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Abstract

Sensorimotor learning is supported by multiple competing processes that operate concur-

rently, making it a challenge to elucidate their neural underpinnings. Here, using human

functional MRI, we identify 3 distinct axes of connectivity between the motor cortex and

other brain regions during sensorimotor adaptation. These 3 axes uniquely correspond to

subjects’ degree of implicit learning, performance errors and explicit strategy use, and

involve different brain networks situated at increasing levels of the cortical hierarchy. We

test the generalizability of these neural axes to a separate form of motor learning known to

rely mainly on explicit processes and show that it is only the Explicit neural axis, composed

of higher-order areas in transmodal cortex, that predicts learning in this task. Together, our

study uncovers multiple distinct patterns of functional connectivity with motor cortex during

sensorimotor adaptation, the component processes that these patterns support, and how

they generalize to other forms of motor learning.

Introduction

Many of our daily actions stem from the interplay of different mental processes that operate

concurrently to achieve our intended goals. Broadly, these mental processes can be distin-

guished by the nature of their cognitive demands: Explicit processes involve conscious mental

operations, often requiring our directed attention and deliberate thought; by contrast, implicit

processes operate autonomously, operating beneath the threshold of our conscious awareness

[1]. Extensively examined within the realms of psychology and neuroscience, these processes

often operate in tandem to accomplish a wide range of tasks, from learning a foreign language

to playing a musical instrument or driving a car [2–4].

In recent years, there has been significant interest in understanding how these 2 separate

processes support motor learning. For decades, motor learning was widely believed to consti-

tute a singular, implicit process of the sensorimotor system [5,6]. However, recent behavioral

and computational work has demonstrated that motor learning is actually supported by at
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least 2 separate learning systems that operate in parallel: a slow-acting implicit system that

adapts gradually, and a fast-acting explicit system that adapts rapidly [7–13], and that may

depend on brain areas located outside the sensorimotor system. Notably, as performance dur-

ing learning can reflect the summed contribution of both processes, the ability to characterize

their underlying neural systems has remained a challenge. This is because these processes not

only need to be disentangled from each other, but also because they must be dissociated from

neural activity related to other facets of performance (e.g., sensory feedback related to errors).

Previous research has often framed implicit sensorimotor learning within optimal feedback

control theory, with general agreement that such learning reflects the updating of an internal

model that links motor commands to sensory outcomes. This form of learning is thought to be

supported by a network of cerebellar and sensorimotor cortical regions, crucial for the sen-

sory-guided control of movement [14–16]. In contrast, the neural foundations of explicit

learning are considerably less well understood, and may well depend upon regions of cortex

that serve more general functions related to cognition, such as association cortex [17]. For

example, explicit processes such as strategy use have been associated with the activity of pre-

frontal cortex [18]; however, it is unclear whether this activity reflects explicit learning per se

or the attendant outcomes of using those processes (e.g., the resulting change in performance

errors). This is an important neural distinction for understanding how we guide complex

behavior, since explicit processes are often brought to bear at critical moments during learn-

ing, and can result in a rapid reduction in visuomotor errors [13].

Here, using functional MRI to study whole-brain patterns of functional connectivity with

motor cortex, we sought to disentangle these different processes associated with sensorimotor

learning. We used subjects’ learning behavior in combination with their reports of explicit

strategy use to identify the relative contributions of explicit and implicit processes to learning,

as well as the trajectory of errors that they make during the task. These behavioral measures

were used to identify 3 distinct axes of whole-brain connectivity with the motor cortex that

emerged during early learning and that corresponded to subjects’ implicit learning, their per-

formance on the task (error rate), and their use of explicit strategic processes, respectively. We

found that these separable neural axes were approximately situated at different hierarchical

levels of cortical organization; implicit learning was associated with the connectivity of areas in

superior parietal and premotor cortex, whereas subjects’ visuomotor performance was associ-

ated with the connectivity of a subset of regions in the frontoparietal control network. Notably,

we found that explicit learning was associated with the connectivity of a subset of areas posi-

tioned at the apex of the cortical processing hierarchy, in the default mode network. We tested

the generalizability of these separate neural axes by studying sensorimotor learning in a differ-

ent task—performed in the same subjects—in which abrupt changes in performance are

known to rely mainly on explicit strategic processes [19,20]. Together, our findings dissociate

3 distinct patterns of connectivity with motor cortex that correspond to separate neural pro-

cesses that operate concurrently during sensorimotor learning.

Results

Learning behavior during sensorimotor adaptation

To study the neural processes that support sensorimotor learning, we had subjects (N = 36)

perform a visuomotor rotation (VMR) task [21] in the MRI scanner. In this classic task, sub-

jects were required to move a cursor, representing their right finger position, to intercept a tar-

get that could appear in one of 8 locations on a circular ring, using an MRI-compatible

touchpad (Fig 1. After a baseline block (40 trials), subjects performed a learning block (160 tri-

als) in which the correspondence between finger motion on the touchpad and movement of
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Fig 1. VMR task and subject behavior. (A) Subjects were cued to move a cursor to a target appearing on a circular ring using an MRI compatible touchpad.

During learning trials, the cursor moved at a 45° angle relative to the hand, so that subjects had to learn to adjust their movement direction in order to contact

the target successfully. After learning, subjects performed a set of “report” trials in which they used a dial to indicate their aim direction prior to executing the

movement. Using these report trials, we derived estimates of subjects’ total explicit and implicit learning during the task. (B) Error curves for individual

subjects. Black trace in bold denotes overall mean error across subjects. (C) Distributions of subjects’ estimated explicit (top) and implicit (middle)

contributions to performance, as well as early error (bottom; defined as the mean error during the first 32 trials). (D) For each subject, we computed the mean

error during the learning block in each of 5 response time bins separated by the 20%, 40%, 60%, and 80% percentiles. Consistent with previous literature

suggesting the use of mental rotation strategies by explicit learners [23], subjects who reported a nonzero re-aiming direction showed monotonically decreasing

error with longer response times. The data and code needed to generate this figure can be found in https://zenodo.org/records/14029185.

https://doi.org/10.1371/journal.pbio.3002934.g001
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the cursor was rotated clockwise by 45°. Thus, subjects needed to learn to adapt their move-

ments by applying a 45° counter-clockwise rotation in order to hit the target. At the conclusion

of each trial, subjects received visual (error) feedback consisting of both the target location, as

well as the position of their cursor, on the target ring. Following the learning block, subjects

performed 16 “report” trials [13], in which they were asked to indicate their aim direction

using a dial, controlled by their left hand, prior to executing a target-directed movement via

their right hand. These report trials were presented at the end of the task, after learning had

taken place, in order to avoid drawing attention to the nature of the visuomotor perturbation

and thus biasing subjects’ learning behavior [22]. Critically, these report trials provided us

with a direct index of subjects’ explicit knowledge of, and strategy in counteracting, the visuo-

motor rotation [13].

Behavioral data associated with the VMR task are shown in Fig 1. We found that subjects,

on average, were able to successfully learn the VMR task by aiming their hand in a direction

that counteracted the visuomotor rotation (Fig 1B). Consistent with prior work [13], we

defined subjects’ explicit learning as the mean difference between subjects’ reported aim direc-

tion and the target location, and defined implicit learning as the mean difference between sub-

jects’ reported and actual aim directions. Finally, we defined task performance as subjects’

average error during the early learning period (defined as the first 100 imaging volumes, or

approximately 32 trials, of the task; this was chosen for consistency with our previous work in

[24], but see S5 Fig for a robustness analysis using different window sizes). The distributions of

these 3 scores are depicted in panel C. Note that we focused our analysis on this early learning

period due to evidence that explicit processes are established during this early learning period.

Consistent with previous literature [25], we observed a correlation between subjects’ reported

explicit knowledge and mean response times (RT) during both early (r = 0.45, t = 2.4,

p = 0.006) and late learning (r = 0.69, t34 = 5.63, p = 2.57e − 06); typically believed to reflect the

additional time taken to implement a re-aiming strategy [22,25–27]. As an additional valida-

tion of our explicit reports, we further examined the relationship between subjects’ error and

their RTs. Explicit strategies in the VMR task often make use of mental rotation, and so lower

errors are typically observed with longer response times [23]. For each subject, we computed

the mean error during the learning block in each of 5 bins, defined using the quantiles of their

response time distribution (Fig 1D). Using these bins, we computed the (Spearman) correla-

tion between error and RT for each subject, and observed a significantly lower (negative) aver-

age correlation within explicit (compared to implicit) learners (mexp = −0.44,mimp = 0.11, t34

= −2.38, p = 0.033). That is, explicit learners were more accurate at longer response times,

while the accuracy of implicit learners did not vary with response time.

Our decision to elicit subjects’ reports at the end of the learning block was based on evi-

dence that report trials may make subjects aware of the visuomotor rotation and predispose

them to use an explicit strategy during the task [22,28]. Nevertheless, group-level behavioral

studies suggest that subjects’ explicit re-aiming strategies may evolve during learning the pro-

cess (e.g., have a larger magnitude during early than late learning; [10,13]). As such, reports

collected at the end of the task may not directly reflect the re-aiming strategy subjects used

during the early learning process itself. To address this possible concern, we conducted a sepa-

rate behavioral experiment outside of the MRI scanner (N = 14), in which report trials were

interspersed continuously throughout the learning block (see S1 Fig). Importantly, we found

that subjects’ explicit reports collected in the final trials of the learning block were highly corre-

lated with reports collected during the early learning block (r = 0.77, t12 = 4.22, p = 0.0012; S1C

Fig). Further, we found that subjects’ typically developed explicit awareness of the rotation

early in the learning block, and that their subsequent explicit reports were highly stable

throughout the VMR task (S1D Fig). Taken together, these findings suggest that the late
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reports collected during our MRI testing session serve as a valid proxy for the explicit strategy

developed during this early learning period.

Connectivity-based approach for studying sensorimotor adaptation

To examine the neural bases that support explicit and implicit learning, as well as the encoding

of performance during the task, we examined learning-dependent changes in functional con-

nectivity between the primary motor cortex and the rest of cortex, striatum, and cerebellum

(Fig 2A). By constraining our analysis to bipartite functional interactions with primary motor

cortex, we were specifically interested in assessing how various regions in the cortex, striatum,

and cerebellum, modulate their connectivity with cortical areas positioned in the final motor

output pathway that produce motor commands resulting in the measured behavioral adjust-

ments. For each brain region, we extracted fMRI timecourse activity from different atlas

Fig 2. Brain networks/regions used in our neural analyses and predictive model. (A) We studied functional connectivity between primary motor

cortex and the rest of cortex, striatum, and cerebellum during VMR learning. Cortical networks were derived using the 400 region parcellation of [29]

and assigned to the 17 networks classified by [31]. Here, for the cortical regions, we have arranged the network names according to their position along

the principal gradient of functional cortical organization demonstrated by [32]; with networks more proximal to primary sensorimotor regions at the

lower-end of the cortical gradient (bottom), and networks more distant from sensorimotor regions at the higher-end of the gradient (top). Cerebellar

regions were identified using the atlas of [33]), while striatal regions were extracted from the Harvard-Oxford atlas. Motor cortex parcels were identified

as belonging to either hand or tongue areas of the left and right hemispheres based on the reported findings of [29]. (B) We used a set of penalized

regression models (see Methods) to predict subjects’ explicit learning, task performance, and implicit learning from patterns of whole-brain functional

connectivity with primary motor cortex. The coefficients from each of the fitted models produce a set of brain maps which we hereby refer to as the

explicit, performance, and implicit neural axes. The data and code needed to generate this figure can be found in https://zenodo.org/records/14029185.

https://doi.org/10.1371/journal.pbio.3002934.g002
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parcellations of the cerebellum, striatum, and all of cortex (see Methods), and studied func-

tional connectivity between these brain regions with the average activity of a subset of 4

regions in the left (contralateral) hemisphere comprising the hand motor region (belonging to

the left Somatomotor A network; [29]). For each subject, we estimated covariance networks

during the baseline, early learning, and late learning periods (each defined as an epoch of 100

imaging volumes), allowing us to describe changes in connectivity over the course of the task.

Given that a large body of recent literature suggests that functional connectivity is dominated

by static, subject-level differences that can obscure any task-related variance [30], we first cen-

tered subjects’ covariance matrices to align their mean covariance across resting-state, base-

line, and learning ([24], see Methods for details and for a more thorough description). These

centered covariance matrices were then used to identify patterns of functional connectivity

associated with distinct learning processes.

Note that, because both implicit and explicit learning result in better performance (less

error), the neural correlates of these measures may also reflect effects due to the experience of

errors. For example, systems involved in the goal-directed deployment of spatial attention may

be necessary for successful task performance regardless of the specific mechanisms by which a

given subject learns, and so may be recruited by both implicit and explicit learners. Thus, in

order to derive relatively “pure” measures of these 2 learning processes, we controlled for sub-

jects’ performance by using the mean error during the early learning epoch as a covariate in

our model. Specifically, we separately regressed each of our explicit and implicit learning mea-

sures, and the functional connectivity of each ROI with motor cortex, onto subjects’ early

errors, and used each of the residuals for further analysis. Separately, in order to derive neural

activity patterns linked to learning performance per se, rather than any particular learning pro-

cess, we also derived patterns of functional connectivity associated with subjects’ visuomotor

errors. We interpret this “Performance” axis as reflecting processes related to general error-

detection, or to general task-based processes which may be common to both forms of learning.

Using the patterns of functional connectivity across regions extracted from the early learn-

ing period, we used a group-penalized ridge regression model to predict subjects’ explicit and

implicit learning, as well as their performance errors ([34]; see Fig 2, right, and see Methods).

We initially focused our analysis on this early learning period as this is the point in time in

which explicit learning develops ([13], see also S2 Fig). We used the region-wise coefficients

from this model to create whole-brain maps reflecting covariance with motor cortex during

early learning, which we hereby refer to as the Explicit, Implicit, and Performance neural axes

(Fig 3). Note that we inverted the sign of subjects’ error in the derivation of the performance

axis, so that greater loadings were associated with greater performance (i.e., lower error). For

each axis, network-specific penalties were tuned by leave-one-out cross-validation (cross-vali-

dated R2 : R2
exp ¼ 0:29;R2

perf ¼ 0:82;R2
imp0 ¼ 0:64).

Separate neural axes are associated with different component processes of

sensorimotor adaptation

Within the Implicit neural axis, we observed the highest regional loadings in the dorsal atten-

tion network (DAN), and specifically the DAN-B subnetwork, comprising superior parietal

and premotor regions known to support the sensory-guided control of movement [14–16].

Note that, although we did not additionally observe high regional loadings in the cerebellum, a

separate analysis focused solely on the cerebellum returned results consistent with its role in

implicit error-based adaptation; see Discussion and S3 Fig. By contrast, within the Perfor-

mance neural axis, we observed the highest regional loadings within the Control network, and

specifically the Control-A subnetwork, mainly comprising the dorsolateral prefrontal cortex
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(DLPFC), inferior parietal lobe (IPL), and anterior cingulate cortex (see barplots in Fig 3). In

the sensorimotor adaptation literature, the lateral prefrontal cortex has been shown to increase

its activity during early learning [18,35,36], and thus it has been suggested to play a key role in

developing explicit strategies during learning [37,38]. Critically, however, for the Explicit neu-

ral axis we actually observed the highest loadings within the default mode network (DMN);

specifically, within the DMN-B subnetwork, comprising higher-order regions in the middle

and inferior frontal gyrus, angular gyrus, and anterior and middle temporal cortex (see bar-

plots in Fig 3).

Note that, due to the sparsity of the coefficients returned by our models, we found that

most cortical networks loaded only on a single axis (e.g., the DAN and DMN networks loaded

almost exclusively on the Implicit and Explicit neural axes, respectively; Fig 4A). However, as a

noteworthy departure from this general observation, we found that the frontoparietal control

network exhibited substantial cross-loadings on the different neural axes. For example, Fig 4A

(bottom right) shows the implicit/explicit loadings of individual regions within the Control

subnetworks. As can be seen in this plot, it was solely the Control-A and Control-C networks

that showed meaningful cross-loadings across both axes, with the posterior cingulate cortex

(PCC) and precuneus regions, in particular, being strongly explicit-aligned. In this way, a

Fig 3. Explicit, performance, and implicit neural axes. (Left) Barplots show mean coefficients from our penalized ridge regression model for each

subnetwork [30]. (Right) The most prominent subnetworks for each neural axis are displayed on cortical surfaces. Loadings for cerebellar and striatal

regions are shown at the right; note that colormaps for each surface are scaled individually. The data and code needed to generate this figure can be found in

https://zenodo.org/records/14029185.

https://doi.org/10.1371/journal.pbio.3002934.g003
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particular brain region can be described as being either explicit- or implicit-aligned if it has a

greater loading on the Explicit or Implicit neural axis, respectively (we return to this idea in

the next section).

Fig 4. Alignment of individual cortical regions along the 3 separate neural axes. (A) Relationship between the loadings of individual cortical regions for the

Explicit, Performance, and Implicit neural axes. Note that only Control regions showed meaningful cross-loading between axes (highlighted by ellipse). These

regions are shown separately in the bottom right panel. Control C subregions (posterior cingulate and precuneus) in particular were strongly aligned to the

explicit axis. (B) Loadings of individual brain regions for each neural axis, plotted according to their positioning along the Principal gradient. (C) Surface maps

of the 3 neural axes. Red colors denote a positive loading and blue colors denote a negative loading. (D) Relationship between the Principal gradient and

Explicit-alignment axis. Plot at bottom shows the null distribution of spatial correlations between the Principal gradient and Explicit-alignm1e2nt axis, as

derived from 1,000 iterations of the spatial autocorrelation-preserving null model [39] implemented by the Neuromaps toolbox [40]. The dashed red vertical

line denotes the true correlation value (p = 0.028). The data and code needed to generate this figure can be found in https://zenodo.org/records/14029185.

https://doi.org/10.1371/journal.pbio.3002934.g004
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The learning-related neural axes map onto different levels of functional

cortical organization

In order to better understand the large-scale organization of the different neural axes, we took

the loadings of individual regions on each axis (Fig 4, panel B) and plotted them according to

their position along the principal gradient of functional brain organization derived by [31]

(Fig 4, panel C, see panel D for a visualization of the principal gradient). This principal gradi-

ent, which spans from unimodal cortex (i.e., visual and somatomotor networks) to transmodal

cortex (i.e., the DMN), signifies a hierarchy in cortical processing from lower- to higher-order

systems [17,31,41]. As can be seen in Fig 4, panel C, regions loading on the implicit axis tend

to be situated lower on the principal gradient (i.e., closer to sensory and motor regions), while

the performance axis comprises regions closer to transmodal cortex. By contrast, the explicit

axis prominently features regions of the default mode network, located neuroanatomically fur-

thest from sensorimotor cortex.

Next, to more directly assess the relationship between our learning-derived axes and this

principal gradient of functional cortical organization, we derived a single summary axis—the

“explicit alignment” axis—by computing the difference in rank loadings for each ROI (Fig

4D). According to the construction of this summary axis, regions with positive values indicate

a relatively greater loading on the explicit, compared to implicit, neural axis, and vice versa for

negative values. Consistent with this, the greatest explicit alignment is observed in the DMN-B

and Control-C subnetworks, whereas the least explicit (most implicit) alignment is observed

in the superior parietal and premotor areas of the DAN-B subnetwork. Notably, we found this

explicit alignment axis was significantly correlated with the aforementioned principal gradient

of functional brain organization (p = 0.028; spin permutation test: [42], Fig 4D). This suggests

that explicit learning is supported by brain areas (i.e., transmodal regions) positioned at the

very apex of the cortical processing hierarchy, whereas implicit adaptation is supported by

brain areas (superior parietal and premotor regions) located directly adjacent to sensorimotor

cortex.

Expression of the explicit neural axis predicts learning in a separate

reward-based motor task

Implicit adaptation in the VMR task is thought to primarily reflect the updating, through sen-

sory prediction errors, of an internal forward model that predicts the sensory consequences of

a motor command [5,7]). In other forms of motor learning, where subjects are denied this sen-

sory error feedback, this same kind of updating is impossible, and so learning in such cases

must rely on alternative neural systems and pathways [43,44]. By contrast, explicit learning has

been linked to various executive functions [18,38,45,46], and the DMN—which features prom-

inently in our Explicit neural axis—is suggested to specialize in cognitive computations that

are independent of specific perceptual inputs [41]. We thus reasoned that the Explicit neural

axis might generalize across motor learning tasks that provide different forms of sensory feed-

back, whereas the implicit neural axis would not.

To test this idea, in a different fMRI session we had our same participants perform a sepa-

rate motor learning task in which they were required to alter their hand movements purely

through reward-based feedback. In this task, subjects used their right finger on the touchpad

to trace—without visual feedback of their cursor—a rightward-curved path displayed on the

screen (from a start position to target line). Following a baseline block (70 trials), in which sub-

jects did not receive any feedback about their performance, they performed a learning block

(200 trials). Here, they were instructed that they would now receive reward score feedback,

between 0 and 100, based on how accurately they traced the visible path, and that they should
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attempt to maximize their score across trials. Critically—and unbeknownst to the subjects—

the reward score they received was actually based on how accurately they traced the (hidden)

mirror-image path (reflected across the vertical axis; i.e., they would receive an imperfect score

if they traced the visible path but would receive a 100 score if they perfectly traced the mirror

image path; Fig 5A). Importantly, as the cursor was invisible, subjects could not use error-

based learning mechanisms to improve their performance (as they could in the sensorimotor

adaptation task). Rather, they could use only the scalar reward feedback, presented at the end

of each trial, to refine their movements over time.

Learning in such tasks—i.e., where behavior must be guided solely by scalar feedback—is

known to be highly explicit [19,20,47–49]. Consistent with this view, we found that the vast

majority of subjects displayed clearly defined learning periods during our task, book-ended by

periods of relatively flat performance (see example subjects in Fig 5). To identify these learning

periods in a data-driven fashion, on each trial we computed a movement score quantifying the

overall leftward (towards the invisible target) or rightwardness (towards the trained path) of

the trajectory, and fit a sigmoid function to these scores across trials. These resulting fits

allowed us to define separate pre-learning, learning, and post-learning periods (see Fig 5C; see

Methods and see fits to individual subjects in S4 Fig). We then asked whether the expression of

the Explicit neural axis—specifically during the learning period—was related to subjects’ rate

of learning. To test this, we performed a two-part analytical procedure: (1) For each subject,

we computed the spatial correlation between each of our learning-related neural axes extracted

from the VMR task (i.e., the Implicit, Performance, and Explicit axes) with the observed pat-

terns of functional connectivity during each of the separate periods (pre-learning, learning,

and post-learning) associated with the reward-based learning task. [Note that these spatial cor-

relations provide us with a direct index of the degree to which each neural axis from the senso-

rimotor adaptation task is “expressed” during the different periods of reward-based learning,

and we thus call these correlations the explicit (resp. performance, implicit) axis scores.] (2)

We examined whether these newly derived axis scores were correlated with subjects’ learning

rates. The results of this analysis are shown in Fig 6B.

Consistent with our predictions, we observed a significant positive correlation between the

expression of the Explicit neural axis (derived from the VMR task) during the learning period

of the reward-based task, with subjects’ learning rates. That is, the larger the increase in the

expression of the explicit component during the learning phase, the more rapidly subjects

learned the hidden path (r = 0.34, t34 = 2.04, p = 0.049). Critically, as an important control

analysis, we found that this across-task prediction was unique to the Explicit neural axis, as we

observed no such relationship for either of the Implicit (r = −0.12, t34 = −0.71, p = 0.48) or Per-

formance (r = −0.05, t34 = −0.29, p = 0.77) neural axes during the same learning period. More-

over, as a further control, we also observed no correlation between the expression of the

Explicit axis and performance in the reward learning task when we separately examined both

the pre-learning (r = −0.06, t34 = −0.34, p = 0.74) and post-learning periods of the task (r =

−0.18, t34 = −1.01, p = 0.32). Together, these results strongly suggest that the brain systems

comprising our Explicit axis are recruited specifically during the learning period itself—when

subjects are actively adjusting their behavior—rather than in the preceding and subsequent

periods of relatively stable performance, respectively.

One alternative explanation of the above results is that, rather than the Explicit neural axis

uniquely reflecting a modulation of motor regions involved in response generation, they

instead reflect a more global, whole-brain change in functional connectivity. To test this alter-

native explanation of the results, we performed an additional set of control analyses in which

we repeated the construction of the 3 axes (Explicit, Implicit, and Performance) using patterns

of functional connectivity with the contra- and ipsilateral (to the response hand) tongue area
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of somatomotor cortex, as well as the ipsilateral hand area during the VMR task. Critically, in

none of these cases did we observe any significant correlation between axis expression and per-

formance in the reward-based learning task (Fig 6, panel B). [Note that, although the correla-

tion between Explicit axis expression and learning rate was not significant in the right hand

area, neither was the difference in correlation between the 2 hemispheres significant.]

Another alternative explanation of our main results is that Explicit neural axis, instead of

reflecting processes related to the learning of an explicit strategy, relates purely to the imple-

mentation of the learned strategy (e.g., mental rotation of the response). If this were true, then

we would expect to also observe the same pattern of across-task prediction effects when deriv-

ing an Explicit neural axis using instead the late learning epoch of the VMR task (the last 4

blocks of 8 trials). Indeed, during this late learning epoch subjects’ performance has plateaued

and their RTs are decreased (Fig 1D), consistent with an increased automaticity in the motor

responses. To test this idea, we again repeated the construction of the 3 neural axes using the

patterns of functional connectivity during the late learning epoch of the VMR task, and again

Fig 5. Reward-based motor task and subject performance. (A) Subjects learned to trace an invisible target trajectory with only score feedback. After learning

to trace a rightward curved path (baseline trials), score feedback was introduced indicating (unbeknownst to the subject) their success in tracing the mirror

image path (learning trials). (B) Spline-smoothed scores for individual subjects. Note the considerable heterogeneity in subjects’ learning, with some subjects

beginning to learn immediately after score onset (as was the case in the VMR task) versus some subjects showing no improvement until much later. (C)

Behavioral data from an example subject. (Top) Score across trials. (Bottom) For each trial, we quantified the overall leftward or rightwardness of the response

by taking the average x-position of the movement trajectory, with positive values indicating that the response was more towards the invisible target. We

described this value as the lateral movement score. Most subjects showed clearly defined learning periods, book-ended by periods of stable performance. We

identified these periods by fitting a sigmoid function to each subject’s movement scores in order to identify these periods. The 0.025, 0.05, and 0.95 quantiles of

the resulting curves were used to define the end of the pre-learning, beginning of the learning, and beginning of the post-learning periods, respectively. In

addition, the parameters of the fitted sigmoid were used to characterize subjects’ performance. (D) Distributions of fitted model parameters across subjects. L
denotes the lower asymptote, and L + U denotes the difference between the upper and lower asymptotes, respectively;m denotes the midpoint of the learning

period; and k denotes the learning rate. (E) Relationship between subjects’ reaction time (RT, left) and movement time (MT, right) as a function of learning

period. Data shows the group mean +/- 1 standard error of the mean. Note that subjects’ RTs and MTs tended to decrease during the post-learning period,

consistent with the responses becoming more automatic once subjects have converged upon a stable solution to the task. The data and code needed to generate

this figure can be found in https://zenodo.org/records/14029185.

https://doi.org/10.1371/journal.pbio.3002934.g005
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found no correlation between any of these axes’ expression and performance in the reward-

based learning task (S6A Fig). Note also that the explicit axis derived from subjects’ late learn-

ing periods was markedly different from its early learning equivalent (S6B and S6C Fig). Dur-

ing late learning, the explicit axis prominently featured regions of the dorsal attention and

visual networks—in particular, premotor and posterior parietal regions, as well as central and

peripheral visual regions. Although we do not directly assay the specific strategy used by

explicit subjects, mental rotation strategies are commonly used by explicit learners in the VMR

task [23], and regions of the premotor, posterior parietal, and visual cortex are frequently

implicated in mental rotation [50]. This interpretation would be consistent with the failure to

observe a correlation between the expression of the late explicit axis and performance in the

reward-based learning task, as mental rotation is unlikely to support learning in the reward-

based task. Thus, we interpret this late explicit axis as reflecting the implementation of a strat-

egy specific to the VMR task (e.g., mental rotation), while the early explicit axis likely involves

components related to the learning of a strategy itself.

Collectively, these control analyses indicate that it is the expression of the Explicit neural

axis, and not the Implicit or Performance neural axes, that predicts learning in a separate

motor task that does not afford learning via sensory prediction errors. Moreover, these addi-

tional analyses demonstrate an important selectivity to this effect—specifically, we find that

the across-task prediction is exclusive to (1) subjects’ individual learning phase (and not their

pre- and post-learning phases); and (2) connectivity with the contralateral hand area of motor

cortex, indicating that these patterns of connectivity are both neuroanatomically and behavior-

ally relevant.

Fig 6. Neural results for the separate reward-based motor learning task. (A) We examined whole-brain functional connectivity with motor cortex during

each period of the reward-based motor task (pre-learning, learning, and post-learning) and asked whether learning-related increases in the expression of the

Explicit neural axis was associated with better learning (i.e., k parameters from Fig 5). For each period of the reward-based motor task, we computed functional

connectivity with motor cortex and then examined the correlation between these patterns of functional connectivity, and the 3 neural axes derived from the

VMR task (shown in Fig 4). These correlations served as measures of the expression of the Explicit, Performance, and Implicit axes during reward-based

learning. (B) Learning rates, derived from subjects’ sigmoid fits, were significantly correlated with the increase in Explicit axis expression during learning, but

not with the Implicit or Performance axis expressions. As a control, we repeated our analysis, including the derivation of the VMR axes, using functional

connectivity with the ipsilateral (to the response hand) tongue and hand areas of the somatomotor network, as well as with the contralateral tongue area. In

each case, the correlation with learning rate was abolished. The data and code needed to generate this figure can be found in https://zenodo.org/records/

14029185.

https://doi.org/10.1371/journal.pbio.3002934.g006
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Discussion

Adaptive motor behavior is achieved through a combination of multiple learning processes,

yet the specific functional interactions between brain regions that support these processes are

poorly understood. Here, we examined learning-related changes in human cortical, striatal,

and cerebellar functional connectivity with the primary motor cortex while individuals per-

formed a classic sensorimotor adaptation task. Using subjects’ explicit reports, as well as their

visuomotor errors experienced during adaptation, we isolated 3 distinct axes of connectivity

during early learning that corresponded to subjects’ implicit and explicit learning processes, as

well as their visuomotor performance. Whereas we found that implicit learning was related to

connectivity changes between motor cortex and superior parietal and premotor regions (the

Implicit neural axis), we found that explicit learning was related to connectivity changes

between motor cortex and higher-order transmodal cortex, in particular the DMN (the

Explicit neural axis). Notably, we distinguished both of these connectivity changes from activ-

ity patterns related to subjects’ performance errors during learning, which we found was

instead related to connectivity changes in the frontoparietal control network (the Performance

neural axis). Further analyses showed that these 3 distinct neural axes mapped onto different

levels of the cortical processing hierarchy, extending from primary sensory and motor systems

to higher-order transmodal cortex. Finally, we examined the extent to which each of these neu-

ral axes generalized to a separate motor task known to rely primarily on explicit learning pro-

cesses and found that it was the expression of the Explicit neural axis—and not the Implicit

and Performance axes—that predicted subject learning under these circumstances.

The main contribution of our study lies in establishing a tripartite distinction in how con-

nectivity between the motor cortex and other brain regions relates to implicit learning, explicit

learning, and visuomotor performance. Whereas in behavioral studies of motor learning, these

different factors can be readily distinguished and measured [7,13,22], disentangling their neu-

ral bases has remained a challenge. Indeed, while activation changes observed during early

learning may reflect subjects’ formation of cognitive strategies—as is often interpreted [24]—

these changes may also reflect modulations in sensory feedback associated with the use of such

strategies (e.g., decreased errors) or trial-by-trial recalibration of the internal model

([7,13,51,52], which occurs automatically in parallel with explicit learning). Our study

addressed these challenges by separately measuring subjects’ actual re-aiming strategies and

controlling for performance-related effects on explicit and implicit learning measures. This

approach enabled us to identify unique neural signatures of these distinct processes through

patterns of functional connectivity between the motor cortex and other brain regions.

A key finding from our study is to underscore the important role of the superior parietal

and premotor areas within the DAN in implicit adaptation (see Fig 7, bottom). This learning

process is frequently understood through the lens of optimal feedback control [53], where the

observed response results from a policy dictating the motor control signal generated by pri-

mary motor structures. Successful execution of this policy requires an internal model to gener-

ate accurate predictions about the sensory consequences of a motor command. Recent

perspectives suggest that this model is updated based on perceptual errors, reflecting a mis-

match between the target and the perceived movement position, which is derived from a mul-

tisensory estimate combined with a motor efference copy [54]. Previous work has implicated

regions of the parietal and premotor cortex, as well as the anterior cerebellum, in these pro-

cesses [55–58]. Note that although our findings identified these same cortical regions (in the

DAN), we found that the cerebellum loaded relatively weakly onto our Implicit neural axis.

However, we should note that its anterior motor regions—particularly in the right (ipsilateral)
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cerebellum—were aligned to our Implicit neural axis, consistent with its known role in com-

puting the sensory prediction errors that drive implicit motor adaptation [44,59–62].

A second key feature of our results is the distinction between 2 separate patterns of func-

tional connectivity during sensorimotor learning: one linked to explicit learning and the other

linked to visuomotor performance. In prior work, explicit learning has been suggested to

involve higher-order control regions in the prefrontal cortex, as well as processes like working

memory and attention [24,37]. Yet, the specific influence of these control signals on motor sys-

tem parameters has been unclear. For example, it remains to be formalized whether these con-

trol signals dictate the selection of a new policy (i.e., a decision to aim somewhere other than

directly at the target), the selection of an alternative forward model, or the weighting of specific

sensory inputs based on task demands. Indeed, regions of the prefrontal cortex have been

implicated in exactly these types of processes (e.g., [63]) and associated with performance dur-

ing visuomotor adaptation [10,12,24,37]. However, the extent to which these Control networks

specifically contribute to the learning of an explicit strategy per se—versus processes which

may support task performance more generally (e.g., goal-directed spatial attention), and thus

lead to better performance—has not been systematically studied in previous work. Indeed,

Control network areas like the DLPFC have been implicated in processes essential for basic

task performance—such as the selection of spatial targets for action and with performance

monitoring [64–66]—in addition to any specific role in explicit learning. Our current results

Fig 7. Conceptualizing the current results according to current neuroanatomical perspectives. Sensorimotor

adaptation is frequently interpreted through the lens of optimal feedback control, in which adaptation results from the

updating of an internal forward-model in response to sensory prediction errors [21]. The cortical circuitry supporting

such adaptation comprises a network of premotor and parietal regions (along with the cerebellum) [53] commonly

grouped within the dorsal attention network, which featured prominently in our Implicit axis. The parameters which

dictate the operation of this system (e.g., which target is selected for action) are presumably set by prefrontal regions

that are located more distally from primary sensorimotor cortex. At the apex of the cortical processing hierarchy, the

default mode network is believed to support temporally extended (e.g., spanning multiple trials), perceptually

independent processes which allow responses to be guided by internally generated rule-sets, and by multiple sources of

information integrated over longer time periods [41]. It is this latter network which our analysis associated with

explicit learning processes.

https://doi.org/10.1371/journal.pbio.3002934.g007
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suggest that functional connectivity with the DLPFC (Control-A subnetwork) is not associated

with explicit learning specifically, but rather with processes that assist in task performance

(e.g., spatial attention, error detection). The fact that expression of this axis was not correlated

with learning rate in the separate reward-based motor task may thus reflect the fact that this

axis includes (in part) patterns of connectivity associated with the unique demands of the

VMR task (e.g., spatial target processes), which are not relevant to performance in the reward-

based task, and/or with effects related to the monitoring of performance (e.g., detection of

directional errors), rather than processes contributing to the formation of a strategy.

Although our finding that explicit learning was associated principally with regions of the

default mode network (DMN) may be unexpected in the context of much of the sensorimotor

learning literature, there are numerous findings across diverse research fields hinting at just

such a role. For example, recent theories of DMN functioning (e.g., [41]) have implicated the

DMN in states such as self-referential processing, theory of mind, and spontaneous states such

as mind wandering—all of which depend on explicit conscious attention [17,41,67–70]. In

addition, there is emerging neurophysiological evidence that DMN areas are uniquely engaged

in conditions when performance is initially poor and when executive control is advantageous

[71,72]. For example, work in nonhuman primates has shown that activity in DMN areas is

linked to the formation of strategies during periods of learning when errors are high [73]. Fur-

ther, early neuroimaging work in explicit motor sequence learning has implicated regions of

the DMN in task performance, though notably much of this work had preceded the characteri-

zation of the DMN as a distributed functional network (e.g., [74]).

In this way, our results suggest that—like in multiple other domains—the DMN may play a

role in motor control that is linked to the capacity of humans to explicitly attend to their own

thoughts and actions. This skill is particularly important when behavior must be guided by

internally generated strategies and rule-sets, and by information accrued over longer time

horizons than by in-the-moment sensory inputs [41]. This contribution of the DMN to behav-

ior is hypothesized to be enabled through its unique topographic positioning on cortex [31],

with each core node of the DMN being located maximally distant from sensory and motor sys-

tems. This topography is thought to free DMN areas from the constraints of extrinsically

driven neural activity, thus allowing these regions to play a role in the orchestration of infor-

mation processing across distributed functional systems [41,75].

Indeed, as noted in our results, we found that our 3 neural axes are situated at increasing

positions along the cortical processing hierarchy that spans from unimodal to transmodal cor-

tex (see Fig 7). The implicit learning axis involves regions directly adjacent to primary sensory

and motor regions, consistent with the need for near instantaneous access to information

encoded within sensorimotor regions, and the ability of implicit adaptation to occur automati-

cally and outside conscious awareness. By contrast, the explicit learning axis involves regions

positioned at the very apex of the hierarchy, in the DMN. This is consistent with explicit learn-

ing requiring a high-level understanding of the task structure (i.e., that the cursor has in fact

been rotated rather than left/right displaced), which itself requires the integration of informa-

tion over the timescale of multiple trials (see Fig 7). This hierarchical view accords with func-

tional differences in the time horizons over which sensorimotor versus transmodal areas

process information [76]. Previous research demonstrates that temporal windows of informa-

tion processing change hierarchically across the cortex [77–79], with sensorimotor areas inte-

grating information over milliseconds to seconds, and transmodal areas over seconds to

minutes or longer. These longer “temporal receptive windows” in transmodal cortex [77,78]

are thought to enable the encoding of more slowly changing states and the incorporation of

acquired knowledge into complex scenarios, both of which are crucial for developing cognitive

strategies during learning.
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As illustrated in Fig 7, various higher-order control signals may alter the functioning of the

motor system at different levels of abstraction. Within the timescale of a single trial, control

structures can select a target for action and dictate the control policy used to generate the

movement. At a higher level, other structures support the accumulation of information over

multiple trials, enabling the construction of a cognitive map of the task space, experimentation

with response strategies, and signaling explore/exploit shifts in behavior. These processes are

essential for developing and using explicit strategies. However, research on explicit motor

learning has largely overlooked the characterization of specific underlying processes that sup-

port learning in different task contexts. Although our results share similar limitations, they

also highlight important future directions that have been largely ignored in the sensorimotor

learning literature. Furthermore, they contextualize several previously reported findings—

such as the apparent association between visuomotor learning and episodic memory (e.g.,

[80,81])—by directly implicating default mode subsystems whose role in memory-guided per-

formance is relatively well characterized [41].

A final unique feature of the current study was in exploring the extent to which the neural

axes identified during sensorimotor adaptation generalized across other forms of motor learn-

ing. Although few neural studies have examined the use of reinforcement mechanisms during

motor learning, there is considerable behavioral evidence indicating that explicit processes are

particularly crucial in tasks that deny the kinds of sensory feedback that drive error-based

adaptation, such as in our reward-based motor task, or the tasks of [19,49,48,82]. In these

types of reward-based motor learning tasks, the agent is provided no feedback indicating pre-

cisely how, or to what extent, the executed versus optimal movements differ (unlike during

error-based learning), and so they must perform some kind of credit assignment in order to

decide which feature of the movement to adjust on subsequent trials [83]. In these contexts,

subjects will often develop an explicit understanding of the task structure, with their motor

responses demonstrating a clear prioritization of the features relevant to performance [48,49].

Consistent with this, the majority of subjects in our reward-based motor task exhibited well-

defined learning periods, in which subjects began to more rapidly converge on the correct

solution. These more rapid shifts in behavior have been studied in the context of one-shot

learning, where research has implicated regions of the DMN [84] in facilitating rapid learning

through an explicit record of past action-outcome associations [85]. As noted above, these

regions featured prominently in our Explicit neural axis, the expression of which predicted

subject performance in the reward-based motor task.

Although our study identifies distinct patterns of connectivity with motor cortex during

sensorimotor adaptation and the component processes that these patterns support, it also

leaves several important questions for future research. First, because we restricted our analysis

to bipartite functional interactions between the motor cortex and the rest of the brain, we can-

not speak to connectivity changes occurring outside of the motor cortex and how they may

relate to these different learning processes. For example, our analysis does not preclude com-

munication between regions of visual cortex and frontoparietal regions in the monitoring of

visuomotor performance. Nevertheless, we believe our study provides a critical first step in

understanding how interactions with the motor system drive sensorimotor adaptation. Sec-

ond, although we included regions of both the striatum and cerebellum in our analyses, we

found that they tended to load relatively weakly on the neural axes as compared to cortical

regions. This is likely to reflect relatively stronger cortico-cortical functional connectivity

(compared to cortico-extracortical connectivity), rather than the non-involvement of these

regions in learning. Indeed, as cortico-cerebellar/striatal functional connectivity is relatively

weaker, it may simply be less predictively useful in our regression analyses than using cortico-

cortical connectivity. Indeed, when we directly examined functional connectivity between the
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cerebellum and motor cortex during learning, we found that task-related modulation of con-

nectivity was greatest in motor regions of the cerebellum, consistent with the known role of

the cerebellum in successful visuomotor adaptation [86].

Methods

Participants

Forty-six right-handed subjects (27 females, aged 18 to 28 years, mean age: 20.3 years) partici-

pated in 3 separate testing sessions, each spaced approximately 1 week apart: the first, an MRI-

training session, was followed by 2 subsequent MRI experimental sessions. Of these 46 sub-

jects, 10 participants were excluded from the final analysis [1 subject was excluded due of

excessive head motion in the MRI scanner (motion greater than 2 mm or 2˚ rotation within a

single scan); 1 subject was excluded due interruption of the scan during the learning phase of

the reward-based motor task; 5 subjects were excluded due to poor behavioral performance in

one or both tasks (4 of these participants were excluded because >25% of trials were not com-

pleted within the maximum trial duration; and one because>20% of trials had missing data

due to insufficient pressure of the fingertip on the MRI-compatible tablet); 3 subjects were

excluded due to a failure to properly perform the reward-based task (these subjects did not

trace the visible rightward path during the baseline phase, but rather continued to trace a

straight line for the entire duration of the task, suggesting that they did not attend to the task)].

Right-handedness was assessed with the Edinburgh handedness questionnaire [87]. Partici-

pants’ informed consent was obtained before beginning the experimental protocol. The

Queen’s University Research Ethics Board approved the study and it was conducted in coher-

ence to the principles outlines in the Canadian Tri-Council Policy Statement on Ethical Con-

duct for Research Involving Humans and the principles of the Deceleration of Helsinki (1964).

Procedure

In the first session, participants took part in an MRI-training session inside a mock (0 T) scan-

ner that was made to look and sound like a real MRI scanner. We undertook this training ses-

sion to (1) introduce participants to features of the VMR and reward-based motor tasks that

would be subsequently performed in the MRI scanner; (2) ensure that subjects obtained base-

line performance levels on those 2 tasks; and (3) ensure that participants could remain still for

1.5 h. To equate baseline performance levels across participants, subjects performed 80 trials

per task. To train participants to remain still in the scanner, we monitored subjects’ head

movement via a Polhemus sensor attached to each subject’s forehead (Polhemus, Colchester,

Vermont). This allowed a real-time read-out of subject head displacement in the 3 axes of

translation and rotation (6 dimensions total). Whenever subjects’ head translation and/or rota-

tion reached 0.5 mm or 0.5˚ rotation, subjects received an unpleasant auditory tone, delivered

through a speaker system located near the head. All of the subjects used in the study learned to

constrain their head movement through this training regimen. Following this first session,

subjects then subsequently participated in reward-based VMR motor tasks, respectively (see

below for details).

Apparatus

During testing in the mock (0 T) scanner, subjects performed hand movements that were

directed towards a target by applying fingertip pressure on a digitizing touchscreen tablet

(Wacom Intuos Pro M tablet). During the actual MRI testing sessions, subjects used an MRI-

compatible digitizing tablet (Hybridmojo LLC, California, United States of America). In both
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the mock and real MRI scanner, the target and cursor stimuli were rear-projected with an

LCD projector (NEC LT265 DLP projector, 1,024 × 768 resolution, 60 Hz refresh rate) onto a

screen mounted behind the participant. The stimuli on the screen were viewed through a mir-

ror fixated on the MRI coil directly above the participants’ eyes, thus preventing the participant

from being able to see their hand.

Sensorimotor adaptation task

To study sensorimotor adaptation, we used the well-characterized VMR paradigm ([21];

Fig 1). During the VMR task, participants performed baseline trials in which they used their

right index finger to perform center-out target-directed movements. After these baseline trials,

we applied a 45° clockwise (CW) rotation to the viewed cursor, allowing investigation of VMR

learning. Following this, we assessed participants’ re-aiming strategy associated with their

learning.

Each trial started with the participant moving the cursor (3 mm radius cyan circle) into the

start position (4 mm radius white circle) in the center of the screen by sliding the index finger

on the tablet. To guide the cursor to the start position, a ring centered around the start position

indicated the distance between the cursor and the start position. The cursor became visible

when its center was within 8 mm of the center of the start position. After the cursor was held

within the start position for 0.5 s, a target (5 mm radius red circle) was shown on top of a gray

ring with a radius of 60 mm (i.e., the target distance) centered around the start position. The

target was presented at one of 8 locations, separated by 45° (0, 45, 90, 135, 180, 225, 270, and

315°), in pseudorandomized bins of 8 trials. Participants were instructed to hit the target with

the cursor by making a fast finger movement on the tablet. They were instructed to “slice” the

cursor through the target to minimize online corrections during the reach. If the movement

was initiated (i.e., the cursor had moved fully out of the start circle) before the target appeared,

the trial was aborted and a feedback text message “Too early” appeared centrally on the screen.

In trials with correct timing, the cursor was visible during the movement to the ring and then

became stationary for 1 s when it reached the ring, providing the participant with visual feed-

back of their endpoint reach error. If any part of the stationary cursor overlapped with any

part of the target, the target colored green to indicate a hit. Each trial was terminated after 4.5

s, independent of whether the cursor had reached the target. After a delay of 1.5 s, allowing

time to save the data, the next trial started with the presentation of the start position.

During the participant training session in the mock MRI scanner (i.e., 2-weeks prior to the

VMR MRI testing session), participants performed a practice block of 40 trials with veridical

feedback (i.e., no rotation was applied to the cursor). This training session exposed partici-

pants to several key features of the task (e.g., use of the touchscreen tablet, trial timing, pres-

ence, and removal of cursor feedback) and allowed us to establish adequate performance

levels.

At the beginning of the MRI testing session, but prior to the first scan being collected, par-

ticipants re-acquainted themselves with the VMR task by performing 80 practice trials with

veridical cursor feedback. Next, we collected an anatomical scan, followed by the baseline

fMRI experimental run, wherein subjects performed 64 trials of the VMR task with veridical

cursor feedback using their right hand. Next, they performed the learning scan, wherein sub-

jects performed 160 trials in which feedback of the cursor during the reach was rotated clock-

wise by 45°. Following this fMRI experimental run, participants were asked to report their

strategic aiming direction (over 16 trials). In these trials, a line between the start and target

position appeared on the screen at the start of each trial. Participants were asked to use a sepa-

rate MRI joystick (Current Designs, Inc.) positioned at their left hip to rotate the line to the
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direction that they would aim their finger movement in for the cursor to hit the target, and

click the button on the joystick box when satisfied. Following the button click, the trial pro-

ceeded as a normal reach trial. Specifically, the following text was displayed on the screen to

participants at the onset of the reporting trials: “Use the joystick to rotate the line to the direc-

tion that you will aim your finger in for the cursor to hit the target. If you think your finger

should aim straight at the target, then leave the line at the target and click the button on the

joystick. If you think your finger should aim somewhere else for the cursor to hit the target,

rotate the line to your aiming direction, and then click the button. Next, hit the target with

your right finger.”

These 16 “report” trials were followed by 16 normal rotation trials. As several subjects

expressed confusion about the nature of the report trials, often failing to adjust the line at all

during the first few trials, we discarded the first 8 report trials for all subjects, and calculated

the mean aim direction using the final 8 trials (note, however, that we observed very similar

results whether estimates of the explicit and implicit components were based on these 8 versus

all 16 report trials, see S2 Fig). Note that we had subjects perform these report trials following

learning (as in [49]) given our prior behavioral work showing that the inter-mixing of report

trials during learning can lead to more participants adopting an explicit, re-aiming strategy

[22,49], thereby distorting participants’ learning curves. Participants were not informed about

nature or presence of the visuomotor rotation before or during the experiment, and received

no “coaching” about how to specifically perform the reporting trials (we adopted this “hands-

off” approach given our concern that any experimenter instructions or invention might bias

subjects’ learning and reporting behavior).

Note that all subjects performed the VMR task after having performed the reward-based

motor task (i.e., testing order was not counterbalanced across the RL and EL tasks). We made

this decision in light of our knowledge that subjects may alter their behavior after performing

explicit report trials in the VMR task [22] (i.e., often developing explicit awareness of the per-

turbation and using that to guide their performance). We were concerned that, had subjects

performed the VMR task first, they may have anticipated some experimental manipulation (or

deception), and thus would not have approached the reward-based motor task in a naive fash-

ion. From this perspective, our approach of having defined the explicit and implicit neural

axes on the (second) VMR task and then using those neural axes to predict performance on

the (first) reward-based motor task, strengthens our interpretations of the effects.

Reward-based learning task

In the reward-based motor task (Fig 5, left), participants learned to produce, through reward-

based feedback, finger movement trajectories with a specific (unseen) shape. Specifically, sub-

jects were instructed to repeatedly trace, without visual cursor feedback of their actual finger

paths, a subtly curved path displayed on the screen (the visible path). During learning trials,

participants were told that, following each trial, they would receive a score based on how accu-

rately they traced the visible path (and were instructed to maximize points across trials). How-

ever, unbeknownst to them, they actually received points based on how well they traced the

mirror-image path (the target path). Critically, because participants received no visual feed-

back about their actual finger trajectories or the “rewarded” shape, they could not use error-

based information to guide learning. Our task was inspired by the motor learning tasks devel-

oped by [48,82].

Each trial started with the participant moving the cursor (3 mm radius cyan circle) into the

start position (4 mm radius white circle) at the bottom of the screen by sliding their index fin-

ger on the tablet. The cursor was only visible when it was within 30 mm of the start position.
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After the cursor was held within the start position for 0.5 s, the cursor disappeared and a

curved path and a target distance marker appeared on the screen. The target distance marker

was a horizontal red line (30 × 1 mm) that appeared 60 mm above the start position. The visi-

ble path connected the start position and target distance marker and had the shape of a half

sine wave with an amplitude of 0.15 times the target distance. Participants were instructed to

trace the curved visible path. When the cursor reached the target marker distance, the marker

changed color from red to green to indicate that the trial was completed. Importantly, partici-

pants did not receive feedback about the position of their cursor during the trial.

In the baseline block, participants did not receive feedback about their performance. In the

learning block, participants were rewarded 0 to 100 points after reaching the target distance

marker, and participants were instructed to do their best to maximize this score across trials

(the points were displayed as text centrally on the screen). They were told that to increase the

score, they had to “trace the line more accurately.” Each trial was terminated after 4.5 s, inde-

pendent of whether the cursor had reached the target. After a delay of 1.5 s, allowing time to

save the data, the next trial started with the presentation of the start position.

To calculate the score on each trial in the learning block, the x position of the cursor was

interpolated at each cm displacement from the start position in the y direction (i.e., at exactly

10, 20, 30, 40, 50, and 60 mm). For each of the 6 y positions, the absolute distance between the

interpolated x position of the cursor and the x position of the rewarded path (mirror image of

visible path) was calculated. The sum of these errors was scaled by dividing it by the sum of

errors obtained for a half cycle sine-shaped path with an amplitude of 0.5 times the target dis-

tance, and then multiplied by 100 to obtain a score ranging between 0 and 100. The scaling

worked out so that a perfectly traced visible path would result in an imperfect score of 40

points. This scaling was chosen on the basis of extensive pilot testing in order to achieve varia-

tion in subject performance, and to ensure that subjects still received informative score feed-

back when tracing in the vicinity of the visible trajectory.

During the participant training session in the mock MRI scanner (i.e., 1-week prior to the

MRI testing session), participants only performed a practice block in which they traced a straight

line with (40 trials) and then without (40 trials) visual feedback of the position of the cursor dur-

ing the reach. As with the VMR task, this training session exposed participants to several key fea-

tures of the task (e.g., use of the touchscreen tablet, trial timing, used of cursor feedback to correct

for errors) and allowed us to establish adequate baseline performance levels. Importantly, how-

ever, this training session did not allow for any reward-based learning to take place.

At the beginning of the MRI testing session, but prior to the first scan being collected, par-

ticipants re-acquainted themselves with the reward-based motor task by first performing a

practice block in which they traced a straight line with (40 trials) and then without (40 trials)

visual feedback of the position of the cursor during the reach. Next, we collected an anatomical

scan, following by a DTI scan, followed by a resting-state fMRI scan. During the latter resting-

state scan, participants were instructed to rest with their eyes open while fixating on a central

cross location presented on the screen. Following this, participants performed the reward-

based motor task, which consisted of 2 separate experimental runs without visual feedback of

the cursor: (1) a baseline block of 70 trials in which they attempted to trace the curved visible

path and no score was provided; and (2) a separate learning block of 200 trials in which partici-

pants were instructed to maximize their score shown at the end of each trial.

Behavioral data analysis

VMR task analysis. Trials in which the reach was initiated before the target appeared (4%

of trials) or in which the cursor did not reach the target within the time limit (5% of trials)
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were excluded from the offline analysis of hand movements. As insufficient pressure on the

touchpad resulted in a default state in which the cursor was reported as lying in the top left cor-

ner of the screen, we also excluded trials in which the cursor jumped to this position before

reaching the target region (2% of trials). We then applied a conservative threshold on the

movement and reaction times, removing the top 0.05% of trials across all subjects. As the

VMR task required the subject to determine the target location prior to responding, we also set

a lower threshold of 100 ms on the reaction time.

Reward-based motor task analysis. Trials in which the cursor did not reach the target

distance marker within the time limit were excluded from the offline analysis of hand move-

ments (1% of trials). As in the VMR task, we excluded trials in which insufficient pressure was

applied (2% of trials), and also separately applied a conservative threshold on the movement

and reaction times, removing the top 0.05% of trials across all subjects. As the VMR task did

not involve response discrimination, we did not set a lower threshold on these variables.

For each trial, we computed a movement score by integrating the horizontal position of the

trajectory, so as to derive a scalar measure of the overall leftward or rightwardness of the move-

ment. Note that we flipped the sign of this measure so that positive (resp. negative) values

denote trajectories closer to the target (resp. trained) trajectory. To each subjects’ movement

data, we fit a generalized sigmoid function in which the predicted movement score on each

trial x was given by

f ðxÞ ¼ Lþ
U � L

1þ exp½� kðx � mÞ�
ð1Þ

where L and U denote the lower and upper asymptotes, respectively;m denotes the midpoint

of the learning period; and k denotes the learning rate (but see our comments below). Because

the fits were unstable for several subjects with very slow learning rates, we regularized the fits

with the following Bayesian model:

yi � Normalðmis
2Þ

mi ¼ Lþ
U � L

1þ exp½� kðx � mÞ�

m � Normalð1:7; 0:5Þ

L � Normalð� 0:2; 0:25Þ

U � Normalð0; 0:25Þ

k � Normalð7; 2Þ

s � Normalþð0; 0:25Þ;

Note that trial numbers were scaled by 100 to keep the units comparable, so that the prior

mean of 1.7 on the midpointm was centered at trial 170 (i.e., the center of the learning block).

The prior mean of −0.25 on L was centered about the movement score corresponding to trac-

ing the initial learned trajectory, while the prior mean on U corresponds to the midpoint

between perfect learning and an absence of learning. The prior scale of 0.25 on the error stan-

dard deviation was chosen empirically to place high probability mass over the standard devia-

tions observed in subjects’ baseline blocks.
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Models were fit using the Hamiltonian Monte-Carlo algorithm implemented by the Stan

programming language [88]. For each subject, we fit the model using 3 chains of 5,000 sam-

ples, of which the first 1,500 were discarded as burn-in. In each case, visual inspection of the

chains suggested adequate convergence, with potential scale reduction factor R̂ less than 1.01

for all parameters and all subjects.

For each subject, pre-learning and learning epochs were defined using the posterior mean

parameter estimates. Specifically, we defined the end of the pre-learning epoch to be the point

at which the posterior mean curve exceeded 2.5% of its total range U − L. The beginning of the

learning epoch was then defined to be the point at which the curve exceeded 5% of its total

range. Using these boundaries, we then defined pre-learning and learning periods of 100 imag-

ing volumes by setting the end of the pre-learning period to be the 0.025 quantile of the sig-

moid fit, and the beginning of the post-learning period to be the 0.975 quantile. See S3 Fig for

fits to individual subjects.

Visual inspection of the model fits indicated that the sigmoid generally accurately captured

the overall pattern of subjects’ learning, with a few exceptions. In S3 Fig, we note 3 subjects

who did not display well-defined learning periods, and for whom the fitted sigmoid was nearly

flat. In these cases, we retained the identified pre-learning and learning epochs, and these sub-

jects were simply recorded as having extremely low learning rates. Two subjects were poorly

characterized by the sigmoid fit, and so we manually identified pre-learning and learning

epochs in these cases. Each of these subjects is indicated in the supplemental figure. In these

latter 2 subjects, the parameter k did not encode the learning rate within the learning epoch

itself, and so for each subject we defined their learning rate (for the analysis reported in Fig 5)

to be the slope of the line of best fit to the scores in their learning epoch.

MRI acquisition

Participants were scanned using a 3-Tesla Siemens TIM MAGNETOM Trio MRI scanner

located at the Centre for Neuroscience Studies, Queen’s University (Kingston, Ontario, Canada).

Functional MRI volumes were acquired using a 32-channel head coil and a T2*-weighted single-

shot gradient-echo echo-planar imaging (EPI) acquisition sequence (time to repetition (TR) =

2,000 ms, slice thickness = 4 mm, in-plane resolution = 3 mm × 3 mm, time to echo (TE) = 30

ms, field of view = 240 mm × 240 mm, matrix size = 80 × 80, flip angle = 90˚, and acceleration

factor (integrated parallel acquisition technologies, iPAT) = 2 with generalized auto-calibrating

partially parallel acquisitions (GRAPPA) reconstruction. Each volume comprised 34 contiguous

(no gap) oblique slices acquired at a 30˚ caudal tilt with respect to the plane of the anterior and

posterior commissure (AC-PC), providing whole-brain coverage of the cerebrum and cerebel-

lum. Each of the task-related scans included an additional 8 imaging volumes at both the begin-

ning and end of the scan. On average, each of the MRI testing sessions lasted 2 h.

At the beginning of the reward-based motor task MRI testing session, a T1-weighted ADNI

MPRAGE anatomical was also collected (TR = 1,760 ms, TE = 2.98 ms, field of view = 192

mm × 240 mm × 256 mm, matrix size = 192 × 240 × 256, flip angle = 9˚, 1 mm isotropic vox-

els). This was followed by a series of Diffusion-Weighted scans, wherein we acquired 2 sets of

whole-brain diffusion-weighted volumes (30 directions, b = 1,000 s mm-2, 65 slices, voxel

size = 2 × 2 × 2 mm3, TR = 9.3 s, TE = 94 ms) plus 2 volumes without diffusion-weighting

(b = 0 s mm-2). Next, we collected a resting-state scan, wherein 300 imaging volumes were

acquired. For the baseline and learning scans during the motor task, 222 and 612 imaging vol-

umes were acquired, respectively.

At the beginning of the VMR MRI testing session, we gathered high-resolution whole-brain

T1-weighted (T1w) and T2-weighted (T2w) anatomical images (in-plane resolution 0.7 × 0.7
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mm2; 320 × 320 matrix; slice thickness: 0.7 mm; 256 AC-PC transverse slices; anterior-to-pos-

terior encoding; 2 × acceleration factor; T1w TR 2,400 ms; TE 2.13 ms; flip angle 8˚; echo spac-

ing 6.5 ms; T2w TR 3,200 ms; TE 567 ms; variable flip angle; echo spacing 3.74 ms). These

protocols were selected on the basis of protocol optimizations designed by [89]. Following this,

for the baseline and learning functional scans, 204 and 492 imaging volumes were acquired,

respectively.

fMRI preprocessing

Results included in this manuscript come from preprocessing performed using fMRIPrep 1.4.1

([90,91]; RRID:SCR_016216), which is based on Nipype 1.2.0 ([92,93]; RRID:SCR_002502).

Anatomical data preprocessing. A total of 2 T1-weighted (T1w) images were found

within the input BIDS data set. All of them were corrected for intensity non-uniformity (INU)

with N4BiasFieldCorrection [94], distributed with ANTs 2.2.0 ([95], RRID:SCR_004757). The

T1w-reference was then skull-stripped with a Nipype implementation of the antsBrainExtrac-

tion.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue segmen-

tation of cerebrospinal fluid (CSF), white-matter (WM), and gray-matter (GM) was

performed on the brain-extracted T1w using fast FSL 5.0.9, RRID:SCR_002823, [96]. A T1w-

reference map was computed after registration of 2 T1w images (after INU-correction) using

mri_robust_template (FreeSurfer 6.0.1, [97]). Brain surfaces were reconstructed using recon-

all (FreeSurfer 6.0.1, RRID:SCR_001847, [98]), and the brain mask estimated previously was

refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-

derived segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438, [99]).

Volume-based spatial normalization to 2 standard spaces (MNI152NLin6Asym, MNI152N-

Lin2009cAsym) was performed through nonlinear registration with antsRegistration (ANTs

2.2.0), using brain-extracted versions of both T1w reference and the T1w template. The follow-

ing templates were selected for spatial normalization: FSL’s MNI ICBM 152 nonlinear 6th

Generation Asymmetric Average Brain Stereotaxic Registration Model ([100], RRID:

SCR_002823; TemplateFlow ID: MNI152NLin6Asym), ICBM 152 Nonlinear Asymmetrical

template version 2009c ([101], RRID:SCR_008796; TemplateFlow ID:

MNI152NLin2009cAsym).

Functional data preprocessing. For each of the BOLD runs per subject (across all tasks

and sessions), the following preprocessing was performed. First, a reference volume and its

skull-stripped version were generated using a custom methodology of fMRIPrep. The BOLD

reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which

implements boundary-based registration [102]. Co-registration was configured with 9 degrees

of freedom to account for distortions remaining in the BOLD reference. Head-motion param-

eters with respect to the BOLD reference (transformation matrices and 6 corresponding rota-

tion and translation parameters) are estimated before any spatiotemporal filtering using

mcflirt (FSL 5.0.9, [103]). BOLD runs were slice-time corrected using 3dTshift from AFNI

20160207 ([104], RRID:SCR_005927). The BOLD time-series were resampled to surfaces on

the following spaces: fsaverage. The BOLD time-series (including slice-timing correction when

applied) were resampled onto their original, native space by applying a single, composite trans-

form to correct for head-motion and susceptibility distortions. These resampled BOLD time-

series will be referred to as preprocessed BOLD in original space, or just preprocessed BOLD.

The BOLD time-series were resampled into several standard spaces, correspondingly generat-

ing the following spatially normalized, preprocessed BOLD runs: MNI152NLin6Asym,

MNI152NLin2009cAsym. First, a reference volume and its skull-stripped version were gener-

ated using a custom methodology of fMRIPrep. Automatic removal of motion artifacts using
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independent component analysis (ICA-AROMA, [105]) was performed on the preprocessed

BOLD on MNI space time-series after removal of non-steady state volumes and spatial

smoothing with an isotropic, Gaussian kernel of 6 mm FWHM (full-width half-maximum).

Corresponding “non-aggresively” denoised runs were produced after such smoothing. Addi-

tionally, the “aggressive” noise-regressors were collected and placed in the corresponding con-

founds file. Several confounding time-series were calculated based on the preprocessed BOLD:

framewise displacement (FD), DVARS and 3 region-wise global signals. FD and DVARS are

calculated for each functional run, both using their implementations in Nipype (following the

definitions by [106]). The 3 global signals are extracted within the CSF, the WM, and the

whole-brain masks. Additionally, a set of physiological regressors were extracted to allow for

component-based noise correction (CompCor, [107]). Principal components are estimated

after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with

128s cut-off) for the 2 CompCor variants: temporal (tCompCor) and anatomical (aCompCor).

tCompCor components are then calculated from the top 5% variable voxels within a mask cov-

ering the subcortical regions. This subcortical mask is obtained by heavily eroding the brain

mask, which ensures it does not include cortical GM regions. For aCompCor, components are

calculated within the intersection of the aforementioned mask and the union of CSF and WM

masks calculated in T1w space, after their projection to the native space of each functional run

(using the inverse BOLD-to-T1w transformation). Components are also calculated separately

within the WM and CSF masks. For each CompCor decomposition, the k components with

the largest singular values are retained, such that the retained components’ time series are suf-

ficient to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or

temporal). The remaining components are dropped from consideration. The head-motion

estimates calculated in the correction step were also placed within the corresponding con-

founds file. The confound time series derived from head motion estimates and global signals

were expanded with the inclusion of temporal derivatives and quadratic terms for each [108].

Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated

as motion outliers. All resamplings can be performed with a single interpolation step by com-

posing all the pertinent transformations (i.e., head-motion transform matrices, susceptibility

distortion correction when available, and co-registrations to anatomical and output spaces).

Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs), con-

figured with Lanczos interpolation to minimize the smoothing effects of other kernels [109].

Non-gridded (surface) resamplings were performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.5.2 ([110], RRID:SCR_001362), mostly

within the functional processing workflow. For more details of the pipeline, see the section

corresponding to workflows in fMRIPrep’s documentation.

Region of interest (ROI) extraction. Regions of interest were identified using separate

parcellations for the cerebellum, basal ganglia, and cortex. For the cerebellum, we extracted all

regions using the atlas of Diedrichsen [32]. For the basal ganglia, we extracted the caudate,

putamen, accumbens, and pallidum, using the Harvard-Oxford atlas [111,112]. Finally, for

cortex, we extracted regions using the 400 region Schaefer parcellation [29]. For the Somato-

motor A and B networks, we extracted only those regions which [29] identified as being acti-

vated during finger and tongue movement. For all regions and networks, we created time-

series data by computing the mean BOLD signal within each ROI.

Covariance estimation and centering. For each subject, we used the Ledoit and Wolf

shrinkage estimator [113] to derive covariance matrices for periods of equivalent length (100

imaging volumes) during baseline, and the beginning and end of the learning blocks of the

VMR. For the baseline blocks, we extracted 100 imaging volumes equally spaced throughout

the scan, so as the capture the entirety of the baseline epoch of the task. For the reward-based
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motor task, we derived covariance matrices for the pre-learning, learning, and post-learning

epochs based on sigmoid fitting procedure described above.

To center the covariance matrices, we took the approach advocated by [114], which lever-

ages the natural geometry of the space of covariance matrices. We have implemented many of

the computations required to replicate the analysis in a publicly available R package spdm,

which is freely available from a Git repository at https://github.com/areshenk-rpackages/

spdm.

The procedure is as follows. Letting Sij denote the j’th covariance matrix for subject i, we

computed the grand mean covariance �S over all subjects using the fixed-point algorithm

described by [115], as well as subject means �Si . We then projected the each covariance matrix

Sij onto the tangent space at �Si to obtain a tangent vector

Tij ¼ �S1=2

i logð�S
� 1=2

i Sij�S
� 1=2

i Þ�S1=2

i ð2Þ

where log denotes the matrix logarithm. The tangent vector Tij then encodes the difference in

covariance between the covariance Sij and the subject mean �Si . We then transported each tan-

gent vector to the grand mean �S using the transport proposed by [114], obtaining a centered

tangent vector Tcij given by

Tcij ¼ GTijG
T ð3Þ

where G ¼ �S1=2�S � 1=2

i . This centered tangent vector (a symmetric matrix) encodes the same dif-

ference in covariance, but now expressed relative to the mean resting state scan.

Construction of the VMR learning-related neural axes and prediction of reward-based

motor performance. Here, we describe our approach for the main analysis—i.e., construc-

tion of the (performance corrected) explicit neural axis derived from the contralateral hand

area, during the early learning epoch.

For each tangent vector in the early learning epoch, we computed the mean connectivity

between the contralateral hand area (within the somatomotor network) and the remaining

ROIs. The resulting vectors (containing an entry for each non-motor ROI) were used as the

features for our predictive model.

Call the resulting matrix of predictors X = [x1, x2,. . ., xn], where xi is a vector containing

the mean connectivity of the i’th ROI with the hand area of motor cortex. We then com-

puted the explicit learning score for each subject, defined as the circular mean difference

between the target location and the subject’s reported aim direction. These scores formed

the response variable y. Our corrected scores were then derived by orthogonalizing with

respect to subjects’ VMR performance scores. That is, we regressed y onto the vector of

VMR mean early error and used the residuals for our analysis, and the same was done for

each predictor (that is, each column in X). Both the predictors and outcome were then stan-

dardized prior to analysis.

We then fit a ridge regression model with separate network-level penalty terms using the

model described by [34], and implemented in the R package GRridge [116]. That is, each of

the 17 networks comprising the predictors—15 non-motor cortical networks, plus cerebellum

and basal ganglia—possessed their own shrinkage parameters. These parameters were sepa-

rately tuned using an internal leave-one-out cross-validation loop, so that networks whose

regions contributed relatively little to overall predictive performance were shrunken more
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harshly relative to predictively useful networks. The precise arguments were as follows:

grridgeðX; y; partitions ¼ network labels;

unpenal ¼� 1; offset ¼ NULL;

method ¼ }stable}; niter ¼ 10;

innfold ¼ NULL; fixedfoldsinn ¼

TRUE;

selectionEN ¼ F; cvlmarg ¼ 1;

savepredobj ¼ }all}Þ:

The resulting parameter vector β contains, for each ROI, its estimated conditional contribu-

tion to subjects’ explicit report.

We then derived, for each subject, the mean functional connectivity of each region with the

motor cortex during the learning period of the reward-based motor task (derived from the

centered tangent vectors, as described above). The Pearson correlation between this vector and

the vector β was the subject’s Explicit neural axis score.

Note that all other models (such as the derivation of the implicit or performance neural

axis), or neural axes using separate areas of motor cortex (e.g., tongue areas) or different time

windows (e.g., baseline or pre-learning) were constructed identically, mutatis mutandis (e.g.,

using implicit scores rather than explicit reports).

Behavioral control study

Fourteen right-handed paid volunteers (8 females; mean age: 22.3 years) participated in a

behavioral control study conducted outside the MRI scanner. This study adhered to the same

research ethics approvals and consent procedures as the MRI study. In this behavioral testing,

participants performed a VMR task similar in structure and number of trials to the MRI test-

ing session, except for changes in the experimental setup and the inclusion of intermittent

reporting trials during the learning phase.

Apparatus. During this testing session, participants were seated at a table with their chin

and forehead supported by a headrest approximately 50 cm from a vertical LCD monitor

(47.5 × 26.5 cm; resolution 1,920 × 1,080 pixels) displaying the stimuli. They performed reach-

ing movements by sliding a stylus across a digital drawing tablet (active area 311 × 216 mm;

Wacom Intuous) placed on the table. The ratio between the stylus tip movement and the cur-

sor movement on the screen was set to 1:2, meaning a 5-cm movement on the tablet resulted

in a 10-cm cursor movement. Movement trajectories were sampled at 100 Hz by the digitizing

tablet. To prevent visual feedback from the hand and tablet, a piece of black cardboard was

attached to the headrest, occluding the view.

Procedure. The procedures for this testing session were based on our prior behavioral

work in this area [22,49]. Each trial began with the participant moving the stylus with their

right hand to a central start position (5 mm radius circle). When the unseen cursor was within

5 cm of the start position, a ring appeared around the start position to indicate the cursor’s dis-

tance, guiding the participant to move to the start position by reducing the ring’s size. The cur-

sor (4 mm radius circle) appeared on the screen when it reached the start position (9 mm

distance). After holding the cursor within the start position for 500 ms, a target (6 mm radius

open circle) appeared on a 10-cm radius ring around the start position at one of 8 locations,

spaced 45˚ apart (i.e., 0, 45, 90, 135, 180, 225, 270, and 315˚). The ring was marked by 64 non-

target “landmarks” (3 mm radius outlined circles), spaced 5.625˚ apart. After a 2-s delay, the
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target filled in (turned red), cueing the participant to perform a fast “slicing” movement to

the target. If the participant started the movement before the cue or more than 1 s after the

cue, the trial was aborted with feedback messages indicating “Too early” or “Too late.” In

correctly timed trials, the cursor was visible during the movement to the ring and became

stationary for 1 s upon reaching the ring, providing visual feedback of the endpoint error. If

any part of the cursor overlapped with the target, the target turned green to indicate a hit. If

the movement took longer than 300 ms, a “Too slow” feedback message appeared on the

screen.

To directly assess the contribution of a strategic re-aiming process to learning, participants

performed intermittent ‘reporting’ trials during the learning period. These reporting trials

were intermixed within each bin of 8 trials in a 1:4 ratio, meaning 2 of the 8 trials per bin (ran-

domly selected across locations) were reporting trials. In these trials, participants were

instructed to report the aiming direction of their right hand before each reach movement by

turning a knob with their left hand to rotate a line on the screen, aligning it with their strategic

re-aiming direction. Once satisfied with the line’s direction (typically taking 2 s on average),

the participant clicked a button next to the knob, and the line disappeared. After a 1-s delay,

the target filled in, cueing the participant to execute the reach.

Data analysis. Trials where the movement was initiated too early or too late (detected

online; 4% of trials) or where the movement duration exceeded 300 ms (4% of trials) were

excluded from the analysis. We measured performance (error) by computing the angular dif-

ference between the target location and the final cursor position. We then averaged subjects’

errors using the 6 non-report trials within each 8 trial block (S2A Fig). We estimated early and

late explicit knowledge by computing the mean report angle (relative to the target) during the

first and last block of 32 trials, consistent with our definition of the early learning period in our

main analysis, and with our report block conducted at the end of learning.

Supporting information

S1 Fig. Subjects’ explicit re-aiming strategy during early and late learning.

(TIF)

S2 Fig. Relationship between explicit and implicit components estimated using different

numbers of reporting trials.

(TIF)

S3 Fig. Functional connectivity of the cerebellum during VMR task performance.

(TIF)

S4 Fig. Individual subject learning curves during the reward-based motor task.

(TIF)

S5 Fig. Robustness analysis of different window sizes.

(TIF)

S6 Fig. Explicit axis derived from late VMR learning.

(TIF)
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