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Abstract 

Spike sorting is one of the cornerstones of extracellular electrophysiology. By lever-

aging advanced signal processing and data analysis techniques, spike sorting makes 

it possible to detect, isolate, and map single neuron spiking activity from both in vivo 

and in vitro extracellular electrophysiological recordings. A crucial step of any spike 

sorting pipeline is to reduce the dimensionality of the recorded spike waveform data. 

Reducing the dimensionality of the processed data is a near-universal practice, fun-

damentally motivated by the use of clustering algorithms responsible to detect, iso-

late, and sort the recorded putative neurons. In this paper, we propose and illustrate 

on both synthetic and experimental data that employing the nonlinear dimensionality 

reduction technique Uniform Manifold Approximation and Projection (UMAP) can 

drastically improve the performance, efficiency, robustness, and scalability of spike 

sorting pipelines without increasing their computational cost. We show how replacing 

the linear or ad hoc, expert-defined, supervised nonlinear dimensionality reduction 

methods commonly used in spike sorting pipelines by the unsupervised, mathe-

matically grounded, nonlinear dimensionality reduction method provided by UMAP 

drastically increases the number of correctly sorted neurons, makes the identification 

of quieter, seldom spiking neurons more reliable, enables deeper and more precise 

explorations and analysis of the neural code, and paves new ways toward more effi-

cient and end-to-end automatable spike sorting pipelines of large-scale extracellular 

neural recording as those produced by high-density multielectrode arrays.
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Introduction

Accurately sorting individual neuronal spikes from large-scale recordings is key to 
understanding how neural activity encodes information in cognitive and sensory 
functions [1–3], tracing the flow of information across neural networks [4], and exam-
ining communication between population subspaces [5]. High-density extracellular 
electrode array technologies, such as fully integrated silicon probes [6], are enabling 
the simultaneous recording of hundreds to thousands of neurons [7–9]. Despite this 
progress, a vast majority of spike sorting methods rely heavily on manual parameter 
tuning to ensure high sorting accuracy. The need for fast, automatic, and accurate 
spike sorting methods is now stronger than ever.

To ensure efficient clustering of spiking waveforms, a necessary step in most spike 
sorting pipelines is to reduce the dimensionality of the processed data. Traditional 
approaches often employ linear dimensionality reduction techniques, such as prin-
cipal component analysis (PCA) (e.g., Herding Spikes [10], Klusta [11], Tridesclous, 
YASS [12], SpyKING CIRCUS (SC) [13], SpikeDeep [14], Perceptron [15]), or Wave-
let transform-based methods (e.g., WaveClus [16], WimSorting [17]), supplemented 
by ad hoc nonlinear metrics (i.e., expert-defined features such as energy or peak-to-
peak measures) [16,18]. Existing approaches to spike sorting that include a nonlinear 
data dimensionality reduction step are usually based on deep-learning methods, like 
autoencoders and convolutional perceptrons (see, e.g., [19–21], and [15]). Finally, 
powerful toolkits like Kilosort [22,23] and algorithms tailored to large-scale electrode 
arrays [13] are constantly being developed to address the problem of achieving 
fast and accurate spike sorting from hundreds of spatially correlated extracellular 
recordings.

The dimensionality reduction of spiking data in traditional threshold-based sort-
ing pipelines is critical, and is typically based on linear methods, ad hoc nonlinear 
metrics, or deep-learning methods. Template-matching methods like Kilosort4 [22,23] 
have also recently demonstrated high performance by incorporating nonlinear graph-
based clustering (e.g., on nearest-neighbor graphs). We do not directly compare to 
such methods because our focus here is on improving basic threshold-based spike 
sorting pipelines, i.e., in a way that is agnostic to specific characteristics of spike 
waveform. Within this context, we show that the Uniform Manifold Approximation and 
Projection (UMAP) algorithm for unsupervised nonlinear dimensionality reduction 
drastically increases sorting performance. We also provide rigorous topological argu-
ments to explain this performance gap, particularly for low-firing-rate neurons. Most 
dimensionality reduction methods lack rigorous, mathematically grounded guarantees 
that fundamental geometric and topological properties of the original data, and most 
importantly, the existence of data point clusters, like those associated with spikes 
from different neurons, are preserved in the reduced data.

The UMAP algorithm [24,25] has recently been introduced to perform data dimen-
sionality reduction with rigorous guarantees that the reduced data preserves key geo-
metric and topological properties of the original data. By preserving and revealing in 
low-dimensional projections geometric and topological properties of high-dimensional 
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datasets, UMAP has already proved successful in uncovering the low-dimensional geometry of neuronal population 
responses [26], in exploring firing rate dynamics and information coding in neural populations [27,28] and in efficiently 
identifying and classifying cell types [29–32]. In a broader biological context, UMAP has recently been applied to large-
scale single-cell datasets, enabling the characterization of immune cell populations and their age- or infection-related 
dynamics [33], as well as the visualization of developmental trajectories and perturbation responses in transcriptomic 
models [34–36]. In addition, UMAP requires minimal parameter tuning, is robust to noise and outliers, and scales effi-
ciently to large datasets. All the features and properties of UMAP-based dimensionality reduction make it a good alterna-
tive for reducing the dimension of large spiking data in virtually any spike sorting pipelines. By reducing data dimension, 
UMAP automatically identifies nonlinear geometric structures that serve as automatically-discovered geometric criteria to 
distinguish spike waveforms with high accuracy, while requiring little to no user intervention. Moreover, UMAP’s ability to 
preserve the data’s underlying topological structure regardless of local point density ensures that sparsely represented 
spike waveforms—such as those from neurons with low firing rates—can efficiently be identified and separated from 
densely represented waveforms originating from neurons with high firing rates. In contrast, methods that rely on density or 
variance metrics [13,16] necessarily struggle to isolate low-firing rate neurons. Consequently, many conventional sorting 
methods tend to overlook quieter neurons, leading to a significant loss of potentially valuable spiking information [37–39].

All the mentioned features of the UMAP algorithm are particularly relevant when dealing with hundreds or thousands 
of signals measured in a single experiment. As the number of electrodes in an array increases, methods that require 
parameter hand-tuning (specifying the number of sought spike clusters) or extensive manual curation for guaranteed per-
formance become increasingly unsuitable. With dense multielectrode arrays (MEAs) or multisite recording, it is possible 
to record from hundreds or even thousands of electrodes simultaneously [7–9]. Therefore, an unsupervised and efficient 
sorting method is crucial for isolating single-neuron responses, including quiet ones, from these massive databases.

In this study, we introduce a novel spike-sorting pipeline based on UMAP [24]. We apply this pipeline to iden-
tify single-neuron responses in several datasets, including synthetic data [16,40], electrophysiological data with an 
intracellular ground truth (GT) [13,41–43], and in vivo recordings during cognitive tasks [44–48]. Our method shows 
significant improvements in accuracy compared to existing spike sorting methods such as [49]. The proposed spike 
sorting method particularly stands out for its robustness to even large heterogeneities in the recorded neuron firing 
rates. UMAP-based spike sorting is capable to robustly isolate and identify low-firing rate, seldom spiking neurons. 
Conversely, spike sorting pipelines based on linear dimensionality reduction methods or expert-defined metrics, like 
peak-to-peak amplitude, temporal width, or axis length in the phase space, just to name a few, tend to either dilute the 
spike waveforms from low-firing rate neurons into the clusters associated with high-firing frequency ones or to simply 
ignore them. Furthermore, the unsupervised nonlinear nature of the UMAP algorithm allows it to isolate neurons with 
spike waveforms that look indistinguishable when looked at through more classical dimensionality reduction methods, 
based on PCA or Wavelet transform, and that can be challenging to distinguish even through expert-defined metrics. 
To perform unsupervised sorting of recorded cells from UMAP projections, we employ hierarchical density-based 
spatial clustering application with noise (HDBSCAN) [50,51]. HDBSCAN is a clustering algorithm that does not require 
the pre-specification of the number of clusters and can automatically detect data points that cannot be clustered by 
labeling them as “noise.”

We show the superior performance of the UMAP-based spike sorting pipeline using minimal parameter tuning in a 
variety of settings [52]. The proposed pipeline builds upon but also drastically improves existing spike sorting techniques 
and technologies [6,13,22,49]. Crucially, we highlight the ability of UMAP-based spike sorting to identify more neurons, 
particularly low-firing rate ones, as compared to previous methods, which in turn enable more accurate analysis of the 
information encoded in spikes both at the single neuron and population level. To summarize, we present a novel unsuper-
vised, data-efficient, and high-performance pipeline grounded on UMAP, a nonlinear dimensionality reduction method, to 
sort individual neuron spikes from both standard and high-density recordings.
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Results

UMAP-based spike sorting versus traditional pipelines

Fig 1 provides an overview of the proposed UMAP-based spike sorting pipeline, highlighting both its commonalities with 
existing methods and the unique steps that distinguish it. The four initial steps—high-pass filtering (Fig 1A), spike detec-
tion (Fig 1B), waveform alignment (Fig 1C), and representation of the spike waveforms as points in a high-dimensional 
vector space (Fig 1D)—are standard in nearly all spike sorting workflows. These steps yield a set of spike waveforms, 
each of which is represented by a vector in Rn (the n-dimensional real vector space), where n corresponds to the number 
of samples in each waveform and the vector components are the recorded samples.

The basic assumption underlying spike sorting is that waveforms from the same neuron are similar, while waveforms 
from different neurons exhibit distinctive features. Consequently, points in Rn corresponding to spikes from the same 
neuron should cluster together, whereas points corresponding to spikes from different neurons should remain separated 
in well-distinguished clusters. The basic goal of a spike sorting algorithm is to efficiently identify the number and identity of 
such clusters in spike waveform data.

However, clustering in high-dimensional spaces is usually ineffective due to the “curse of dimensionality” [53]. This 
phenomenon leads to the concentration of measure, where standard metrics (e.g., Euclidean distance) fail to reliably 
distinguish data points, resulting in unreliable clustering. A possible solution to this problem is to use graph clustering, as 
done in Kilosort4 [22]. Such an approach is not dissimilar to the one proposed here: reducing data dimensionality using 
graph-theoretical methods like UMAP and then cluster the low-dimensional projections with standard clustering algorithm. 
Our approach, however, explicitly separates the dimensionality reduction step from the final clustering, allowing for a more 
flexible and robust pipeline. Because spike waveforms tend to lie on low-dimensional manifolds [54] over which cluster-
ing is feasible, dimensionality reduction remains a critical and near-universal step in threshold-based spike-sorting pipe-
lines. To the best of the authors’ knowledge, most existing threshold-based spike sorting methods perform dimensionality 
reduction either using linear projections (PCA, Wavelet decomposition) or fixed, expert-defined, nonlinear projections (Fig 
1E and 1F). Although UMAP has already been used for visualization [55] and in certain specialized spike sorting con-
texts [56], its integration as the core dimensionality reduction engine in a general-purpose spike sorting pipeline remains 
largely underexplored. Our approach, by contrast, employs UMAP—a fully unsupervised, nonlinear algorithm that con-
structs a nearest-neighbor graph to preserve the essential topological and geometrical properties of the processed data 
[24,30,35]—to reduce the dimensionality of spiking data (Fig 1G–1I).

A common challenge in applying dimensionality reduction to spiking data is that waveforms from different neurons may 
collapse into a single spurious cluster in the reduced space. Methods such as PCA (Fig 1E and 1F), Wavelet decomposi-
tion [16], or expert-defined metrics [23], tend to struggle with complex, nonlinear boundaries between clusters. However, 
the existence of clusters within a dataset is a topological property that can be formalized using the concept of connected 
components of a topological manifold [57]. UMAP-based dimensionality reduction can exploit the topological nature of 
clustering by preserving the topological features of the high-dimensional dataset [24,25] in the low-dimensional projection. 
It does so in two steps:

1.	Uniform Manifold Approximation (UMA), in which the nonlinear structure of the data is encoded into a fuzzy simplicial 
complex (Fig 1G).

2.	Projection (P), in which the fuzzy simplicial complex is embedded into a low-dimensional space (Fig 1H).

Because UMAP preserves clusters through its underlying topological machinery, traditional clustering algorithms can 
effectively discern putative neurons within the projected data set (Fig 1I). That is, the theoretical guarantees provided by 
UMAP enhance the prospects of splitting more neurons than feature-based approaches. Spike sorting using UMAP alone, 
for example, can split all three example neurons in Fig 1F and 1I.
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Fig 1.  Comparison of feature-based and Uniform Manifold Approximation and Projection (UMAP)-based spike sorting for neuron classifica-
tion. (A) High-pass filtering (500 Hz–2 kHz) removes low-frequency noise from extracellular signals. (B) Thresholding the pronounced deflections in the 
filtered data identifies spikes. (C) Windows around each spike, centered on the trough, are isolated to standardize waveform comparisons. (D) Each 
spike waveform becomes a point in a high-dimensional space (time vs. voltage). (E) Feature-based sorting relies on linear dimensionality reduction 
methods (e.g., principal component analysis, wavelets), yet can be thrown off by spikes from different neurons. (F) Clustering in this simplified feature 
space may misclassify neurons due to these linear constraints. (G) UMAP-based sorting, however, employs a nonlinear approach that preserves both 
local and global structure. (H) This UMAP projection keeps distinct clusters and neuron-specific features more intact. (I) Clustering in the UMAP- 
projected space better distinguishes individual neurons (shown as distinct colored clusters), reducing merging errors seen with feature-based methods.

https://doi.org/10.1371/journal.pbio.3003527.g001

https://doi.org/10.1371/journal.pbio.3003527.g001
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For the clustering step, we employed HDBSCAN [51], an unsupervised algorithm that automatically determines the 
number of clusters, assesses their statistical quality, and labels outliers as noise (pink beads in S1 Fig). S1A–S1D Fig 
compares HDBSCAN’s performance against K-means, and Gaussian Mixture models after UMAP-based dimensionality 
reduction [52]. Both K-means and Gaussian Mixture require to specify in advance the number of clusters to be detected 
and lack mechanisms to label outliers as noise. Such conditions normally result in misclassification, particularly for 
non-convex cluster geometries (for example, electrode A illustrated in S1 Fig, and they also make it harder to separate 
larger clusters (like electrode B in S1 Fig). In contrast, HDBSCAN’s ability to isolate clusters while ignoring outliers pro-
vides greater accuracy and consistency in spike sorting results.

These results highlight the limitations of traditional clustering algorithms in identifying the best number of clusters, 
handling noisy data, and managing highly complex cluster shapes among data points. By integrating UMAP’s nonlinear 
dimensionality reduction technique with HDBSCAN’s adaptive clustering framework, the proposed methodology is a more 
effective and trustworthy approach to neuron separation. The subsequent sections illustrate the competency of this pipe-
line under varying situations.

Spike sorting performance metrics

For the analysis presented in the following sections, we use standard metrics to quantify spike sorting performance, par-
ticularly when a GT neuron is available (S2 Fig). GT neurons are straightforward to define in synthetic datasets; in exper-
imental datasets, they are usually derived from simultaneous intracellular and extracellular recordings, enabling exact 
labeling of the GT neuron spikes (SGT).

When comparing a sorted spike collection (Si) against the ground truth (SGT), we utilize three standard classification 
metrics (see Methods for detailed definitions):

1.	Precision (P): The fraction of spikes in the sorted cluster (Si) that actually belong to the GT neuron. High precision indi-
cates low contamination by spikes from other neurons (low false positives).

2.	Recall (R): The fraction of spikes from the GT neuron (SGT) that were correctly captured by the sorted cluster (Si). High 
recall indicates few missed spikes (low false negatives).

3.	F1 score: The harmonic mean of precision and recall. It provides a single, balanced measure of sorting quality that 
accounts for both contamination and losses. F1 = 2∗(P∗R)

(P+R) .

A high F1 score requires both precision and recall being high (the optimal case in S2D Fig; F1 ~ 1). If recall is high but 
precision is low, the sorted unit is significantly contaminated (High Contamination case, S2B Fig). If precision is high but 
recall is low, the sorted unit misses a significant fraction of the GT spikes (High Spike Loss case, S2C Fig).

In scenarios involving multi-electrode recordings, we may analyze the consistency of sorting across channels or 
compare two sorted spike trains, Si and Sj, without a GT reference. In this case, we define the inclusion index (Ii,j) as the 
percentage of spikes in Si that also appear in Sj. We can construct an Inclusion Index Matrix M with off-diagonal elements 

Mi,j = Ii,j (S2E Fig). The matrix is generally asymmetric. When a GT unit is present, the corresponding row and column 
of the Inclusion Matrix correspond to recall and precision values, respectively (as shown in the matrices in Figs 6 and 
S2A–S2D).

In the following sections, we will rely on the F1 score, precision, and recall to quantify spike sorting performance under 
a variety of experimental and synthetic conditions.

UMAP-based spike sorting achieves superior and robust performance

A common challenge in spike sorting arises when the distance between the recording electrode and the recorded neu-
rons increases. Under these conditions, spike waveforms from different neurons begin to overlap, and background noise 
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becomes more pronounced. To assess the robustness of UMAP-based spike sorting in such scenarios, we used a syn-
thetic dataset created by the Quian Quiroga group [16,40].

Fig 2 compares the performance of the proposed UMAP-based method in sorting a complex mixture of spike wave-
forms from three synthetic GT neurons (inset Fig 2A) against PCA- and Wavelet-based methods. In each case, HDB-
SCAN was used to cluster the low-dimensional projections. Notably, the 2D UMAP projection (Fig 2A, left panel) sharply 
separates the waveforms into three distinct clusters that overlap well with the three GT neurons data points. Conversely, 
Wavelet (middle panel) and PCA (right panel) projections hardly reveal any well-separated cluster. Although adding a third 
dimension (S3A Fig for PCA and S3B Fig for Wavelet) can sometimes improve separability, it also complicates visualiza-
tion, making it harder for researchers to interpret the results—an issue that persists in other datasets (S3A and S3B Fig, 
right panels). The UMAP method is not affected by these issues, by achieving clear and well-sorted clustering of the data 
points in just two dimensions, thus preserving ease of visualization and interpretation. In addition, UMAP-based F1 score 
(Fig 2D) is remarkably insensitive to the used projection dimension (F1UMAP,GT = 0.83). By contrast, the F1 scores of 
Wavelet- (F1WL,GT = 0.68) and PCA-based (F1PCA,GT = 0.58) sorting exhibits noticeable fluctuation as the used projection 
dimension is varied, which makes it virtually impossible to determine for these two methods an optimal projection dimen-
sion. UMAP-based F1 score is also remarkably robust to more complex and challenging perturbations on the recorded 

Fig 2.  Comparison of Uniform Manifold Approximation and Projection (UMAP)-based and feature-based spike sorting on synthetic data. (A) In 
a simulated dataset containing three different neurons, UMAP-based sorting forms three well-separated clusters with distinct shapes and colors, indicat-
ing strong accuracy and minimal overlap. (B) Applying wavelet sorting to the same dataset merges the spikes into just two clusters that exhibit noticeable 
overlap and weak separation, as illustrated in both 3D (top) and 2D (bottom) views. (C) Principal component analysis (PCA)-based sorting isolates only 
a single cluster with poor separation, underscoring PCA’s difficulty with complex spike distributions. (D) By contrast, UMAP spike sorting consistently sur-
passes both wavelet and PCA methods, particularly in higher-dimensional spaces, as measured by the F1 score. (E) UMAP-based sorting also proves 
robust against noise perturbations at various spike dilution levels (dark trace; firing rate [fr] at 100% vs. light blue trace; fr diluted at 40%). Even under 
increased noise and cluster dilution, it preserves high F1 scores. (F) Moreover, UMAP-based sorting (dark blue) remains accurate despite data loss, 
achieving high F1 scores even when a large fraction of spikes (x-axis) is removed from one cluster, whereas wavelet (green) and PCA (orange) methods 
experience a significant decline in performance. The synthetic data used to generate this figure are publicly available at [40], and the code for performing 
the analyses is available at [52].

https://doi.org/10.1371/journal.pbio.3003527.g002

https://doi.org/10.1371/journal.pbio.3003527.g002
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waveforms, like drifting, caused by relative movement between neurons and electrodes, and bursting, which involves 
high-frequency firing of action potentials (S3C Fig, left and right). In contrast, Wavelet- and PCA-based methods show 
significant performance declines when faced with the same perturbations.

Because noise is a critical factor in neural spike sorting, we explored how UMAP handles increasing noise levels (η 
ranging from 0.05 to 0.2, where η represents the standard deviation of the background noise relative to the amplitude of 
the spike waveforms [16]) added to three synthetic spike waveforms from [16] (S3D Fig), and compare it against PCA and 
Wavelet decomposition (S3E Fig, right, middle, and left panels, respectively). Again, UMAP-based sorting is remarkably 
stable across a wide range of projection dimensions, and it systematically outperforms both PCA- and Wavelet-based 
sorting as η increases. Even at the highest noise level (η = 0.2), UMAP achieves an F1 score close to 0.6. Finally, to test 
the ability of UMAP-based sorting to detect “silent” neurons, we randomly removed an increasing fraction of the data 
points from one of the synthetic GT neuron clusters (the red one, as per Fig 2A). Crucially, in this synthetic dataset, all 
the neurons have a 20 Hz constant rate, and then after random spike removal, spiking activity is not constant anymore. 
Remarkably, UMAP still ensured almost perfect (~1) F1 score when only 40% of the cluster data points were retained, 
and still very good (~0.8) F1 score even when only 20% of the data points were retained. This highlights UMAP’s ability 
to effectively isolated spikes from neurons with low firing rates, which are often key encoders of a task parameters due 
to their low variability [38,58]. Conversely, the already suboptimal F1 score of both PCA- and Wavelet-based methods 
dropped much more rapidly as the fraction of removed spikes was increased. Together with its robustness to noise, these 
findings highlight UMAP’s ability to reliably sort low-firing neurons, which suggests it as a powerful spike sorting tool in 
challenging experimental conditions.

The cost of overlooking low-firing-rate neurons in neural spike sorting

In Figs 3, S4, and S5, we illustrate how merging spikes from different neurons [46] into a single spurious multiunit entity 
can severely distort and be detrimental to the analysis of neural information encoding [4,27,45,59]. First and foremost, 
each multiunit entity created by merging spikes from distinct neurons inevitably exhibits a (potentially much) higher firing 
rate than the individual units, i.e., the sum of their firing rates. As a result, the average firing rate can be exaggerated, 
and this can cause significant errors in later analyses. Moreover, neurons with low firing rates are particularly likely to be 
missed. Their few spikes can be lost in high-firing-rate multiunit clusters unless appropriate dimensionality reduction tech-
niques are used to retain their distinctiveness. Therefore, the potentially important information signaled by low-firing-rate 
neurons can be buried in the noise of high-firing-rate multiunit clusters. Figs 3A, S4A, and S5A sketch this fundamental 
problem. While two isolated units might show clear and distinct task parameters and condition encoding (as sketched by 
well-separated light to dark blue firing rate traces), merging them into a single multiunit entity can average out and thus 
miss such encoding (represented by overlapping rate traces). This simple phenomenon might erroneously lead to discard-
ing the spurious multiunit activity spikes as irrelevant, thus losing potentially precious and important pieces of neural code.

Figs 3B–3E, S4B–S4E, and S5B–S5E provide different experimental examples of the detrimental merging of two single 
units into a spurious one. Figs 3B and S4B illustrate the course of a time interval comparison task (TICT) [45,46] in which 
animals compare the duration of two intervals (Int1 and Int2, ranging from 400 ms to 2000 ms) and report which one is lon-
ger. During the 2-second working memory period between the intervals, the animal must retain Int1-related information in 
order to compare it with Int2. The anatomical diagram in the same panel shows the location of the dorsal premotor cortex 
(DPC), where the neurons in Figs 3C–3E and S4C–S4E were recorded from. Figs 3C and S4C show the raster plots (top) 
and firing rates (middle), aligned to the start of the delay period, of a multiunit entity created by merging two putative neu-
rons identified through the UMAP-based pipeline, but that were combined in a single (higher firing rate) neuron when the 
PCA-based method was used. The activity of the two individual neurons is shown in Figs 3D, 3E, S4D, and S4E. Notably, 
the putative neuron in Fig 3D has a relatively lower firing rate but carries significantly more information about Int1 during 
the delay period, as revealed by mutual information analyses (bottom panels in Figs 3C–3E and S4C–S4E). The multiunit 
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activity in Fig 3C carries significantly less information than the combined values of the two isolated neurons, which pro-
vides evidence and an experimental example of how merging different neurons into spurious multiunits can erase poten-
tially critical information carried by low-firing-rate neurons. Although the putative neuron in S4D Fig is almost silent most of 
the time—which is probably a key reason for why it is likely to be missed during sorting—it carries more information about 
Int1 at the onset of the delay period than both the multiunit entity in S4C Fig and the other putative neuron in S4E Fig.

S5 Fig shows a similar effect in a different task and brain area. S5B Fig outlines the course of a tactile detection 
task [44,46,59] and shows the location of the ventral premotor cortex (VPC), where the neurons in S5C–S5E Fig were 
recorded from. In this task, the animals report whether a vibrotactile stimulus (0–24 μm in amplitude) is present or not. 
S5C Fig displays the multiunit activity obtained by merging the spikes of the two putative neurons in S5D and S5E Fig. 
The two neurons in S5D and S5E Fig differ substantially in both firing rates and encoding dynamics: the neuron in panel E 

Fig 3.  Impact of multiunit merging on neural information encoding. Multiunit merging, a common artifact in spike sorting, combines spikes from 
multiple neurons into a single “putative neuron.” This inflates firing rates—particularly masking low firing rate neurons—and obscures their distinct 
information-encoding properties. (A) Schematic illustrating how merged activity from two true neurons can appear task-irrelevant, as the combined firing 
pattern shows little difference between two task conditions (green and orange vs. purple). Proper sorting reveals that each neuron encodes unique 
information. (B) Time Interval Comparison Task (TICT). Monkeys compare two intervals (Int1 and Int2) separated by a 2-second delay, then press one of 
two buttons to indicate which interval was longer. Int1 (400 to 2000 ms) is shown in shades of blue. Data was recorded in dorsal premotor cortex (DPC, 
shown in brain cartoon). (C) Top: Raster plot of a misclassified multiunit in the DPC, aligned to the end of (t = 0 = start of the delay). Gray rectangles 
indicate Int1 backpropagated from t = 0. Black ticks indicate spikes during correct trials; red ticks indicate spikes during error trials. Bottom: The average 
firing rate and mutual information fail to show meaningful encoding. (D) The first neuron contributes to the multiunit (panel C). Despite a low firing rate, 
it exhibits a clear positive encoding of Int1 (larger stimulus intensities produce higher firing rates). (E) The second neuron shows a strong early sensory 
response followed by a negative encoding of Int1. Merging these two distinct patterns masks each neuron’s specific role in information processing. The 
multiunit and UMAP sorted neuronal activity used to generate the raster plots and firing rates is publicly available at [46], and the code to compute firing 
rates and mutual information is available at [52].

https://doi.org/10.1371/journal.pbio.3003527.g003

https://doi.org/10.1371/journal.pbio.3003527.g003
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persistently maintains a stable encoding during the delay period, while the neuron in panel D responds strongly, but only 
transiently, to stimulus presentation and its activity rapidly decreases during the delay period. Merging these two putative 
neurons completely conceals their distinctly different encoding profiles–most critically, it erases the persistent encoding of 
the lower-firing-rate neuron (E) and diminishes the nuanced, non-monotonic delay activity of the higher-firing-rate neuron 
(D).

The experimental evidence provided in this section shows that dimensionality reduction methods that are sensitive to 
data-point density—such as PCA–likely fail to detect and isolate the neurons with lowest firing rates. Their spikes tend 
indeed to be subsumed into multiunit clusters dominated by higher-firing-rate neurons. By drawing on topological and 
geometric principles, UMAP-based spike sorting addresses this issue effectively, preserving the unique contribution of 
low-firing-rate neurons and safeguarding against the loss of valuable information.

UMAP-based spike sorting improves neural information encoding analysis by enhancing low-firing-rate neurons 
detection

In this section, we applied UMAP-based sorting to recordings from three brain areas—DPC, VPC, and secondary somato-
sensory cortex (S2)—while animals perform a tactile detection task and TICT [45–47] previously outlined in Figs 3B, S4B, 
and S5B, respectively. Our objective is to show that isolating low-firing-rate neurons through effective spike sorting not only 
increases the total number of identified cells but also boosts the amount of information extracted from the data. Figs 3, S4, 
and S5 report examples of this phenomenon. Fig 4 reveals that the same phenomenon is much more general.

Fig 4A shows the firing-rate cumulative probability distribution of the foreperiod activity (data in [47]) from the putative 
neural population sorted using either UMAP-based or PCA-based methods from DPC, VPC, and S2 (brain views on Fig 4B) 
recordings from TICT and tactile detection task. In total, 129 (UMAP) and 96 (PCA) neurons were identified in DPC, 228 
(UMAP) and 145 (PCA) in VPC, and 134 (UMAP) and 60 (PCA) in S2. In every dataset, UMAP-based sorting consistently 
identifies more lower-firing-rate than PCA-based.

Performing this analysis in each brain area using the activity of the tactile detection task [46]—S2 (Fig 4C), VPC (Fig 4D), 
and DPC (Fig 4E)—we confirmed that UMAP-based sorting consistently detects a larger population of low-firing-rate neurons 
across all regions (left panels). Furthermore, in all areas, UMAP-based sorting significantly increased the total number of simul-
taneously recorded neurons (central panels). This increment in simultaneously recorded neurons count is critical for exploring 
pairwise spike correlations [1–3]. For instance, in VPC, the number of simultaneously recorded neurons—obtained across 12 
recording sessions—rises from roughly 57 to nearly 113, thereby increasing the average number of neuron pairs from about 
5 to almost 9. Finally, the mutual information extracted from neuronal spikes about task parameters was consistently higher 
when using UMAP-based sorting (right panels). This observation is consistent with the enhanced clarity and cluster separation 
achieved by UMAP-based sorting, highlighted in Fig 3. In short, UMAP-based sorting not only identifies more neurons—particu-
larly those with low firing rates—but also enhances the overall information decoded from those cells.

Comparing UMAP-based sorting and SpyKING CIRCUS in multielectrode array recordings:  
The role of spatial information

In this section, we explore the performance and potential of UMAP-based spike sorting on MEA recordings [13,42]. We 
compare UMAP-based sorting with SC [13], a widely used, high-performing software specifically designed for in vivo and 
in vitro MEAs that exploits the MEA spatial information redundancy by processing all electrodes simultaneously for more 
accurate spike sorting. Performance was quantified using the dataset [42] from the original study [13], which includes 
extracellular recordings from a surface MEA alongside intracellular recordings that define a GT neuron.

We conducted the assessment using two different approaches for the UMAP pipeline. First, we applied UMAP inde-
pendently to the data from each electrode. While this approach does not leverage the spatial redundancy of the MEA, 
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it allows us to assess the inherent robustness of the dimensionality reduction method to the lower signal-to-noise ratios 
(SNRs) encountered as the electrode-to-GT neuron distance increases. Here, we identified the sorted unit corresponding to 
the GT neuron and computed the F1 score retrospectively at each electrode location within a 5 × 5 grid centered on the GT 
neuron (Fig 5A–5D). The position of each electrode in the grid is represented by a coordinate (i, j), i, j = –2, . . . , 0 . . . ., 2, 
with (0, 0) corresponding to the electrode closest to the GT neuron.

Remarkably, UMAP-based sorting applied independently to single channels exhibited a gradual decay in F1 score as 
the distance increased (Fig 5A and 5B), suggesting that UMAP provides a low-dimensional embedding that is robust to 
low SNR, even when restricted to only use single-channel data. Fig 5C and 5D summarize these observations by grouping 
electrodes with similar distances from the GT neuron and plotting how F1 score changes with distance. It becomes evident 
how F1 score slowly decreases, remaining significantly above zero up to 40 µm away (more examples on S6A Fig). An 

Fig 4.  Uniform Manifold Approximation and Projection (UMAP)-based sorting enhances detection of low-firing rate neurons and boosts 
mutual information. (A) Cumulative average firing rate distributions for UMAP-based and principal component analysis (PCA)-based spike sorting 
reveal that UMAP identifies more low-firing neurons, reflecting greater sensitivity to sparse firing. (B) Anatomical maps illustrate three cortical regions: 
ventral premotor cortex (VPC, green), secondary somatosensory cortex (S2, red), and dorsal premotor cortex (DPC, blue). Dotted lines in the lightly 
shaded oval above S2 indicate recording sites in deeper cortical layers—areas involved in higher-level processing and decision-making. (C–E) Compari-
sons of PCA and UMAP sorting across these regions. Left: UMAP consistently recovers a larger number of low-firing neurons based on cumulative firing 
rate distributions: 134 (UMAP) and 60 (PCA) neurons were identified in S2; 228 (UMAP) and 145 (PCA) in VPC; 129 (UMAP) and 96 (PCA) in DPC. 
Center: It also yields higher overall neuron counts from the same sessions: average number of neuron pairs in S2 from about 4 to almost 10; VPC from 
about 5 to almost 9; DPC from about 6 to almost 8. Right: UMAP reveals greater mutual information (MI) compared to PCA, indicating stronger informa-
tion decoding across all brain regions. In summary, UMAP effectively increases neuron recovery, captures low-firing activity, and enhances the informa-
tion gained from cognitive task data. The neuronal activity recorded during the foreperiod of the cognitive tasks, used for the cumulative distributions, 
is available at [47]; the single neurons from different sessions used for the mutual information calculations can be found at [46]; and the corresponding 
analysis code is available at [52].

https://doi.org/10.1371/journal.pbio.3003527.g004

https://doi.org/10.1371/journal.pbio.3003527.g004
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exponential fit of the data across MEAs in Fig 5D offers a more quantitative view of this smooth spatial decay, yielding a 
characteristic length constant of τ = 27.09 μm.

Additionally, UMAP-based sorting is robust not only to heterogeneous firing rates and noise but also to signal varia-
tions arising from the distance between electrodes and neurons. As shown in S6B and S6C Fig, this method accurately 

Fig 5.  Spatiotemporal spike sorting on multi-electrode array (MEA) data: Uniform Manifold Approximation and Projection (UMAP) vs. SpyKING 
CIRCUS (SC). We compare spatial sorting performance on MEA data using UMAP-based sorting vs. SC, with intracellular recordings as ground truth (GT). 
Performance is measured by the F1 score (see S2 Fig). (A, B) Spatial matrix of F1 scores for an exemplary MEA (A) and average across all MEAs (B) using 
single-channel UMAP-based sorting (applied independently to each). The gradual decline in values with the distance from the electrode indicates that spike 
detection is still reliable at larger separations. The average F1 score matrix from different MEA recordings shows a similar gradual decrease, emphasizing 
UMAP’s ability to detect signals at larger distances from the GT neuron. (C) F1 score vs. distance for the exemplary MEA shown in A. UMAP (blue trace), 
maintains a good detection performance (F1 score) with distance at even 40 µm far from the central electrode. Triangles indicate the overall F1 score when 
analyzing the entire MEA signal simultaneously (UMAP simultaneous full MEA, dark blue; SC simultaneous full MEA, light blue). (D) Average F1 score vs. 
distance across all MEAs shows that UMAP-based sorting recovers GT spikes consistently across tens of micrometers. Dashed lines show the exponential 
fit to F1 values as a function of electrode’s distance. (E) UMAP geometric analysis (dark blue trace), where the signals of neighboring electrodes (exem-
plary MEA above) are progressively added before the dimensionality reduction step (small lightning’s represent signals of the different electrodes added 
before each dimensionality reduction instance). Dashed lines represent the overall F1 values shown as triangles in C. (F) Average of the geometric analysis 
employing UMAP across all MEAs. Long dashed lines represent average of overall F1 values using UMAP (dark blue) and SC (light blue) represented with 
triangles in D. MEA recordings supporting the analyses are available at [42], and the code necessary for the analyses is available at [52].

https://doi.org/10.1371/journal.pbio.3003527.g005

https://doi.org/10.1371/journal.pbio.3003527.g005
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identifies the same spike across neighboring electrodes (see panel C, middle for a clear example). This performance 
highlights UMAP’s ability to leverage both spatial and temporal information.

Next, to make a fair comparison of the way SC and UMAP-based sorting uses spatial information, we implemented two 
possible multielectrode versions of the UMAP pipeline. In the first one, we computed F1 score using the stacked signals 
from all electrodes and compared it with the one obtained with SC (UMAP and SC full MEA, blue and light-blue triangles 
in Fig 5C and 5D). With this multielectrode implementation, UMAP-based sorting achieved a superior performance as 
compared to SC, showing its power for spike sorting relying on distance metrics in extremely high dimensions. For the 
second implementation, we employed a more geometric approach (Fig 5E and 5F). Specifically, spike waveforms from 
increasingly more distant neighboring electrodes were progressively aggregated prior to the dimensionality reduction step 
(see schematic on Fig 5E), which should allow UMAP to exploit spatiotemporal correlations the same way SC does. The 
results demonstrate that UMAP-based sorting performance remains highly stable when integrating spatial information 
progressively (see S7 Fig for more individual examples), making it a powerful candidate for multielectrode spike sorting.

Finally, to understand the factors limiting performance as the distance from the GT neuron increases, we dissected the 
F1 score into its components (S8 Fig), that is, precision, the probability that a sorted spike belongs to the GT neuron, and 
recall, the probability that a GT spike is correctly sorted. Both probabilities exhibit distance-dependent decay. However, 
recall drops more sharply than precision (S8C and S8F Fig), indicating that lost GT spikes—rather than contamination 
from spikes of other neurons—are the primary driver of the decrease in F1 score as distance increases. Interestingly, 
while the overall precision was comparable between the UMAP and SC methods when using all electrodes (S8C Fig, 
light-blue and cyan triangles, respectively), SC’s recall was substantially lower than that of UMAP-based sorting (S8F 
Fig, yellow and orange triangles, respectively). This indicates that while both methods have similar rates of contamination 
(false positives), SC tends to miss a significant number of GT spikes that the UMAP approach successfully retains.

Comparing UMAP-based and feature-based spike sorting in multielectrode recordings

In Fig 6, we applied UMAP-based sorting to extracellular multielectrode recordings obtained in Buzsáki’s lab [41]. This 
dataset utilizes tetrodes [43], which are specifically designed to increase the separability of neural spike waveforms by 
recording them simultaneously on multiple closely-spaced electrodes. While we demonstrated in the previous section  
(Fig 5) that the UMAP pipeline effectively integrates multichannel information, here we analyze the recording of each 
electrode separately. This approach allows us to isolate the intrinsic robustness of the dimensionality reduction methods 
(UMAP, Wavelet, PCA) when dealing with varying signal quality across the electrodes, independent of spatial integra-
tion techniques. This complements the analysis in Fig 5 by further testing the quality of the low-dimensional embedding 
provided by each method in low-SNR conditions. Also in this database, an intracellular electrode was used to define a GT 
neuron whose extracellularly recorded spike waveforms are collected in SGT. Simultaneously, four extracellular electrodes 
were placed at varying distances from the GT neuron (Fig 6E). UMAP-based sorting of electrode 1 data revealed four 
well-separated clusters (Fig 6A) associated with the waveforms in Fig 6D. One of the clusters almost perfectly overlaps 
with SGT, indicating successful identification of the GT neuron. The other three cluster points to three other putative neu-
rons. Fig 6H and 6K show the same data points as Fig 6A and colored according to the same UMAP-based clustering, but 
projected using Wavelet decomposition and PCA, respectively. As detailed below, it is already clear from these projec-
tions that neither Wavelet- nor PCA-based sorting are able to identify and sort the GT neuron. In Fig 6F, data points that 
are shared with Fig 6A (i.e., spikes recorded on both electrode 1 and 3) are colored according to the same cluster colors 
as Fig 6A, whereas data points associated with spikes recorded on electrode 3 but not electrode 1 are drawn in purple. 
Notice that electrode E

3
 is farther from the GT neuron than E

1
 (Fig 6E), making it more difficult to sort spikes from the GT 

neuron, in agreement with Fig 5.
The 1st line of Fig 6B, 6I and 6L, shows the GT neuron raster plot, drawn in green, while the i -th line (starting from 

bottom to top, i = 1, . . . , 4), shows the raster plot of the spike cluster Si sorted from electrode Ei (either through UMAP-, 
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Fig 6.  Comparative analysis of spike sorting using Uniform Manifold Approximation and Projection (UMAP) vs. feature-based methods in in 
vivo extracellular recordings. Recordings from Buzsáki’s lab [26] include an intracellular electrode serving as ground truth (GT, green) and four extra-
cellular electrodes (E1–E4) placed at different distances from the GT neuron. (A) UMAP-based sorting on electrode E1 identifies four clusters (distinct 
shapes). One cluster (SE1, circular markers) overlaps substantially with the GT neuron, while the other three represent separate putative neurons. (B) 
Raster plots for GT clusters found by UMAP on each extracellular electrode, alongside the GT neuron’s raster. Each raster line is horizontally split; the 
color saturation of the top half represents the precision (percentage of cluster spikes that come from the GT), and the color saturation of the bottom half 
indicates the recall (percentage of GT spikes captured by that cluster) (see color bar in G). Electrodes E1 and E2 align well with the GT neuron (uniform 
dark blue), whereas E3’s cluster is contaminated (low precision), and E4’s cluster loses many GT spikes (low recall). (C) Inclusion Index matrix Mi,j for 
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Wavelet-, or PCA-based methods, as indicated in the panel titles) that most closely matches (in the sense of maximizing 
the F1 score) the GT neuron spike cluster SGT. Observe that each raster plot is chromatically split into two halves, distin-
guished by different blue saturation levels, along the horizontal axis of the plot. The two saturation levels represent the 
sorting performance of the raster spike cluster with respect to two different metrics, namely, precision (top half) and recall 
(bottom half). Hence, only the raster plots of spike clusters with a high F1 score are drawn in a roughly uniform, highly 
saturated blue tone.

The cluster obtained from electrode E
3
 in Fig 6B using UMAP-based sorting exhibits low precision but high recall, 

suggesting contamination with non-GT spikes (S2B Fig). Conversely, the cluster obtained from electrode E
4
 exhibits high 

precision but low recall, indicating a significant loss of GT neuron spikes (S2C Fig). By contrast, the two clusters obtained 
from electrodes E

1
 and E

2
 are characterized by high precision and high recall, thus identifying the GT neuron spikes with 

high quality (Fig 6A). Fig 6C shows the remaining elements of the Inclusion Index matrix (Mi, j) that can be used to investi-
gate inclusion relationships between the spike clusters sorted from different electrodes (see S2 Fig).

Fig 6H–6M shows the result of the same analysis but using Wavelet decomposition and PCA, respectively, instead of 
UMAP for the dimensionality reduction step. As shown in Fig 6H, when only the two largest Wavelet coefficients are used 
to project the data, all spike waveforms are merged into a single cluster. In spite of this, the utilization of the six most 
considerable coefficients enhances the separation process, leading to the improved clustering results shown in Fig 6I and 
6J; however, none of the clusters derived from the Wavelet method as precisely resembles SGT as those derived through 
UMAP-based sorting. The cluster obtained from electrode E

1
 is of the best quality of sorting, although it undergoes a com-

paratively high loss rate. In contrast, the clusters obtained from electrodes E
2
, E

3
, and E

4
 are of inferior qualities of sorting 

because they experience a high contamination rate. PCA-based sorting is worse and consistently produces big, highly 
contaminated clusters of high-firing frequency multiunit activity for all electrodes.

In summary, when analyzing the electrodes independently, only UMAP-based spike sorting reliably separates GT 
neuron spikes from at least two electrodes. Wavelet-based and PCA-based methods either merged multiple neurons’ 
spikes (high contamination) or failed to capture a significant fraction of the GT neuron’s spikes (high loss). These results 
underscore that UMAP provides a superior low-dimensional embedding compared to PCA and wavelet-based methods, 
enabling effective sorting even in the challenging, low-SNR conditions encountered as the electrode-to-neuron distance 
grows, consistent with the findings in Fig 5.

Discussion

Spike sorting, i.e., the identification and classification of single neuronal spikes from extracellular electrophysiological 
recordings, is essential to understanding neural codes. Conventional approaches typically use thresholding techniques 
in conjunction with linear dimensionality reduction methods, e.g., PCA or Wavelet decomposition, followed by clustering 
[16,17,60]. Although effective for high-amplitude or regularly firing neurons, such linear approaches are ineffective at sep-
arating clusters that are divided by faint, nonlinear waveform disparities, particularly for large-scale recordings, thus lead-
ing to neuron misclassification and manual sorting of large quantities [6]. In contrast, nonlinear dimensionality reduction 

UMAP, illustrating overlap of GT spikes across electrode clusters. Darker squares for E1 and E2 reflect accurate capture of GT spikes, while E3 and E4 
show contamination and loss, respectively. (D) UMAP-sorted waveforms from E1, color-coded to match the clusters in (A). (E) Experimental schematic 
from Buzsáki’s lab, showing the intracellular GT neuron and four extracellular electrodes. (F) UMAP sorting on electrode E3 highlights significant contam-
ination, with many not-GT spikes mislabeled as GT (shown in a separate color). (G) Color bar for the inclusion matrices (C, J, M). (H–J) Wavelet-based 
sorting: (H) projection of spikes from E1 in Wavelet feature space, identifying multiple clusters. (I) Raster plots for the GT clusters on each electrode. The 
GT neuron’s pattern is not well isolated. (J) Inclusion matrix shows low, inconsistent overlap for GT spikes across electrodes. (K–M) PCA-based sorting: 
(K) PCA projection for E1, resulting in broad, overlapping clusters. (L) Raster plots for these GT clusters showing substantial contamination. (M) Inclusion 
matrix reflects the poor specificity of PCA-based clustering, with larger fractions of non-GT in each putative cluster. The data containing simultaneous 
intracellular and extracellular recordings from the hippocampus can be found at [43], and the analysis code is available at [52].

https://doi.org/10.1371/journal.pbio.3003527.g006

https://doi.org/10.1371/journal.pbio.3003527.g006
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methods—especially UMAP—provide mathematically rigorous embeddings that preserve both global and local topological 
relationships within spike waveform data [24,25].

While analyzing massive datasets without spike sorting has recently gained popularity for exploring population-level 
latent dynamics [61,62], critical single-neuron analyses can be severely compromised if sorting is omitted [63]. Vital 
insight, for example, derived from the relationship between noise correlation and signal correlation, depends largely on 
properly sorted single-neuron data [1–3]. Moreover, signal correlation must be orthogonal to noise correlation to achieve 
maximum population-encoded information [3,64]. Neglecting spike sorting risks losing valuable information about  
single-neuron dynamics, obscuring fundamental properties of neural computation. Our spike-sorting pipeline directly 
addresses these challenges, leveraging UMAP’s nonlinear embeddings to successfully separate clusters based on subtle 
waveform differences with high precision, outperforming linear methods by a large margin in a range of experimental con-
ditions (Figs 2–4). This capacity not only reduces manual curation but also ensures complete neuron detection, including 
low-firing units typically omitted.

One important subset of neurons that is usually neglected consists of low-firing or “silent” neurons [38,58]. Conven-
tional approaches are typically not able to identify these neurons because of the low firing rates and low spike amplitudes, 
which are difficult to discriminate using variance-based clustering [10,65]. In contrast, UMAP’s robustness to variability 
in spike densities provides strong detection and classification of “silent” neurons. Empirical results indicate that UMAP 
obtains a very high sorting accuracy even under extreme spike loss of up to 80% and that linear methods suffer a drastic 
reduction in performance. Thus, the application of UMAP for sorting facilitates the detection of more diverse and accu-
rate neuronal populations, which greatly simplifies subsequent neural coding analysis and interpretation in cognitive 
neuroscience research [1–3,64]. Further, by maximizing both the number and diversity of the detected neurons, UMAP 
substantially improves studies on neural information encoding. Low-firing neurons, which are conventionally disregarded 
by default procedures, carry valuable, stable information with finely graded response variability [3,39,64]. Our data for 
cognitive tasks demonstrate that omission of such neurons substantially distorts firing rate estimates and mutual informa-
tion estimates of task-relevant variables. By accurately preserving low-firing neurons, UMAP yields higher quality sorted 
datasets and more valid interpretations of population codes, noise correlations, and task-related neural dynamics [6,7,10].

Another significant advantage of applying UMAP to spike sorting is its remarkable ability to leverage the spatial and 
temporal features contained in MEA recordings. By implementing a pipeline [52] that integrates features across electrodes 
prior to dimensionality reduction (geometric analysis), we demonstrated that UMAP performs outstandingly well when 
capturing spatial features as conventional specialized MEA sorting algorithms that use the full array data (Fig 5). We 
hypothesize that UMAP’s capacity to identify complex, nonlinear structures and optimize its distance in higher dimensions, 
allows it to exploit subtle spatiotemporal signatures effectively. Furthermore, UMAP demonstrated a superior performance 
even when analyzing electrodes independently (Figs 5 and 6), highlighting the intrinsic quality of the nonlinear embedding 
in low-SNR regimes. This robust spatiotemporal performance enables the identification of genuine spikes across a wider 
area of the array (S6 Fig), improving neuronal identification and the analysis of functional connectivity [66–69]. Besides, 
UMAP’s insensitivity to temporal fluctuations like electrode drifting and neuron bursting (S3C Fig), these advantages con-
firm its suitability for large-scale MEA, closed-loop experimental paradigms, and real-time applications, where stable and 
high-quality neural representations are essential [21,70–72].

Computational scalability is yet another key benefit of our UMAP-based pipeline, essential for modern high-density 
electrophysiological experiments with thousands of neurons recorded simultaneously [6,9]. In contrast to methods like 
t-SNE or Isomap, which become intractable with large datasets, UMAP scales roughly linearly with dataset’s size [24,25]. 
Our results consistently demonstrate UMAP’s higher performance compared to linear methods, making it especially  
beneficial for real-time or near-real-time spike sorting in closed-loop experimental paradigms. Observably, the stable non-
linear embedding of UMAP, combined with the density-based clustering of HDBSCAN, enables an end-to-end, fully auto-
mated spike sorting pipeline. Unlike clustering algorithms such as Gaussian mixture models or K-means, which require 
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predefined cluster numbers and struggle with non-convex cluster borders, UMAP-HDBSCAN automatically determines 
optimal clusters and considers outliers as noise. This automation significantly reduces and accelerates the spike sorting 
pipeline, with minimal manual intervention and maximal reproducibility.

A practical consideration when implementing UMAP is the selection of hyperparameters, most notably the number of 
neighbors (n_neighbors), which influences the balance between preserving local versus global dataset structures. While 
this parameter can affect the appearance of the embedding, we found that the sorting results (the clusters identified by 
HDBSCAN) were robust across a wide range of values. In our analyses, we simply utilized the default UMAP parameters 
(and in particular n_neighbors = 15; see Methods [52]), achieving high performance without extensive tuning. This insen-
sitivity to parameter choice, combined with HDBSCAN’s automatic determination of cluster numbers, underscores the 
suitability of this pipeline for fully unsupervised, high-throughput analysis.

Relative to other contemporary spike sorting approaches with UMAP, like WaveMAP [31] (used for cell type classifica-
tion), which involves graph-based clustering, or P-sort [56] (a spike sorting method tailored for the cerebellum), our method 
utilizes only UMAP along with HDBSCAN clustering. While recent deep-learning methods like SimSort [16,17,60] have 
demonstrated excellent performance by leveraging extensive training on simulated data, our approach provides a powerful, 
unsupervised alternative that does not require prior training or assumptions about waveform shapes. This direct and efficient 
method obviates additional preprocessing or specialized clustering algorithms, thus enhancing computational efficiency, 
enabling automation, and increasing generalizability to various types of neurons and experimental conditions. Consequently, 
our method effectively captures a wider array of neurons, substantially improving analyses of population-level neural coding 
and theoretical insights into neural computation. Future studies could further validate our method’s broad applicability, poten-
tially integrating deep learning techniques for a more powerful, comprehensive unsupervised sorting pipeline.

Methods

Ethics statement

Neuronal recordings were obtained from S2, VPC, and DPC while monkeys performed the detection task (DT) and the time 
interval comparison task (TICT). All animal procedures were conducted in accordance with NIH and Society for Neuroscience 
guidelines. Protocols were approved by the Institutional Animal Care and Use Committee of the Instituto de Fisiología Celular, 
Universidad Nacional Autónoma de México. Study approval numbers: RRP247-24 for DT and RRP246-24 for TICT.

Spike sorting workflow

Our spike sorting procedure has three main steps: data preprocessing, feature extraction, and clustering [52]. The inno-
vation in our method lies in improving feature extraction by nonlinear dimensionality reduction of the spike waveforms and 
hierarchical clustering for classification as neural units.

Data preprocessing

To minimize the noise within the waveforms, the third-order Savitzky–Golay filter was used, with a window of 5 samples. 
This filter effectively smooths the signal while preserving essential spike features. After filtering, waveforms are interpo-
lated using a Piecewise Cubic Hermite Interpolating Polynomial, which maintains a smooth interpolation and preserves 
the original waveform shape. Each spike is then aligned at its minimum, followed by downsampling to return to the original 
point count while preserving alignment.

Feature extraction

Following preprocessing, we applied UMAP [24] to achieve nonlinear dimensional reduction of the waveforms, using 
hyperparameters set as: n_components = 2, min_dist = 0, and n_neighbors = 15 [52]. To gauge performance in terms of 
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dimensionality, we established a grid that was purposed for hyperparameter tuning. This included searching the n_neigh-
bors parameter while maintaining min_dist at 0, thereby ensuring maximum fidelity of density in the low-dimensional 
space. We then employed the Kolmogorov-Smirnov test to calculate the divergence between the normal distribution and 
the distribution of data in the low-dimensional space. The hyperparameters with the highest divergence were finally estab-
lished. UMAP utilizes mathematical principles based on graph theory and differential geometry, thus allowing it to capture 
local and global arrangements of the data well. In comparison to other approaches, like t-SNE, UMAP offers improved 
performance in terms of global structure preservation, thus being particularly beneficial for large multidimensional data 
sets [24]. By maintaining nonlinear relationships between the data, UMAP offers a faithful low-dimensional representation 
of spike waveforms.

Clustering

On the UMAP-reduced data, we utilized HDBSCAN [51] for clustering. HDBSCAN creates a dendrogram of clusters by 
point connectivity with the help of a minimum distance parameter [52]. Through condensation of the dendrogram, HDB-
SCAN identifies stable clusters, traveling down the hierarchy until an optimum density threshold is met, and selecting the 
most prominent clusters. Noise is natively handled in HDBSCAN by labeling points outside of dense regions as noise, and 
so it is an ideal algorithm to pair with UMAP for spike sorting. This low-dimensional subspace from UMAP also enables 
manual visualization and curation, allowing further validation by checking unit stability, ISI violations, and waveform 
consistency.

Multielectrode array (MEA) analysis and spatial accuracy

We utilized a publicly available dataset [13,42] containing simultaneous intracellular (GT) and extracellular recordings 
from a 256-channel MEA to compare the performance of UMAP-based sorting and SC (Fig 5). SC was run using default 
parameters, processing all channels simultaneously (SC full MEA). For the UMAP pipeline, we employed three distinct 
approaches to assess robustness and the integration of spatial information:

1.	Single-channel UMAP: UMAP and HDBSCAN were applied independently to the waveforms extracted from each 
electrode (Figs 5C, 5D, and S6A). The F1 score was calculated for the cluster best matching the GT neuron at each 
location. This approach assesses the robustness of the embedding under varying SNR conditions without leveraging 
spatial redundancy.

2.	 UMAP multichannel analysis (geometric and simultaneous): To leverage spatiotemporal information, we implemented 
strategies based on waveform concatenation. First, a reference “hotspot” electrode (the electrode closest to the GT neu-
ron, typically showing the highest signal amplitude or F1 score in the single-channel analysis) was identified. Spike times 
detected on this hotspot electrode were used as the temporal reference. For each detected spike event, waveform snippets 
(61 samples; 30 pre- and 30 post-trough) were extracted from the hotspot and a specified set of neighboring electrodes 
at the corresponding time point. These snippets were concatenated end-to-end to form a single high-dimensional feature 
vector (“super-waveform”). This concatenated dataset was then processed using the UMAP and HDBSCAN pipeline.

•	 Geometric analysis (Cumulative): We employed a cumulative approach to analyze the impact of progressively integrat-
ing spatial context. We defined concentric rings of neighboring electrodes centered on the hotspot (schema on Fig 5E). 
Starting with the hotspot, we iteratively incorporated electrodes from adjacent rings. In each step, the waveforms from the 
accumulated set of electrodes were concatenated, and the F1 score was calculated (Figs 5E, 5F, and S7A–S7F).

•	 Full MEA (Simultaneous): In this approach, waveform snippets from all available electrodes across the MEA 
were concatenated simultaneously. UMAP and HDBSCAN were then applied to calculate a single, overall F1 score 
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representing the performance utilizing the entire array (see triangles in Fig 5C, 5D; and dashed lines in Figs 5E, 5F, 
and S7A–S7F). Also, average values for precision and recall were obtained by this method (see triangles in S8B and 
S8E Fig).

Performance metrics and Inclusion Index Matrix

To compute the Inclusion Index Matrix Mi, j (S2 Fig), we evaluated the percentage of spikes in raster plot i that also appear 
in raster plot j (Ii, j). Mi, j is a directional index that quantifies the overlap between spike trains. As shown in Figs 6 and S2, 
this matrix is generally not symmetric.

In cases where spike times belong to the GT (SGT), we establish the number of matched (True Positives, TP), missed 
(False Negatives, FN), and false-positive (FP) spikes with respect to a cluster k (Sk), using a small time tolerance ε:

1.	True Positives (TPk): Spikes in Sk matching SGT (nkmatch =
{∣∣∣tkj – si

∣∣∣ < ε
}
).

2.	False Negatives (FNk): Spikes in SGT not matched in Sk (nkmiss := nGT – nkmatch).

3.	False Positives (FPk): Spikes in Sk not matching SGT (nkfp := nk – nkmatch).

Using these definitions, we calculated the standard performance metrics:

•	Precision (Pk) : Pk =
TPk

TPk+FPk

•	Recall (Rk) : Rk =
TPk

TPk + FNk

If a GT neuron is available, we define the overall sorting performance using the F1 score:

•	 F1 Score (F1k) : F1k =
2∗(Pk∗Rk)
Pk+Rk

Note that precision and recall correspond to the GT column (Ik, GT) and the GT row (IGT, k), respectively, in the inclusion 
matrices displayed in Fig 6. As shown in S2 Fig, low precision corresponds to high contamination, while low recall corre-
sponds to high spike loss.

Comparative analysis on different databases

The “Wave_Clus” [16] comprises 594 distinct average spike waveforms, derived from actual recordings, which served 
as templates for generating synthetic signals [40]. Randomly chosen spikes were added at arbitrary times and with 
varying amplitudes to replicate background noise. Simulation of various SNR conditions was accomplished by changing 
the ratio of the signal amplitude to noise amplitude. More details about the development of this database are given in 
reference [16,40].

We employed four large datasets in our study: C_Easy1, C_Easy2, C_Difficult1, and C_Difficult2. C_Easy1 had eight 
noise levels ranging from 0.05 to 0.4 with increments of 0.05, while the other three datasets included four noise levels 
ranging from 0.05 to 0.2.

As described in the original work, noise level is represented in terms of its standard deviation relative to the peak ampli-
tude of the spikes. All spike classes had a peak value of 1. “Easy” and “difficult” describe the level of overlap of spikes 
in each dataset. To test the effectiveness of our method in complex scenarios, we used synthetic datasets simulating 
electrode drifting and bursty neuronal activity. Electrode drifting was modeled by progressively and linearly decreasing 
the amplitude of one spike class over time, from a value of 1.0 at the beginning of the recording to 0.3 at the end. Bursty 
activity was simulated using sequences of consecutive spikes with decaying amplitudes (e.g., 1.0, 0.7, and 0.5), in which 
action potentials were separated by an average of 3 ms (SD = 1, range: 1–5 ms) [16]. The results were then compared 
with the ones obtained from wavelet- and PCA-based methods. Spikes were detected from continuous recordings using 
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the ground-truth spike times available in the database. Each spike contained 64 sampling points, and the database was 
sampled at a frequency of 24 kHz.

In addition, the Buzsáki dataset [41,43] consists of the extracellular and juxtaposed intracellular recordings of 30 
Sprague-Dawley anaesthetized rats. Electrical activity recordings were done at the hippocampus CA1 pyramidal layer.

For rodent hippocampal data [41,43] and synthetic data [16,40] (Figs 2 and 6), we compared UMAP with PCA and 
Wavelets, using the optimal number of PCA components and the optimal number of wavelet features. HDBSCAN cluster-
ing parameters were kept consistent across tests. The highest F1 score value cluster was used for comparison with the 
GT. For Fig 2, only spikes corresponding to a single synthetic neuron were treated as GT.

Synthetic data simulations

We utilized the synthetic dataset [40] provided by Quian Quiroga and colleagues [16] to evaluate sorting performance 
under controlled conditions (Figs 2 and S3).

Noise and low firing rates.  Background noise (η) is defined as the standard deviation of the background noise 
relative to the amplitude of the spike waveforms [16,40]. Following the methodology of [16], this noise is modeled as 
structured (colored) noise, generated by summing spike waveforms from non-sorted background unit at random times. To 
simulate low firing rates (“silent” neurons), we randomly subsampled one of the GT clusters.

Bursting activity (amplitude variation).  To simulate the amplitude variations often observed during bursting activity 
(e.g., amplitude decrease during high-frequency firing), we modulated the amplitude of the spike waveforms within a 
cluster. The amplitude of the spikes was varied by multiplying the template waveform by a factor drawn from a uniform 
distribution ranging from 0.5 (50% reduction) to 1.0 (original amplitude).

Waveform shape variation (Drifting simulation).  To simulate gradual changes in spike shape over time (often 
caused by electrode drift), we implemented a morphing procedure between two distinct GT templates (T1 and T2). The 
shape of spike k in the sequence was generated as a linear interpolation: Sk = (1 – αk)T1+ αkT2. The interpolation 
factor αk varied linearly from 0 to 1 across the sequence of spikes, simulating a gradual transition from T1 to T2 over the 
duration of the recording.

Evaluating spike sorting performance

To assess the accuracy of different spike sorting algorithms, we used datasets with known GT and calculated performance 
metrics in terms of F1 score, precision, and recall (see S2 Fig).

Spatial accuracy

For an in vitro mouse retinal MEA (256 channels), UMAP-based sorting was compared to SC (Fig 5), using database- 
specific parameters [13,42]. To assess spatial accuracy, the F1 score for each electrode was fitted to a decaying exponen-
tial as a function of distance (x) from the reference electrode (the electrode yielding the highest average F1 score among 
the 256 electrodes) as follows:

	 F1 = Ae–
x
τ + B	

where τ is the F1 score decay rate, and A and B parameters that adjust the exponential.

Databases without ground truth

For the electrode recording database from rhesus monkeys (Figs 3 and 4), we applied identical data preprocessing to 
both UMAP and PCA feature extraction algorithms. For clustering, HDBSCAN was implemented (S1 Fig). We employed 
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recordings from the secondary somatosensory cortex (S2), the VPC, and the DPC during the interval comparison task 
[45–47] and the tactile detection task [44,46,59].

To compare the distributions of mean firing rates, we constructed cumulative distribution functions for the neurons 
sorted by UMAP and PCA within each recording area. The average firing rate was computed for each neuron during the 
foreperiod of both the interval comparison and tactile detection tasks. This firing rate was calculated across all interval 
trials, specifically during the pre-stimulus interval (see repository at [52]).

Spike data from different recording sessions during the foreperiod can be downloaded at [47].
Additionally, for each recording, we used several sessions to compare the number of neurons detected by each method 

and computed the corresponding mutual information values. The neural activity used for these calculations is available at 
[46], and the corresponding code can be found at [52].

PCA sorting

The key point of performing PCA on spike waveform data for spike sorting is to discover an alternate coordinate system 
wherein the waveforms can be expressed in a more compact and reduced form. That is, the objective is to construct a 
low-dimensional subspace that contains most of the variance present in the high-dimensional waveform space. In gen-
eral, there is a dramatic reduction in the number of significant dimensions, from a number equal to the number of sample 
points per waveform (e.g., several hundreds) to only a very small number of principal components (PCs) that account for 
the majority of the variance. PCA generates another coordinate system for the high-dimensional data, where the first PC 
accounts for the largest amount of variance relative to the shapes of the waveforms. The second PC accounts for the next 
largest portion of the variance, but each subsequent axis must be constrained to be orthogonal to all the previous axes.

PCA is derived from the covariance matrix of the waveform data, which is estimated across all waveforms and time 
points. The covariance matrix is provided by:

	
Cov (Wi , Wj) =

∑N
k=1

(
wk
i – wi

) (
wk
j – wj

)

N – 1 	 (Eq. S1)

where N is the total number of waveforms (spikes) being considered, wk
i  is the amplitude of k-th waveform at i-th time 

point. wj is the mean amplitude at time point j across all waveforms:

	
wi =

1
N

N∑
k=1

wk
i

	 (Eq. S2)

The diagonalization of the covariance matrix Cov (Wi , Wj), results in a new coordinate system represented by the 
columns of matrix V, and the columns are referred to as the derived axes or PCs. Λ is also a diagonal matrix with positive 
entries, where the diagonal entries of Λ represent the amount of variance in the waveform data captured by the corre-
sponding PCs. Then we arrange the primary components based on how much variance they hold. The k-th PC projection 
of l-th waveform data is represented as:

	
ŵl =

T∑
i=1

wlivik
	 (Eq. S3)

where T is the number of time points in each waveform, vik  is the i-th element of the k-th PC, and ŵl is the projection of 
waveform wl onto k-th PC. Therefore, the PCs are linear combinations of amplitudes at different time points within the 
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waveform. The contribution of each time points to a given ŵl is represented by the i-th element of the k-th column of eigen-
vectors matrix V. These PCs provide a low-dimensional description of the waveform data in this coding subspace, facilitat-
ing more effective spike sorting by highlighting the most significant variations in waveform shapes.

Wavelet sorting

The primary motivation behind the application of the wavelet transform in spike waveform data analysis for spike sorting 
is to obtain informative features that represent the waveforms in a more compact and concise way for later classifica-
tion. The wavelet transform depicts each spike waveform as a collection of coefficients that embody both temporal and 
frequency details, thus enabling a close study of waveform configurations. By knowingly selecting a certain subset of 
important wavelet coefficients, we effectively decrease the data dimensionality from the original number of time points with 
which each waveform is described to a lower, more compact set of features that include the most relevant discriminative 
information.

The continuous wavelet transform (CWT), or discrete wavelet transform (DWT), is applied to each waveform. The 
wavelet transform of a waveform is defined as:

	
W(a, b) =

1√
a

∫
x(t)ψ

(
t – b
a

)
dt

	 (Eq. S4)

where a > 0 is the wavelet coefficient at scale. This coefficient represents the dilation, while b represents the time shift or 
translation. Finally, ψ, is the complex conjugate of the mother wavelet function ψ. In practice, we use the DWT due to 
computational efficiency and data discretization. The DWT decomposes the waveform into approximation and detail coeffi-
cients at various levels of decomposition. Mathematically, the DWT coefficients are computed using a series of high-pass 
and low-pass filters followed by downsampling.

Approximation coefficients at level m:

	
Tmn =

∫ ∞

–∞
x(t)ψmn(t)dt

	 (Eq. S5)

Detail coefficients at level j:

	
Sjn =

∫ ∞

–∞
x(t)ϕjn(t)dt

	 (Eq. S6)

After decomposing the waveform into multiple levels, we select a subset of significant wavelet coefficients that capture 
the most relevant features for spike classification. This selection can be based on criteria such as the largest absolute 
values or statistical measures of variance across the dataset. The selected wavelet coefficients form a feature vector for 
each waveform:

	
dm(t) =

∞∑
n=–∞

Tmnψmn(t)
	 (Eq. S7)

where m is the number of selected coefficients and dm are the detail coefficients at specific levels m and positions t. These 
feature vectors provide a low-dimensional representation of the spike waveforms in a feature space suitable for clus-
tering. Clustering algorithms (e.g., K-means, Gaussian Mixture) are then applied to the feature vectors to group similar 
spikes together, effectively sorting neurons based on the waveform shapes. Unlike PCA, wavelet decomposition does not 
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inherently rank its coefficients. To establish a ranking, we applied a previously proposed method [16]. Briefly, the Kolmog-
orov–Smirnov test was used to evaluate the distance between each coefficient’s distribution and the normal distribution, 
with larger distances indicating greater divergence. The coefficients were then ranked accordingly, and the K coefficients 
with the highest values were selected for further analysis.

Data analysis

Firing rate.  For each neuron, a time-dependent firing rate was computed on a trial-by-trial basis using overlapping, 
rectangular, causal windows of 200 ms in length, with a step size of 20 ms (see code at [52]).

Mutual information.  For each neuron, we quantified the relationship between the firing rate (r(t)) and the presented 
stimuli s in each time window using Shannon mutual information [27,45,59]. This measure captures nonlinear 
dependencies between the two variables. To compute I(r; s), we used the conditional firing rate distributions across 
stimulus conditions (P(r|s)) along with the overall firing rate distribution (P(r)), obtained by pooling trials across all interval 
values:

	
I(r ; s) =

N∑
i

M∑
k

P (ri
∣∣sk)P (sk) log2

(
P (ri

∣∣sk)
P (ri)

)

	 (Eq. S8)

The mutual information significance was tested for each neuron for the given time intervals. We calculated a permuted 
mutual information value by conducting 1,000 permutations of the trials. A mutual information value was deemed sig-
nificant if the probability that a permutation yielded an equal or higher value was lower than 0.05 (p < 0.05). Additionally, 
to account for the problem raised by finite sampling, we utilized the correction established in [4,45,59]. At the time of 
significance testing, we also used a multiple comparison correction by implementing a clustering method that has been 
described before [4]. This involved keeping only the group of time bins that had significant connectivity and a predefined 
size. For Figs 3 and S4, Shannon’s information associated to time intervals (Iint), we considered the firing rate probability 
distribution associated with the different time intervals (P(r|int)) and the global firing rate distribution (P(r)) by combining 
trials from all intervals values. For Fig 4 we computed tactile information (Itac) considering the firing rate probability distribu-
tions associated to threshold and suprathreshold tactile stimuli altogether (P(r|tac)) and the firing rate probability distribu-
tions in the absence of stimuli (P(r|abs)). The global firing rate distribution (P(r)) was computed by combining trials with 
the presence of tactile stimuli and the absence of them (see scripts at [52]).

Supporting information

S1 Fig.  Comparison of three clustering methods— hierarchical density-based spatial clustering application with 
noise (HDBSCAN), K-means, and Gaussian Mixture—for neuronal spike classification. This panel shows how each 
approach performs on four electrodes (A–D) during a time interval comparison task, where different colors denote the 
spikes assigned to putative neurons. HDBSCAN stands out for two key reasons: (1) it can reveal clusters with unusual 
shapes and densities (see electrodes A–D), and (2) it avoids forcing uncertain spikes (shown in pink) into any cluster. 
These unassigned points typically represent noise or non-neuronal signals, and excluding them sharpens the overall 
accuracy. In contrast, both K-means and Gaussian Mixture assign every spike to a cluster, which often misclassifies 
ambiguous events. Consequently, HDBSCAN more faithfully represents actual neuronal activity by filtering out only those 
questionable spikes that impair clarity, surpassing conventional feature-based clustering methods. The spikes recorded 
with the electrodes shown in the figure can be found at [46], and also at [52], along with the code to analyze them using 
the different clustering methods.
(PDF)

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3003527.s001


PLOS Biology | https://doi.org/10.1371/journal.pbio.3003527  November 24, 2025 24 / 28

S2 Fig.  Schema of spike sorting performance metrics. This figure illustrates how different sorting outcomes affect 
standard performance metrics (precision, recall, and F1 score) when comparing a sorted cluster (Si) against a ground 
truth (GT) neuron SGT. It also describes the Inclusion Index Matrix (Mi,j). (A–D) Venn diagrams illustrating different sce-
narios, along with the resulting 2 × 2 Inclusion Matrix visualization when one unit is GT (labeled Ei in the matrix). Precision 
(Pi = Ii, GT) corresponds to element (1, 2), and recall (Ri = IGT, i) corresponds to element (1, 2). (A) Unrelated/ Worst Case: 
Low precision and low recall (F1 ≈ 0). Few spikes are shared. (B) High Spike Loss: High precision and low recall. The 
cluster contains mostly GT spikes but misses many of them (False Negatives). (C) High Contamination: Low precision and 
high recall. Most GT spikes are captured, but the cluster includes many non-GT spikes (False Positives). (D) Optimal Sort-
ing: High precision and high recall (F1 ≈ 1). The sorted cluster accurately represents the GT neuron. (E) Color Bar for the 
Inclusion Index values and structure of the Inclusion Index Matrix (Mi,j) for comparing two arbitrary spike trains Si and Sj.
(PDF)

S3 Fig.  Impact of noise, drifting, and low firing rates on Spike Sorting performance. This figure illustrates how 
PCA-, Wavelet -, and UMAP-based methods respond to challenges frequently encountered in spike sorting: overlapping 
waveforms, background noise, electrode drifting, neuron bursting, and neurons with very low firing rates. All clustering 
was performed with HDBSCAN. (A, B) PCA (A) and Wavelet (B) projections for an example dataset from Quiroga and col-
leagues [16]. Colors indicate ground truth (GT) neuron identities, while each marker denotes a detected spike. Although 
adding higher dimensions can sometimes improve cluster separability, it also complicates visualization, and neither 
PCA nor Wavelet consistently isolates the three GT neurons. (C) Sorting performance (F1 score) under drifting (left) and 
bursting (right) conditions. UMAP maintains robust performance (blue trace), whereas PCA (orange trace) and Wavelet 
(green trace) degrade substantially when waveforms shift over time (drifting) or when neurons exhibit bursts of spikes. 
(D) Sample spike waveforms with added noise levels (η = 0.05, 0.1, 0.15, 0.2) to synthetic data from Quian Quiroga and 
colleagues [16]. UMAP-based sorting is robust to increasing background noise. (E) Sorting performance (F1 score) as a 
function of projection dimensionality at different noise levels (left/middle/right panels for PCA, Wavelet, and UMAP, respec-
tively). At high noise (η = 0.2), UMAP still yields an F1 score close to 0.6 and generally outperforms both PCA and Wavelet. 
The synthetic data used to generate this figure are publicly available at [40], and the code for performing the analyses is 
available at [52].
(PDF)

S4 Fig.  Preserving low-firing-rate neurons with UMAP sorting in the Time Interval Comparison Task. The figure 
shows how pooling spikes from several neurons into a single multiunit can eliminate important task-related encoding—
particularly if there is a low-firing-rate neuron. (A) Cartoon showing how poor spike sorting artificially inflates firing rates by 
combining activity from different neurons, potentially obscuring their distinct encoding patterns. (B) Time Interval Com-
parison Task (TICT). Animals are comparing two stimulus intervals (Int1 and Int2), both 400–2000 ms, with 2-second gap. 
The animal must retain Int1 information through the gap and compare it with Int2. Recordings from dorsal premotor cortex 
(DPC). (C) Raster (top) and firing rate (middle) of a multiunit artificially created by pooling two neurons when using PCA-
based sorting. Gray shows the stimulus period; black ticks indicate spikes during correct trials; red ticks indicate spikes 
during error trials. The mutual information trace (bottom) shows reduced encoding of Int1 since combined units lose valu-
able signals from low-firing units. (D, E) Single neurons sorted using UMAP that were conflated in (C). While the neuron 
in (D) fires rarely, however, it does manage to encode Int1 at the start of the delay phase—information lost in the multiunit 
representation (C). Conversely, the second neuron (E) has a diverging firing pattern and encodes unique dynamics of the 
task. These two neurons collectively convey far more information about Int1 than the conflated multiunit in (C). The multi-
unit and UMAP sorted neuronal activity used to generate the raster plots and firing rates is publicly available at [46], and 
the code to compute firing rates and mutual information is available at [52].
(PDF)

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3003527.s002
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3003527.s003
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3003527.s004
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S5 Fig.  Preserving different encoding patterns with UMAP-based sorting in tactile detection task. (A) Schematic 
showing how inadequate spike sorting inflates firing rates by combining separate neuronal activities, potentially masking 
each neuron’s individual encoding. (B) Tactile detection task: Animals receive a vibrotactile stimulus (0–24 μm) on the fin-
gertip and must indicate whether it was present or absent. Recordings are from the ventral premotor cortex (VPC, green). 
(C) Raster plots (top) and firing rate (bottom) for a multiunit formed by merging two neurons under PCA-based sorting. 
Trials are aligned to stimulus onset. Blue shading marks stimulus-present trials; gray shading marks stimulus-absent 
trials. Combining these spikes conceals each neuron’s separate response profile, yielding an incomplete picture of their 
activities. (D, E) UMAP-sorted versions of the two underlying neurons from (C). The neuron in (E) maintains a prolonged 
response during the delay, while the neuron in (D) responds strongly but briefly. By separating them, UMAP-based sorting 
retains each neuron’s individual activity, avoiding the loss of valuable low-firing-rate signals. The multiunit and UMAP 
sorted neuronal activity used to generate the raster plots and firing rates is publicly available at [46], and the code to com-
pute firing rates and mutual information is available at [52].
(PDF)

S6 Fig.  Examples of UMAP spatial robustness in MEA recordings. (A) Sorting performance (F1 score) versus 
distance for three example MEAs using single-channel UMAP sorting. (B) Spatial map of the F1 score across the MEA 
for the corresponding examples in A. Black squares indicate the region shown in C. (C) Waveform templates from 
the neuron with the highest F1 score, shown across the 5x5 electrode patch highlighted in (B). The largest ampli-
tude waveform is recorded on the central electrode (closest to the GT), and the color saturation of each waveform 
corresponds to the local F1 score. UMAP robustly identifies the characteristic waveform across multiple neighboring 
electrodes. MEA recordings supporting the analyses are available at [42], and the code necessary for the analyses is 
available at [52].
(PDF)

S7 Fig.  Geometric analysis examples for multielectrode Uniform Manifold Approximation and Projection (UMAP) 
sorting. (A–F) Six examples showing the decay of F1 score as a function of distance from the central electrode. The solid 
blue line (UMAP) tracks performance as signals from neighboring electrodes at progressively greater distances (d1 → d6) 
are incorporated into the analysis. For comparison, dashed lines show the overall F1 score value when using the entire 
multielectrode array (MEA) signal at once for both UMAP (dashed blue) and SpyKING CIRCUS (SC, dashed light blue). 
UMAP consistently outperforms SC, particularly when leveraging this spatial information. MEA recordings supporting the 
analyses are available at [42], and the code necessary for the analyses is available at [52].
(PDF)

S8 Fig.  Influence of precision and recall on multielectrode array (MEA) sorting accuracy. This figure examines 
how precision (related to contamination) and recall (related to lost spikes) contribute to the spatial decay of the F1 
score (Fig 5) when comparing Uniform Manifold Approximation and Projection (UMAP) and SpyKING CIRCUS (SC) on 
MEA recordings. Results are averaged over multiple MEAs. (A, D) Average spatial matrices for precision (A) and recall 
(D) computed using UMAP-based sorting. (B, C) Decay of precision, and fit of that decay (C), as electrode distance 
increases for UMAP. Triangles on (B) represent average precision values computed with UMAP-based sorting (light-
blue) or SC (cyan) using the entire MEA signal. (E, F) Decay of recall, and fit of that decay (F), as electrode distance 
increases. Triangles on (E) represent average recall values computed with UMAP-based sorting (orange) or SC (yellow) 
using the entire MEA signal. Note that average for recall using SC is significantly low with respect to UMAP’s, indicating 
the loss of many GT spikes beyond the central electrode. By contrast, UMAP sustains higher precision and recall across 
a wider spatial range. MEA recordings supporting the analyses are available at [42], and the code necessary for the 
analyses is available at [52].
(PDF)
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