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Abstract 
The medial prefrontal cortex (mPFC) has long been associated with economic and 

social decision-making in neuroimaging studies. Several debates question whether 

different ventral mPFC (vmPFC) and dorsal mPFC (dmPFC) regions have specific func-

tions or whether there is a gradient supporting social and nonsocial cognition. Here, we 

tested an unusually large sample of rare participants with focal damage to the mPFC (N 

= 33), individuals with lesions elsewhere (N = 17), and healthy controls (N = 71) (total 

N = 121). Participants completed a temporal discounting task to estimate their base-

line discounting preferences before learning the preferences of two other people, one 

who was more temporally impulsive and one more patient. We used Bayesian compu-

tational models to estimate baseline discounting and susceptibility to social influence 

after learning others’ economic preferences. mPFC damage increased susceptibility to 

impulsive social influence compared to healthy controls and increased overall suscep-

tibility to social influence compared to those with lesions elsewhere. Importantly, voxel-

based lesion-symptom mapping (VLSM) of computational parameters showed that this 

heightened susceptibility to social influence was attributed specifically to damage to the 

dmPFC (area 9; permutation-based threshold-free cluster enhancement (TFCE) p < 

0.025). In contrast, lesions in the vmPFC (areas 13 and 25) and ventral striatum were 

associated with a preference for seeking more immediate rewards (permutation-based 

TFCE p < 0.05). We show that the dmPFC is causally implicated in susceptibility to 

social influence, with distinct ventral portions of mPFC involved in temporal discount-

ing. These findings provide causal evidence for sub-regions of the mPFC underpinning 

fundamental social and cognitive processes.
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Introduction
The medial prefrontal cortex (mPFC) has long been linked to processing social information 
and to economic decision-making [1–4]. Several studies have suggested that dorsal portions of 
mPFC (dorsomedial prefrontal cortex, dmPFC) are involved in processing social information 
[5–14], while ventral parts (ventromedial prefrontal cortex, vmPFC) are relatively more spe-
cialized in processing information pertinent to the self [7,15–22]. However, these conclusions 
have often been based on functional neuroimaging studies, which are correlational by nature, 
and the specificity of these different regions in social and economic processing is a topic of 
several ongoing debates [23].

Another perspective on the role of the mPFC in decision-making is that there is a spatial 
gradient along the ventral-dorsal axis purportedly distinguishing between self-referential 
(nonsocial) and other-regarding (social) processing. However, this division between self 
and others has also faced both theoretical and empirical challenges [23–25]. The vmPFC, 
including areas 11, 13, and 14, which is purported to be involved in processing self-relevant 
information (e.g., reflection about one’s own personality traits [26]), has been shown to play 
a role in learning others’ economic preferences [27], making choices for others based on 
their own preferences [23], integrating subjective values of self and others [28], and tracking 
the association between agents and objects for others [29]. On the other hand, the dmPFC 
(including area 9), presumed to be pivotal for social cognition, has been observed to engage 
in merging self- and other-related information [14,30] and representing one’s own subjective 
values of choices during decision-making processes [31–33]. One interpretation of the results 
of these neuroimaging studies is that neither the vmPFC nor the dmPFC are specifically acti-
vated by social or nonsocial information. Causal evidence in large samples is strongly needed 
to reveal the necessity of the mPFC and its subdivisions in social cognition and economic 
decision-making.

Social and economic decision-making can be evaluated in parallel using paradigms such 
as the delegated inter-temporal choice task [23,27,34–36]. Humans and other animals differ 
significantly in their preference for immediate versus delayed rewards [37,38]. Some people 
are impulsive and have a strong preference for immediate rewards, even when they are smaller 
than those available in the future. In a temporal discounting task, participants are asked 
whether they prefer smaller sooner over larger later rewards [39]. By varying the values of 
these different rewards and fitting computational models we can precisely parametrize peo-
ple’s economic preferences for impulsivity versus patience. Strikingly, recent evidence suggests 
that such idiosyncratic preferences for future rewards can also be readily transmitted through 
social influence. When participants are tasked with making inter-temporal choices on behalf 
of someone else (i.e., delegated inter-temporal choices), they often adjust their own prefer-
ences to align with those of the other person [23,27,34–36]. This tendency to be influenced by 
others is a case of social influence or social contagion [5,12,40–42].

Existing work on the neural basis of social influence suggests regions of the mPFC may 
be crucial. A coordinate-based meta-analysis of functional neuroimaging studies suggested 
that activation of the mPFC (especially dorsal posterior parts) predicts people’s conformity 
to a majority opinion [43]. Another neuroimaging study that evaluated the role of the mPFC 
in processing social information and economic decision-making linked activation of the 
dmPFC to conforming to a social norm, and activation of the vmPFC to social conformity and 
economic decision-making [10]. Finally, the process of shifting one’s own preference to that of 
others could be driven by the plasticity of value representations in the mPFC. Indeed, a repeti-
tion suppression study showed a region in the mPFC where activity predicted susceptibility to 
social influence [27]. However, the causal necessity of the mPFC remains unknown.

Data availability statement: Data and code 
for modeling and analysis are openly available 
at the open science framework (OSF): https://
osf.io/qzurp/. Unthresholded statistical maps 
generated in this study are available at https://
identifiers.org/neurovault.collection:19609.

Funding: P.L.L was supported by a Medical 
Research Council Fellowship (MR/P014097/1 
and MR/P014097/2; https://www.ukri.
org/councils/mrc/), a Jacobs Foundation 
Research Fellowship (https://jacobsfoun-
dation.org/), a Sir Henry Dale Fellowship 
funded by the Wellcome Trust and the Royal 
Society (223264/Z/21/Z; https://wellcome.
org/, https://royalsociety.org/), a UKRI/EPSRC 
Frontier Science Guarantee (ERC Starting 
Grant Replacement Funding, EP/X020215/1; 
https://www.ukri.org/councils/epsrc/) and a 
Leverhulme Prize from the Leverhulme Trust 
(PLP-2021-196; https://www.leverhulme.
ac.uk/). M.H. was supported by Wellcome 
Trust Principal Fellowship (098282/Z/12/Z, 
206330/Z/17/Z; https://wellcome.org/) and 
NIHR Oxford Health Biomedical Research 
Centre funding (https://www.nihr.ac.uk/). 
S.G.M. was supported by a Clinician Scientist 
Fellowship (MR/P00878/X; https://www.ukri.
org/councils/mrc/) and Leverhulme Research 
Grant (2018-310; https://www.leverhulme.
ac.uk/). This research was also supported by 
the National Institute for Healthcare Research 
(NIHR; https://www.nihr.ac.uk/) Oxford 
Biomedical Research Centre (BRC; https://
oxfordbrc.nihr.ac.uk/). L.Z. was partially sup-
ported by a Wellcome Data Science Ideathon 
Award (228268/Z/23/Z; https://wellcome.
org/). Z.S. was supported by the Government 
Scholarship of Overseas Study funded by 
the Ministry of Education in Taiwan (https://
english.moe.gov.tw/mp-1.html). The funders 
had no role in study design, data collection and 
analysis, decision to publish or preparation of 
the manuscript.

Competing interests: The authors have 
declared that no competing interests exist.

Abbreviations:  AMI, Apathy-Motivation Index; 
ANCOVA, analysis of covariance; ANOVA, 
analysis of variance; BDI, Beck Depression 
Inventory; cTBS, continuous theta-burst 
stimulation; DKL, Kullback–Leibler divergence; 
dmPFC, dorsomedial prefrontal cortex; FSL, 
FMRIB Software Library; HC, healthy controls; 
HMC, Hamilton Monte Carlo; KT, preference-
temperature; KU, preference-uncertainty; LC, 
lesion controls; LMM, linear mixed-effects 
model; MCMC, Markov Chain Monte Carlo; 

https://osf.io/qzurp/
https://osf.io/qzurp/
https://identifiers.org/neurovault.collection:19609
https://identifiers.org/neurovault.collection:19609
https://www.ukri.org/councils/mrc/
https://www.ukri.org/councils/mrc/
https://jacobsfoundation.org/
https://jacobsfoundation.org/
https://wellcome.org/
https://wellcome.org/
https://royalsociety.org/
https://www.ukri.org/councils/epsrc/
https://www.leverhulme.ac.uk/
https://www.leverhulme.ac.uk/
https://wellcome.org/
https://www.nihr.ac.uk/
https://www.ukri.org/councils/mrc/
https://www.ukri.org/councils/mrc/
https://www.leverhulme.ac.uk/
https://www.leverhulme.ac.uk/
https://www.nihr.ac.uk/
https://oxfordbrc.nihr.ac.uk/
https://oxfordbrc.nihr.ac.uk/
https://wellcome.org/
https://wellcome.org/
https://english.moe.gov.tw/mp-1.html
https://english.moe.gov.tw/mp-1.html


PLOS Biology | https://doi.org/10.1371/journal.pbio.3003079  April 28, 2025 3 / 31

PLOS Biology Medial prefrontal cortex lesions, social influence, and temporal discounting

Moreover, other studies instead point to the mPFC being involved in nonsocial decision-
making. For example, activity of the mPFC [44] and its functional connectivity with other 
regions [45] have been shown to correlate with temporal discounting decisions. A handful of 
lesion studies have shown that damage to the mPFC had a null effect on temporal discounting 
[46] or led to an increase in temporal discounting [47–49]. Nevertheless, these lesion studies 
were conducted in fewer than 10 participants, and for neuroimaging studies, it is well-known 
that ventral portions of the mPFC are prone to considerable signal dropout due to their adja-
cency to bone and air sinuses, which might compromise the accuracy of functional localiza-
tion within this area [50,51]. Taken together, these studies highlight the importance of using 
suitable causal approaches in large lesion samples to isolate if mPFC integrity is necessary for 
social influence and economic decision-making.

Here, we assessed the causal role of the mPFC in people’s temporal discounting preferences 
and susceptibility to social influence, focusing on the nature of influence (i.e., being more impul-
sive or patient). We compared an unusually large group of rare participants with focal lesions 
to the mPFC (N = 33; Fig 1a) against two other control groups: participants with brain damage 
elsewhere (lesion controls, LCs; N = 17; Fig 1b) and age- and gender-matched participants 
without any brain damage (healthy controls, HC; N = 71). All participants first participated in a 
temporal discounting task designed to measure their baseline individual temporal discounting 
preferences. After completing this task, they were introduced to the preferences of two other 
people, being ostensible and unknown to the participants. The decisions of these two other 
people were in fact simulated based on a hyperbolic discounting model. One of these others was 
manipulated to have preferences that were more impulsive and the other as more patient, rela-
tive to the participants’ estimated baseline preferences. Finally, participants completed the same 
temporal discounting task again (see Methods and Fig 2a) to examine whether learning the oth-
ers’ preferences resulted in social influence on their own discounting preference. To accurately 
estimate participants’ temporal preferences and quantify their changes in preferences, we used a 
novel computational neurology approach fitting models to the data using hierarchical Bayesian 
modeling, and using the resulting parameters in lesion-symptom mapping.

We show that damage to the mPFC increases susceptibility to social influence. Crucially, 
those with mPFC lesions are more likely to be influenced by impulsive others compared to 
HCs, and more susceptible to social influence overall than LCs. Lesion-symptom mapping 
reveals that damage to the dmPFC (including area 9), and not to the vmPFC, is associated 

Fig 1.  Lesion locations for mPFC and lesion control groups. (a) Participants in the mPFC lesion group (N = 33) had focal damage to 
the mPFC with the lesions extending into the lateral sections (area 13) of the bilateral mPFC and including medial surface subregions 
(areas 9, 14, 25, and 32). (b) Participants in the lesion control group (N = 17) also suffered damage mostly caused by subarachnoid 
hemorrhage but to areas outside the mPFC (see Methods). Note that the images here are shown in radiological convention.

https://doi.org/10.1371/journal.pbio.3003079.g001

mPFC, medial prefrontal cortex; TFCE, 
threshold-free cluster enhancement; TMT, 
Trail Making Test; VLSM, voxel-based lesion-
symptom mapping; vmPFC, ventromedial 
prefrontal cortex.

https://doi.org/10.1371/journal.pbio.3003079.g001
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Fig 2.  The delegated inter-temporal choice task and learning performances. (a) The trial structure in Self and 
Other blocks. During Self trials, participants were instructed to choose between two options: one offering an imme-
diate smaller reward (smaller-and-sooner option, SS), and the other promising a larger reward after a variable delay 
period (larger-and-later option, LL). They were encouraged to express their genuine preferences by being informed 
that one of these choices would be randomly selected at the end of the study and serve as their bonus payment. 
During Other trials, participants were tasked to learn about the preferences of the other two people, with the informa-
tion that these choices had been previously made by different participants. Participants were given feedback on their 
decisions, allowing them to grasp the intertemporal preferences of the other people. The experiment consisted of five 
blocks of 50 trials each (Self1, Other1, Self2, Other2, Self3), with a self-paced break after every 25 trials within each 
block, resulting in 250 trials overall. The order of the other people’s preferences (more impulsive vs. more patient) was 
counterbalanced across participants. (b) Illustration of simulated hyperbolic discounters. The decisions of the other 
people were generated using a simulated hyperbolic discounting model (preference-temperature KT model, see Meth-
ods), where the discount rate k was adjusted to be either plus one (more impulsive) or minus one (more patient) from 
the participant’s own baseline k in the first experimental block. (c) Participants with brain damage can accurately 
learn others’ preferences. All three groups of participants (healthy controls, mPFC lesions, and lesion controls) were 
capable of learning in this task (right-tailed exact binomial tests against 50%, all ps < 0.001). Big circles with bordered 
lines represent the mean and error bars are the standard error of the mean, dots are raw data, and the asterisks repre-
sent the significant main effects of groups from the linear mixed-effects model and posthoc comparison. Note that the 
vertical axis starts from 50%, the chance level. **p < 0.01. The underlying data and code used to generate this figure 
can be found at https://osf.io/qzurp/.

https://doi.org/10.1371/journal.pbio.3003079.g002

https://osf.io/qzurp/
https://doi.org/10.1371/journal.pbio.3003079.g002
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with an increase in susceptibility to impulsive social influence. Additionally, damage to both 
mPFC and damage elsewhere leads to greater baseline discounting compared to HCs. This 
heightened temporal discounting is associated with vmPFC (areas 13 and 25) and ventral 
striatum damage. Together, these findings reveal that the dmPFC is causally involved in social 
influence whereas the vmPFC is associated with temporal impulsivity.

Results
To test the causal role of the mPFC in people’s susceptibility to social influence and economic 
decision-making, we analyzed data from three groups: 33 participants with focal mPFC dam-
age (mean age = 56.88; 17 females), 17 LC participants with brain damage not involving the 
mPFC (mean age = 56.24; 12 females), and 71 HC participants without any brain lesion (mean 
age = 60.73; 41 females). All participants first engaged in an inter-temporal choice task to 
assess their baseline individual discounting preferences. Following this, they were introduced 
to the preferences of two other players who they were informed had participated in the same 
temporal discounting task previously. They were instructed to learn these players’ preferences 
through a trial-and-error process based on the feedback they received. In fact, these players 
were modeled to contrast with the participants’ own tendencies (see Methods). One person 
was more impulsive, and one was more patient, relative to the participants’ estimated baseline 
preferences (see Fig 2b). The decisions of the two other players were presented in a coun-
terbalanced order across participants (see Fig 2a and Methods for more details). They also 
completed a series of neuropsychological tests, self-report measures of depression and apathy, 
and self-reported their perceived similarity to both impulsive and patient others at the end of 
the experiment. The three groups were closely matched, displaying no significant differences 
in terms of age, gender, visual attention, and executive function. Additionally, the two lesion 
groups showed no differences between each other in education, depression, or apathy (see 
Methods and S1 Table). Controlling for depression or apathy did not change any of our key 
results regarding group differences in temporal discounting or susceptibility to social influ-
ence (S1 Text and S2–S3 Tables).

Participants received feedback on their decisions, which allowed them to learn about the 
intertemporal preferences of the other people (see below Simulation of the other people’s 
choices). The correct choices were characterized as those with greater estimated values from 
the hyperbolic model, based on a given discount rate. Due to the adaptive nature of the task, 
two HC participants and two mPFC participants had two others with ‘more patient’ prefer-
ences. Data from these participants was therefore not available for analyses involving others 
with ‘more impulsive’ preferences (i.e., learning accuracy and susceptibility to social influ-
ence). Similarly, eight HC participants, five mPFC participants, and one LC participant had 
two others with ‘more impulsive’ preferences. Their data was not available for all analyses 
regarding others with ‘more patient’ preferences (i.e., learning accuracy and susceptibility to 
social influence).

Participants with brain damage can accurately learn others’ preferences
To confirm participants were able to complete the task, our first analysis assessed their capac-
ity to learn about the preferences of the other people who exhibited different discounting 
behaviors (Fig 2c). All three groups of participants (HC, mPFC, LC) demonstrated learning 
performances surpassing the chance level when learning about impulsive (HC mean [SE] = 
81% [0.8%], mPFC = 79% [1.1%], LC mean = 78% [1.8%]; right-tailed exact binomial test 
against 50%, all proportions = 1.00, ps < 0.001) and patient others (HC = 85% [0.7%], mPFC 
= 80% [1.4%], LC = 80% [2.1%]; right-tailed exact binomial test against 50%, all proportions = 
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1.00, ps < 0.001). This suggests participants with brain damage, whether within the mPFC or 
elsewhere, were capable of learning others’ preferences.

Next, we examined whether learning performances differed based on others’ preferences 
among the three groups using a linear mixed-effects model (LMM; S2 Table). Overall, regard-
less of whether those preferences were more impulsive or patient, HCs demonstrated higher 
accuracy in learning others’ preferences compared to the mPFC lesion group (main effect HC 
versus mPFC, b [95% CI] = 3.22 [1.03,5.42], p = 0.004), while LCs performed similarly to the 
mPFC lesion group, with substantial Bayesian evidence of nonsignificant difference (main 
effect LC versus mPFC, b [95% CI] = −0.66 [−3.71,2.38], p = 0.67, BF01 = 3.32). In addition, 
HCs were also more accurate in learning others’ preferences than LCs (posthoc comparison 
HC versus LC estimate = 3.89, SE = 1.39, t = 2.81, p = 0.006). Therefore, participants with 
brain damage to the mPFC could learn others’ preferences with high accuracy, although over-
all accuracy was lower than that of HCs and equivalent to LCs.

mPFC lesions increase impulsivity but not uncertainty at baseline
After validating that all participants could successfully complete the task, we applied com-
putational models of hyperbolic discounting [52,53], a widely used approach for indexing 
temporal discounting behavior. We utilized a previously validated Bayesian hyperbolic 
preference-uncertainty (KU) model to quantify participants’ temporal impulsivity and choice 
uncertainty (Fig 3a, see Methods). The KU model proposes that participants’ discounting 
preferences are best represented as a distribution, rather than a singular, fixed value [34]. The 
model was fitted through hierarchical Bayesian modeling [52,54] and verified using param-
eter recovery. The free parameters in the chosen model, km (temporal impulsivity) and ku 
(preference uncertainty), representing the mean and standard deviation of the participant’s 
discounting distribution, exhibited excellent parameter recovery (all rs > 0.87; S1 Fig). Addi-
tionally, the posterior predictive prediction successfully replicated the key patterns observed 
in our behavioral data (see Methods and S2 Fig). We therefore used this model to estimate 
participants’ baseline discounting preference, and to determine whether these parameters 
varied between groups (Fig 3b).

Comparing the temporal impulsivity parameter (i.e., km) between groups revealed a main 
effect of group (one-way analysis of variance [ANOVA]: F(2, 118) = 6.36, p = 0.002, η2 [95% CI] 
= 0.10 [0.02,0.20]; S1 Text). We found that brain damage, whether within the mPFC or outside 
of it, resulted in increased temporal impulsivity compared to the HC group (posthoc compar-
ison mPFC versus HC estimate = 1.30, SE = 0.40, t = 3.23, p = 0.002; LC versus HC estimate 
= 1.17, SE = 0.52, t = 2.27, p = 0.03). There was no significant difference in terms of temporal 
impulsivity between the two lesion groups (mPFC versus LC estimate = 0.13, SE = 0.57, t = 
0.22, p = 0.824, BF01 = 3.29). Additionally, comparing the preference uncertainty parameter 
(i.e., ku) between groups also showed a main effect of group (one-way ANOVA: F(2, 118) = 9.55, 
p < 0.001, η2 [95% CI] = 0.14 [0.04,0.25]; S1 Text). While LCs demonstrated higher uncertainty 
in their own discounting preferences compared to HCs (LC versus HC estimate = 0.58, SE = 
0.13, t = 4.37, p < 0.001), participants with mPFC lesions did not exhibit this behavioral pat-
tern (mPFC versus HC estimate = 0.10, SE = 0.10, t = 0.95, p = 0.343, BF01 = 2.81). Even upon 
directly comparing the two lesion groups, LCs still showed greater preference uncertainty 
compared to those with mPFC lesions (LC versus mPFC estimate = 0.48, SE = 0.15, t = 3.28, p 
= 0.001). Notably, this increased preference uncertainty was not explained by total lesion size 
(correlation ku versus lesion size within the LC group: rs(15) = −0.07 [−0.54,0.42], p = 0.779, 
BF01 = 3.24). These findings suggest damage to the mPFC increases temporal impulsivity but 
not preference uncertainty.
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Damage to mPFC enhances susceptibility to impulsive social influence
After assessing participants’ initial temporal preferences among groups, we proceeded to 
examine their susceptibility to social influence using signed Kullback–Leibler divergence (DKL) 
(see Methods). DKL quantifies the difference between two probability distributions [35,55]. 
This metric evaluates the entire probability distribution, rather than solely focusing on sum-
mary statistics or point estimates derived from those distributions. We used DKL to formally 
quantify the shift of model parameters (i.e., km and ku) due to social influence (see Methods). 

Fig 3.  mPFC lesions increase temporal impulsivity without affecting preference uncertainty. (a) Illustration of 
the preference-uncertainty (KU) model. In the KU model, people’s temporal discounting preferences are represented 
by a probability distribution. The mean (km) of this distribution indicates temporal impulsivity, while the standard 
deviation (ku) reflects the level of preference uncertainty. (b) Comparing temporal impulsivity (km) and preference 
uncertainty (ku) of participants derived from the preference-uncertainty (KU) model across groups revealed that 
mPFC lesions increased temporal impulsivity but not preference uncertainty compared to healthy controls. N = 71 
for HC, N = 33 for mPFC, and N = 17 for LC. Bars show group means, error bars are standard errors of the mean, 
dots are raw data, and asterisks represent significant posthoc comparisons. *p < 0.05; **p < 0.01; ***p < 0.001. The 
underlying data and code used to generate this figure can be found at https://osf.io/qzurp/.

https://doi.org/10.1371/journal.pbio.3003079.g003

https://osf.io/qzurp/
https://doi.org/10.1371/journal.pbio.3003079.g003
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Throughout our analysis, we signed DKL to indicate the direction of shifting in the discounting 
distributions relative to the baseline. Positive signed DKL values signify a shift toward the dis-
counting preferences of others (i.e., becoming more similar to others), whereas negative values 
indicate a divergence from them compared to baseline preferences.

We examined whether there were group differences in susceptibility to social influence when 
exposed to information about impulsive and patient others using an LMM (Fig 4 and S3 Table). 
Given differences in people’s baseline impulsivity among the three groups, this LMM included 
participants’ baseline km (continuous covariates, centered around the grand mean) and its 
interaction with fixed effects of group (HC, mPFC, and LC), other’s preference (patient versus 
impulsive), and their interactions as fixed terms, along with a random subject-level intercept.

Strikingly, we found that participants with mPFC damage were more influenced by impul-
sive relative to patient others, compared to HCs (group × others interaction HC versus mPFC: 
b [95% CI] = 0.28 [0.03,0.54], p = 0.031). Posthoc tests uncovered that this interaction was pri-
marily driven by the mPFC lesion group being more susceptible to impulsive social influence 
compared to HCs (HC versus mPFC estimate = −0.46, SE = 0.17, t = −2.70, p = 0.007).  

Fig 4.  Damage to mPFC increases susceptibility to impulsive social influence. Compared to healthy controls, 
participants with mPFC lesions were more influenced by impulsive social influence (posthoc p = 0.007, follow-up of 
a significant LMM interaction). In contrast, the mPFC lesion group did not significantly differ from healthy controls 
in their susceptibility to patient social influence (posthoc p = 0.683, BF01 = 4.01). Participants with mPFC lesions also 
showed heightened susceptibility to social influence overall, regardless of whether the influence was more impul-
sive or more patient, when compared to lesion controls (main effect mPFC vs. LC, b [95% CI] = 0.41 [0.05,0.77], p 
= 0.026). Sample sizes differ across conditions due to the adaptive nature of the task (N = 69 for HC impulsive, N = 
63 for HC patient, N = 31 for mPFC impulsive, N = 28 for mPFC patient, N = 17 for LC impulsive, N = 16 for LC 
patient). Bars show group means, error bars are standard errors of the mean, and dots are raw data. Dots without 
connecting lines indicate participants with data unavailable for one of the two other players (see Methods). The 
asterisk between HC and mPFC represents the significant LMM interaction, while the asterisk between mPFC and 
LC indicates the significant LMM main effect. Asterisks between two impulsive bars signify a significant post-hoc 
comparison. *p < 0.05; **p < 0.01. The underlying data and code used to generate this figure can be found at https://
osf.io/qzurp/.

https://doi.org/10.1371/journal.pbio.3003079.g004

https://osf.io/qzurp/
https://osf.io/qzurp/
https://doi.org/10.1371/journal.pbio.3003079.g004


PLOS Biology | https://doi.org/10.1371/journal.pbio.3003079  April 28, 2025 9 / 31

PLOS Biology Medial prefrontal cortex lesions, social influence, and temporal discounting

In contrast, there was no statistical difference between participants with mPFC lesions and 
HCs in their susceptibility to patient social influence (HC versus mPFC estimate = 0.08, SE = 
0.19, t = 0.41, p = 0.683, BF01 = 4.01). The mPFC lesion group was also overall more suscep-
tible to social influence compared to LCs (main effect LC versus mPFC, b [95% CI] = −0.41 
[−0.77 −0.05], p = 0.026). Additionally, we re-ran the analysis to confirm that results remained 
the same accounting for the order of others’ preferences (see S4 Table), and no significant 
correlation was found between impulsive and patient signed KL divergence in any group 
(ps > 0.49, S5 Table), suggesting that the order effect could not explain the group differences 
observed here. Furthermore, an exploratory control analysis that accounted for baseline pref-
erence uncertainty did not change the interaction results reported above (S6 Table), suggesting 
that the group differences in susceptibility to social influence were not attributed to individual 
differences in preference uncertainty. Importantly, although participants with mPFC lesions 
were relatively more susceptible to impulsive social influence, they did not report feeling more 
similar to impulsive others (main effect patient others versus impulsive others on perceived 
similarity within mPFC lesions: b [95% CI] = 0.35 [−0.08,0.78], p = 0.107, BF01 = 1.28), with 
anecdotal Bayesian evidence suggesting no difference. Their susceptibility to social influence 
was also not correlated with their learning performances (ps > 0.83, see S7 Table) or with 
their perceived similarity to others (ps > 0.12, S8 Table), suggesting these group differences 
were not driven by possible individual differences in learning ability or perceived similarity to 
others. Taken together, these results demonstrate that brain damage specifically to the mPFC 
enhanced people’s susceptibility to social influence, with impulsive social influence particu-
larly affected.

Damage specifically to dmPFC is associated with heightened susceptibility 
to impulsive social influence
Next, we used voxel-based lesion-symptom mapping (VLSM) to examine whether subre-
gions within mPFC were linked to group differences in susceptibility to social influence. The 
VLSM analysis pinpoints voxels where participants with damage at that voxel, compared to 
participants with damage elsewhere, show differences in susceptibility to impulsive relative 
to patient social influence (i.e., signed impulsive DKL minus signed patient DKL; N = 26 where 
both patient and impulsive others were present, see Methods). VLSM assesses whether the 
lesion in each voxel predicts an individual’s behavior by generating a map of the t-statistics 
[56]. We included voxels where damage was present in at least five participants [57]. We used 
the FMRIB Software Library (FSL) [58] to conduct permutation-based VLSM with threshold-
free cluster enhancement (TFCE) [59,60]. The combination of permutation testing with TFCE 
allowed us to achieve an optimal balance between sensitivity to true effects and reducing the 
risk of identifying small, potentially spurious effects [56,59]. Significance was reported at 
permutation-based TFCE p < 0.025 (permutation-based TFCE p < 0.05 Bonferroni-corrected 
across two behavioral regressors). As a control analysis, we first confirmed that there was no 
significant association between the overall degree of damage (i.e., total lesion size) and suscep-
tibility to social influence (see Methods).

The VLSM analysis revealed only one region, in the dmPFC incorporating parts of area 
9 (Fig 5, peak MNI coordinate [±2, 40, 20], cluster size k = 282), that correlated with the 
behavioral difference in susceptibility to social influence. To further examine this correla-
tion between this dmPFC area and increased susceptibility to impulsive social influence, we 
repeated our analysis incorporating LCs with damage outside of the mPFC (N = 42 in total). 
This analysis confirmed the involvement of an overlapping region within the dmPFC (area 9; 
S3 Fig, peak MNI coordinate [±2, 40, 20], cluster size k = 1) identified in our prior analysis. 
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These results highlight that damage to an area within the dmPFC, rather than ventral por-
tions, made people more susceptible to influence by impulsive versus patient others.

Damage to vmPFC and ventral striatum is associated with increased 
temporal impulsivity
Finally, we used another VLSM to test whether there were any mPFC subregions where dam-
age underpinned the behavioral increase in temporal impulsivity, that is how much participants 
discounted the reward value over time (i.e., km parameters; N = 33 for mPFC lesion participants) 
(see Methods). Again, there was no significant association found between the overall degree of 
damage (i.e., total lesion size) and temporal impulsivity (see Methods). We found no significant 
correlation between mPFC damage and heightened baseline temporal impulsivity at our threshold 
criteria (permutation-based TFCE p < 0.025). Subsequently, we adopted an exploratory approach, 
examining whether any regions were significantly associated at uncorrected levels after permuta-
tion testing (p < 0.05). This analysis revealed that lesions in two distinct clusters, one encompassing 
the ventral portions of the mPFC corresponding to area 13 (Fig 6, peak MNI coordinate [±16, 
14, −18], cluster size k = 6) as well as area 25 (peak MNI coordinate [±6, 18, −8], cluster size k = 
2), and another in the most ventral parts of the striatum putatively corresponding to the nucleus 
accumbens (peak MNI coordinate [±12, 14, −12], cluster size k = 2). In these areas, damage was 
associated with increased temporal impulsivity, as evidenced by increased km parameters.

To provide further evidence for the robustness of this exploratory analysis, we repeated 
our analysis including LCs with damage outside of the mPFC (N = 50 in total). Here, we again 

Fig 5.  Damage to dmPFC (area 9) enhances susceptibility to impulsive social influence. (a) Permutation-based, 
whole-brain, nonparametric voxel-based lesion-symptom mapping (VLSM) showed that damage to dorsomedial 
prefrontal cortex (dmPFC, area 9) was associated with heightened susceptibility to impulsive relative to patient 
social influence (permutation-based threshold-free cluster enhancement (TFCE) p < 0.025). (b) Plotting the ranked 
contrasts between susceptibilities to impulsive and patient social influence, separately for participants with damage or 
no damage in the areas identified by the VLSM analysis. N = 26 for this analysis where data from patient and impul-
sive was present. The underlying data and code used to generate this figure can be found at https://osf.io/qzurp/. 
Note: panel (b) is for illustrative purposes only and displays the ranked difference in signed KL divergence contrasts 
between participants with vs. without lesions, in the ROI defined by a wholebrain contrast.

https://doi.org/10.1371/journal.pbio.3003079.g005

https://osf.io/qzurp/
https://doi.org/10.1371/journal.pbio.3003079.g005
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found a portion in the vmPFC area 25 (S4 Fig, peak MNI coordinate [±6, 12, −10], cluster 
size k = 3) and ventral striatum (peak MNI coordinate [±14, 22, −4], cluster size k = 3) where 
damage was correlated with enhanced baseline temporal impulsivity.

Discussion
Several lines of evidence implicate the mPFC as crucial for processing social information and 
for economic decision-making [1–4]. However, theoretical and empirical accounts of mPFC 
function have been mixed, with studies claiming a role in economic or social processing, 
or both, and precise contributions of distinct mPFC subregions often overlooked. Here, by 
integrating an economic decision-making task measuring susceptibility to social influence 
in parallel with temporal discounting and leveraging Bayesian computational models, we 
demonstrate the mPFC is causally involved in social influence. Moreover, heightened suscep-
tibility to impulsive social influence is attributed to specific damage to the dmPFC. We also 
observed that mPFC damage was associated with increased baseline temporal discounting 
compared to HCs, with this heightened temporal impulsivity linked to damage in vmPFC and 
ventral striatum in exploratory analyses. Together, these results demonstrate the fundamental 
role of the dmPFC in social influence.

Previous neuroimaging studies have suggested that the dmPFC processes social conformity 
by detecting misalignment between one’s own and other’s opinions [1,12,43,61,62], with its 
activity associated with the extent of subsequent conformity under social influence [63–68]. 
A functional neuroimaging study on the social contagion of risk preferences also found that 
the dmPFC, along with the dorsolateral prefrontal cortex and inferior parietal lobule, was 

Fig 6.  Damage to vmPFC and ventral striatum increases temporal impulsivity. (a) Permutation-based, whole-
brain, nonparametric voxel-based lesion-symptom mapping (VLSM) showed that the areas 13 and 25 in the vmPFC 
as well as ventral striatum where damage was correlated with increased temporal impulsivity (permutation-based 
threshold-free cluster enhancement (TFCE) p < 0.05). (b) Plotting the ranked self baseline discounting preferences, 
separately for participants with damage or no damage in the areas identified by the VLSM analysis (N = 33). The 
underlying data and code used to generate this figure can be found at https://osf.io/qzurp/. Note: panel (b) is for illus-
trative purposes only and displays the ranked difference in self-baseline discounting preferences between participants 
with vs. without lesions, in the ROI defined by a wholebrain contrast.

https://doi.org/10.1371/journal.pbio.3003079.g006

https://osf.io/qzurp/
https://doi.org/10.1371/journal.pbio.3003079.g006
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involved in belief updating when participants learnt about others’ risk preferences [69]. In 
addition, in both humans [70,71] and macaque monkeys [72], the dmPFC has been shown 
to track the reliability of social information and to moderate the integration of self and 
social information based on their respective levels of certainty. This belief updating mecha-
nism holds significance in understanding social conformity. However, following this line of 
research, one might expect that damage to the dmPFC would lead to decreased susceptibil-
ity to social influence, rather than an increase [73,74]. Instead, we found that damage here 
increased susceptibility to social influence.

One putative function of the dmPFC is in maintaining self-other distinction [75], differ-
entiating signals attributed to oneself from simulated signals attributed to another person 
[76,77]. Achieving successful self-other distinction is essential for effective social interaction, 
including optimal display of social conformity. Recent studies have suggested that the dmPFC 
facilitates distinguishing the abilities of others from one’s own [30] and that applying con-
tinuous theta-burst stimulation (cTBS) over the dmPFC disrupts this self-other distinction 
[14]. Moreover, another study found that disrupting the dmPFC activity through transcranial 
ultrasound stimulation led macaque monkeys to exhibit suboptimal reliance on unreliable 
social information over nonsocial (self) information [72]. Similarly, a recent study found that 
downregulating the dmPFC activity using cTBS impaired learning performance during obser-
vational action-based learning by disrupting the predictability of the demonstrator’s actions 
[78]. Therefore, one possibility is that damage to dmPFC could blur the self-other distinction 
and hinder the effective use of social information, prompting people to excessively depend on 
others for information, thereby increasing susceptibility to social influence. This process may 
drive the asymmetry we observed in susceptibility to impulsive versus patient social influence 
in those with dmPFC damage. Although they did not report feeling more similar to impulsive 
others, their similarity to impulsive others could drive an implicit process where they were 
particularly susceptible to being influenced by others who also displayed impulsive choices.

Another perspective on the mechanisms behind social conformity is related to reinforce-
ment learning [66,68,79]. In the reinforcement learning framework, learning is driven by 
prediction errors, the discrepancy between expected and actual outcomes [80]. When people’s 
own preferences differ from those of others, such social expectancy prediction errors are 
encoded in the dmPFC [27,63,66–68,81]. People use this error signal to reduce the difference 
between self and others by either learning from or conforming to others [63,66–68]. In situ-
ations where people are unable to fully know the preferences or intentions of others, but still 
consider others’ choices to be informative, they must infer other’s mental states to optimize 
their own actions. In such scenarios, they need to evaluate the reliability of others’ choices, 
emulate others’ intentions, and integrate the inferred social information with their own, all of 
which entail the involvement of the dmPFC [70,82]. Therefore, given the central role of the 
dmPFC in reinforcement learning within social contexts, damage to the dmPFC may result 
in atypical social prediction errors which heighten social conformity. Future studies could 
probe these alternative explanations further. Notably, learning accuracy of others’ preference 
was intentionally high in the current paradigm to ensure all groups were able to learn others’ 
preferences so they could be influenced by them. Future paradigms could explicitly measure 
the effects of dmPFC damage on social learning in paradigms where learning accuracy is more 
variable such as while assessing mentalizing [83], vicarious learning [13,71,84], or other social 
behaviors. In nonsocial decision-making, theories of the mPFC suggest that it may contextual-
ize learning by providing a ‘task space’ or map that allows learning to be constrained to certain 
‘states’ [85]—for example, the mPFC may prevent learning when generalizing to irrelevant 
contexts. Perhaps maintaining self-other distinction during learning could be regarded as a 
specific case of this.
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It is somewhat surprising that people adjust their own preferences to align with others, 
even when such alignment could reduce their bonus payment. In our experimental design, 
participants were incentivized to prioritize their own outcomes and were explicitly informed 
that their decisions for others had no consequences for anyone involved, which highlights 
the robustness of the observed effects. It suggests that these preference shifts are not merely a 
byproduct of external factors, but instead reflect deeper cognitive or motivational processes 
[27,34].

The question of whether the brain has specialized regions and circuits for social behavior 
is central to social neuroscience [8,86–88]. Previous work has identified how social specificity 
may be realized at different levels of explanation [24]. Our task had many features to enhance 
its ability to capture social processes, including two different social others with different pref-
erences, informing participants the choices they observed were from real others, and carefully 
probing for any disbelief in the social manipulation. Furthermore, existing studies including 
control conditions that match the same stimuli and actions, but do not require social simu-
lation, failed to replicate changes in participants’ discounting preferences [27]. This suggests 
that simulation of other agents’ mental states—a central aspect of social interaction [88,89] —
is essential for the observed changes in people’s preferences, which highlights the importance 
of social component of the influence effect. To fully address whether shifts in people’s own 
preferences occur in the absence of social influence, future studies could consider including 
a nonsocial control targeting different levels of explanation for social specificity. This addi-
tional control condition could reveal the cognitive boundaries and specific neural systems that 
underpin social influence and whether they are common or distinct from nonsocial processes.

Our findings show that damage to the mPFC results in heightened preferences for imme-
diate reward options over delayed ones, aligning with prior findings suggesting the significant 
involvement of the mPFC in temporal discounting [44,45,47–49,90–95]. In addition to show-
ing these robust effects at the group level, we exploratively localized heightened impulsivity 
to the vmPFC, putatively in areas 13 and 25. Prior studies have suggested that the vmPFC 
plays a crucial role in inter-temporal decision-making, with damage to the vmPFC (in smaller 
samples) typically resulting in increased temporal discounting [47–49,95]. A recent study also 
showed that individual differences in temporal discounting preferences could be predicted by 
specific patterns of brain activity involving the vmPFC [96]. One possible explanation for peo-
ple’s preference for immediate rewards over future ones is the less tangible and more abstract 
nature of future rewards [97,98]. It has been reported that vividly imagining prospective 
events (i.e., episodic future thinking) reduces temporal discounting [99,100], supporting the 
assertion that future rewards are less favored due to their perceived intangibility. The integrity 
of the vmPFC may be crucial in episodic future thinking [48,101–104].

We also found that damage to the ventral striatum, previously linked to processing value 
and reward [15], was associated with steeper temporal discounting. These findings are 
important as they provide initial causal evidence for the role of striatum in inter-temporal 
decision-making where its function is highly debated. While several human neuroimaging 
studies have linked the ventral striatum to encoding the subjective value of delayed rewards 
[17,105,106], reflecting the difference in subjective value between delayed and immediate 
rewards [107], as well as tracking the objective magnitude of delayed rewards [108], other 
evidence suggests that the ventral striatum may exhibit increased activation in response 
to immediate rewards compared to delayed ones [109,110]. Moreover, some studies have 
demonstrated that ventral striatum activity is positively associated with temporal impulsivity 
[44,111], whereas others have found that its activity tracks participants’ choices for delayed 
rewards [107]. Due to the anatomical location of the ventral striatum, there have been limited 
lesion studies or noninvasive stimulation studies in humans. Intriguingly, research in rodents 
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has revealed that damage to the ventral striatum core results in a reduced probability of 
selecting delayed rewards [112,113], which fits with our finding here. Future studies could use 
new brain stimulation techniques, such as focused ultrasound, to dynamically module ventral 
striatum response during temporal discounting.

In addition to these novel findings, our study also has limitations. While we were able to 
recruit a relatively large sample over several years, there were fewer participants with dam-
age covering ventral striatum and only exploratory evidence for a role of this area. Further 
studies in larger samples are needed to confirm the precise role of the ventral striatum in 
temporal discounting. Second, we measured a specific type of social influence in terms of 
economic preferences. It would be important for future work to map the wider types of social 
influence that are associated with dmPFC function. For example, the dmPFC and adjacent 
perigenual cingulate cortex have been linked to tracking confidence in several neuroimaging 
studies [114,115]. While we did not observe any group differences between those with mPFC 
lesions and HCs in processing uncertainty at baseline, it would be interesting to evaluate the 
role of confidence in being influenced by other people. In contrast, HCs differed from both 
lesion groups in their baseline temporal discounting preferences. However, we controlled for 
baseline discounting preferences in our statistical models, and the two others that participants 
learnt about were modeled to be more impulsive or patient relative to participants’ own base-
line. The two lesion groups also did not differ, despite having brain damage in distinct areas. 
This ensured that differences in initial temporal discounting, before social influence, were 
accounted for. Additionally, while we have used advanced lesion-symptom mapping with a 
relatively large cohort of patients to establish a causal link between the mPFC and suscepti-
bility to social influence, there could be alternative explanations for some associations. For 
example, there could be shared causes that make brain lesions and impulsivity more likely to 
co-occur. However, the LC group was designed to control for effects that simply correlate with 
having brain lesions. Moreover, our choices of patients who predominantly had aneurysmal 
hemorrhages, which are stochastic events with relatively weak causal associations with impul-
sivity, also reduced the chance of a confounding variable influencing our findings. Future 
research would ideally take a multi-center longitudinal approach to be able to provide even 
stronger causal evidence.

In conclusion, we show that participants with damage to the mPFC are more prone 
to social influence. This increased susceptibility to social influence was linked to specific 
damage to the dmPFC when such influence was impulsive. Furthermore, lesions to the 
mPFC were associated with elevated baseline temporal discounting compared to HCs. 
This heightened temporal impulsivity was linked to lesions in the vmPFC and ventral 
striatum in exploratory analyses. Taken together, these results reveal that the mPFC plays 
a causal role in social influence with damage specifically to the dmPFC crucial for being 
influenced by others.

Materials and methods

Participants
Three groups of participants were recruited: the lesion group with focal damage to the mPFC, 
the LC group with lesions outside of the mPFC, and the age- and gender-matched HC group. 
The lesion participants were selected from a database of 453 individuals with neurological 
conditions, while the HCs were recruited from university databases and the community. The 
mPFC lesion group consisted of 33 patients with mPFC damage (age range = 37–76, mean 
= 56.88; 17 females). The LC group consisted of 17 participants with lesions in areas outside 
the mPFC (age range = 28–74, mean = 56.24; 12 females). The HC group consisted of 71 
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participants without any brain damage (age range = 24–76, mean = 60.73; 41 females), leading 
to a total sample of N = 121 for behavioral analyses. Classification of lesion location was 
performed from MR imaging or CT scans by a clinical neurologist (SGM). All participants 
gave their written consent to participate in the study, which has been ethically approved by 
the Medical Sciences Interdivisional Research Ethics Committee at the University of Oxford 
(Approval number: 18/LO/2152). The study was conducted according to the principles 
expressed in the Declaration of Helsinki.

The majority of patients had suffered subarachnoid hemorrhages from rupture of an aneu-
rysm (anterior communicating artery aneurysm in mPFC patients). Four had frontal menin-
giomas resected, and one had an ischemic stroke. The participants were carefully screened and 
selected to ensure there were no discrepancies in terms of gender (χ2

(2) = 1.67, p = 0.433) or 
age (ps > 0.20). In the mPFC group, 13 were on antihypertensives, two were taking amitripty-
line, one was on pregabalin, and one was taking levetiracetam, with no other neurological or 
psychiatric medication. In the LC group, four were on antihypertensives, two were on citalo-
pram, and one was on paroxetine, one was on pregabalin, one on pregabalin, and one was on 
lamotrigine plus levetiracetam. The mPFC lesion group also did not significantly differ from 
other controls in performance on a neuropsychological test assessing visual attention and 
executive function (Trail Making Test (TMT) [116]; Part A ps > 0.32, Part B ps > 0.19). How-
ever, they reported slightly higher levels of apathy (Apathy-Motivation Index (AMI) [117]; p 
= 0.014) and depression (Beck Depression Inventory (BDI) [118]; p = 0.033) compared to the 
HC group. There was no significant difference between these measures when comparing the 
mPFC group to the LC group (ps > 0.15).

One participant from the HC and mPFC groups had incomplete data on the self-report 
questionnaire measures, leading to their exclusion from the relevant analyses. In the final sam-
ple, as a result of the task’s adaptive nature, two HC participants and two mPFC participants 
had two others with ‘more patient’ preferences. Data from these participants were unavailable 
for analyses regarding others with ‘more impulsive’ preferences (i.e., learning accuracy and 
susceptibility to social influence). Likewise, eight HC participants, five mPFC participants, and 
one LC participant had two others with ‘more impulsive’ preferences. Their data was unavail-
able for all analyses related to others with ‘more patient’ preferences (i.e., learning accuracy 
and susceptibility to social influence).

Lesion identification
Of the 50 patients, all except two had MR imaging (1 mm isotropic T1 FSPGR MRI with 6 mm 
axial T2 PROPELLER sequence). Two cases had only a CT scan as they had metal surgical 
clips and an implantable defibrillator. Before conducting behavioral testing, a clinical neu-
rologist (SGM) manually outlined each participant’s lesion on their brain scan, utilizing FSL 
[58] (http://fsl.fmrib.ox.ac.uk/fsl) to map it onto the MNI152 template. Each lesion map was 
processed using a Gaussian kernel with a 5 mm full-width at half-maximum convolution. The 
average volume of the lesions was 2.68 cm3 (SD 2.63), and volume varied between 0.02 and 
9.74 cm3. There was no statistically significant difference in lesion volumes between two lesion 
groups (mPFC mean [SD] = 2.28 [2.38]; LC mean [SD] = 3.47 [2.98]; W = 210, Z = −1.43, r(48) 
= 0.20 [0.01,0.48], p = 0.153, BF01 = 1.31). There was no significant correlation between the 
overall lesion volume and any of the variables included in the VLSM analysis (self baseline 
discount rates, contrasts between susceptibilities to impulsive and patient influences), either 
across all participants (ps > 0.13) or within the mPFC group (ps > 0.35). To illustrate the 
extent of the lesions, an overlap map was created by counting the number of participants with 
lesions exceeding 10% degree of lesions within each voxel (Fig 1a and 1b).

http://fsl.fmrib.ox.ac.uk/fsl
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Procedure
Participants took part in a one-time on-site test that began with a clinical assessment with 
a neurologist (SGM). Following this, participants completed the delegated inter-temporal 
choice task [35], in addition to three separate experimental tasks (being reported elsewhere) 
and a series of other questionnaires. Participants received compensation of £10 per hour and 
were informed they would earn an extra bonus determined by a trial randomly selected from 
the task: the bonus would be awarded following a designated delay period, unless immedi-
ately. Actually, participants received a bonus that varied between £1 and £10 chosen randomly 
on the day they were tested and were notified that a trial had been selected.

Delegated inter-temporal choice task.   Participants engaged in a delegated inter-
temporal choice task where they learnt about the preferences of impulsive and patient others 
after making their own temporal discounting choices (Fig 2a). During the task, participants 
were asked to choose between two options: one was a smaller amount of money delivered 
immediately (today), while the other was a larger amount of money delivered after a variable 
delay period. The amount of reward ranged from £1 to £20, and the delay period varied 
between 1 and 90 days (this was subject to dynamic adjustments in the Self blocks). Both the 
immediate and delayed options were displayed simultaneously, with their positions on the 
screen being randomized across trials. The whole experiment consisted of five blocks of 50 
trials (Self1, Other1, Self2, Other2, Self3), with a self-paced break halfway through each block, 
resulting in 250 trials in total. Participants were told that the decisions they would learn about 
during the task were those made by prior participants of the study. However, in reality, these 
decisions were generated by a simulation algorithm (see Methods). None of the participants 
reported disbelief regarding the authenticity of these decisions being from actual people 
during or after the task to the experimenter. We further probed whether they had any disbelief 
in a post-study survey by asking if they had any questions or concerns about the task they 
completed. Both checks further demonstrated the validity of our task.

During the trials within the Self blocks (i.e., the first, third, and fifth blocks), participants 
were instructed to choose the option that genuinely reflected their own preferences, as 
they believed that one of these chosen options would be actualized as their bonus payment. 
During the trials within the Other blocks (i.e., the second and fourth blocks), participants 
were instructed to learn about the decisions made by two others, under the belief that these 
choices reflected the decisions of previous participants. The behaviors of these two people 
were simulated based on the participants’ own decisions from the Self1 block. Participants 
received feedback on their decisions, which allowed them to learn about the intertemporal 
preferences of the other people (see below Simulation of the other people’s choices). The correct 
choices were characterized as those with greater estimated values from the hyperbolic model, 
based on a given discount rate. Two names, either gender-matched or randomly selected for 
participants who did not indicate their gender, were chosen to present the other two people. 
The participants were made aware that their selections on behalf of others were not relayed to 
those people and had no consequences for either themselves or the other people. The task was 
displayed using MATLAB 2012a (The MathWorks) and the Cogent 2000 v125 graphic tool-
box, a software developed by the University College London, which was formerly accessible at 
www.vislab.ucl.ac.uk/Cogent/.

Apathy Motivation Index.  The AMI [117], a scale consisting of 18 items, was used 
to assess participants’ apathetic traits. This scale measures three dimensions of individual 
differences in apathy-motivation: behavioral activation, social motivation, and emotional 
sensitivity. Participants rated their agreement with each item on a 5-point Likert scale, ranging 
from 0 to 4. Each item’s score is reversed, meaning that higher scores indicate increased levels 
of apathy.

http://www.vislab.ucl.ac.uk/Cogent/
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Beck Depression Inventory.  Symptoms of depression were assessed through the 21-item 
BDI [118]. Each item was rated by participants on a 4-point Likert scale from 0 to 3, with 
higher cumulative scores signifying increased severity of depressive symptoms.

Trail Making Test.  The TMT [116], which includes two parts, is designed to be completed 
as swiftly and accurately as possible. In TMT-A, participants are tasked with sequentially 
drawing lines to connect 25 numbers scattered randomly on a paper in ascending order (i.e., 
1–2–3–4, etc.), serving as a test of visual attention. TMT-B requires participants to alternate 
between numbers (1–13) and letters (A–L) in their connections (i.e., 1–A–2–B–3–C, etc.), 
which is considered a measure of executive function. The time taken to finish each part of the 
test is recorded as the score.

Delegated inter-temporal choice task-specific questionnaires.  Participants were 
presented questions to assess their perceived similarity to others in the task. They provided 
their ratings using a sliding scale ranging from 0 (not at all) to 10 (very similar). All self-report 
measures were collected via the Qualtrics platform (https://www.qualtrics.com/).

Statistical analysis
We used R [119] (v4.2.1) along with RStudio [120] (v2023.06.2+561) to analyze the data. 
Behavioral data and fitted model parameters (see below) were analyzed using LMMs (‘lmer’ 
function from the {lme4} package [121] v1.1-33) or linear regression (‘lm’ function from the 
{stats} package [119] v4.2.1).

LMMs were used to predict participants’ learning accuracy, signed KL divergence, and 
self-report perceived similarity. These models incorporated fixed effects for group (HCs, 
mPFC lesions, and LCs), other’s preference (patient versus impulsive), and their interaction, 
as well as a random intercept at the subject level. Considering the differences in temporal 
impulsivity at the baseline among the three groups, the LMM for signed KL divergence also 
included participants’ baseline temporal impulsivity (km; continuous covariates, centered 
around the grand mean) and its interaction with groups and other’s preferences (including the 
three-way interaction) as fixed terms. Additionally, control analyses of accuracy and signed 
KL divergence separately included the BDI and AMI scores as a fixed term, without interact-
ing with the other terms (see below). A further control analysis was performed to examine the 
effect of the order of others’ preferences on the signed KL divergence. An exploratory control 
analysis was conducted to account for individual differences in baseline preference uncer-
tainty (ku; continuous covariates, centered around the grand mean). Simple linear regressions 
were used to compare the group differences in their age, education years, BDI scores, AMI 
scores, and TMT scores. One-way analyses of variance were used to compare the temporal 
impulsivity (km) and preference uncertainty (ku) parameters across groups. As control anal-
yses, analyses of covariance (ANCOVA) that separately included BDI scores and AMI scores 
were conducted to control for the effects of depression and apathy levels.

The LMMs were set up as follows (note that each participant contributed a single parame-
ter data point and therefore these models could not contain random slopes):

LMM1a: Accuracy ~ Group * Preference + (1|ID)
LMM1b: Accuracy ~ Group * Preference + BDI + (1|ID)
LMM1c: Accuracy ~ Group * Preference + AMI + (1|ID)
LMM2: Similarity ~ Group * Preference + (1|ID)
LMM3a: Signed KL divergence ~ Group * Preference * Self baseline impulsivity + (1|ID)
LMM3b: Signed KL divergence ~ Group * Preference * Self baseline impulsivity + BDI + (1|ID)
LMM3c: Signed KL divergence ~ Group * Preference * Self baseline impulsivity + AMI + (1|ID)
LMM3d: Signed KL divergence ~ Group * Preference * Self baseline impulsivity + order + (1|ID)

https://www.qualtrics.com/
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LMM3e: Signed KL divergence ~ Group * Preference * Self baseline impulsivity + Self 
baseline preference uncertainty + (1|ID)
Simple group comparisons were conducted using either independent parametric (t-test) or 
nonparametric (Wilcoxon two-sided signed rank test) methods. To assess nonsignificant 
results, Bayes factors (BF01) were calculated using either paired and independent Bayesian 
t-tests (‘ttestBF’ function from the {BayesFactor} package [122] v0.9.12-4.4) or through linear 
models (‘lmBF’ function from the same package) with the default prior. BF01 measures how 
much more likely that the data is under the null hypothesis of no difference, as opposed to the 
alternative hypothesis of a difference. The interpretation and reporting of Bayes factors fol-
lowed the terminology recommended by Jeffreys [123]. All figures of statistical analysis were 
generated using the {ggplot2} package [124] (v3.4.2).

Computational modeling
Participants’ decisions in each experimental block were separately used to estimate their dis-
count rates using a standard hyperbolic discounting model [53]:

	
VLL =

MLL

1 + KD	 (1)

where VLL represents the subjective value of a larger-and-later option, MLL denotes the 
objective magnitude of that reward, D is the delay before receiving the reward, and K is 
the hyperbolic discount rate specific to each participant, which quantifies the devaluation 
of larger-and-later options by time. The subjective value (VSS) of a smaller-and-sooner 
option is always equivalent to its objective magnitude (MSS) because the delay period for 
this reward is zero. Previous studies indicate that the parameter, k = log10(K), usually 
follows a nearly normal distribution in the population [27,34]. Therefore, all the analyses 
presented are based on k, which is the log-transformed measure of K. As k → – ∞, people 
generally do not discount delayed options, evaluating an offer purely on its objective 
magnitude. When k → 0, people grow more sensitive to delay periods and tend to discount 
delayed options more steeply.

Preference-temperature (KT) model.  In the course of the experiment, the preference-
temperature (KT) model was applied to approximate participants’ behaviors in the Self1 
block and to simulate the choices made by the other people. The KT model posits that each 
participant has a unique, inherent discount rate. Within this framework, the following 
softmax function was utilized to transform the difference subjective values of the two options 
(VLL − VSS) on each trial into the probability of selecting the delayed option:

	
PLL =

1

1 + e–T(VLL–VSS)	 (2)

where T represents the inverse temperature parameter specific to each participant, charac-
terizing the variability or randomness in a person’s decision-making process. A lower value 
of T leads to increased nonsystematic fluctuations around the point of indifference, which is 
the point where both options are equally favored. During the Self1 block of the experiment, 
the free parameter k was assigned values ranging from −4 to 0, while the log10(T) parameter 
(denoted as t) had its value set within a range from −1 to 1.

Preference-uncertainty (KU) model.  Contrary to the KT model described earlier, the 
KU model suggests that participants’ discount rates should be viewed as a distribution, rather 
than a single definitive value [34]. On each trial, participants draw a k value from a normally 
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distributed discounting distribution that is specific to each participant and is updated after 
every trial:

	 Pk= N
(
k; km, ku2

)
	 (3)

where free parameters km and ku correspond to the mean and standard deviation of the nor-
mal distribution, respectively. Derived from Eq (1), participants will only choose the delayed 
option under the condition that k <log10 [(MLL/MSS − 1)/D]; the probability of selecting the 
delayed option, given a single sampled value from the discounting distribution specified in Eq 
(3) is:

	 PLL = Ψ
(
log10 [(MLL/MSS – 1) /D] ; km, ku2

)
	 (4)

where Ψ represents the cumulative distribution function of the normal distribution. Model 
fitting was conducted using R [119] (v4.2.1), Stan [125] (v2.32), and the RStan package [126] 
(v2.21.7). We employed Hamilton Monte Carlo (HMC), an advanced and efficient Markov 
Chain Monte Carlo (MCMC) sampling method.

Our study focused on testing the involvement of mPFC in people’s susceptibility to social 
influence. Building upon our previous work [36], we employed the established KU model as 
our analytical framework to assess data from these lesion participants. We successfully recov-
ered all the parameters in the KU model (all rs > 0.87, S1 Fig) as well as confirming excellent 
posterior predictive accuracy of the modeled parameters (S2 Fig).

Model fitting
We used R (v4.2.1), Stan (v2.32), and the RStan package (v2.21.7) for model fitting. Stan 
makes use of HMC, an exceptionally efficient MCMC sampling method, to perform full 
Bayesian inference and accurately determine the true posterior distribution. We applied 
hierarchical Bayesian modeling to analyze participants’ decisions on a trial-by-trial basis. In 
hierarchical Bayesian modeling, the individual-level parameter, denoted by ϕ, was sampled 
from a group-level normal distribution, as follows:

	 ϕ ∼ N
(
µϕ,σ2

ϕ

)
	 (5)

where µϕ and σϕ  represent the group-level mean and standard deviation, respectively. The 
group-level parameters were defined using weakly-informative priors: µϕ followed a normal 
distribution centered around 0, with a standard deviation that was adjusted based on free 
parameters. Concurrently, σϕ  was modeled using a half-Cauchy distribution, with its location 
parameter set at 0 and its scale parameter adjusted in accordance with free parameters. In the 
KT model, the parameter k was subjected to a negative constraint, whereas t was constrained 
to lie within the range of [−1, 1]. In the KU model, the parameter km was negatively con-
strained, whereas ku was constrained positively. To facilitate more conservative estimation 
of all free parameters, priors were reset at the start of each experimental block. Hierarchical 
Bayesian modeling was applied separately for the groups of HCs, mPFC lesion patients, and 
LCs, with identical weakly-informative priors used across groups to promote conservative 
parameter estimation [127,128].

All free parameters at both the group and individual levels were simultaneously estimated 
through Bayes’ theorem by integrating behavioral data. We fitted each model with four inde-
pendent HMC chains, where each chain included 2,000 iterations following an initial 2,000 
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warm-up iterations. This process generated a total of 8,000 valid posterior samples. The con-
vergence of HMC was assessed both visually by examining trace plots, and quantitatively by 
using the Gelman-Rubin R̂ statistics. In the chosen model, the R̂ values for all free parameters 
were close to 1.0, indicating that convergence was achieved satisfactorily.

Parameter recovery
Following model fitting, we verified the identifiability of parameters through parameter recov-
ery. Let ϕ denotes a generic free parameter in the selected model. We randomly drew a set of 
group-level parameters from the identical weakly-informative prior group-level distribution 
that was used in model fitting. Here, µϕ and σϕ  represent the mean and standard deviation at 
the group level, respectively:

	 µϕ∼ N (0, 3)	

	 σϕ∼ HC(0, 2)	 (6)

where HC refers to the half-Cauchy distribution. Next, we generated data for 120 synthetic 
participants by deriving their parameters from this set of group-level parameters. For these 
120 synthetic participants, their individual-level parameters, denoted as ϕi , were drawn from a 
normal distribution using the corresponding group-level parameters:

	 ϕi∼ N
(
µϕ,σ2

ϕ

)
	 (7)

Subsequently, we employed the chosen model as a tool to generate simulated behavioral 
data for our social discounting task. Specifically, we simulated decisions across 50 trials for 
each synthetic participant, using the choice pairs derived from the generative method (see 
the below Optimization of choice pairs). Then, we applied our selected model to the simu-
lated data following the same procedure we used for the actual participant data. Particularly, 
we fitted the KU model to the individual simulated data using HMC through Stan. This 
process resulted in posterior distributions for the free parameters at both group and indi-
vidual levels. Finally, we calculated Spearman’s Rho correlations to compare the simulated 
and recovered parameters at the individual level. We repeated the entire parameter recovery 
process 20 times, averaging the Spearman’s Rho correlation coefficients through Fisher’s 
Z-transformation.

Posterior predictive checks
We used posterior predictive checks to assess how well the posterior estimates from our 
winning model replicated key aspects of participants’ behavior, such as their ability to learn 
others’ preferences. Specifically, we employed a posthoc absolute-fit approach [54], which 
took into account participants’ actual decisions and option pairs, to generate predictions using 
the entire set of posterior MCMC samples from the winning model. We generated synthetic 
decisions repeatedly, matching the number of MCMC samples (i.e., 8,000 times) for each 
trial and each participant, using individual-level posterior parameters obtained from model 
estimation. We then analyzed the synthetic data with the same methods applied to the actual 
data, using a LMM. This LMM included fixed effects of group (HCs, mPFC lesions, and LCs), 
other’s preference (patient versus impulsive), and their interactions, along with a random 
subject-level intercept.
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Optimization of choice pairs
To accurately estimate participants’ preferences for discounting, choice pairs in all Self blocks 
were generated by switching between two methods: generative and adaptive methods, within 
the context of the KT model framework. The generative approach entailed creating every 
possible pair of amounts and delays for the choice options. Within each Self block, 25 tri-
als (i.e., half of the trials in each Self block) were selected to closely match the indifference 
points of 25 hypothetical participants. These participants had k values that were uniformly 
distributed across the range from −4 to 0. This method provided an efficient yet somewhat 
imprecise estimation of participants’ discounting parameters. The other 25 trials in each Self 
block were created through an adaptive approach, utilizing a Bayesian framework to achieve 
precise estimates of the discounting parameters [129,130]. Previous studies have shown that 
this technique can generate more reliable estimates of the k value with fewer trials needed. The 
participant’s initial prior belief about k was defined as a normal distribution with a mean of −2 
and a standard deviation of 1, and t was fixed at 0.3. After every decision by the participant, 
their belief distribution of k was updated according to Bayes’ theorem. Following this update, 
choice pairs were generated to test our estimate of the participant’s indifference point, derived 
from the expected value of k’s current posterior distribution.

For all Other blocks and parameter recovery processes, choice pairs were exclusively gener-
ated using the generative method. The choices given to participants were specifically struc-
tured to match the indifference points of 50 hypothetical participants, whose k values were 
evenly spread from −4–0.

Simulation of the other people’s choices
The behaviors of the two other people were modeled based on the participants’ baseline 
discount rates, which were determined through the KT model during the Self1 block. More 
specifically, the decisions of the other people were generated by a simulated hyperbolic dis-
counting model, where the discount rate k was adjusted to be either plus one (more impulsive) 
or minus one (more patient) from the participant’s own baseline k in the first experimental 
block. Importantly, the decisions made by the simulated hyperbolic discounter were subject to 
an extent of randomness. This randomness arose from the process of converting the subjective 
value of options into a choice probability through a softmax function with the inverse tem-
perature parameter t = 1. The order of the other people’s preferences (more impulsive versus 
more patient) was counterbalanced across participants.

Signed Kullback–Leibler divergence
The DKL, which quantifies the difference between two probability distributions [55], was used 
to measure the variation in participants’ discount rates (k) after learning about the other peo-
ple. DKL is defined as follows:

	
DKL(P||Q) =

∫ ∞

–∞
p(x)log10

(
p(x)
q(x)

)
dx

	 (8)

where P and Q represent the distributions of a continuous random variable over a sample 
space, X , and p and q denote the respective probability densities of P and Q. In our study, we 
used DKL to quantify the divergence between the posterior distributions of k at the end of two 
successive Self blocks. DKL was signed for subsequent analyses [35]. Positive signed DKL values 
indicate a shift in participants’ discounting preferences toward those of the other people, 
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whereas negative signed DKL values suggest a move away from the other people’s preferences, 
relative to the baseline discounting preferences:

	
Signed DKL =

{
DKL, if kmother, i–kmself, 1

kmself, i+1–kmself, 1
> 0

–DKL, if kmother, i–kmself, 1
kmself, i+1–kmself, 1

< 0	 (9)

where km represents the mean of the discount rate distribution as estimated by the KU model, 
and the subscript i indicates the number of Other blocks (i.e., either 2 or 4). For instance, if 
a participant’s discounting preference becomes more negative (i.e., more patient) following 
exposure to the discounting preference of a more patient other person, this change would be 
reflected by a positive signed DKL value. On the other hand, negative signed DKL values indicate 
that the participant’s discounting preferences have diverged from those of the other people.

Voxel-based lesion-symptom mapping (VLSM)
Two behavioral regressors of interest were selected for VLSM based on our a priori 
hypotheses:

1. Contrasts between susceptibilities to impulsive and patient social influence (i.e., signed 
impulsive DKL − signed patient DKL)

2. Self baseline discount rates (i.e., self km in the Self1 block)

The examination of the contrasts between susceptibilities to impulsive and patient social 
influence aimed to determine if damage to specific subregions of the mPFC was responsible 
for the increased susceptibility to impulsive social influence observed in the between-group 
analysis. This analysis only included participants who had both patient and impulsive others 
present. Additionally, we tested whether the heightened temporal impulsivity observed in the 
mPFC lesion group, compared to HCs, was linked to distinct subregions of the mPFC.

We utilized FSL [58] (v6.0.7.6)’s randomize function to conduct a permutation-based 
VLSM analysis [59,60], which compares lesion participants with damage at each voxel to 
all other lesion participants. FSL has been validated for performing VLSM analyses and is 
widely utilized, as highlighted by its adoption in several recent lesion studies [131–135]. 
FSL implements the latest advancements in brain-based analysis, maintaining regular 
updates, and remaining open source. FSL also supports the use of TFCE, which maximizes 
power and uses nonarbitrary definitions of cluster size [59]. This feature is not currently 
available in other lesion-mapping toolboxes, such as LESYMAP and NiiStat. To increase 
power, we mirrored the lesion participants’ lesion maps, as we did not have specific 
hypotheses about laterality of mPFC function [134,135], resulting in symmetrical masks. 
Voxels were included in the VLSM analysis only if at least five participants had some 
degree of damage in that voxel. Each behavioral regressor of interest was ranked to correct 
for skewness in the residuals distribution [60] and then z-scored, in accordance with the 
requirements of FSL to align with the nature of our experimental design, before being 
input into the FSL design files.

P values were generated through permutation-based TFCE in randomize with 5,000 per-
mutations and FSL’s default TFCE settings, which are optimized for this type of data [59,60]. 
Permutation testing repeats the same analysis multiple times with the randomly shuffled data 
to calculate voxel-wise P values, which estimate the probability that the observed effect could 
be attributed to random noise. This approach therefore more accurately reflects the nature of 
the data, relies on fewer assumptions compared to other methods, and can be combined with 
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the advantages of TFCE [60]. Permutation testing is widely recognized as the ‘gold standard’ 
for addressing multiple comparisons in VLSM studies [136]. By combining permutation 
testing with TFCE, we effectively balanced sensitivity to true effects while minimizing the like-
lihood of detecting small, potentially spurious effects [56]. To ensure even greater stringency, 
we further applied a Bonferroni correction for multiple comparisons across the two behavioral 
regressors of interest (p < 0.025) to the uncorrected maps from the permutation-based TFCE 
results. For the purpose of visualization, we applied binarized masks of the significant areas 
from each analysis to the t-values.

Supporting information
S1 Text.  Temporal impulsivity and preference uncertainty do not depend on depression or 
apathy levels. 
(PDF)

S1 Table.  Summary of demographic variables for each group and linear regression. 
(PDF)

S2 Table.  Linear mixed-effects model predicting learning performances. 
(PDF)

S3 Table.  Linear mixed-effects model predicting susceptibility to social influence, with self 
baseline temporal impulsivity as covariates (centered around the grand mean). 
(PDF)

S4 Table.  LMM predicting susceptibility to social influence, with self baseline temporal 
impulsivity as covariates (centered around the grand mean), controlling for the order of 
others’ preferences. 
(PDF)

S5 Table.  Correlations between impulsive and patient signed KL divergence (DKL). 
(PDF)

S6 Table.  LMM predicting susceptibility to social influence, with self baseline temporal 
impulsivity km as covariates (centered around the grand mean), controlling for self base-
line preference uncertainty ku (centered around the grand mean). 
(PDF)

S7 Table.  Correlations between learning performances and signed KL divergence (DKL). 
(PDF)

S8 Table.  Correlations between perceived similarity and signed KL divergence (DKL). 
(PDF)

S1 Fig.  Parameter recovery. The confusion matrix illustrates Spearman’s Rho correlations 
between simulated and recovered (fitted) parameters. Both km and ku showed robust positive 
correlations between their true and recovered values, with all rs >0.87.
(TIF)

S2 Fig.  Posterior predictive checks of the winning model. Posterior prediction replicates 
the key patterns observed in our empirical data. All three participant groups (healthy con-
trols, mPFC lesions, and lesion controls) successfully learned the task (right-tailed exact 
binomial tests against 50%, all ps < 0.001). Compared to healthy controls, both mPFC lesion 
patients and lesion controls showed less accuracy in learning others’ preferences, regardless of 
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whether these preferences were impulsive or patient (main effect mPFC vs. HC, b [95% CI] = 
−4.04 [−5.99 −2.09], p < 0.001; main effect LC vs. HC, b [95% CI] = −4.32 [−6.82 −1.83], p < 
0.001). Participants generally performed better in terms of learning the preferences of patient 
others than impulsive ones (main effect patient vs. impulsive, b [95% CI] = 1.89 [0.95, 2.83], 
p < 0.001). Large bordered circles indicate the mean, error bars show the standard error of 
the mean, dots represent raw simulated data, and asterisks denote significant main effects of 
groups from the linear mixed-effects model. Note that the vertical axis starts at 50%, repre-
senting the chance level. **p < 0.001. Red dots are the means of actual data.
(TIF)

S3 Fig.  Damage to dmPFC (area 9) enhances susceptibility to impulsive social influence, 
including both mPFC lesion participants and lesion controls. (a) Permutation-based, 
whole-brain, nonparametric voxel-based lesion-symptom mapping (VLSM) showed that 
damage to dorsomedial prefrontal cortex (dmPFC, area 9, peak MNI coordinate [±2, 40, 20]) 
was correlated with enhanced susceptibility to impulsive relative to patient social influence 
(permutation-based threshold free cluster enhancement (TFCE) p < 0.025). (b) Plotting the 
ranked contrasts between susceptibilities to impulsive and patient social influence, separately 
for participants with lesions or no lesion in this area identified by the VLSM analysis. N = 42 
for this analysis where both patient and impulsive others were present. The underlying data 
and code used to generate this figure can be found at https://osf.io/qzurp/. Note: panel (B) 
is for illustrative purposes only and displays the ranked difference in signed KL divergence 
contrasts between participants with vs. without lesions, in the ROI defined by a wholebrain 
contrast.
(TIF)

S4 Fig.  Damage to vmPFC and ventral striatum increases temporal impulsivity, including 
both mPFC lesion participants and lesion controls. (a) Permutation-based, whole-brain, 
nonparametric voxel-based lesion-symptom mapping (VLSM) showed that the area 25 in the 
vmPFC as well as ventral striatum where damage was correlated with heightened temporal 
impulsivity (permutation-based threshold free cluster enhancement (TFCE) p < 0.05). (b) 
Plotting the ranked self baseline discounting preferences, 165 separately for participants with 
damage or no damage in the areas identified by the VLSM analysis (N 1= 50 in total). The 
underlying data and code used to generate this figure can be found at https://osf.io/qzurp/. 
Note: panel (B) is for illustrative purposes only and displays the ranked difference in self base-
line discounting preferences between participants with vs. without lesions, in the ROI defined 
by a wholebrain contrast.
(TIF)
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