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Abstract

How does the visual system process dynamic inputs? Perception and neural activity
are shaped by the spatial and temporal context of sensory input, which has been
modeled by divisive normalization over space or time. However, theoretical work

has largely treated normalization separately within these dimensions and has not
explained how future stimuli can suppress past ones. Here, we introduce a dynamic
spatiotemporal normalization model (DSTN) with a unified spatiotemporal receptive
field structure that implements normalization across both space and time and ask
whether this model captures the bidirectional effects of temporal context on neural
responses and behavior. DSTN implements temporal normalization through excit-
atory and suppressive drives that depend on the recent history of stimulus input,
controlled by separate temporal windows. We found that biphasic temporal receptive
fields emerged from this normalization computation, consistent with empirical obser-
vations. The model also reproduced several neural response properties, including
surround suppression, nonlinear response dynamics, subadditivity, response adapta-
tion, and backwards masking. Further, spatiotemporal normalization captured bidi-
rectional temporal suppression that depended on stimulus contrast, consistent with
human behavior. Thus, DSTN captured a wide range of neural and behavioral effects,
demonstrating that a unified spatiotemporal normalization computation could underlie
dynamic stimulus processing and perception.

Introduction

Although the world around us is highly dynamic, most theories and models of visual
processing consider only a static snapshot of this constantly changing stream of
visual stimulation. Less understood is the dynamic neural activity that supports visual
perception, which exhibits several non-linear response properties that depend on
time-varying stimulus input. Neurons in a range of cortical areas show sensitivity to
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time-varying stimuli [1], such as motion-sensitive neurons in V1 and MT, which can
be characterized by their spatiofemporal receptive fields. More broadly, many neural
responses and perception depend not just on current inputs but also on recent stimu-
lus history [2—6], and can be modulated by future context as well [7,8]. These findings
demonstrate that sensory systems are sensitive to temporal structure, which raises
questions about what mechanisms exist to process dynamic inputs [9-11].

A powerful theoretical framework for visual processing is based on the principle of
normalization, which has been proposed as a canonical neural computation [12]. Nor-
malization is the idea that neurons can have suppressive effects on one another as a
function of their tuning preferences, acting to “normalize” overall activity levels within
a neural population [13]. Most normalization models are static, with the normalization
computation operating across cortical space, which we refer to as spatial normaliza-
tion. Temporal normalization, in contrast, is the idea that neural activity undergoes
normalization across time [13]. Delayed normalization models implement temporal
normalization by using a temporally filtered and delayed version of the excitatory
input drive to compute the normalization signal [14,15]. Other models combine linear
stimulus evoked responses with non-linear compressive—rather than divisive—com-
putations to model how neurons respond to dynamic input [16,17]. All these models
better predict neural response dynamics than linear-only models and capture several
non-linear phenomena [15]. However, they also have important limitations. First,
the entire excitatory time course must be known in advance, limiting their biological
feasibility. Second, normalizing by a delayed copy of the excitatory drive means that
only past stimuli can suppress future stimuli, not vice versa. Third, normalization is
computed for each neural unit (neuron, voxel, electrode, etc.) in isolation, so to date
these models have not considered how temporal normalization may operate across
a broader suppressive pool, which has been critical for the success of spatial normal-
ization models.

Here, we introduce the dynamic spatiotemporal normalization model (DSTN), a
model of visual processing in which spatial and temporal normalization are integrated
within a unified receptive field-based spatiotemporal normalization computation. Model
neurons are situated in a neural network architecture, performing real-time process-
ing of continuous visual inputs. We analyzed the response properties of this model,
focusing on its time-varying behavior and modulation by temporal context. By unifying
normalization across space and time, we find that DSTN captures key non-linear tem-
poral response properties of neurons and predicts human behavior. Critically, unlike
previous dynamic normalization models, it can produce bidirectional temporal sup-
pression between stimuli in a sequence, allowing for empirically demonstrated effects
of temporal context that operate both forward and backward in time. The current work
builds on the normalization model of dynamic attention developed by Denison, Car-
rasco, and Heeger [18], which generalized the normalization model of attention [19] to
the time domain, though for simplicity we do not include attention in the current model.
DSTN advances previous work by implementing excitatory and suppressive drives
that depend on recent stimulus history, imbuing the model neurons with receptive
fields and normalization computations that are inherently spatiotemporal.
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Results
The dynamic spatiotemporal normalization model (DSTN)

We introduce a model of dynamic visual perception building on [18] that produces neural responses and behavioral out-
puts. The model simulates sensory responses to stimulus input through neurons that are tuned to specific spatial locations
and feature values and, critically, integrate inputs over the recent past, giving them spatiotemporal receptive fields (Fig
1A). As in previous models, spatial and feature dimensions are treated equivalently [19], with normalization across these
dimensions determined by the tuning properties of model neurons. The sensory responses are read out by a decision
layer, which accumulates evidence toward a particular behavioral output. Importantly, we include spatiotemporal normal-
ization at each stage of processing, with excitatory and suppressive drives that contribute to the final neural response
(Fig 1B). Responses are continuously updated at each time point with differential equations, allowing us to examine how
model parameters affect the dynamics of neural responses as well as the final behavioral output. Thus, the model gen-
erates neural responses continuously at each time step (Fig 1C), at a level of abstraction that allows us to focus on how
excitatory and suppressive components affect population activity separate from single unit physiology or neural circuit
dynamics.

The core of the model is the spatiotemporal normalization computation, which divides the spatiotemporal excitatory
drive by the spatiotemporal suppressive drive. To investigate the effects of temporal normalization, we implemented tem-
poral receptive fields in model sensory neurons by allowing the excitatory drive to depend on stimulus input at previous
points in time. Specifically, at each time point, the stimulus time course was weighted by an exponential decay function,
the excitatory temporal window, such that input at more distant points in the past had less effect on the neuron’s response.
The time constant (7.) determined the relative weight given to stimuli at each point in time. When 1_is zero, the model
neuron only receives excitatory drive when stimulus input is present, but increasing 7, results in responses that are driven
even after the stimulus ends. To generate the neuron’s suppressive drive, its excitatory drive was further weighted by an
exponential decay function, the suppressive temporal window, with a separate time constant (z,). Suppressive drives were
then pooled across all neural units to produce the suppressive drive of the neural population, which was used to normal-
ize the response of each individual neuron, as in previous work [18,19]. The suppressive drive is thus dependent on both
the excitatory and suppressive time constants, with the effect that suppression always acts later and across longer time
intervals than excitation (even when 7,<1.). We performed a series of simulations varying aspects of the stimulus input
to sensory layers to examine whether the model could reproduce several different non-linear response properties and to
determine the effect of the excitatory and suppressive time constants on these response dynamics. Time constants varied
across simulations, but in each simulation, all model neurons in the population had the same time constants.

Stimulus history differentially affects model drives and responses

The dependence of a neuron’s current response on recent stimulus inputs defines its temporal receptive field. We used
reverse correlation to determine how excitatory and suppressive temporal windows interact to shape the functional tempo-
ral receptive fields of model neurons. We first examined how the model responses depended on stimulus history for a spe-
cific set of excitatory and suppressive temporal windows (t.=400ms, 7,=100ms). Random stimulus input was fed into the
model sensory layer, driving variable activity across simulations. We calculated how the presence of stimuli up to 1,200ms
in the past affected model neuron responses at the current moment by correlating the random stimulus vectors with the
observed excitatory drive, suppressive drive, and sensory layer response. As expected, the excitatory drive depended most
strongly on input close to the current time, with weights back in time following the exponential excitatory temporal window
(Fig 2A). The suppressive drive depended on times in the recent past, and could be approximated by a convolution of the
excitatory and suppressive temporal windows (Fig 2B), consistent with how suppressive drives are a temporally weighted
sum of all model neurons’ excitatory drives, meaning both 7 and 1 affect the shape of the suppressive drive.
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Fig 1. Architecture of the Dynamic Spatiotemporal Normalization model (DSTN). A) Spatiotemporal receptive field structure. Model sensory
neurons integrate over the recent history of stimulus input, while contributing to a suppressive pool that also extends into the past. Model neurons can
be tuned to different spatiotemporal properties of the stimulus input as well as to other stimulus features. B) Schematic of computations in DSTN. The
model receives time-varying stimulus input (here, an oriented stimulus with a specific contrast), which is continuously filtered by the excitatory temporal
window. The stimulus input produces excitatory drives in model neurons tuned to different orientations (6). The excitatory drives of each neuron are con-
tinuously filtered and pooled to calculate the suppressive drive, which in turn normalizes the excitatory drives to compute sensory responses. Sensory
layer activity is fed into the decision layer, which accumulates evidence about the stimulus orientation. C) Example sensory layer responses to a stimulus
presentation (shaded gray region) as a function of different excitatory and suppressive temporal window parameters.

https://doi.org/10.1371/journal.pbio.3003546.9001

Reverse correlation revealed that this implementation of normalization generates a biphasic temporal receptive field
(Fig 2C), where stimulus input close to the current time drives model neuron responses and input further in the past
reduces responses. Notably, the biphasic stimulus weighting function was not built directly into the model, but emerged
through the interaction between the excitatory and suppressive temporal windows. A similar biphasic function in time has
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Fig 2. Reverse correlation analysis of model drives and sensory response reveals biphasic temporal receptive field. Stimulus weights were
estimated for A) excitatory drives, B) suppressive drives, and C) sensory layer responses. Examples shown reflect simulations with .=400ms and
7,=100ms. Each set of estimated weights were fitted using different functional forms, (see main text). We also estimated the sensory layer weight
functions (i.e., temporal receptive fields) across a range of parameters for D) excitatory temporal windows, and E) suppressive temporal windows. While

varying one parameter, the other was fixed at an intermediate level (400 ms) for visualization purposes; the pattern of results did not depend on the
specific fixed value.

https://doi.org/10.1371/journal.pbio.3003546.9002

been found in empirical recordings from visual neurons [20—22], and is similar to those used in models of neural temporal
dynamics [15—17]. The estimated response weights were well fitted by a difference of Gamma functions, following previ-
ous work [15,20].

We performed additional simulations to explore the effect of the excitatory and suppressive time constants on
the shape of the temporal receptive fields. Increasing the excitatory time constant, while holding the suppressive
time constant fixed (r;=400ms), resulted in a scaling and extension of the temporal receptive field to times further
in the past (Fig 2D), as stimuli at these times fell into the longer excitatory temporal windows—a “flattening out” of
the response profile. Increasing the suppressive time constant, with the excitatory time constant fixed (r.=400 ms),
also resulted in an extension of the temporal receptive field to past times (Fig 2E), although this was a consequence
of the suppression being distributed over a longer time span, resulting in less suppression for more recent times.
Increasing the suppressive time constant also resulted in longer periods of suppression that extended further into
the past, as would be expected given the longer suppressive windows. Thus, the excitatory and suppressive tempo-

ral windows generated temporal receptive fields that exhibit a variety of response profiles depending on each time
constant.

PLOS Biology | https://doi.org/10.1371/journal.pbio.3003546 December 1, 2025 5/25



https://doi.org/10.1371/journal.pbio.3003546.g002

PLON. Biology

Reproducing signatures of spatial normalization

Before turning to the time-dependent aspects of the model, we sought to ensure that DSTN could capture effects asso-
ciated with static spatial normalization as expected. One finding commonly attributed to normalization is surround sup-
pression: the suppression of a neuron’s response when a competing stimulus is placed in the region surrounding its
excitatory receptive field (Fig 3A) [23,24]. The explanation given by spatial normalization is that while the neuron may

not be responsive to stimuli placed in the surround region alone, other neurons that are tuned to stimuli in those spatial
locations contribute to the normalization pool, such that activity driven by surrounding stimuli suppresses neurons tuned to
center stimuli. We reproduced this effect in DSTN by varying the contrast of the center and surround stimuli independently
[12,25]. The model responses exhibited sigmoidal contrast response functions, as is typical of normalization models
[13,26]. While the model response to the center stimulus increased monotonically as a function of contrast, its response
was simultaneously suppressed by a stimulus in the surround, with stronger suppression for higher surround contrasts
(Fig 3B). Thus, DSTN captures a key signature of spatial normalization.

Reproducing known temporal properties of neuronal responses

We next asked whether DSTN could reproduce several known non-linear temporal response properties of neurons: 1)
transient-sustained dynamics, 2) subadditivity, and 3) response adaptation. For each property we asked whether excit-
atory temporal windows, suppressive temporal windows, or both were necessary to reproduce the property and how the
non-linear temporal effects depended on the excitatory and suppressive time constants in the model.
Transient-sustained dynamics. Neurons typically show an initial transient response followed by sustained activity
to a prolonged stimulus [27,28]. We found that the suppressive temporal window was necessary to reproduce these
dynamics. When varying the excitatory time constant with no suppressive temporal window (7,=0), responses increased
gradually towards a stable activity level following stimulus onset and decreased only after stimulus offset, consistent
with linear predictions [15]. Higher 7. resulted in slower rise times (Fig 4A) and consequently longer times to peak (Fig
4B), as well as more prolonged responses after stimulus offset (Fig 4C). The model exhibited slower response dynamics
with increasing 1., because longer integration windows provided excitatory drive from stimulus input further in the past.
In contrast, when varying the suppressive time constant alone (7.=0), model responses showed a more typical transient
response, with an initial peak shortly after stimulus onset that decreased to a stable level before stimulus offset (Fig 4D).
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Fig 3. Model sensory neurons exhibit contrast-dependent surround suppression, a signature of spatial normalization. A) We measured the
response of neurons tuned to the orientation and spatial location of the center stimulus while manipulating the contrast of both the center and surround
stimuli (in this example, center contrast=1, while surround contrast=0.5). The center and surround were presented simultaneously to model neurons for
100ms, and model temporal window parameters were fixed across simulations (1.=400ms, 7,=100ms). B) Responses showed the expected contrast
response function as the center stimulus contrast increased, as well as increasing suppression from the surround as its contrast increased.

https://doi.org/10.1371/journal.pbio.3003546.9003
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Fig 4. Excitatory and suppressive time constants differentially contribute to transient-sustained response dynamics. A) Effect of the excitatory
time constant, ranging from 0 to 800 ms in 100 ms steps. Shaded region shows the stimulus presentation period. B) Time to peak for sensory responses
as a function of 7.. C) Time for sensory responses to reduce to 50% of maximum as a function of .. D) Effect of the suppressive time constant on model
sensory responses. The insert shows the early peak responses. E) Time to peak for the sensory responses as a function of 7,. F) Stable activity level of
sensory responses, relative to the peaks, reached by the end of the stimulus presentation period as a function of 7.

https://doi.org/10.1371/journal.pbio.3003546.9004

Higher 7 resulted in longer times to peak (Fig 4E) and a lower stable activity level relative to peaks (Fig 4F), because
suppression integrated more slowly but reached greater levels overall. Varying both time constants generated model
responses with a diverse range of temporal profiles (Fig 1C). Thus, suppression alone, or a combination of excitatory and
suppressive temporal windows, can capture typical neural dynamics to prolonged stimulus presentations.

Subadditivity. Another hallmark of non-linear response dynamics is that neural responses display temporal
subadditivity: doubling the duration of the stimulus leads to a less than doubling of the response amplitude [14,29].
Increasing the stimulus duration in DSTN resulted in more prolonged model responses (Fig 5A) that were strongly
subbadditive, as quantified by the area under each curve (Fig 5B). We found that increasing either 7 or 7, was sufficient
to produce subadditive model responses (Fig 5C and 5D); when both time constants were zero, model responses fell just
below the linear prediction, showing only slight subadditivity due to the time constant inherent to the model’s recursive
computation (7., equation (6)). For values of r_ and 7 above zero, each doubling of the stimulus duration increased
responses by only ~1.3—1.6x%. Combining different parameter values produced similar levels of subadditivity (Fig 5E),
where lower values of each time constant resulted in relatively more subadditivity at short stimulus durations, with higher
values resulting in more subadditivity at longer stimulus durations.
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https://doi.org/10.1371/journal.pbio.3003546.9005

Response adaptation. Neurons exhibit response adaptation, such that responses are lower following repeated
stimulus presentations [28,30-33]. The magnitude of this adaptation depends on the interstimulus interval (I1SI), with
shorter ISIs resulting in stronger response adaptation. We observed a similar pattern in model simulations, where
responses to the second stimulus (T2) in a sequence of two identical stimuli were lower when the ISI was shorter (e.g.,
100ms; Fig 6A) compared to longer ISIs (e.g., 900ms; Fig 6B). We quantified the magnitude of response adaptation by
measuring the reduction in the model response to T2 after subtracting out the response to T1 (i.e., the shaded blue region
between curves in Fig 6A and 6B; [28,31]. With increases in either 7_ or 7, response adaptation persisted across longer
ISIs (Fig 6C and 6D), as longer time constants allowed the excitatory and/or suppressive drives to extend across longer
ISls, leading to normalization of T2 by T1. For combinations of shorter and longer time constant parameters (Fig 6E),
suppression accumulated as both 7. and 7 increased. Thus, either excitatory temporal windows, suppressive temporal
windows, or both could generate response adaptation, and had quantitatively similar effects on suppression indices.

These simulations also reveal that responses to repeated stimuli can merge together when the two stimulus presen-
tations drive the same neural populations, particularly when ISls are short (as in Fig 6A) and stimulus presentations are
brief. In such situations, the sensory response can appear more like an extended response to one stimulus, reflecting

81/25
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https://doi.org/10.1371/journal.pbio.3003546.9006

temporal integration introduced by the excitatory and suppressive temporal windows. The degree of overlap in sequential
responses may be related to perceptual integration across time, as previously theorized [34].

Spatiotemporal normalization captures phenomena not explained by spatial or temporal normalization alone

Whereas the above results could be achieved with existing models that implement either just spatial or just temporal
normalization, several neural phenomena involve interactions between space (or features) and time. Here we tested
whether DSTN, with its unified spatiotemporal normalization computation, could capture such phenomena. For these
purposes, features like orientation are treated equivalently to space, as in previous static normalization models [19]. The
following analyses demonstrate how spatiotemporal normalization can generate suppression across stimuli with different
feature values even when they are presented at different points in time. This property allows DSTN to exhibit neural and
behavioral effects found empirically but not seen in existing normalization models. As these next analyses show, a notable
consequence of spatiotemporal normalization is that it leads to normalization-linked suppression both forward and back-
ward in time.
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Response adaptation by non-identical stimuli. Empirical work has shown that response adaptation can occur even
with non-identical stimuli [35,36], with one study in particular finding that most MT neurons are adapted by a wider range
of motion directions than they are responsive to [36]. This is a crucial observation, as neurons that are suppressed only by
their own past activity, as in delayed normalization (DN) models [14,15], could not be suppressed by past stimuli that do
not drive the neuron itself. In addition, neurons generally undergo less adaptation as the similarity between the adapting
and test stimulus decreases [31,35,37]. Therefore we measured model responses to a preferred target stimulus while
varying the orientation of the adapting stimulus and calculated an adaptation index (see Methods; Fig 7A).

We found, first, that adaptation was always strongest when the adapting stimulus and test stimulus matched in orien-
tation. This property was due to the excitatory tuning of the model neurons: excitatory drives accumulated across both
stimulus presentations when the neuron was sensitive to the adapting stimulus (<~20° from the preferred orientation),
resulting in stronger normalization of the test stimulus. Second, adaptation by non-identical stimuli depended on the
tuning of the suppressive pool. When suppression was uniformly pooled across all sensory neurons (magenta line in Fig
7B), adaptation remained relatively stable across larger differences between adapting and test stimuli. However, when
suppression was adjusted to more strongly weight neurons tuned to similar orientations by changing the tuning width of
the suppressive pool, adaptation progressively decreased and was even eliminated for more dissimilar orientations [38].
In the limit, when a neuron was only suppressed by its own activity—as in DN models [14,15]—adaptation occurred only
for a narrow range of similar orientations. The ability to model different suppressive tuning profiles therefore allows DSTN
another way to capture effects that depend on more complex spatiotemporal interactions, compared to previous models.

Backward masking. In backward masking, a neuron’s ongoing response to an initial stimulus is suppressed by
a subsequent stimulus [7,39,40]. Similar to response adaptation, the magnitude of backward masking diminishes as
the stimulus onset asynchrony (SOA) between stimuli increases. DSTN exhibited both backward masking and this
characteristic SOA dependence, with greater masking at shorter SOAs (e.g., 250 ms; Fig 8A) than longer SOAs (e.g.,
500 ms; Fig 8B). We simulated backwards masking using a sequence of two orthogonal stimuli and quantified the degree
of masking in model simulations by measuring the response to T1 when T2 was present versus absent. Notably, the
excitatory temporal window was necessary to produce backward masking, masking strength depended on 7. (Fig 8C).
Longer time constants resulted in backward masking that was generally stronger and persisted across longer intervals.
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Fig 7. Response adaptation for non-identical stimuli in DSTN. A) Model sensory responses as a function of the presence of a preceding stimu-
lus with an orientation difference of 90° and interstimulus interval of 100ms, using 7.=100ms, 1,=50ms, and uniform suppressive pooling. Response
adaptation is demonstrated by the reduction in T2 responses while T1 is present (shaded blue vs. dotted blue region). B) Effect of tuned suppressive
pooling on response adaptation for non-identical stimuli. When the suppressive drive was pooled uniformly, adaptation persisted over large orientation
differences between the adapter and test stimuli. As the pooling tuning width decreased, adaptation decreased for more dissimilar stimuli. Adaptation
corresponding to panel A is indicated by the black dot.

https://doi.org/10.1371/journal.pbio.3003546.9007
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presence of a subsequent stimulus (T2, blue line) with a stimulus onset asynchrony of 250 ms, using 7.=100ms and 1,=50ms. Backward masking is
demonstrated by the reduction in T1 responses following the onset of T2, as indicated by the shaded red region. B) Backward masking was eliminated
when the SOA was increased to 500 ms. C) Effect of 7, and D) 1, on backward masking for different SOAs. E) Combining different values of the 1. and
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https://doi.org/10.1371/journal.pbio.3003546.9008

In contrast, masking did not occur with the suppressive window alone, when 7. was zero (Fig 8D). In this case, there
was no temporal overlap in sensory responses to the two stimuli, which meant no normalization of the first stimulus by
the second. However, when we explored the interaction between parameters, both 7. and 1 affected the magnitude of
backward masking (Fig 8E). In general, higher 7. values resulted in stronger backward masking, particularly for shorter
SOAs (red versus blue lines in Fig 8E), as the extended sensory responses resulted in more overlap between the two
stimuli and increased the overall normalization. In contrast, higher 7, values resulted in reduced backward masking
(dashed versus solid lines), as longer suppressive temporal windows tended to reduce the overlap in sensory responses
between stimuli (cf. Fig 4D). Thus, the excitatory temporal window was necessary to produce backward masking, but so
long as it was present, the strength of masking could be modulated by the suppressive temporal window.
Contrast-dependent suppression from both past and future stimuli. A hallmark of spatial normalization models
is that they generate suppressive effects that systematically depend on stimulus contrast [13,19]. Therefore we next
investigated the contrast dependence of temporal context effects produced by DSTN. Specifically, we examined how
model responses are affected by the contrast of a competing stimulus. In DSTN, contrast increases the magnitude
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of stimulus input, and thus increases the overall excitatory and suppressive drives in the sensory layers. As such, we
expected contrast modulations to have effects similar to our simulations of response adaptation and backward masking:
higher contrast (or presence versus absence) for one of two stimuli in a sequence would result in reduced model
responses to the other.

We first simulated model responses using an SOA of 250 ms, with excitatory and suppressive time constants that
resulted in both response adaptation and backward masking (r.=400ms, 7,=100ms; see Fig 2C). When the contrast of
the second stimulus (T2; Fig 9A) was high (64%) versus low (16%) we observed a reduction in the model response to the
first stimulus (T1). Likewise, when the contrast of T1 was high versus low, the model response to T2 was reduced (Fig
9B). Both effects were due to increases in the overall suppressive drive caused by higher contrast stimuli, resulting in
stronger normalization of the model response to the other stimulus.

Psychophysical work has demonstrated that orientation discriminability for a target stimulus can be impaired by a
non-target stimulus presented either before or after it by 250 ms, with greater impairment for higher versus lower contrast
non-target stimuli [41]. To determine if the model could also produce this behavioral pattern, we used the decision layer
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Fig 9. Contrast-dependent suppression forward and backward in time. A) When T1 (red lines) was fixed at high contrast, its response was modu-
lated by the contrast of T2 (red solid line vs. dashed line), using .=400ms and t,=100ms. B) Likewise, the response to a high contrast T2 was modu-
lated by the contrast of T1 (blue solid vs. dashed lines). C) Modeled behavioral prediction in terms of d' for discriminating clockwise vs. counterclockwise
stimulus orientations. Performance was lower for each target stimulus when the non-target was presented at higher contrast, consistent with recent
empirical observations. D) Effect of 1. and 7, on the contrast-dependent modulation of T1, E) T2, and F) the joint modulation of both stimuli, calculated
by a pointwise multiplication of individual target heatmaps. A region of the parameter space with moderate 7. and low 7, provided the strongest combined
modulation of both target stimuli, comparable to human behavior [41].

https://doi.org/10.1371/journal.pbio.3003546.9009

PLOS Biology | https://doi.org/10.1371/journal.pbio.3003546 December 1, 2025 12/25



https://doi.org/10.1371/journal.pbio.3003546.g009

PLON. Biology

of DSTN to calculate discriminability (d") between different target orientations (Fig 9C). Model d’ was higher when the
non-target was presented at a lower contrast, regardless of the target contrast. Notably, this effect occurred both forward
(i.e., the contrast of T1 affected responses to T2) and backward in time (i.e., the contrast of T2 affected responses to T1).
In these simulations, excitatory drives were affected by target contrast, with higher target contrast resulting in stronger
sensory responses and higher model d' for targets. On the other hand, the effects of non-target contrast were imparted
through the suppressive drive, with high contrast non-targets resulting in lower sensory responses and d' for targets.

We also explored how the excitatory and suppressive temporal windows modulated the effects of one stimulus’s
contrast on the model responses to the other stimulus. We found that temporal windows were necessary for contrast-
dependent suppression, as when both time constants were zero—reducing the model to the version in [18]—there was
no modulation for either stimulus (Fig 9D-9F, red solid outline). For T1, we found that contrast-dependent suppression
was strongest for a wide range of r_ values (~250-850 ms) combined with a low 7, (0—100ms; Fig 9D). In particular, we
found that suppression alone (i.e., 7.=0) was insufficient to produce the observed effects (Fig 9D, purple dashed outline),
because the lack of any extended excitatory drive meant the sensory responses did not overlap in time. This is compara-
ble to the lack of backward masking present in our simulations manipulating only 7 (cf. Fig 8D). In contrast, modulation
of T2 was strongest when 7, was an intermediate value (~250-650ms) and 7. was low but non-zero (~50-150ms; Fig.
9E). To assess what temporal window parameter combinations produced contrast-dependent suppression simultaneously
across both T1 and T2 (Fig 9F), we computed a combined modulation index, which showed a range of intermediate 7.
values (300-600 ms) combined with low 75 (50-200 ms) that resulted in moderate suppressive effects for both T1 and
T2 (as in Fig 9C, with 7.=400ms and 7,=100ms). Notably, these same parameter ranges also reproduce the full set of
phenomena we explored here. The ability of DSTN to produce bidirectional contrast-dependent suppression demonstrates
how temporal normalization can account for interactions between stimuli that are separated in time, both affecting ongoing
sensory processing as well as behavioral responses.

Discussion

Normalization is a successful computational principle that predicts neural responses and perception, yet most previous
models have considered normalization across space or time alone. Here, we demonstrate how spatiotemporal normal-
ization can be implemented in a neural network model of dynamic visual processing. DSTN is grounded in the framework
of normalization established by Reynolds and Heeger [19], which was subsequently extended into a dynamic spatial
normalization model by Denison, Carrasco, and Heeger [18]. The core of DSTN is a unified spatiotemporal normalization
computation, which provides local contextual modulation across space, time, and features. This normalization computa-
tion is supported by spatiotemporal receptive fields, with excitatory and suppressive drives that depend on recent stimu-
lus history. This architecture generalizes across three classes of previous models: 1) static spatial normalization models
[19], which lack a temporal dimension; 2) delayed normalization models [14,15], which include temporal normalization
but lack spatial and featural dimensions, and; 3) the normalization model of dynamic attention [18], a dynamic model
which includes normalization across space and features, but lacks temporal normalization. Spatiotemporal normalization
in DSTN encompasses all these previous models, while also going beyond their simple combination, allowing DSTN to
generate additional phenomena not previously captured.

We report several findings. First, the model sensory neurons exhibit temporal receptive fields with biphasic profiles,
similar to neuronal receptive field properties observed empirically [20]. Notably, this biphasic profile was not incorporated
directly into the model but emerged from the interaction between the excitatory and suppressive drives, the exponential
temporal windows, and the normalization computation. Second, DSTN exhibited surround suppression, consistent with
static spatial normalization models [12]; and it reproduced several non-linear dynamic response properties, including
transient-sustained response dynamics [27,28], subadditivity with increasing stimulus duration [14,29], and response
adaptation/repetition suppression [30—32], consistent with previous delayed normalization models [14,15]. Third, DSTN
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goes beyond both spatial and delayed normalization models to predict a range of phenomena that depend on spatiotem-
poral or feature-temporal interactions: adaptation by non-identical stimuli [36], backward masking [7,39,40], and bidirec-
tional contrast-dependent suppression between successive stimuli [41]. DSTN can thus account for a wide range of neural
and behavioral findings in the domain of dynamic vision through spatiotemporal normalization.

We implemented spatiotemporal normalization in DSTN by allowing the excitatory and suppressive drives to depend on
recent stimulus input via their “temporal windows,” the temporal component of their spatiotemporal receptive field struc-
ture. These temporal windows cause the excitatory and suppressive drives to persist within the model sensory layers even
after a stimulus has offset, allowing for normalization to occur between stimuli that are presented at distinct points in time.
We found that the excitatory and suppressive temporal windows contributed to the observed phenomena in different ways.
Increasing 1. carried neural responses forward in time, after stimulus input had ended (Fig 4A), such that these responses
could suppress (and be suppressed by) responses to subsequent stimuli. This was necessary for reproducing suppres-
sion backward in time (i.e., backward masking or contrast-dependent suppression from a subsequent stimulus), because
responses needed to be carried forward across ISls so that normalization could occur between neurons tuned to different
features. In contrast, increasing 7, allowed suppressive drives to accumulate across longer intervals, increasing the overall
suppression of responses to prolonged stimulus presentations, resulting in transient-sustained responses typical of neural
firing (Fig 4D), but also enabling suppression to be carried forward after responses to an initial stimulus have ended.

This extended suppressive drive was sufficient to reproduce suppressive effects forward in time (i.e., response adap-
tation and contrast-dependent suppression from a preceding stimulus). For phenomena isolated within a single neuron
(e.g., subadditivity, response adaptation by an identical stimulus) the excitatory temporal window reproduced equivalent
patterns since history-based changes in the excitatory drive propagate to the suppressive drive, even when suppression
is only instantaneous (7;=0ms). Thus, the excitatory and suppressive temporal windows had distinct effects on neural
timecourses, resulting in different patterns of effects across the phenomena we investigated. Importantly, combining both
the excitatory and suppressive temporal windows in DSTN was necessary to produce this wide array of phenomena. We
observed that contrast-dependent suppression was strongest across both stimuli for a range of intermediate excitatory
values (1.=300-600ms) and low suppressive values (1,=50-200ms), and a model neuron with time constants within this
range produce the other phenomena we examined as well. While all sensory neurons shared the same values for 7_ and
75 within a given simulation, it is likely that that within regions of visual cortex neurons have some variety in their tempo-
ral windows, evidenced by the heterogeneity of neural response dynamics in electrophysiological recordings [21,28,42].
Therefore, allowing the time constants to vary within a population may better capture these previous empirical findings.
In future work it will be interesting to investigate how diversity in response dynamics across individual neurons affects the
response dynamics of the population and whether such diversity provides any computational benefits.

Other models have attempted to account for several of the dynamic neural response properties we investigated here.
Delayed normalization (DN) models, for example, divide a neuron’s excitatory drive by a filtered and delayed copy of itself,
generating neural response time courses that can be fit to observed fMRI [29] or electrocorticography data [14,15], pro-
ducing transient-sustained responses, subadditivity, and response adaptation. Compressive spatiotemporal (CST) models
fit separate sustained and transient channels that are passed through a compressive nonlinearity to produce responses
[16,17]. Although CST models have not been tested for the same set of response dynamics, they are well fit to fMRI
BOLD time courses in response to sequences of stimuli with different spatial locations and timings, and they reproduce
increasing temporal window sizes along the visual hierarchy [5,6]. In both types of models, normalization is computed
independently within each recorded unit (voxel, electrode site, single-unit, etc.). In contrast, DSTN implements suppres-
sive pooling, both spatially—via summation across model neurons within layers—and temporally—as a consequence of
the temporal windows—such that normalization can be induced by activity generated by other units and at other times.
Pooling suppression across neurons is a property key to previous foundational normalization models [19] and allows
for stimuli outside of the “classical receptive field” (i.e., stimuli that do not by themselves drive a neuron) to suppress a
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neuron’s response. Spatial pooling allows DSTN to capture temporal phenomena that are not necessarily localized to a
single unit, such as backward masking, contrast-dependent suppression, and response adaptation to non-identical stimuli.
Additionally, while DN and CST models both produce continuous neural time courses, these are computed based on a
priori knowledge of the full stimulus sequence. DSTN, in contrast, produces layer responses in a recursive manner, with
computations implemented “online” at each timestep.

Other models have implemented normalization in a dynamic framework. Louie and colleagues [43] modeled deci-
sion circuits in LIP using excitatory and inhibitory model neurons, noting that the recurrent interaction between neurons
resulted in normalization that depended on an exponential weighting of previous excitatory activity. The suppressive
temporal window in DSTN matches with this formulation, demonstrating that temporal normalization can explain sensory
phenomena, as well as the dynamics of decision-making. More recently, Ernst and colleagues [42] used a model similar to
that of [43] to predict a variety of transient-sustained responses recorded from MT neurons. Their dynamic equations used
separate time constants for updating the excitatory and inhibitory responses over time, and notably in almost all neurons
the fitted inhibitory time constant was longer than excitatory time constants. In DSTN, this property—slower suppression
than excitation—is a necessary consequence the model structure, since suppressive drives depend on both 7_ and 7, so
even when 74 is shorter than 1, the effective time constant of suppression is longer than t... It remains to be determined
whether this is indeed a universal property in cortex, as predicted by DSTN.

Spatial normalization across local neuronal populations has been proposed as a canonical computation in the brain
that may provide benefits to coding efficiency [12,44], and evidence for it has been found in a variety of cortical regions
[26,45-49]. In a similar way, temporal normalization may enhance sensitivity to changes in the environment, with
transient-sustained dynamics, subadditive neural responses, and response adaptation demonstrating that consistent
inputs act to reduce overall neural activity [15,29]. Temporal normalization may also emphasize differences between
stimuli across time, as in the contrast-dependent suppression effects we observed, where model d' was increased for high
contrast targets among low contrast non-targets. Notably, previous formulations of temporal normalization capture forward
suppression (e.g., adaptation) but not backward suppression, but coding efficiency should benefit from reducing redun-
dancies bidirectionally in time. DSTN provides such a bidirectional normalization mechanism. These effects on coding
efficiency also depend on how suppression is pooled across a neural population, as we observed when we manipulated
suppressive tuning width during response adaptation: if suppression more strongly weighs inputs from similarly tuned
neurons (i.e., smaller p in Fig 7B), it can increase sensitivity to larger changes in stimulus features over time. Conversely,
broader tuning offers robustness against small perturbations caused by noise and can promote stability of representations
over time [38,50].

DSTN is a flexible model that can be extended in different ways. First, the model can handle different spatial and
feature dimensions through the tuning properties of the sensory neurons. In the current study, we manipulated the spatial
tuning of sensory layer neurons to examine surround suppression and the tuning of the suppressive pool to investigate
feature-tuned adaptation. DN models, in which suppression is calculated separately for each neural unit [14,15], are
essentially a special case of tuned suppression, where the suppressive pool is tuned narrowly to one neuron. Second, we
defined the excitatory and suppressive temporal windows using exponential functions, but different parameterizations are
possible. Third, it may be interesting to examine how the modeled excitatory and suppressive time constants relate to the
dynamics of excitatory and inhibitory neurons within different neural circuits. Computational work has demonstrated how
normalization can be implemented through recurrent excitation and inhibition [51], providing a class of models with which
to examine dynamic processing at the level of cortical circuits. Fourth, DSTN can be expanded to include multiple hier-
archical sensory layers with different spatiotemporal receptive fields and pooling profiles. Neural dynamics vary between
different regions, and temporal integration windows have been found to increase along the cortical hierarchy

processing. Varying the temporal parameters in DSTN across layers may therefore allow it to capture this increase in
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temporal integration along the visual hierarchy, and fitting DSTN to neural data could allow quantitative characterization of
spatiotemporal receptive fields across the visual cortical hierarchy. Finally, normalization has been closely linked to atten-
tion, with normalization-based models of spatial [19,54,55], feature-based [56], object-based [57], and temporal attention
[18] accounting for changes in behavior and neural responses. A natural extension to DSTN will be to examine how atten-
tion interacts with spatiotemporal normalization to influence ongoing processing.

DSTN makes several novel, testable predictions for future empirical work:

1. DSTN makes the strong prediction that single-neuron response dynamics can be parsimoniously characterized by
two excitatory and suppressive temporal window parameters, 7. and t,, such that for a given neuron, a single set of
such parameters should capture the neuron’s response dynamics in the wide variety of spatiotemporal phenomena we
explored here. To test this prediction, temporal window parameters for a given neuron can be fit using one stimulation
protocol and tested in other protocols to see if they correctly predict the neuron’s response dynamics. For example, the
temporal window parameters fit for a neuron using reverse correlation should directly predict both the strength and time
course of that neuron’s subadditivity, response adaptation, backward masking, etc. A finding that a single set of tempo-
ral parameters generalizes across these different phenomena for a given neuron would support DSTN, whereas failure
to generalize would contradict model predictions. It is also possible that parameter generalization would hold for some
visual areas but not others, which would provide insight into the computations supporting dynamic stimuli across the
visual hierarchy.

2. DSTN predicts that biphasic temporal receptive fields can emerge from measuring responses to continuous visual
stimuli, as in reverse correlation protocols, even when a neuron does not exhibit an inhibitory undershoot following
the excitatory response to a single stimulus presentation. According to the model, such behavior could occur because
receptive fields arise from divisive suppression of past time points rather than subtractive inhibition. Finding that a
neuron has a biphasic receptive field when measured with reverse correlation but does not exhibit an inhibitory under-
shoot to single stimulus presentations would therefore support DSTN, whereas only finding that these phenomena
co-occur would challenge it. Reverse correlation techniques have been used to map spatiotemporal receptive fields in
mammalian LGN [20,21], V1 [58], and MT [22], as well as in visual regions in Drosophila [59], which may have allowed
biphasic temporal receptive fields to be revealed in these cases. Although spatiotemporal receptive fields have mostly
been investigated for their relevance to motion perception, our findings suggest that they may play a much broader role
in visual processing.

3. Because suppressive spatiotemporal windows depend on excitatory drives that have already been filtered through
excitatory spatiotemporal windows (Fig 1B), DSTN predicts that the resulting suppressive fields governing normaliza-
tion must be broader than their excitatory field counterparts, both spatially and temporally (Fig 1A). Following from this
principle, DSTN predicts that neurons will exhibit adaptation to stimuli that fall outside their classical receptive fields.
There is some extant data supporting this prediction in the context of tuning for motion direction [31], but more system-
atic characterization of the spatiotemporal structure of suppressive fields together with the properties of adaptation for
the same neurons will be needed to test whether this core prediction of DSTN holds more generally. A related open
question amenable to empirical measurements is whether spatial and temporal suppressive field components are inde-
pendent—uwith the spatial tuning of suppression constant across time, as we have assumed here—or interacting, such
that the spatial tuning of suppression changes (likely, narrows) further into the past.

4. DSTN also makes behavioral predictions that can be tested with human participants. Here we found that DSTN repro-
duced an empirical finding of bidirectional contrast-dependent suppression between stimuli with a 250 ms SOA [41].
DSTN predicts that the magnitude of contrast-dependent suppression should decrease when stimuli are separated
further in time, consistent with interval dependency of adaptation and backward masking. Based on simulations using
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parameters that captured the relative magnitudes of contrast-dependent suppression for the two targets in the empirical
data (1.=400ms, 7,=100ms), the model predicts that contrast-dependent suppression will be eliminated at SOAs of
700-1,000ms. This quantitative prediction can be readily tested behaviorally. If supported, it would bolster the idea that
contrast-dependent suppression is a consequence of spatiotemporal normalization, linking behavioral findings to neural
processes. On the other hand, the model would be challenged if it were unable to fit behavioral contrast-dependent
suppression data across a range of SOAs with a single set of temporal window parameters.

In summary, we introduced the dynamic spatiotemporal attention and normalization model, DSTN. The model inte-
grates standard spatial and feature-based neural tuning functions with excitatory and suppressive temporal windows to
generate a unified spatiotemporal normalization computation, resulting in a spatiotemporal receptive field structure like
that seen in physiological recordings of sensory neurons. DSTN reproduces several non-linear response properties,
including subadditive responses, response adaptation, and backwards masking, as well as contrast-dependent suppres-
sion between stimuli across time, a perceptual phenomenon only recently shown in human observers [41]. Our model
provides advances over other dynamic normalization [14,15,18] or CST [16,17] models, such as the recursive neural net-
work architecture that allows for continuous online prediction of layer responses, as well as the flexibility afforded by the
temporal window and suppressive pooling structures, which allows both spatial and temporal normalization to be carried
out via a single, parsimonious spatiotemporal computation. Overall, DSTN provides a step toward the goal of developing
real-time process models of dynamic vision.

Materials and methods
Model specification

DSTN is a hierarchical, recurrent neural network, which models the dynamics of feature-tuned neural populations given
time-varying sensory input. DSTN consists of interconnected sensory and decision layers, that each produce time-varying
responses in model neurons, allowing the model to generate predictions about neural activity from continuous input in
an online fashion (i.e., time step by time step) as well as to generate predictions about behavioral performance in simple
perceptual tasks (Fig 1). DSTN is built on a modeling foundation established by Denison, Carrasco, and Heeger [18] and
Reynolds and Heeger [19]. The introduction of excitatory and suppressive temporal windows together with a spatiotem-
poral normalization computation allows DSTN to generate a rich repertoire of dynamic behavior and to exhibit effects of
temporal context in line with empirical observations, which could not be generated by these previous models. DSTN also
contains voluntary and involuntary attention layers [18], though these were removed for all analyses in the current study.
Sensory layer. The sensory layer represents the visual processing stage of the model. As in the normalization model
of dynamic attention [18], this layer receives stimulus input at each time point, which feeds into N=12 neurons that
are tuned to different feature values. We use orientation as an example feature throughout the reported analyses. In
simulations, the time course of stimulus input was represented in the matrix X (with size of M orientations x K time points),
with each vector X, = (0, 0, ..., ¢, ..., 0) indicating the currently presented orientation at contrast level c. When no stimulus
was presented, all elements of the vector were zero. The stimulus drive to each neuron at each time point depended on
the match between the stimulus orientation and the neuron’s orientation tuning function, as determined using a raised
cosine function:

dic = |cos(bi— )| - ¢ (1)

where 0 is the orientation of the stimulus shown at time ¢, ¢; is the preferred orientation of the ith neuron, and c is the
stimulus contrast. Orientation tuning functions were evenly spaced across the feature space, p; = w(i—1)/N. The expo-
nent m controls the width of the tuning curve and was set to 23 (m=2N - 1).
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Unlike in previous models, the excitatory drive for each neuron is calculated at each time point using a weighted expo-
nential of recent stimulus drive:

t
eir= Y. dh-wt
0= 2 AW )

_ 1 =

T= 7€ (3)

where t is the current time point, n is an exponent that affects the shape of neurons’ contrast response functions, and 7. is
the time constant determining the amount of weight given to previous time points, which was set to the same value for all
model neurons. In effect, this excitatory temporal window imbues the model neurons with a temporal receptive field, where
not only are units responsive to their preferred stimulus at any given time point, but also respond based on the stimulus
history as well.

The suppressive drive was also calculated at each time point, and weighted by an exponential:

t
St=2 ) e wy
i T=0

Wi = e (5)
where 7 is the time constant determining the amount of weight given to excitatory drives at previous time points, which
was set to the same value for all model neurons. Thus, a neuron’s current response is suppressed by the activity history
of itself and its neighbors, which together comprise the suppressive pool. Unless otherwise specified, only a single spatial
location was modeled, and neurons tuned to all orientations were included with equal weight in the suppressive pool. But
in principle, the suppressive pool could also be tuned to locations and features.

Finally, the response of each neuron was updated at every time step using the following differential equation, which
functions as a dynamic update of the standard normalization equation (19), as in the normalization model of dynamic
attention [18]:

d, . e;
TRt = it §5om (6)

where r, is the response of the ith neuron within the sensory population, 7, is a time constant that affects the rate at which
the neuron’s response increases during stimulus presentation and decreases after stimulus offset, e, is the excitatory drive
of that neuron, s is the (pooled) suppressive drive, o is a semi-saturation constant that affects the contrast gain of neu-
rons and keeps the denominator non-zero, and n is an exponent following equation (2). Some parameter values (1,=52,
n=1.5) were fixed as fitted to empirical data in previous reports [18], however we decreased the semi-saturation constant
(0=0.1) to account for the fact that we only used a single sensory layer in this version of DSTN.

Decision layer. The decision layer receives input from the sensory layer, which it uses to compute behavioral output
regarding the orientation of the stimuli, as in the normalization model of dynamic attention [18]. Decisions are generated
by two neurons, each encoding for one of the two stimuli (T1 and T2). The excitatory drive ej’rt7 for each decision neuron is:

& =1 Wy 7)
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where each weight vector W/D is designed to compute an optimal linear readout from the sensory responses r,'S to the

Jjth stimulus, to determine whether the stimulus was rotated clockwise versus counterclockwise from horizontal or verti-
cal. The vectors project the sensory layer response onto the difference between two templates encoding the population
responses to the CW and CCW stimuli along a given orientation axis; the axis of each stimulus (vertical or horizontal) is
assumed known. Evidence accumulation is positive for CW decisions, and negative for CCW decisions, such that the
sign of the evidence indicates the decoded orientation within the decision layer, while the magnitude of the evidence
indicates the strength of the model decision. The suppressive drive is pooled over the decision neurons, and responses
are updated at each time point according to the same differential equation as in sensory layers (r,=10° 0,=0.7) [18]. The
long time constant of this layer allows for sustained evidence accumulation.

In contrast to previous model iterations [18], each neuron in the decision layer accumulates evidence throughout the
duration of the simulated trials, rather than during discrete windows following each stimulus presentation. Because the
effects of temporal normalization occur when the excitatory and suppressive drives elicited by the two stimuli overlap,
the discrete decision windows were unable to capture any behavioral effects of normalization for T1 at short SOAs. At the
end of each simulation, the accumulated evidence for each stimulus is converted into d’, a measure of perceptual sensitiv-
ity, through multiplicative scaling (s, =s,,=1%10°).

Simulation procedures

All simulations were performed in MATLAB (2022b, MathWorks, Natick, MA). We used a time step At of 2ms throughout
simulations. The duration of the simulated trial was varied as necessary to capture model dynamics. When a stimulus was
presented, we used a standard contrast level of 64% and presentation duration of 30 ms, unless otherwise specified. We
varied the two temporal window time constants 7. and 7, across simulations to assess how the temporal windows affected
sensory layer dynamics and decision layer outputs.

Estimating temporal receptive fields of model neurons. To assess how stimulus input at different past time points
affects model responses at the current time, we performed a simulation and analysis based on reverse correlation, similar
to the way a temporal receptive field might be measured in a neurophysiology experiment [20]. We modified the stimulus
input to the model to be a random binary vector, such that the stimulus drive at each time point was one or zero. We then
performed model simulations for 10,000 different random stimulus vectors with a duration of 1,200 ms, resulting in variable
excitatory and suppressive drives and sensory layer responses that depended on the stimulus history. To estimate the
impact of the stimulus input on each model timeseries, we used reverse correlation to calculate the average change in
each measure caused by the presence of a stimulus at each time point by correlating the stimulus input at each time
point with the response (excitatory/suppressive drive or layer response) at the final time point [60]. Shuffled weights
were calculated in the same manner after rearranging the stimulus input vectors so that they were not aligned with the
responses from the same simulation.

To characterize the temporal receptive fields and enable comparisons across different parameter settings, we fit the
estimated stimulus weights using different functional forms. For the excitatory drive, we compared the estimated stimulus
weights with the exponential function that defines the excitatory temporal window. This function (r.=400ms) had no free
parameters, but was adjusted using a scaling parameter to align it to the magnitude of the stimulus weights (the units of
which are arbitrary), estimated using simple linear regression. For the suppressive drive, we similarly overlaid a scaled
function to the stimulus weights. This function, h,, was determined by convolving the excitatory and suppressive temporal
windows, using their respective time constants. We zero-padded the temporal windows at positive (i.e., future) time points
to achieve the resulting functional form. Notably, this function in general can also be calculated by taking the difference
between the exponential temporal windows (for <0 and 1.#1):

t t

hs = |eE —e7s
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The sensory layer response weights were fitted with a difference of Gamma functions, using the simplified Gamma
function form adopted in previous work [15]:

hgr = te% — kte% (9)

with time constants 7, and 7,, and weight k. We fitted the simulated stimulus weights to this function in MATLAB by mini-
mizing the least-squares error using fminsearch up to a scaling factor. We performed this optimization 100 times, with ran-
dom initial values for t, and t, drawn uniformly between 0 and 900, and initial k=0, and selected the best fitting function
across all solutions. For the function shown in Fig 2C, the best fitting parameters were: 7y = 305.01, 7, = 61.98, k =5.43.

To assess how the effective temporal receptive fields were affected by the excitatory and suppressive temporal param-
eters, we performed the model simulations again for each combination of 7. and 7, from 100 to 900 ms in 100 ms steps. In
the results shown in Fig 2D and 2E, we took the fitted functions for one parameter fixed at 400 ms, while the other param-
eter varied.

Surround suppression. To confirm that DSTN maintains the spatial normalization properties observed in previous
static models, we simulated how the model response to a stimulus was affected by a nearby stimulus presented outside
its receptive field. To model the spatial dimension, we defined two populations of neurons each with feature tuning to
multiple orientations, but tuned to distinct spatial locations. Whereas each subpopulation was excited only by stimuli in
its preferred spatial location, suppressive drives were pooled across the two subpopulations (i.e., across space), allowing
for mutually suppressive interactions between the two spatial locations. We assigned one subpopulation as “center”
neurons, and the other as “surround” neurons. Across simulations, we varied the contrast of the center stimulus across a
wide range of values (from 5% to 100% contrast at 20 levels, log-spaced) to map the contrast response function (CRF)
of model neurons, and varied the contrast of the surround stimulus at fixed levels (0%, 12%, 25%, 50%, or 100%) to
assess surround suppression. For each simulation, we measured the response in the neuron maximally responsive to the
center orientation, summed across the timecourse of the simulation. We used a fixed set of time constants (r.=400ms,
7,=100ms), presenting the center and surround stimuli simultaneously for 100ms. We also used a lower semi-saturation
constant for this simulation (0=0.02) to produce CRFs that spanned the neuron’s response range. The implementation
of just two adjacent spatial populations is a simplification compared to previous implementations of spatial normalization
that model a continuous spatial map [19,25]. Nevertheless, this simplified implantation is sufficient to test whether the
model can reproduce spatial normalization effects such as surround suppression, and it demonstrates how the proposed
architecture can be flexibly expanded as needed to generate spatial and feature maps in the sensory layer.

Effects of temporal receptive fields on neural responses. To assess the effects of the excitatory and suppressive
time constants on the model neuron responses, we simulated trials in which a single target stimulus was presented. The
stimulus presentation duration was set to 2,000 ms to allow time to observe the peak and steady state responses, and
the total trial duration was set to 8,100 ms, including a 500 ms prestimulus period. We varied 7. and 7, separately across
9 levels (50, 100, 200, 300, 400, 500, 600, 700, and 800 ms). To examine the effects of the individual time constants in
isolation, for simulations varying 7., we fixed 7, at zero, and vice-versa, effectively removing the excitatory or suppressive
temporal receptive fields from the model. Setting 7.=7,=0 reduces the model to the previous version [18]. For these
simulations, we extracted response time courses from the sensory layer neuron tuned nearest to the target orientation.
We also examined the interaction of the time constants by conducting simulations with different combinations of non-zero
values for 7. and 7.

For simulations varying the excitatory time constant, all model neurons reached the same stable activity level, and all
neural responses were scaled by dividing the response at all time points by the maximum response within the stimulus
presentation window. For each value of 7., we found the time point at which the model responses reached 99% of the
maximum response (“Time to peak”, Fig 3B), and the time point at which responses fell to 50% of the peak value following
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stimulus offset (“Time to half maximum?”, Fig 3C). We used 99% of the maximum for the time to peak analysis, because
responses approached but did not necessarily reach the numerical maximum until late in the window.

For simulations varying the suppressive time constant, we scaled all responses relative to the first peak (Fig 3D).
Shorter suppressive time constants typically resulted in a faster reduction in model responses, reaching a peak sooner but
also reducing the overall magnitude. To examine response dynamics relative to the peak response, we therefore normal-
ized the response time course by the peak response during the stimulus presentation window. We calculated the time to
peak by measuring the time at which the maximum response was reached (“Time to peak”, Fig 3E), as well as the model
response 2000 ms after stimulus onset relative to the peak (“Stable activity level”, Fig 3F).

Subadditive responses. To assess how neural responses depended on stimulus presentation duration, we again
simulated trials with only a single target. For the simulations shown in Fig 5A, we used short time constants (r.=100ms,
7,=50ms) and varied the stimulus duration by doubling from 30-480ms, for 5 total duration conditions (30, 60, 120, 240,
and 480 ms). We extracted responses from the sensory layer in the model neuron tuned closest to the target orientation,
and calculated the model response by summing the sensory response across the entire trial duration, approximating the
area under the curves in Fig 5A. To quantify subadditivity in neural responses, we calculated the effect of doubling the
stimulus duration on the model response by dividing the response at duration 2x by the response at duration x (e.g., we
divided the model response at 60 ms by that at 30 ms; Fig 5C). To assess how subadditivity depends on the excitatory
and suppressive time constants, we selected one shorter and one longer value (r.=100 or 500ms, 7,=50 or 500 ms), and
computed the proportional response change for each pair of time constants (Fig 5D).

Response adaptation. Response adaptation refers to the finding that neural responses to stimuli presented shortly
after an initial stimulus are typically reduced in magnitude [27,30-33]. In our analysis, we therefore aimed to examine how
model responses differed to a sequence of two “target” stimuli (referred to as T1 and T2) relative to a single stimulus. We
performed separate analyses where T1 and T2 were identical stimuli (i.e., the same feature) or distinct (i.e., orthogonal
features). In the first simulation examining the interaction between responses to two identical stimuli, our goal was to
assess the magnitude of the response to T2 while subtracting out the activity related to T1. Therefore, we first measured
the response to T1 alone (Fig 6A, blue dashed line), and then quantified the activity related to T2 by calculating the
difference in responses when T2 was present versus absent (Fig 6A, blue shaded region). We used a longer stimulus
presentation duration of 300 ms, which is typical in the response adaptation literature [30]. For the simulation shown in Fig
6A and 6B, we again selected short time constants (r.=100ms, 7,=50ms) and used an ISI of 100ms. We extracted the
sensory response in the maximally selective neuron to the stimulus in two simulations: 1) T2 present, 2) T2 absent. The
simulation in Fig 6B was identical, except that the IS was increased to 600 ms.

To quantify the effect of excitatory and suppressive time constants on the magnitude of response adaptation, we varied
each of 7_ and 7 separately across 10 levels (0, 50, 100, 200, 300, 400, 500, 600, 700, and 800 ms) while keeping the
other time constant fixed at zero, and assessed the sensory response across a range of I1Sls (100-1,500ms, in 100ms
steps). To investigate whether temporal windows were required for response adaptation in this model, we also simulated a
condition with 7. and t, both equal to zero. For each value of the time constants, we performed simulations where T1 was
present or absent. To isolate the response to T2 when T1 was present, we followed previous work [28,31] by first subtract-
ing out the activity elicited by a single stimulus (here, when T2 was absent), as follows:

— 1 — Zilrraesenrreansent)
AI - 1 ZtrTZabsent (1 0)

where each rreflects the sensory layer response under a particular stimulus condition. A higher adaptation index corre-
sponds to a smaller isolated T2 response and thus stronger response adaptation. To examine how the time constants
interact to affect response adaptation, we conducted additional simulations using combinations of shorter and longer time
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constants (7.=100 or 500ms, 7,=50 or 500 ms), and computed suppression indices across the same range of ISls
(Fig BE).

To assess the presence of response adaptation for non-identical stimuli (Fig 7), we performed further simulations in
which we manipulated the difference in orientation between T1 (the adapting stimulus) and T2 (the test stimulus). In
these simulations, we fixed the temporal window parameters (1.=400ms, 7,=100ms) and the ISI (100 ms) to focus on
the effects of feature similarity and suppressive pooling on the magnitude of adaptation. To manipulate the tuning of the
suppressive pool, we computed a pooling matrix that weighs the influence of one neuron on another when calculating
suppressive drives, as follows:

Sj= |cos(pi—)'"? (1)
where ¢, and ¢, are the preferred orientations of the ith and jth neuron, respectively, and p is a scaling parameter that
determines the sharpness of the suppressive pooling. In the limit when p=oo, all weights are 1, producing uniform sup-
pressive pooling. In contrast, when p is small, suppression is mostly driven by similarly-tuned neurons, and when p=0
neurons are only suppressed by themselves.

Across simulations, we fixed the test stimulus orientation at 0° and varied the adapting stimulus orientation in 10°
steps from 0° (identical) to 90° (orthogonal). We separately adjusted the suppressive tuning across simulations at 7 levels
(b=, 1,0.4,0.2,0.1, 0.04, 0). For each set of parameters, we measured the response in the neuron tuned to the test
orientation in three separate simulations presenting: 1) the test stimulus alone (r,_); 2) the adapting stimulus alone (radapt);
3) both the adapting and test stimulus (r, ). We then calculated the (non-orthogonal) adaptation index, following Priebe
and Lisberger (2002):

— 1 — 2t both—Tadapt
AI - 1 Ztrlest (12)

Backward masking. Backward masking refers to the phenomena that perception of a stimulus can be impaired
(“masked”) by a second stimulus presented shortly after the first [7,39,40]. We assessed backward masking in the model
using a similar method as for response adaptation, except with simulations comparing the sensory response to T1 as a
function of whether T2 was present versus absent:

— — Z I'T2present
MI B 1 Ztt rTZstent (1 3)

Again, we first conducted simulations using orthogonal stimulus orientations, with short time constants (r.=100ms,
7,=50ms) and compared the effects of backward masking for SOAs of 250 ms (Fig 8A) and 500 ms (Fig 8B). We then
quantified backward masking by calculating the response summed over time to T1 when T2 was present relative to when
it was absent. We calculated this masking index across the full range of excitatory and suppressive time constants and
SOAs (Figs 7C and 7D). Finally, we conducted additional simulations assessing the interaction of the two time constants
on backward masking using combinations of one shorter and one longer time constant (r.=100 or 500 ms, 7,=50 or
500ms), and computed masking indices across the same range of SOAs (Fig 8E).

Contrast-dependent stimulus interactions. We assessed how the contrast of one stimulus affects the response
to the other stimulus through temporal normalization. For initial simulations, we used fixed time constants (r.=400ms,
7,=100ms), with the SOA (250 ms) and stimulus contrasts (64% versus 16%) chosen to match the previous behavioral
findings. We performed simulations independently manipulating the contrast of both T1 and T2 (64% or 16% contrast
level), and extracted model performance for each target. We first examined how the model responses to each target at
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high contrast was affected by the contrast of the non-target (Figs 8A and 8B). We then computed the model’s behavioral
discrimination performance (measured as d') from the output of the decision layer, based on recent empirical findings
showing that a high- versus low-contrast non-target stimulus presented before or after a target stimulus can result

in reduced perceptual discriminability of the target [41]. Model responses were scaled to produce d’ values closer to
behavioral estimates (s,,=s,,=1x10%). Model d’ was calculated for each target stimulus based on the target and non-
target contrast (Fig 9C).

To assess how contrast-dependent suppression for T1 and T2 was affected by the excitatory and suppressive temporal
windows, we performed further simulations in which we varied 7. and 7, from 0 to 1,000 ms in 50 ms steps. For each simu-
lation, we measured the model d' for each target stimulus (T1 and T2) as a function of the contrast of the non-target (NT),
as above. We then calculated a contrast-dependent suppression index for each stimulus as:

S/ — AnTIow—ANThigh
AnTiow+ANThigh (14)

To identify values of 7_ and 7 that produced suppression in both T1 and T2, we calculated a joint suppression index
across the two targets by multiplying the suppression indices of T1 and T2 for each parameter combination. This joint
index is maximized when a specific combination of 7_ and 7, results in contrast-dependent suppression in both stimuli, but
not when one or both stimuli show little-to-no suppression.
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