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Abstract
Genome-wide association studies have revealed that the genetic architectures of com-
plex traits vary widely, including in terms of the numbers, effect sizes, and allele frequen-
cies of significant hits. However, at present we lack a principled way of understanding
the similarities and differences among traits. Here, we describe a probabilistic model that
combines the effects of mutation, drift, and stabilizing selection at individual sites with
a genome-scale model of phenotypic variation. In this model, the architecture of a trait
arises from the distribution of selection coefficients of mutations and from two scaling
parameters. We fit this model for 95 highly polygenic quantitative traits of different kinds
from the UK Biobank. Notably, we infer that all these traits have fairly similar, though not
identical, distributions of selection coefficients. This similarity suggests that differences in
architectures of highly polygenic traits arise mainly from the two scaling parameters: the
mutational target size and heritability per site, which vary by orders of magnitude among
traits. When these two scale factors are accounted for, we find that the architectures of
all 95 traits are very similar.

Introduction
A central goal of genetics is to understand how genetic variation maps to phenotypic varia-
tion. Starting in the late 20th century, there was huge progress toward identifying the genes
for Mendelian traits. But most phenotypic variation in humans is genetically complex, and
it is only in the last 15 years that genome-wide association studies (GWAS) have started to
reveal the genetic basis of variation in a wide array of complex traits [1]. These studies have
now identified tens of thousands of robust associations between genetic variants and a wide
array of traits and diseases.
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One intriguing observation from this work is the striking variation in genetic architec-
ture among complex traits [2–5]. (Here, we use the term architecture to refer to the num-Competing interests: The authors have

declared that no competing interests exist. bers of causal variants and their joint distribution of allele frequencies and effect sizes.) Traits
have been found to vary in all aspects of genetic architecture, including: the number and
magnitude of significant signals found at a given sample size [6]; the fraction of heritability
explained by lead GWAS signals [3]; the allele frequency distributions of significant variants
[4,7]; the estimated numbers of causal variants [8,9]; and the SNP-based heritability [10,11].

Nonetheless, diverse traits do show important similarities. First, most complex traits are
influenced by large numbers of variants with small effects, only a small fraction of which can
be confidently detected at current sample sizes [12–14]. Indeed, even relatively “simple” com-
plex traits such as molecular biomarkers are highly polygenic with ∼104 causal variants spread
widely across the genome, compared to ∼105 or more variants for traits such as height or BMI
[2,9,15–17].

Second, the distributions of effect sizes of causal variants are not fit well using standard
modeling assumptions such as normal distributions. Instead, effect sizes typically span several
orders of magnitude, much like power-law distributions [18,19].

Third, trait-associated variants are often highly pleiotropic: i.e., they influence many traits
simultaneously. Many pairs of traits show significant genetic correlations, indicating that
allelic impacts are often shared [16,20,21]; moreover, whenever different traits are mediated
through overlapping cell types or pathways, we can expect that they will share many of the
same regulatory variants even if the directions of effects are uncorrelated [5,14,16,22].

Fourth, selection plays a central role in shaping complex trait architecture. Evolutionary
theory and empirical evidence indicate that variants with phenotypic effects would usually be
under selection and, in particular, that selection is usually stronger for larger-effect variants
[23]. Consistent with this, variants with larger effect sizes tend to be at lower frequencies, sug-
gesting that selection prevents such variants from reaching high frequencies [24–26]. Since
heritability depends on both effect sizes and allele frequencies, an important consequence is
that the genes that are most important for a trait contribute less to heritability than would be
expected in the absence of selection, thus flattening the heritability distribution across genes
[17,27,28].

Here we develop a principled approach for understanding similarities and differences in
genetic architecture. Specifically, we want to understand how the population genetic processes
of mutation, selection, and drift alongside properties of individual traits determine the num-
bers of variants, as well as the joint distributions of allele frequencies and effect sizes. What
features of these processes are shared across traits? And which are different? And, consequently,
what features of the genetic architecture are shared or differ among traits?

To answer these questions, we require a model for how population genetic processes shape
complex trait architecture. Current models differ primarily in their assumptions about the
relationship between selection on alleles (or alternatively their frequencies), and the effect
sizes of those alleles on a trait of interest [23]. The heuristic ‘𝛼-model’, developed for estimat-
ing SNP heritability, assumes a particular parametric relationship between allele frequencies
and effect sizes [25,29,30]. While the 𝛼-model is motivated by the observed inverse relation-
ship between effect size and frequency, the precise functional form is arbitrary. In turn, sev-
eral evolutionary models postulate particular parametric relationships between the strength of
selection on alleles and their effect sizes, and then rely on explicit population genetics mod-
els to derive the relationship between allele frequencies and effect sizes and other aspects of
genetic architecture [31–36]. These models, however, differ in their predictions about archi-
tecture, owing to the various ad-hoc parametric relationships they assume.
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Simons et al. (2018) introduced an evolutionary model that moves beyond ad-hoc choices
by deriving the relationship between selection on alleles and their effects on a trait under
an explicit, interpretable, biological model [27]. Motivated by extensive evidence that many
quantitative traits are subject to stabilizing selection, where fitness declines with displace-
ment from an optimal trait value [23,37,38], and that genetic variation affecting one trait
often affects many others [5,16,22], they modeled selection on alleles that arises from sta-
bilizing selection in a multi-dimensional trait space. They then used an explicit population
genetic model to derive the genetic architecture of a focal trait with mutation, genetic drift,
and stabilizing selection in a multi-dimensional trait space.

As we will show in the next section, the Simons et al. model can be reframed as a gen-
erative (statistical) model for the genetic architecture of a continuous complex trait, which
depends on a few biologically interpretable parameters. We next describe how to infer these
parameters and test the model fit based on data from GWAS. Applying our inference to 95
highly-polygenic quantitative traits of different kinds from UK Biobank, we show that this
model provides an excellent fit to the data. Surprisingly, we find that most variation in archi-
tecture among traits is explained by differences in just two scaling parameters: the mutational
target size and heritability per site.

Results
A population genetic model of complex traits. As a starting point, we assume that pheno-
typic variation exists in a high-dimensional trait space under stabilizing selection. Here we
outline key elements of the model; further details and biological motivation can be found in
S1 Note and in [23,27].

We model each person’s phenotype as a point in an n-dimensional trait space, and assume
that this dimension is high (n≥ 10). To model stabilizing selection we assume that there is
an optimal phenotype, and that fitness decreases with Euclidean distance from the optimum
(Fig 1A).

The phenotypic effect of each variant is represented by a random vector in the n-
dimensional trait space, namely

⇀
b = (b1, b2, ...bn), where bi is the additive effect of the derived

allele on the i-th trait. We assume that a person’s phenotype arises from their genotype
according to the standard additive model in n-dimensions: it is a vector sum over the effects
of all variants plus a random vector representing the environmental effects [39].

The model thus far is mathematically similar to Fisher’s Geometric model [40], which
Fisher and others used to study adaptive processes [41], but we consider a different question
and a different evolutionary setting. We focus on the genetic architecture of a single highly
polygenic trait that arises in the balance between mutation, stabilizing selection in the multi-
dimensional trait space, and genetic drift.

Mutation, selection, and drift at individual sites. Each generation, mutation introduces new
trait-affecting variants into the population at a rate 𝜇 per site, per gamete, per generation. The
long-term fate of variants is determined by the combined action of selection and drift.

Under stabilizing selection, at equilibrium, selection holds the population’s phenotypic
mean very close to the optimal phenotype, and thus acts against mutations (and against vari-
ation in general). The strength of selection, s, acting against a variant is proportional to its
squared magnitude in the n-dimensional trait space (Fig 1B):

s = ||
⇀
b||2 /VS =

n
∑
j=1

b2
j /VS, (1)
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Fig 1. The model. (A) We use Fisher’s concept of a multi-dimensional trait space. Under stabilizing selection, an individual’s fitness declines with distance
from the optimal phenotype [40]. (B) The selection coefficient experienced by a variant is proportional to the sum of squared effects on all traits. (C) We
compute the distribution of derived allele frequencies (q) conditional on s and demography. (D) The distribution of effect sizes for trait 1 (b1) is normally
distributed given s. (E) The generative model for q, 𝛽, and the observed Z-score at any given site. In C and D, the curves for effectively neutral, moderate and
strong selection correspond to s = 10–4.5, 10–3 and 10–2 respectively.

https://doi.org/10.1371/journal.pbio.3003402.g001

with VS reflecting the width of the fitness function around the optimum.
Given s we can compute the present day allele frequency distribution, as follows. When

traits are subject to stabilizing selection, selection at individual sites is under-dominant,
meaning that selection acts against minor alleles, regardless of the direction of effect [27,42,
43]. At strongly selected sites, this approximates the standard model of selection against dele-
terious alleles. Specifically, the expected change in allele frequency at an autosomal site in a
single generation, given current derived allele frequency q is

E[Δq] = –sq(1 – q)(1
2

– q). (2)

Meanwhile, the variance in the change in allele frequencies, i.e., drift, scales inversely with
population size [44]. Hence, the distribution of present-day allele frequencies is the result of a
stochastic process including past mutations, selection, and drift – which depends on the his-
tory of population sizes. For our analysis here, we computed the distribution of present day
allele frequencies under the stabilizing selection model using a demographic model estimated
for the British population [45]. As expected, strongly selected variants (large s) tend to be rare,
while nearly-neutral variants (small s) can drift to high frequencies (Fig 1C).

The relationship between selection and effect sizes. Next we need to understand how
selection in the multi-dimensional trait space relates to the genetic architecture of a single
focal trait of interest. Without loss of generality, we focus on the first dimension in the n-
dimensional trait space, and to simplify the notation we denote the effect size b1 of a variant
on trait 1 simply as b.
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Causally, effect sizes determine selection coefficients. However, since we want to describe
the co-distribution of frequencies and effect sizes we need to invert this relationship: specifi-
cally, we need the conditional distribution of the effect size on trait 1 given s. This conditional
distribution reflects uncertainty about the projection of

⇀
b onto the first dimension if all we

know is s (or equivalently ||
⇀
b||2). Fortunately, when the number of traits is sufficiently large,

this conditional distribution is well approximated by a Normal distribution (see [27] and Sect
1.3 in S1 Note), namely:

b|s∼N(0, c ⋅ s), (3)

where c =VS/n. Intuitively, variants under weak selection (small s) tend to have small squared
effect sizes (b2) and variants under strong selection (large s) tend to have larger squared effect
sizes (Fig 1D).

With the distributions for b and q given s, we can now compute the expected per site con-
tribution to phenotypic variance as a function of s, given by E[2b2q(1 – q)|s]. Under non-
equilibrium demography, the expectation does not have a simple form but it is plotted in Fig
B in S1 Note. At sites where selection is weak, b2 is small, and these sites contribute little to
the additive genetic variance, VA. When selection is strong, b2 is large, but selection holds
q(1–q) low, and these effects cancel out, so these sites are capped in terms of how much they
can contribute to VA [27].

Single-site dynamics and heritability. Moving from single sites to a genome-wide model, let
L be the number of sites in the genome at which mutations can affect trait 1 (more precisely,
we require mutations to have effects that exceed some predefined small value); we refer to L as
the mutational target size. We use f (s) to denote the unknown distribution of selection coeffi-
cients of mutations at these L sites. Then the expected total additive genetic variance for trait 1
is given by

VA = L∫ E[2b2q(1 – q)|s] ⋅ f(s)ds. (4)

Next, we rescale b from the original but arbitrary measurement units into units of stan-
dard deviations of the trait value: we define 𝛽 = b/

√
VP, where VP is the phenotypic variance.

Dividing both sides by VP, and noting that VA/VP is the (narrow sense) heritability h2, we can
relate heritability to the site-level parameters:

h2 = L∫ E[2𝛽2q(1 – q)|s] ⋅ f(s)ds. (5)

This equation expresses the key relationship between heritability (h2), mutational target
size (L), and the expected contribution to variance per site.

Finally, Eq 3 can be rewritten in terms of 𝛽 and population genetics parameters (for details
see Sect 1.5 in S1 Note):

𝛽|s∼N(0, h
2

L
⋅ k
4𝜇 s) , (6)

where k is a constant that depends on f (s) and demography and is approximately 1, and 𝜇 is
the mutation rate. Crucially, Eq 6 shows that the trait’s heritability per site, h2/L, is a funda-
mental scaling factor that relates selection on alleles to their effects on the trait.
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Together, these results provide a generative model for the genetic architecture of a complex
trait (Fig 1E). Assuming that the demographic history and mutation rate per site are known in
advance, this model is fully specified in terms of three unknowns: the mutational target size,
L; the heritability per site, h2/L; and the distribution of selection coefficients, f (s). We now
describe how we estimate these from GWAS data.

Inference of model parameters from GWAS data. In principle we would want to perform
inference using all causal variants, but this is technically challenging since most causal sites
have very small effect sizes; hence there is great uncertainty about which sites are causal and
their true effect sizes. As a tractable alternative, we restricted our inference to the independent
genome-wide significant hits for each trait. We account for this restriction in the inference by
noting that we only observe the subset of sites for which the absolute GWAS z-score exceeds
5.45, corresponding to the conventional significance threshold of p < 5 × 10–8, and the minor
allele frequency (MAF) exceeds 1%, corresponding to the imputation threshold (see Sect 2.1
in S1 Note). We performed simulations to illustrate the changes in architecture at GWAS hits
as a function of each of the main model components (Fig 2; Sect 5 in S1 Note). As expected
from theory:

A. When selection is weak, causal variants can drift to high frequencies, and most sig-
nificant hits are at common variants. Conversely, when selection is strong, there is a
greater fraction of rare variants among the significant hits, and an inverse relationship
between effect size and allele frequency.

B. When traits have high heritability per site h2/L, the squared effect sizes and z-scores
tend to be larger, there are more genome-wide significant hits and they explain a
greater proportion of heritability, compared with traits with low h2/L.

C. When traits have a large mutational target size L (holding h2/L and f (s) constant),
there are more causal variants, and more genome-wide significant hits, but the distri-
bution of allele frequencies and effect sizes, and the proportion of heritability explained
by hits, are unaffected.

We implemented a maximum likelihood method that estimates the components of our
model from the joint distribution of q and |z| across significant hits (Fig 2D–2F; Sect 5 in S1
Note). We fit f (s) using a spline function with four knots (see Sect 4.8 in S1 Note for how the
number and position of knots were chosen), thus our full model includes six parameters per
trait: four for f (s), as well as h2/L, and L.

We tested this method using simulated GWAS data under a variety of parameter values.
We find that even with modest numbers of hits (∼100) the method provides accurate esti-
mates, while the estimates are noisy for traits with fewer hits (e.g., panel 2E). It may seem
surprising that we can estimate f (s) from relatively few observations, but each variant car-
ries considerable information about the strength of selection: the allele frequency bounds s
for that variant from above and the effect size bounds s both from below and above, such that
jointly they are highly informative (Fig D in S1 Note). Given these results we analyzed traits
with at least 100 hits.

We also observed that the data are less informative at both ends of the range of possible
selection coefficients: GWAS has low power to detect very strongly selected variants (s≳ 10–2)
as their allele frequencies are too low, and low power to detect effectively-neutral variants (s≲
10–5) as their effect sizes are too small. We therefore implemented a regularization penalty to
constrain f (s) to sensible values at these extremes (Sect 3.8 in S1 Note).
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Fig 2. Inference of model parameters. (A)–(C) The joint distributions of minor allele frequencies (MAFs), z-scores, and numbers of hits per trait depend on model
parameters as illustrated here. Each graph shows simulated distributions of genome-wide significant hits, with the graphs in each row differing in one of the main axes
of our model. (D)–(F) True values of the distributions of f (s) as well as h2/L and L are indicated by the dashed lines; inferences are indicated by solid lines or by point
estimates with sleeves and bars indicating 90% bootstrap CIs. The inferred parameters differing between the pair of traits in each row are highlighted in gray. See Sect 9
in S1 Note for parameter values used. Figure data available at: https://doi.org/10.5281/zenodo.17041176.

https://doi.org/10.1371/journal.pbio.3003402.g002

Dataset of 95 quantitative traits from the UK BioBank. We selected traits from the UK
Biobank for analysis, as follows (Sect 2.4 in S1 Note). Since our model is most directly appli-
cable to quantitative continuous traits, we restricted our analysis to such traits. We identi-
fied independent lead variants for each trait using COJO [46]. Since low-frequency variants
are often poorly imputed, we removed hits with MAF<1% (see Sect 6.3 in S1 Note for how
we account for this in the inference). We excluded traits for which more than 10% of hits fell
within a single LD block, as well as hits in regions of extremely high LD (LD score >500).
As noted above, we restricted ourselves to traits with at least 100 independent hits; doing so
implies that the traits are among the more polygenic and heritable traits in UKBB. For each
trait we recorded the number of hits, and the estimated allele frequency, z-score, and effective
sample size for each hit.

Our inference uses the architecture of GWAS hits as a proxy for the architecture of the
causal variants they tag. In Sect 7 in S1 Note we tested the validity of this approximation
using data analysis and simulations. For example, we started with the genotypes from UKB,
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picked variants to be causal and assigned them effect sizes in various ways, assigned pheno-
types to individuals based on the additive model, and then performed GWAS and ran COJO,
allowing us to compare the inferred number of hits and their distribution of frequencies and
effect sizes with the known underlying architecture. Our results indicate that under sensible
assumptions the GWAS hits picked by COJO faithfully reflect the architecture of the underly-
ing causal variants.

Our criteria resulted in a list of 95 traits, with a range of 100 to 1,760 hits per trait
(mean=495). These traits include 40 morphometric traits, of which 26 are related to body
weight or adiposity (e.g., BMI, waist circumference and birth weight) as well as 14 others (e.g.,
height, bone mineral density and hand grip strength). The traits also include 27 blood pheno-
types (e.g. platelet traits, lymphocyte count, and hemoglobin measurements), and 12 molec-
ular traits sampled from blood or urine (e.g., IGF-1, triglycerides and calcium levels). Addi-
tionally, we have 9 cardiovascular traits, including pulse rate, blood pressure measurements,
and pulmonary function traits. Lastly, we include 6 ophthalmologic traits, and 1 behavioral
trait (age at first sexual intercourse).

Distributions of trait parameters. We applied our inference to all 95 traits. Fig 3A shows
the estimated distributions of selection coefficients that vary in polygenicity and kind, from
calcium levels to BMI, and are representative of the range spanned by all 95 traits (see Fig F
in S1 Note). Note that although our inference is based on significant hits, f (s) represents the
distribution of s among new mutations.

Fig 3. Parameter estimates for example traits. (A) CDF of the distributions of selection coefficients for newly-
arising mutations, f (s), estimated for each trait separately, using trait-specific distributions, with 90% confidence
envelopes. (B) CDF of the single shared distribution (SSD) of selection coefficients for newly-arising mutations,
estimated using all 95 traits together. (C) Properties of example traits. h2 and L are estimated using f (s) from the SSD.
Figure data available at: https://doi.org/10.5281/zenodo.17041176.

https://doi.org/10.1371/journal.pbio.3003402.g003
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Our point estimates of the distribution (solid lines) vary considerably among traits, but
they share important features. Most trait-affecting mutations are under weak selection, with
modes ranging between 10–4 – 10–5.5. In this range, the strength of selection is roughly com-
parable to genetic drift (∼ 10–4.5 per generation), consistent with the observation that many
GWAS variants are common, and more generally that much of the heritable variation in com-
plex traits arises from common variants [3,4,10,12]. However, the distributions have a sub-
stantial tail in the strong selection range (s > 10–3), and therefore span multiple orders of mag-
nitude. Since selection coefficients span multiple orders of magnitude, so too should effect
sizes. This echoes recent results showing that distributions of effect sizes for complex traits do
indeed span multiple orders of magnitude (in contrast to the normal distribution which has
often been assumed in statistical genetics models) [18,19].

Although our point estimates of the distribution (solid lines) vary considerably among
traits, their confidence envelopes largely overlap (shades). With our inferences being based
on the architecture of significant hits, the overlap among confidence envelopes suggests that
this architecture is largely insensitive to the differences reflected in our point estimates (also
see Sect 5.2 in S1 Note). We thus conjectured that we could build a unified model by assuming
a Single Shared Distribution for f (s), which we refer to as the SSD, instead of assuming sep-
arate Trait-Specific Distributions (TSDs). The SSD is shown in Fig 3B. We also inferred the
SSD for a subset of the traits that were chosen to minimize genetic correlations among traits
(15 traits with |rg| < 0.2 for any pair) and found that the estimated SSD is insensitive to corre-
lations among traits in the full dataset (Sect 6.4 in S1 Note). As we will show, the SSD provides
a useful approximation for the architecture of individual traits, while greatly cutting down the
number of model parameters and highlighting important shared features of trait architecture.

In contrast to f (s), our estimates of heritability h2 and of the mutational target size L span
a wide range that far exceeds the CIs for individual traits (Fig 3C and S1 Table). For example,
among the traits in Fig 3C, BMI (541 hits) has an estimated target size of 220 MB, one of the
highest estimated target sizes, in contrast to urea (231 hits) with a target size of 4 MB, one of
the lowest estimated target sizes. These results are broadly consistent with expectations from
previous studies of polygenicity showing that morphological traits including height and BMI
have many more contributing variants than do molecular traits, illustrated here by urea and
calcium [2,9]. Our estimates of heritability vary by over one order of magnitude among traits,
and are concordant with previous estimates (S1 Table, Fig J in S1 Note; [10]). Our estimates
of the ratio h2/L vary less than h2 and L alone, plausibly because conditioning on traits with
≥ 100 hits biases us toward traits with greater (and thus a more restricted range of) h2/L (see
Fig 2B and below).

Quantifying model fit. Next, we assessed the fit of our models to the genetic architecture
observed in GWAS, including how the fit is affected by using the SSD approximation (Sect
4 in S1 Note). To do so, we computed a measure of model fit using the predicted distribu-
tion of z-scores given the allele frequencies and study size. For each variant i, we computed
what we refer to as a residual p-value: Pr(|z| > zi | zi > 5.45, qi, Model), where zi and qi are the
observed z-score and frequency of SNP i, respectively, and Model indicates the SSD or TSD
model. The SSD model fit depends on only one trait-specific parameter, h2/L, as f (s) is shared
across traits. In contrast, the TSD model fit depends on five parameters per trait: h2/L and
four parameters to fit f (s). The estimated target size, L, does not affect the fit by this measure
and more generally (because given the other model parameters, L is estimated by matching
the expected and observed number of hits).

The residual p-value has a simple interpretation: If we correctly model the distribution
of z-scores among significant hits, then the distribution of residual p-values will be uniform
between 0 and 1. If the observed z-scores are too small then the residual p-values will skew
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toward 1, and if the z-scores are too high they will skew toward 0. To avoid overfitting, we split
the genome into approximately independent blocks [47], each time inferring the model on
90% of the blocks and computing residual p-values for the held-out 10%.

We first considered the fit of our model for height, the trait with the greatest number of hits
in our dataset (Fig 4A). For height, the distribution of z-scores across the 1760 hits is fit essen-
tially perfectly by the SSD model (Fig 4A). In contrast, two simpler heuristic models provide
a poor fit to the distribution of z-scores (Fig 4A). First, when we assumed that effect sizes are
normally distributed, the resulting residual p-values deviate greatly from uniformity with
many extremely small p-values. We also considered a version of the 𝛼-model with a normal
density of effect sizes conditional on allele frequencies [30]. By fitting the inverse relationship
between allele frequencies and effect sizes, the alpha model improves the overall fit, but still
has an excess of tiny p-values. In both cases, the underlying normal distribution is too narrow
to accommodate the wide variation in observed effect sizes, including many hits close to the
significance threshold and a minority of much stronger hits.

For BMI, with 541 hits, our SSD model fits most of the distribution well, but the top hits
are larger than expected (Fig 4B). In particular, the residual p-value of one SNP is significant
even after Bonferroni correction. This outlier represents the well-known FTO signal that was
detected even in very early GWAS studies [48,49].

We find 14 additional outlier SNPs for a variety of other traits. The 14 outliers include both
missense and noncoding variants, and are all found near genes previously implicated in the
biology of the relevant traits (Table A in S1 Note and S2 Table). Our inferences are insensitive
to the exclusion of these outliers (see Sect 4.5 in S1 Note). We hypothesize that these outliers
violate our model assumptions in some way that allows them to be common despite having
large effects. For example, they might have much smaller pleiotropic effects than most other
variants affecting those traits, leading to weaker selection than expected given their effect sizes
[50]. Alternatively, they may have been targets of strong positive or balancing selection that
allowed them to reach high frequencies despite their large effect sizes.

We next performed goodness-of-fit tests for each trait to determine whether the over-
all distributions of residual p-values match the expected uniform distribution, using
Kolmogorov-Smirnov statistics (Fig 4C; Sect 4 in S1 Note). We find that the 𝛼-model fits

Fig 4. Model fit. (A) QQ-plot of residual p-values for height (each data point is a SNP) under three models: the SSD model provides a good fit to the distribution of
z-scores, while two other models fit poorly. (B) For BMI, the SSD model fits most of the z-score distribution, but a few hits are more significant than expected, notably at
FTO. (C) QQ-plots for model fits (by trait) for TSD, SSD, and 𝛼-models. Figure data available at: https://doi.org/10.5281/zenodo.17041176.

https://doi.org/10.1371/journal.pbio.3003402.g004
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the data far worse than either the TSD and SSD models; notably, we can reject it for 93 out
of 95 traits at a FDR of 0.05 (Sect 4 in S1 Note). In contrast, both the TSD and SSD models
appear to fit the data well, with a modest inflation of p-values, perhaps relating to simpli-
fying assumptions of the model and inference (Fig 4C). For most traits, the TSD model fits
slightly better than the SSD model, with no trait rejected for the TSD and 26 traits for the SSD
at a FDR of 0.05 (Sect 4 in S1 Note), indicating that the TSD correctly identifies some degree
of trait specific signal. Nonetheless, the SSD model fits the data quite well and is far more
parsimonious, with one trait specific parameter compared to five for the TSD model.

Prediction of allele ages. The previous results show that the model provides a good empir-
ical fit to the data. We next wanted to evaluate whether it can also predict the evolutionary
processes underlying the genetic architecture. To this end, we turned to an entirely different
type of predictions from our model. Conditional on allele frequency, deleterious alleles tend
to be younger than neutral alleles [24,51]; and our parameter estimates can be used to predict
the extent of this effect for GWAS hits. We compared our model’s predictions to allele ages
estimated from a reconstruction of the ancestral recombination graph using Relate [45] (see
Sect 8 in S1 Note for details, including a correction for the estimator of allele ages).

Looking at the allele ages of GWAS hits for all 95 traits as estimated by Relate, we see that
they are much younger than frequency-matched, putatively neutral alleles (Fig 5). We esti-
mate that the median age of a GWAS hit variant is 137,000 years, compared to 594,000 years
for matched neutral variants. These observations highlight the competing influences of selec-
tion and drift on GWAS hits: due to selection GWAS hits are much younger than matched
neutral variants, yet at the same time selection is weak enough that most GWAS hits are fairly
old, predating the out-of-Africa bottleneck. This finding echoes previous ones showing that
many common GWAS hits are shared among African and non-African populations [52,53].

Most importantly, the shift in ages of GWAS hits compared to matched control SNPs is
predicted well by the SSD model, indicating that this model captures the right magnitude

Fig 5. Allele ages. The distribution allele ages of GWAS hits for all 95 traits (solid blue), estimated using Relate,
compared to the distribution of allele ages predicted by our model (dashed blue). Also shown, the distribution
of allele ages for neutral frequency-matched SNPs (solid red) and the distribution predicted by a neutral model
(dashed red). Allele ages were converted to years by assuming 28 years per generation [54]. Figure data available at:
https://doi.org/10.5281/zenodo.17041176.

https://doi.org/10.1371/journal.pbio.3003402.g005

PLOS Biology https://doi.org/10.1371/journal.pbio.3003402 October 13, 2025 11/ 21

https://doi.org/10.1371/journal.pbio.3003402.g005
https://doi.org/10.1371/journal.pbio.3003402


ID: pbio.3003402 — 2025/10/9 — page 12 — #12

PLOS BIOLOGY Simple scaling laws control the genetic architectures of human complex traits

of selection coefficients. (For results about our ability to distinguish selection coefficients
with this analysis see Fig X in S1 Note.) Since the allele ages inferred by Relate are estimated
from local haplotype structure, information that isn’t used by our inference, this concordance
provides an external validation of the SSD model.

Simple scaling rules control differences in trait architectures. The fit of the SSD model
suggests an intriguing prediction: that the differences in genetic architecture among traits
are primarily due to just two trait-specific parameters: the heritability per site (h2/L) and the
mutational target size (L).

To see why, consider the full genetic architecture of a trait, of all variants regardless of
whether they can be detected by GWAS. First, for a given demographic history, the distri-
bution of allele frequencies depends only on the distribution of selection coefficients, f (s).
Hence, under the SSD approximation, the allele frequency distribution is shared across traits
and can be predicted from our estimate of f (s) (black line, Fig 6A).

Next, while f (s) represents the distribution of selection coefficients among new mutations,
strongly selected variants are less likely to reach high frequencies. Hence, the distribution
of selection coefficients shifts to be smaller with increasing allele frequencies, as shown in
Fig 6B.

Given the distributions of selection coefficients at different allele frequencies from Fig 6B,
we can compute the distribution of squared effect sizes as a function of allele frequencies,
by integrating Eq 6 over s. Crucially, under the SSD model, these distributions are identical
across traits, if the effect sizes on the x-axis are scaled in terms of h2/L (black lines, Fig 6C).

How do these distributions affect GWAS hits? Unlike the underlying distributions, the
power to detect significant variants in GWAS depends on the actual squared effect sizes 𝛽2,
not scaled by h2/L (and it depends on allele frequency and sample size). Consequently, there
is more power to detect variants for traits with higher h2/L – this is intuitive, because higher
h2/L implies that on average each site explains more variance in the trait. This is illustrated in
Fig 6C: for traits with high h2/L, variants within both light and dark blue regions are genome-
wide significant, but for traits with low h2/L, only variants within the dark blue regions are
detected.

Fig 6. Shared genetic architecture under the SSD model. (A) Distribution of allele frequencies for all causal variants (black), and for genome-wide significant hits
(light/dark blue), for our inferred f (s) given British population history. (B) Distributions of selection coefficients at causal variants with different minor allele frequen-
cies. (C) Distributions of squared effect sizes 𝛽2, shown here for three example minor allele frequencies; note that effect sizes are scaled by the natural units of h2/L. For
traits with high h2/L, variants within both the light and dark blue regions are genome-wide significant (GWS); for traits with low h2/L, only the dark blue regions are
significant. See Sect 9 in S1 Note for parameter values used. Figure data available at: https://doi.org/10.5281/zenodo.17041176.

https://doi.org/10.1371/journal.pbio.3003402.g006
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Moreover, even though the underlying distribution of causal variant allele frequencies is
shared among traits, the frequency distribution of hits is predicted to vary. For traits with
high h2/L there is relatively more power to detect low frequency variants than for traits with
low h2/L (Fig 6A).

Lastly, the second scaling parameter, L, represents the mutational target size. Conditional
on h2/L, changing L only changes the numbers of causal variants (and numbers of hits) but
does not change any of the distributions.

We first tested these predictions for three traits: height, platelet crit (a blood phenotype),
and FEV1 (a measure of lung function), where we reduced the sample size to 330,000 so it is
identical for all traits (Sect 6.7 in S1 Note). Fig 7A shows height and platelet crit. These two
traits differ greatly in their number of hits (1533 vs 648), estimated heritability (77% vs 32%)
and mutational target size (30 MB vs 10 MB). However, we estimate that they have very sim-
ilar values of h2/L (∼ 3 × 10–8). Consistent with our prediction, the distributions of z-scores,
effect sizes, and MAFs for significant hits are nearly identical for the two traits.

In contrast, height and FEV1 have similar mutational target sizes, but h2/L for height is
about 6-fold higher than for FEV1 (Fig 7B). As expected, this results in greater power to
detect variants associated with height than with FEV1 (40% vs. 14% of h2 explained by signif-
icant hits). Consequently, genome-wide significant hits for height have larger effect sizes and
larger z-scores than for FEV1. We also see slightly fewer low-MAF hits for FEV1 (p = 0.01, KS
test), due to the lower power compared to height.

We predicted that after rescaling the z-scores (and effect sizes) for these traits by
√

h2/L,
their architectures should become nearly identical. On this scale, the significance cutoff is
5.45/
√

h2/L, which is higher for FEV1 than for height (illustrated by the light and dark blue
regions in Fig 6C). We therefore compared the architecture of genome-wide significant hits
for both traits using the higher threshold in the scaled units. After doing so, we only have 95
hits for height, but it is apparent that the summary properties for both traits are indeed highly
similar (Fig 7C).

We repeated this scaling procedure for the 57 other traits in our dataset whose scaled
threshold is below that of FEV1. After doing so, the distributions for all hits are highly simi-
lar to the scaled distributions for height and FEV1 (dotted line, Fig 7C). We repeated similar
analyses for all traits, and found that after applying these scaling laws the architectures of all
95 traits are nearly identical (Sect 10 in S1 Note).

Discussion
What determines the genetic architecture of complex traits? Does genetic variation in a given
trait primarily reflect the idiosyncrasies of its biology–or alternatively, does it reflect processes
that are shared among different traits?

Here we describe a principled approach to tackle these questions. Our point of departure
is an evolutionary model of genetic architecture based on empirically motivated and inter-
pretable biological assumptions. Given arguments and evidence that many quantitative (con-
tinuous) traits are subject to stabilizing selection [23,37,38], and that genetic variation affect-
ing one trait often affects many others [5,20,21], we model selection on alleles that arises from
stabilizing selection in multi-dimensional trait space. Otherwise, we assume the standard pop-
ulation genetic model incorporating the effects of mutation, selection, genetic drift and demo-
graphic history. This model gives rise to a family of genetic architectures, where the architec-
ture of a given trait is determined by the distribution of selection coefficients at trait-affecting
sites as well as two scaling parameters: the mutational target size and the heritability per site.
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Fig 7. Heritability and target size underlie differences between trait architectures: examples for three traits. (A) Height (blue) and platelet crit (red) have the same
heritability per site h2/L, but height has a much higher mutational target size L. This results in many more hits for height (1533) than for platelet crit (648) (2 left pan-
els). However, the marginal distributions of effect sizes, MAFs, and z-scores of hits are nearly identical for the two traits (3 right panels). (B) Height (blue) and FEV1
(gold) differ in h2/L, but have similar L. Consequently, the joint distribution of z-scores and MAFs of their hits are markedly different (2 left panels), as are the marginal
distributions of hit effect sizes, MAFs and z-scores (right). (C) After scaling by their respective

√
h2/L, and imposing the more stringent scaled significance threshold

(corresponding to FEV1) for both traits, the joint distribution of z-scores and MAFs of their hits (2 left panels) and the corresponding marginal distributions (3 right
panels) are highly similar. Figure data available at: https://doi.org/10.5281/zenodo.17041176.

https://doi.org/10.1371/journal.pbio.3003402.g007

We performed inference allowing all these parameters to vary among traits. We found that
the model provides a good fit to the joint distribution of allele frequencies and effect sizes
at genome-wide significant hits for the 95 quantitative traits in our dataset. Intriguingly, we
also found that the confidence envelopes for the distribution of selection coefficients largely
overlap among these traits, suggesting that their genetic architecture can be approximated
by a Single Shared Distribution (SSD) of selection coefficients and the two additional scaling
parameters per trait. We then estimated the SSD using the data from all traits jointly, show-
ing that it fits the architecture of individual traits well, and validated our estimate of the SSD
by showing that it accurately predicts the distribution of allele ages at GWAS hits for all traits.

The fit of the SSD model implies that, aside from the two scaling parameters, the genetic
architecture of genome-wide significant hits is similar among all 95 traits. Cross-sections
of the estimated shared architecture are visualized in Fig 6. Indeed, as predicted, after we
rescale the effect sizes by the estimated heritability per site, we find that the joint distributions
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of effect sizes and allele frequencies for GWAS hits are similar among traits. Meanwhile the
number of hits for a given trait is proportional to estimated target size (Fig 7).

These findings delineate the attributes of genetic architecture that are shared among traits
and those that are trait-specific. In doing so, they raise new insights and questions:

How similar are the distributions of selection coefficients underlying heritable varia-
tion in different complex traits? Our results indicate that the distributions of selection effects
among the 95 traits we examined were similar enough for the architectures of GWAS hits
to be insensitive to the differences among them. Previous work has hinted at this similarity:
for example, work using the 𝛼-model reported broadly similar relationships between MAF
and effect size among a variety of traits [25,26,36], though it should be noted that there is no
straightforward interpretation of 𝛼 in terms of selection coefficients [36]. Previous work also
hinted at the shared features of the distributions that we found, notably about selection on
many GWAS hits being weak enough for them to precede the Out-of-Africa bottleneck and
be shared among populations [52,53], and about their effect sizes spanning several orders of
magnitude [18,19].

We might expect some similarity in the distribution of selection coefficients among com-
plex traits. In a hypothetical extreme in which all functional variation affects all traits, the
distribution would necessarily be shared among traits. This logic may well explain similar-
ities among traits whose mutational target sizes encompass much of the functional portion
of the genome; for example, we estimate the target size for BMI at ∼7% of the genome com-
pared to ∼8% estimated to be functional [55–57]. It could also apply to traits that are medi-
ated through the same tissues [14]. However, this logic does not explain the similarity among
traits whose target sizes are substantially smaller and are primarily mediated through different
tissues [58]. The biomarkers in our dataset, for example, have target sizes that are more than
an order of magnitude smaller than BMI (e.g., calcium level with a target size of ∼0.1% of the
genome), and are mediated through distinct cell types or tissues [9].

Shared features in the distribution of selection coefficients may reflect similarity in the bio-
logical systems in which variation affecting complex traits arises, notably in gene-regulatory
networks. Heritable variation in complex traits is spread across most of the genome and is
enriched in regulatory regions near most genes that are expressed in the tissues that affect
these traits [14]. The lead variants typically explain a tiny fraction of the heritability [3], and
the most relevant biological pathways are usually only modestly enriched for heritability
[9,14]. In other words, most heritable variation is mediated through the regulation of genes
and pathways that are not closely connected to the trait’s biology [9,14,59]. Perhaps, the essen-
tial logic of gene regulatory networks and their evolution are sufficiently similar across tissues
to generate the shared features we found, even if the specific pathways, genes, enhancers, and
variants differ.

The similarity among distributions has important qualifications, however. Even among the
95 traits we examined and with our inference restricted to GWAS hits, we still identified sta-
tistically significant differences among the distributions of selection effects for different traits
(see above and Sect 4 in S1 Note). As we already noted, restricting our inference to GWAS
hits with MAF > 1%, delimits our power to infer selection effects at the weak and strong ends
of the range of selection coefficients (e.g., for s≲ 10–6 and ≳ 10–2). We therefore cannot rule
out more substantial differences in the distribution of, e.g., strongly selected, rare variants,
even among the traits we examined (see, e.g., [28]). Additionally, the traits we examined were
ascertained based on having ≥ 100 hits. Traits with vastly different distributions of selection
coefficients may fail to pass this threshold, e.g. traits for which most heritability arises from
strongly selected variants.
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Limitations and future analyses. These limitations and others can be addressed in the
future. For example, whole genome sequencing [60] would enable greater power for strongly
selected variants. Meanwhile, methodologies that integrate over the full distribution of causal
variants accounting for LD [11,19,36] may allow us to relax the reliance on genome-wide sig-
nificant hits, thus increasing the power to identify weakly selected variants, more generally
increasing the precision of our inference for both the TSD and SSD models, and allowing for
the analysis of traits with fewer GWAS hits.

Future increases in sensitivity and applications of our inference to different kinds of
traits may also warrant extensions of our evolutionary model. Notably, our current model is
restricted to quantitative traits and is not immediately applicable to binary traits including
diseases. One could imagine that variants that affect the risk of some complex diseases are
selected to minimize that risk and are thus subject to purifying (directional) selection, but
recent studies indicate that, at least common variation affecting them is predominated by the
kind of pleiotropic stabilizing selection we assumed here [61,62]. With an appropriate adjust-
ment of the model to fit data from case-control GWAS, we may find that complex diseases
have similar architectures to those of the quantitative traits that we examined.

Our model and inference rely on the simplifying assumption that all the genetic variation
in a given trait is affected by the same degree of pleiotropic selection (this degree was reflected
in the dimension of the trait space; see, e.g., Eq 3 and Simons et al. 2018). We now have strong
evidence that this assumption is violated in ways that affect the kinds of variants that are iden-
tified in GWAS [50]. Future extensions of the model may incorporate variation in the degree
of pleiotropic selection, where this variation may also differ among complex traits.

Why do trait-specific scaling parameters vary? Future refinements notwithstanding,
our evolutionary model with a shared distribution of selection effects fits the data from all 95
traits in our dataset remarkably well, indicating, as we have also confirmed, that differences in
genetic architecture of genome-wide significant hits among highly polygenic traits are largely
determined by the two trait-specific scaling factors: the mutational target size and heritability
per site.

The mutational target size varies over 2 orders of magnitude among our 95 traits. While
the estimates are novel, the variation among them is hardly surprising given the vast differ-
ences in the biology of these traits. These traits vary in being affected by few to many tis-
sues and by the number and properties of genes and pathways that directly affect the trait in
these tissues [59,63]. Moreover, the pathways that directly affect these traits plausibly differ
in how buffered they are against genetic (and environmental) variation and in their modu-
larity, plausibly reflective of the kinds of traits and of selection pressures over longer evolu-
tionary timescales than the turnover time of heritable variation [64,65]. Our estimates of her-
itability are less variable, but still span an order of magnitude, and vary among different kinds
of traits (S1 Table). Both of these observations have been known for almost a century, and
yet the question about their causes remains largely open [23,37,38]. Our results indicate that
other differences in architecture among traits are dwarfed by the variation caused by these
two scaling parameters.

Outlook. Taking a step back, our results highlight that evolutionary thinking is essential to
understanding of the findings emerging from human GWASs, and more generally, heritable
variation in complex traits. This insight is consistent with long-standing thinking in the field,
given that heritable variation in complex traits reflects the outcome of numerous genetic per-
turbations to the phenotype that passed through the sieve of evolution [23,38]. Specifically,
the signal measured in GWASs reflects causal variants’ contribution to heritability, which
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depends on their effect on the trait under consideration, but also on their minor allele fre-
quency, where the relationship between the two is mediated by natural selection. What is sur-
prising, at least to us, is how far an analysis based on evolutionary modeling can go, in this
case, showing that the genetic architectures of many highly polygenic quantitative traits are
largely shared. This finding carries many implications about human GWASs and their appli-
cations, some of which we plan to explore elsewhere. Alongside other evidence, it also hints
at underlying biology that largely remains to be discovered, plausibly relating to properties of
gene regulatory networks. We think that a combination of evolutionary reasoning alongside
a systems approach to gene regulation would move us closer to answering questions tracing
back to the very beginning of the field of genetics about the mapping from genetic variation to
phenotypes.
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