity, and the SLs identified in dis-
tinct niches are intermingled throughout the species phylogeny [4,33,43,108,109]. Therefore, while our convenience 
sample of genomes comprised primarily human-derived isolates (6,465/7,835 genomes), we anticipate that the trends 
we report regarding SL metabolic differentiation are applicable to the broader population. Notably, the limited genomes 
from nonhuman niches included here suggest that metabolic traits cluster isolates by SL rather than by niche (S4B and 
S4C Fig). However, we acknowledge that there may be rarer traits and/or SLs associated with nonhuman niches that we 
have not captured in our sample, and studies encompassing more diverse isolates are required to robustly test for niche-
metabolism associations.

While genome-scale metabolic models are powerful approaches for exploring cellular metabolism, they are not without 
caveats. Firstly, model construction is reliant on curated databases that are limited by current biochemical knowledge [61], 
and while our pan-metabolic reference model was built from a large diverse collection of strains [66], it cannot possibly 
capture all metabolism in the KpSC population. Hence, we are likely underestimating the metabolic diversity within the 
highly variable KpSC. Secondly, growth prediction accuracies can vary by substrate, and are generally lower for anaerobic 
conditions for which the metabolic processes are less well understood [66]. While many of the core substrates and com-
mon SL-specific core traits have been confirmed with high accuracy in previous work, we have not tested all substrates 
and our phenotypic testing in this work showed variable accuracy. This is not unexpected, particularly for rarer substrate 
catabolism, which is comparatively understudied and therefore difficult to model, and/or requires unknown regulatory 
stimuli. Of note, our assays showed that allantoin nitrogen usage, a trait previously associated with hypervirulent infec-
tions [68] and predicted by our models as a SL-specific core trait in the dominant hypervirulent SL23, may in fact be core 
to KpSC (see S1 Text). These and other inaccurate predictions highlight gaps in our current knowledge that are noted for 
future investigations, and in some cases may have resulted in an overestimation of the population metabolic diversity. On 
the other hand, given the limitations to modeling traits involving pathways that are not well studied and/or for which the 
reaction stoichiometries are not defined; and that metabolic models do not consider the impact of sequence variations 
within metabolic genes nor variations in gene regulation; our analyses are very likely to represent an underestimate of 
the true metabolic diversity within and between KpSC species and SLs. Regulatory variations likely play an important role 
in determining metabolic phenotypes in vivo, and in driving competitive interactions and ecological adaptation, and our 
metabolic models provide a platform on to which transcriptomic, proteomic and metabolomic data can be integrated and 
contextualized in the future to further probe diversity.

Notwithstanding the caveats of in silico modeling, our analyses clearly challenge the assumption that Kp performs 
a defined and homogenous metabolic function, and this has important implications for how we understand and model 
KpSC pathogenicity, and/or microbial communities containing this organism. There is increasing interest in gut microbiota 
manipulation for prevention of pathogen colonization and subsequent opportunistic infection [110,111], and studies on Kp 
have thus far implicated competitive exclusion via nutrient competition as the major mechanistic driver [111,112]. Notably, 
the Kp SL-specific core traits we identified include those implicated in driving competitive interactions and colonization 
resistance in the mammalian gut, e.g., fructoselysine and galactitol usage [113,114]. Our work therefore provides further 
evidence for the importance of including diverse strains in experimental studies of KpSC competitive interactions, coloni-
zation dynamics, pathogenicity, and virulence (including hypervirulence), and highlights the need to consider population 
structure when designing and interpreting metabolic association studies. A comprehensive understanding of the popula-
tion metabolic diversity will greatly benefit the design of novel control strategies targeting Kp, particularly those harnessing 
microbial competitive interactions or targeting metabolic processes.
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