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Abstract

Understanding the sequence and timing of brain functional network development at the
beginning of human life is critically important from both normative and clinical perspectives.
Yet, we presently lack rigorous examination of the longitudinal emergence of human brain
functional networks over the birth transition. Leveraging a large, longitudinal perinatal func-
tional magnetic resonance imaging (fMRI) data set, this study models developmental trajec-
tories of brain functional networks spanning 25 to 55 weeks of post-conceptual gestational
age (GA). The final sample includes 126 fetal scans (GA = 31.36 + 3.83 weeks) and 58
infant scans (GA = 48.17 + 3.73 weeks) from 140 unique subjects. In this study, we docu-
ment the developmental changes of resting-state functional connectivity (RSFC) over the
birth transition, evident at both network and graph levels. We observe that growth patterns
are regionally specific, with some areas showing minimal RSFC changes, while others
exhibit a dramatic increase at birth. Examples with birth-triggered dramatic change include
RSFC within the subcortical network, within the superior frontal network, within the occipital-
cerebellum joint network, as well as the cross-hemisphere RSFC between the bilateral sen-
sorimotor networks and between the bilateral temporal network. Our graph analysis further
emphasized the subcortical network as the only region of the brain exhibiting a significant
increase in local efficiency around birth, while a concomitant gradual increase was found in
global efficiency in sensorimotor and parietal-frontal regions throughout the fetal to neonatal
period. This work unveils fundamental aspects of early brain development and lays the foun-
dation for future work on the influence of environmental factors on this process.

Introduction

The transition from the womb to the external environment requires rapid adaptation across
multiple organ systems, including the brain [1]. Throughout gestation, rapid neural
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proliferation, migration, and even regression, occur alongside axonal growth and synaptogen-
esis [2,3]. After birth, the brain enters phase of dramatic outgrowth and expansion, with a
surge in axonal myelination, dendritic arborization, and the rapid accrual of functional synap-
tic contacts [4]. Unveiling global connectional processes, during this early phase, is essential
for understanding the emergence of brain functions and the origin of developmental disorders.
In recent years, researchers have begun using resting-state functional magnetic resonance
imaging (fMRI) to probe neural connections. FMRI detects fluctuations in blood oxygen level-
dependent (BOLD) which are surrogates for neural activity. Correlations between BOLD sig-
nals arising from 2 distinct brain regions, known as resting-state functional connectivity
(RSFC), indicate that the neurons of these regions are functionally connected. Groups of these
functional connected regions then compromise brain networks. Studies using RSFC analyses
have identified emerging resting-state networks in fetuses as early as the second trimester and
in infants [1,5-8]. However, the massive reorganization of large-scale functional networks
over the birth transition has yet to be studied longitudinally across birth.

Pioneering cross-sectional studies have utilized fetal brain fMRI to investigate RSFC prior
to birth. First, RSFC in fetal brains was observed in bilateral occipital and bilateral frontal net-
works [9]. As gestational age advances towards term, intra-hemispheric, cross-hemispheric,
and long-range RSFC strengthen [10-12]. Graph theoretical studies have shown that adult-like
network topology also begins to be established during gestation [13,14]. In the adult human
brain, the brain network exhibits small-world topology, characterized by a high clustering level
and short path lengths for efficient, low-energy communication [15,16]. Highly connected
regions within the network are known as “hubs.” In fetal functional networks, presence of
small-world structure and hubs in sensorimotor regions has been reported [14,17,18]. As ges-
tational age advances, there is a trend toward increased inter-module connections, suggesting
greater network integration [18]. At the same time, modularity—reflecting how well a network
can be divided into distinct, nonoverlapping parts—decreases, indicating reduced network
segregation [17,18]. In brain graph analysis, segregation refers to the specialized functioning of
distinct brain regions, whereas integration describes the coordinated activity across different
brain networks. Moreover, fetal RSFC has been found to be sensitive to prenatal adverse expo-
sure [19-21] and related to postnatal brain and behavior development [22-25]. The risk of
neuropsychiatric disorders such as major depression, autism, and schizophrenia is also associ-
ated with neural development in the womb [26,27].

After birth, functional networks and network topology becomes more adult-like than the
fetal period [28]. Primary networks are detected during neonatal period, including the primary
visual cortex, bilateral sensorimotor area, bilateral auditory cortex, a network encompassing
the precuneus area, lateral parietal cortex, and the cerebellum. In contrast, higher-order net-
works, such as the default mode network and the executive control network, appear incom-
plete and divided, suggesting that they are still in formation process. However, functional
connectivity between isolated parcels of these networks consistently increases in the first 2
years of life [5,29]. Meanwhile, functional hubs spread into primary sensorimotor, visual
regions, and Wernicke’s area [30]. Small-world architecture also continues to develop after
birth, with a remarkable improvement in whole brain wiring, becoming more stable by
approximately 2 years old [31]. With development, the balance between network segregation
and integration tends to be optimized, leading to a better-organized connectome architecture
[32].

Based on existing fetal and infant fMRI findings, it is hypothesized that the brain connec-
tional development from the mid-gestation through early infancy follows the “local to distrib-
uted” developmental pattern [32-34]. This hypothesis suggests a shift from the rapid
development of local primary clusters and short-range connections before birth, to the growth
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of long-range connections after birth, which enhances the efficiency in global and local infor-
mation transfer ability [33]. While previous studies have provided rich analyses of the fetal
and, separately, infant period, the absence of a rigorous examination of the brain functional
networks across the birth transition represents a major gap in the field. A recent study, the first
to use both fetal and infant scans, shows a significant increase in both intra- and inter-network
RSFC from the 30th to the 46th week postmenstrual age. However, this prior study included
repeated scans across the birth transition from a small sample (n = 29), and the analysis was
restricted to 3 higher-order networks of default mode network, salience network, and the exec-
utive control network [35].

In our study, we leverage an existing perinatal longitudinal fMRI data set spanning 25 to 55
post-conceptual gestational weeks, aiming to provide a comprehensive evaluation of RSFC
development across the whole brain throughout the birth transition. Our goal is to understand
not only whether brain networks change with age but also the shape and form of the develop-
mental trajectory. In addition, we examine the RSFC changes within the fetal and infant peri-
ods separately, aiming to confirming findings from previous studies. We hypothesize that
primary functional networks, such as the parietal, occipital, and subcortical regions, will show
a sharp increase in RSFC both within these networks and with others. This increase, along
with greater network efficiency, is expected as the brain prepares for external stimuli before
birth and adapts to them afterward. This study is fundamental to understanding the brain-
based origins of human behavior and, also, critical in establishing normative models that can
provide a crucial reference for future studies of brain network connectional architecture, and
timing of development, in clinical research samples.

Results
Significant development of functional systems on a global scale

This study analyzed a total of 203 fMRI scans, covering a gestational age (GA) range of 25 to
55 weeks post-conception. The data set comprised 140 fetal and 63 infant scans, all acquired
by the senior authors on a single Siemens Verio 3T system between 2013 and 2018 as part of
the Perinatal Imaging of Neural Connectivity (PINC) project at Wayne State University
(WSU). After quality control, the final sample for the functional connectivity analysis includes
126 fetal scans (GA = 31.36 + 3.83 weeks) and 58 infant scans (GA = 48.17 + 3.73 weeks) from
140 unique subjects. Preprocessed fMRI data from both fetal and infant scans were used to cre-
ate a data-driven, group-balanced functional atlas, consisting of 195 functional parcels and 8
networks within the gray matter (Fig 1B). The functional atlas and the gray matter mask are
provided in Supporting information (SI) S1 Fig. For each region of interest (ROI), the average
time series across voxels was calculated, and these time series were used to construct a

195 x 195 RSFC matrix for each scan session. A one-sample ¢ test was conducted across all
available scans to show the group mean ROI-by-ROI RSFC matrix (Fig 1A). Age-related RSFC
were then isolated by regression models controlling for repeated measures. Longitudinal Com-
bat [36] were further applied to harmonize the fetal and infant RSFC data scanned using differ-
ent sequences.

Subsequently, we examined the developmental trajectory of brain RSFC at the global aver-
age level by averaging the output RSFC exhibiting significant positive or negative associations
with age to derive growth plots. The growth trajectory was modeled with the generalized
addictive mixed-effect models (GAMMs), following the equation RSFC ~ 1 + s(Age) + (1|ID).
To accurately quantify periods of significant developmental differences and estimate the devel-
opmental rate, we analyzed the local slope (first derivative) of age-related changes across all
ages at 1/5th-week intervals for all nonlinear GAMM models.
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Fig 1. Longitudinal trajectories of functional network development across the birth transition. (A) One-sample ¢ test on RSFC across all subjects. Stronger
RSFC within networks affirms validity of the network clustering algorithm. (B) Functional parcels and networks. (C) Age effect on the ROI-to-ROI functional

connectivity. (D) Maturation trajectory and rates of change of the average age-related RSFC. The growth trajectory of “positive age-related RSFC” (left)

represents the average RSFC across all connectivity edges that show a significant positive age effect, as colored in red in Fig 1C. Similarly, the “negative age-
related RSFC” represents the average RSFC for all connectivity edges with a significant negative age effect, shown in blue in the matrix in Fig 1C. The shaded
gray area represents 95% confidence intervals. Lines indicate longitudinal data from the same participant scanned at multiple time points. Data points from
fetuses or infants are indicated by either circle or triangle. The change rate of RSFC is presented under the plot (navy blue to red). The data used to generate this
figure can be found in S1 Data. ROI, region of interest; RSFC, resting-state functional connectivity.

https://doi.org/10.1371/journal.pbio.3002909.9001

These age-related RSFC changes involve widely distributed networks (Fig 1C). Positive
age-related changes followed a nonlinear trajectory, with a notable sharp increase occurring
at the birth transition (Fig 1D). A reverse U-shaped pattern in RSFC was observed within
the fetal stage, peaking at approximately 30 weeks. On the other hand, the negative age-
related RSFC showed constant decrease prior to birth and became relatively stable in early

infancy.
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Differential timing of maturation across individual functional brain
networks

To understand the development patterns for each network, we next conducted GAMM analy-
ses on each within- and between-network connectivity across 8 global networks (N = 36 possi-
ble associations), using the same approach as described above. The network-level RSFC was
calculated by averaging the ROI-by-ROI RSFC values that showed significant positive or nega-
tive associations with age. We did not separate the positive and negative effects in the plots, as
we believe the dominant effect at the network level is more meaningful. This analysis revealed
that there is a trend for increase in majority of RSEC; however, the shape of the growth curve
varies across network (Fig 2). A growth pattern of a nonlinear sigmoid shape was highlighted
in connections within the subcortical network, within the superior frontal network, within the
occipital-cerebellum joint network, as well as the cross-hemisphere RSFC between the bilateral
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Fig 2. Maturation trajectory and rates of change of the pairwise within- and between-network functional connectivity. The shaded pink
area represents 95% confidence intervals. Data points from fetuses or infants are indicated by either light gray or dark gray. The change rate of
RSFC is presented under each plot (navy blue to red). The data used to generate the network-level results can be found in S2 Data. RSFC,

resting-state functional connectivity.

https://doi.org/10.1371/journal.pbio.3002909.9002

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002909 November 19, 2024

5/19


https://doi.org/10.1371/journal.pbio.3002909.g002
https://doi.org/10.1371/journal.pbio.3002909

PLOS BIOLOGY

Brain functional development across birth

Global efficiency

0.55 |

0.50 |

o
N
o

0.4 |

sensorimotor networks and between the bilateral temporal network (Fig 2). Detailed statistical
results of the GAMMs are provided at the S1 Table.

Graph features develop throughout the birth transition period

Based on RSFC matrices, we further estimated the graph theory measures of global efficiency
(GE) and local efficiency (LE) for each subject. For each ROI, we defined global efficiency as
the average inverse shortest path distance from node n to all other nodes in the graph, and
local efficiency as the average global efficiency of the neighboring subgraph of node n. We
selected global and local efficiency because: (1) they are fundamental metrics of network prop-
erties—global efficiency reflects the effectiveness of information exchange across the entire
network, indicating its overall connectedness, while local efficiency measures the efficiency of
information transfer among neighboring regions, providing insight into local network integra-
tion; and (2) both metrics can be evaluated at the ROI level. We employed the same GAMM
models used in the RSFC analysis to examine the growth trajectories of global efficiency and
local efficiency.

Significant developmental effects were seen in multiple brain connectome graph features.
Specifically, the global efficiency in supplementary motor and anterior partial regions
increased with age, while the global efficiency in bilateral inferior frontal and a node in right
temporal region decreased with age (Fig 3A). It is noteworthy that we did not observe an
inflection point in the growth curve of global efficiency (Fig 3B). Local efficiency of the
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Fig 3. Changes in graph parameters over the birth transition. (A) Nodes showing significant age-related changes in GE, where red indicates
increased GE with age, while blue indicates decreased GE with age. (B) Developmental trajectories of GE and the rates of change. (C) Nodes
showing significant age-related increase in LE. (D) Developmental trajectories of LE and the rates of change. For the trajectory plots in (B)
and (D), shaded gray area represents 95% confidence intervals. Lines indicate longitudinal data from the same participant scanned at multiple
time points. Data points from fetuses or infants are indicated by either circle or triangle. The change rate of RSFC is presented under the plot.
The data used to generate the graph measure results can be found in S1 Data. GE, global efficiency; LE, local efficiency; RSFC, resting-state
functional connectivity.

https://doi.org/10.1371/journal.pbio.3002909.9003
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thalamus increased (Fig 3C) as age advanced, with a sigmoid shape of growth curve (Fig 3D).
The peak increase of the subcortical local efficiency between 35th and 45th GA weeks echoes
back to the within-network RSFC change as shown in Fig 2. Interestingly, we did not find sig-
nificantly decreased local efficiency in any region.

Overlapping and discrete changes across the entire birth transition period
versus fetal or infant periods only

In follow-up analyses, we repeated age-regression procedures described above, within fetal
and infant data sets, separately. These secondary analyses served to isolate significant RSFC
developmental patterns that may be present within each period, but masked when evaluating
longer durations, here, also, spanning birth.

Interestingly, both overlapping and discrete changes are found between the analysis of the
entire birth transition period and the examination of separate fetal or infant periods (Fig 4).
Prior to birth, increased RSFC primarily involved the occipital-cerebellar network, including
both its internal connections and its interactions with the subcortical and inferior frontal net-
works (Fig 4A). RSFC of these networks exhibited an almost linear increase through the fetal
period. On the hand, decreased RSFC with age was observed in RSFC related to the superior
fontal network and both left and right temporal network (Fig 4A). In our infant data set, age
effect was primarily observed in 4 networks: the right and left sensory motor network, the
occipital-cerebellar network, and the superior frontal network. Both increased and decreased
RSFC were seen between the left and right sensorimotor network and within the occipital-cer-
ebellar network, while only decreased RSFC was seen within the superior frontal network
(Fig 4B).

Discussion

Understanding the timing and sequence of brain network development over the birth transi-
tion is crucial. Previous studies have begun to isolate perinatal functional brain networks, but
these studies are mostly confined to the fetal period or the infant period separately. Thus, we
lacked knowledge about the maturation pattern of functional connectivity across birth. Utiliz-
ing a relatively large longitudinal perinatal data set and nonlinear modeling, this study repre-
sents, to our knowledge, the first to map the growth trajectory of global functional neural
network across birth. Our results demonstrate a rapid surge in functional connectivity at birth
on a global scale, probably reflecting neural processes that support the brain’s transition to the
external world. Neural changes that accompany the birth transition are not uniform across the
brain. Instead, changes in RSFC are exhibited by specific networks, with specific trajectories
and magnitude of change. As examples, strengthened RSFC around birth is seen within the
subcortical network, the superior frontal network, the occipital-cerebellum joint network, and
both cross-hemispheric RSFC between bilateral sensorimotor networks and temporal
networks.

Significant RSFC changes in subcortical regions around birth were one notable observed
effect. Age-related changes were observed in the subcortical network in both RSFC and local
efficiency analyses, the latter of which reflects the communication efficiency within the neigh-
boring nodes. In fact, the subcortical network stood out as the only region of the brain that
showed significant increase in local efficiency over this period. In the brain, the subcortical
network represents a central hub, relaying nearly all incoming and outgoing information to
and from the cortex and mediating cortico-cortical communication [37]. A recent fetal study
shows that RSFC of the thalamus, a subcortical structure, develops prior to birth [38], and at
the time of birth, this structure is already connected with the entire primary cortex [39]. Our
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https://doi.org/10.1371/journal.pbio.3002909.g004

results show that there is dramatic change in subcortical connectional architecture flanking
the birth transition that temporally aligns with demands on the brain to process and integrate
new kinds of information at this developmental transition.

Similarly, rapid increase in RSFC was observed across bilateral sensorimotor regions over
the period leading up to and following human birth. Sensorimotor network represents one of
the first systems of the brain to develop, and here, for the first time, we characterize the nature
of change in this system during this transformational developmental stage. Our earlier work
has established that the sensorimotor network emerges during the fetal period and that
dynamic features of this network can predict infant motor behavior [22]. The sensorimotor
network has also been isolated in preterm and term infants studied between 32 and 45 post-
menstrual weeks [40]. Hubs and rich-club structure are also evident in primary motor and
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sensory regions by 31 weeks GA [30]. In this study, we show the dramatic development of the
sensorimotor network across birth. Our results likely reflect the neural pruning and strength-
ening process, preparing the brain to respond to the abundant sensory and motor stimuli from
the external environment prior to and upon birth. This aligns with our previous observation
that infant motor development at 7 months is linked to prenatal RSFC development of the
motor cortex [24].

It was notable that RSFC with the superior frontal cortex and its RSFC with the inferior
frontal cortex showed rapid increase across birth as this was not entirely predicted. That is,
function of the frontal lobe is traditionally believed to mature later; however, it is known that
prefrontal neural differentiation of this region begins as early as 17 to 50 GA weeks in humans
[41]. In fetal RSFC studies, connectivity in the frontal regions begins to emerge as early as 26
weeks [12]. Stable signal components are also detected in the frontal areas [9]. Notably, the
RSFC within the superior frontal network showed a decreasing trend within either fetal or
infant data in our secondary analysis within separated periods, suggesting that the increase
across the birth is mainly driven by the birth event. Intriguingly, the rapid changes are
observed only in the superior part of the frontal lobe but not in the inferior part. We infer that
this may indicate potential variations within the frontal network.

It is noteworthy that select regions showed consistent decrease in RSFC with age (Fig 1).
According to the “local to distributed” developmental hypothesis, the whole-brain network
seems to lean toward segregation enforcement during the prenatal stage, which is supported
by excess of short-range connectivity [33]. As age advances, decreased modularity and
increased inter-module connection strength were detected, resulting in enhancement of the
network integration process [33,42]. Actually, we did not see a significant difference in the
actual ROI-to-ROI distance between the positively age-related RSFC and the negatively age-
related RSFC (see the distribution of RSFC on Euclidean distance in S2 Fig). Thus, we infer
that the decrease in RSFC might not only correspond to a developmental shift from short-
range to long-range connections, but could also be related to the network reorganization,
potentially contributing to higher efficiency. This reorganization could occur alongside the
emergence of billions of new synaptic junctions and an overproduction of macroscopic con-
nections around the time of birth. Indeed, similarly to the developmental rate shown in the
negatively age-related RSFC, global efficiency is gradually strengthened throughout the birth
transition, with a constant rate. This is intriguing, as the developmental trajectory of global
efficiency does not follow the same pattern as that of positively age-related RSFC with a dra-
matic change around birth. We infer the reason is that (1) the optimization of the network effi-
ciency lags behind the establishment of single connections, as it may involve multiple rounds
of forward-backward feedback; (2) the global efficiency, which is the reciprocal of shortest
path between 2 nodes, is not only related to the establishment or strengthening of connections
but also to the elimination of redundant connections, which is reflected by our findings of
decreased RSFC with age. Our results of regions with enhanced global efficiency replicated
previous findings on emerging hubs in primary sensorimotor regions in neonates [30].

In our secondary analysis using only the fetal or the infant data set, both overlapping and
discrete changes were found compared to the analysis of the entire birth transition period. For
example, a consistent increase in RSFC was noted within the occipital-cerebellum network
both during the fetal period and throughout the birth transition. In contrast, RSFC within the
superior frontal network decreased during the fetal or infant period but displayed a dramatic
increase across birth. These findings highlight the importance of leveraging longitudinal data
spanning birth, as the developmental patterns may be specific to the short window surround-
ing birth but have largely been overlooked in studies utilizing single time points. Future studies
that replicate and extend work with specific brain networks are warranted.
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The limitations of our study warrant mention. Mapping the trajectory of brain connectome
development across the birth transition presents unique challenges, particularly concerning
potential variability introduced by different scanning conditions (in-utero versus ex-utero)
and preprocessing strategies. There are numerous differences to fetal images in comparison to
infant data due to a number of factors, including both fetal and maternal sources of noise. Fre-
quent and large-scale fetal movements, as well as surrounding motion from maternal respira-
tion, amniotic fluid flow, and arterial pulsation, can lead to temporally varying patterns of
spatial distortion and signal changes. Moreover, adjacent maternal tissues and structures, such
as the bowel, can also cause localized areas of distortion or signal loss. There are also localized
differences due to spatial distances between the fetal brain and the static receive coil placed on
the maternal abdomen. Overall, fetal data inherently suffers from significantly lower temporal
signal-to-noise ratio (tSNR) compared to neonatal data (S3 Fig). Due to the factors mentioned
above, fetal images are likely to exhibit spatial variability, which could impact RSFC estima-
tions. However, unfortunately, there is also no ground truth to test the effect of imaging condi-
tions as we do not have a constant variable to serve as a reference. On one hand, we convinced
ourselves that the effect does not attribute to image quality, as we observed diverse growth tra-
jectories across networks rather than a global uniform increase. On the other hand, we also
confirmed that there is no correlation between RSFC and the motion parameters as provided
in the 54 Fig. In addition, we implemented 2 strategies in our analysis to mitigate the impact of
different tSNR between data sets: (1) In our RSFC analysis, we used the z-values of RSFC for
all subsequent analyses to correct for the variance differences. (2) We applied an additional
harmonization approach to eliminate the effects of this variance difference before conducting
our statistical analyses. Another important limitation to note is that fMRI is an indirect mea-
sure of neural activity, as it relies on blood oxygen levels. Therefore, the RSFC findings
observed in this study may be influenced by non-neurological factors involved in the hemody-
namic response, such as cerebral blood flow and the cerebral metabolic rate of oxygen
(CMRO?2). At birth, there are dramatic changes in brain physiology, particularly in cerebral
blood flow [43]. Consequently, the sharp increase in RSFC observed around birth could be a
combined result of changes in both neural activity and brain physiology.

Conclusion

The present study offers new knowledge on brain RSFC development across birth using a one-
of-the-kind perinatal longitudinal data set. Findings suggest that RSFC develops at varied rate
and exhibits diverse shape across the total brain network, including both increasing or decreas-
ing trends, and gradual linear increases or rapid surges around birth. The subcortical network,
sensorimotor network, and the superior frontal network stand out as undergoing rapid reorga-
nization during this developmental stage. This work lays the foundation for future work
regarding the maturational timing of brain functional networks spanning the perinatal period.
Extending from this work, one can imagine further studies examining how factors such as sex,
prematurity and prenatal adversity interact with the timing and growth patterns of children’s
brain network development.

Materials and methods
Participants

This study used in total of 203 fMRI scans (25 to 55 weeks post-conceptual GA), consisting of
140 fetal and 63 infant scans, collected on a single Siemens Verio 3T system, between 2013 and
2018, as part of the Perinatal Imaging of Neural Connectivity (PINC) project at Wayne State
University (WSU). Eligibility criteria included singleton pregnancy, maternal age 18 to 40, no
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suspected central nervous system abnormality as determined by 20-week ultrasound, and no
contraindication for MRI. The WSU Institutional Review Board approved all study proce-
dures, and informed written consent was provided by participating pregnant people. MRI vis-
its occurred when the fetuses were between 20 and 40 weeks GA, and infants were between 0
and 3.5 months at follow-up. Select cases were scanned 1 to 3x longitudinally, with peaks cen-
tered at 27 weeks, 36 weeks, and 2 months.

FMRI data acquisition

Fetal fMRI. Fetal fMRI was acquired using a 3T Siemens Verio 70 cm open-bore system
with an abdominal 4-channel Siemens Flex coil. FMRI data were attained with either of the fol-
lowing scanning parameters: (1) 12-min single-echo fMRI: TR/TE = 2,000/30 ms; resolu-
tion = 3.4 x 3.4 x 4 mm?> flip angle: 80 degrees. (2) 12-min multi-echo (ME) fMRI: TR = 2,000
ms; TE = 18, 34, 50 ms (3 echoes); flip angle: 83 degrees; voxel size: 3.5 x 3.5 x 3.5 mm”. Scans
were repeated when time permitted.

Infant fMRI. Infants were scanned on the same 3T Siemens Verio 70 cm open-bore sys-
tem with a 32-channel head coil, using one of 3 sets of acquisition parameters, as detailed
below. (1) 12-min ME-fMRI: TR = 2,000 ms; TE = 13, 26, 39 ms; flip-angle: 83 degrees; slice-
gap: none; voxel-size: 3.5 x 3.5 x 3.5 mm?; matrix-size: 64 x 64 x 39 voxels. (2) 12-min multi-
band (MB) ME-fMRI scan: TR = 1,500 ms; TE = 15, 31, 46 ms; flip-angle: 83 degrees; slice-gap:
none; voxel-size: 2.9 x 2.9 x 2.9 mm?’; matrix-size: 64 x 64 x 48 voxels, multi-band factor = 2.
(3) 7-min MB ME fMRI scan: TR = 1,000 ms; TE = 14.6, 36.68, 58.76 ms; flip-angle: 52; slice-
gap: none; voxel-size: 2.5 x 2.5 x 2.5 mm?; matrix- size: 80 x 80 x 44 voxels, multi-band
factor = 4.

FMRI preprocessing

Fetal fMRI. Preprocessing began with automatic fetal brain segmentation using deep
learning. A single mask was hand drawn onto a reference frame within a section of low motion
for each acquired run. For every volume in the time series, a convolutional neural network
(CNN)-trained model automatically segmented the brain from the maternal compartment,
generating a rough 4D mask for the entire time series [44]. The brain was then extracted using
this rough mask for motion estimation using FSL v5.0 mcflirt [45] where transformation
matrices for mapping each volume to the reference frame were generated. We call the CNN-
generated mask the “rough mask” because the CNN segmentation cannot perform perfectly
on all volumes, with frequent occurrence of minor extra tissue or brain tissue loss (see example
as provided by [44]). However, the rough mask is necessary and helpful here because motion
estimation requires a clear background without maternal tissue. We then applied the inverted
transformation matrices to the manual drawn mask to generate a precise, individualized 4D
mask. The raw data were then masked again using this precise 4D mask. In a final step, we
repeated these steps to derive a more refined transformation matrices that served as the basis
for the final smartly generated semi-automated 4D mask for precise brain extraction from the
raw time series data. Motion parameters were computed for the final masked series to be used
in subsequent analyses. Following this, a three-step approach to censoring was applied. First,
frames with a Serensen—Dice coefficient (DC) below 0.9 between the frame and the reference
frame (the one used for manual brain tracing) were censored. Next, framewise displacements
(FDs) were calculated and any frame above 2 standard deviations above the mean (FD > 1.5
mm) across all inputted runs was censored. Finally, root-mean-square of voxel-wise differenti-
ated signal (DVARS, [46]) were calculated and any volumes with DVARS greater than 2
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standard deviations above the mean (DVARS > 132.69) across all inputted runs was censored.
Further, participants with fewer than 105 low-motion frames were excluded.

Subsequent preprocessing steps included optimal combination across echoes using T2*-
based weighting [47] (for multi-echo data), manual reorientation using SPM [48], normaliza-
tion to the developing Human Connectome Project ({HCP) 34-week preterm infant template
[49], individual-level Independent Component Analysis (ICA) denoising [50], smoothing with
a 3 mm kernel, and CompCor denoising [51] implemented in the Connectivity RSFC
Toolbox (CONN21.a) [52]. Specifically, for normalization, a mapping between functional
native space and the template space was constructed by concatenating a linear transformation
between the functional scan and the age-matched fetal template [53] estimated by SPM12, and
a sequence of nonlinear transformations between templates of adjacent ages (e.g., 24 and 23,
25 and 24) estimated by Advanced Normalization Tools (ANTs v2.4.3) [54]. This gradual
alignment will minimize the risk of gross misalignments due to differences in brain topology
across GA.

Infant fMRI. Infant brain preprocessing followed prior published procedures [55], begin-
ning with FSL’s Brain Extraction Tool (BET, [56]) and motion correction using “FSL mcflirt.”
Volumes with root-mean-square of voxel-wise differentiated signal (DVARS) greater than 50
were marked as outliers (censored frames). One frame before and 2 frames after these volumes
were also censored, as recommended in prior literature [57]. Motion-corrected data were sub-
sequently combined across echoes, denoised using TE-Dependent Analysis (Tedana v22.0.1,
[58,59]), normalized to the 34-week preterm infant template, denoised with the CompCor
algorithm in CONN, and smoothed using a 3 mm kernel. Normalization used the stepwise
approach described above for fetal scans.

FMRI quality assurance

The preprocessed data was manually inspected by the first author, L]. During preprocessing,
subjects were excluded under the following circumstances: (1) frames fewer than 105 (N =3
fetal scans and 1 infant scan); (2) incomplete brain coverage or severe distortion (N = 5 fetal
scans and 2 infant scans); (3) normalization failure (N = 3 fetal scans and 2 infant scans); (4)
high motion (mean translational displacement or rotation >0.5 or maximum >1 after censor-
ing; N = 3 fetal scans). The final sample consisted of 126 fetal scans (GA = 31.36 + 3.83 weeks)
and 58 infant scans (GA = 48.17 + 3.73 weeks) from 140 unique subjects. Of these, 108 subjects
completed 1 scan, 21 completed 2 scans, 10 completed 3 scans, and 1 subject completed 4
scans (also see distribution of scans across age at S5 Fig). Detailed demographic characteristics
of the final sample are provided in Table 1. We provide the scanning parameters and the qual-
ity control measure, DVARS, of the final sample post motion correction in Table 2. Additional
quality control analyses showed that the correlation of RSFC-retained motion did not align
with the anatomical distances among any ROI pair (see S4 Fig), suggesting that the relation-
ship between motion, RSFC, and Euclidian distance is negligible [60].

Functional connectivity matrix construction

Preprocessed fetal and infant data sets, combined in a singular template space, were masked by
a gray matter mask and then submitted to the SLIC toolbox [61,62] (https://www.nitrc.org/
projects/slic/) to generate a data-driven, group-balanced functional atlas consisting of 195
functional parcels and 8 networks. For each scan session, the average time series across voxels
within each parcel were calculated and used to construct 195 x 195 RSFC matrices based on
Pearson’s correlation coefficients.
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Table 1. Participant characteristics.

Subjects (n = 140)
Birth outcomes, M (SD)

Fetal age at birth (weeks) 38.45 (2.43)

Birth weight (g) * 3,018.07 (644.33)
Sex, n (%)

Female 79 (56%)

Male 61 (44%)
Maternal Ethnicity, n (%)

African American/Black 114 (81%)

Asian American 1(1%)

Caucasian/White 8 (6%)

Bi-racial 16 (11%)

Other 1(1%)

* Birth weight of 128 subjects is available.

https://doi.org/10.1371/journal.pbio.3002909.t001

For further graph analysis, we computed a graph adjacency matrix by thresholding the
ROI-to-ROI correlation matrix using a relative threshold of the top 15%. Based on this adja-
cency matrix, the shortest path distance between 2 ROIs is defined as the minimum number of
edges traversed in the optimal path between them. We then estimated the graph theory mea-
sures of GE and LE for each subject in CONN. For each ROI, we defined global efficiency as
the average inverse shortest path distance from node n to all other nodes in the graph, and
local efficiency as the average efficiency across all nodes in the local subgraph of node n (the
subgraph consisting only of neighboring nodes).

Harmonization on MRI condition effects

To account for non-biological variance introduced by different MRI conditions (i.e., in utero
versus ex utero effects) and acquisition protocols (such as different time and spatial resolu-
tion), we applied a longitudinal harmonization technique to our RSFC measures using the R
package LongComBat [36]. This tool has demonstrated superior efficacy in detecting longitu-
dinal changes compared to an alternative harmonization method, cross-sectional ComBat,
while also providing better control of type I error rates than unharmonized data that incorpo-
rates scanner as a covariate [36]. Since the harmonization is performed on model residuals, the
longitudinal ComBat model matches the model in the final regression analysis. S6 Fig shows

Table 2. Sequence descriptions and image quality control.

Sequence |No. of scans | TR (ms) | TE (ms)

fetal () | 75 2,000
fetal (ii) 51 2,000
infant (i) | 11 2,000
infant (ii) | 7 1,500
infant 40 1,000

(iii)

30
18, 34,
50
13, 26,
39
15, 31,
46
15, 37,
59

Voxel dimensions (mm?) | Matrix size (voxel) | Flip angle (*) | Multi-band factor | Mean DVARS* | Max DVARS*

34x34x4 96 x 96 x 25 80 NA 33.74 £9.10 95.59 + 38.31
35x35x%x35 76 X 76 X 32 83 NA 37.34 £ 11.04 136.16 + 57.94
35x35x%x35 64 x 64 x 39 83 NA 14.65 + 2.39 27.99 + 4.45
29%x29x%x29 64 x 64 x 48 83 2 18.05+2.76 34.51 £7.67
2.5x25%x25 80 x 80 x 44 52 4 20.83 +1.87 34.69 £6.12

* DVARS, the root mean square of the temporal change of the fMRI voxel-wise signal at each time point.

https://doi.org/10.1371/journal.pbio.3002909.t002
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the model residuals before and after the harmonization protocol and the trajectory plot of
RSFC before and after the harmonization.

Statistical analysis

Linear regression models were used to test age effects for both RSFC and for graph measures
(GE and LE), controlling for repeat measures. Regression analyses were thresholded at

p < 0.05, FDR corrected. Average RSFC, GE, and LE that exhibited significant positive or neg-
ative associations with age (RSFC connection threshold p < 0.05) were then extracted to derive
growth plots. Growth trajectory was modeled with the GAMM s in R using the “gamm4” func-
tion on average positively or negatively age-related RSFC, GE, LE, and for each within and
between network RSFC pair. The GAMM model followed the equation RSFC (or graph mea-
sures) ~ 1 + s(Age) + (1|ID). We then calculated the derivative of each growth curve at 1/5th-
week intervals to show the rate of change in RSFC over time.

In follow-up analyses, we repeated age-regression procedures described above, within fetal
and infant data sets, separately. These secondary analyses served to isolate significant RSFC
developmental patterns that may be present within each period, but masked when evaluating
longer durations, here, also, spanning birth.

Ethics statement

The Wayne State University Institutional Review Board approved all study procedures of the
Perinatal Imaging of Neural Connectivity (PINC) project (IRB number: IRB-21-08-3875).
Informed written consent was provided by participating pregnant people. This study was con-
ducted according to the principles expressed in the Declaration of Helsinki. All analyses con-
ducted in this work were approved by NYU Langone Health IRB (IRB number: i18-
00960_MODO04).

Supporting information

S1 Fig. The gray matter mask and the functional atlas used in our RSFC analysis. Prepro-
cessed fetal and infant data sets were masked by a gray matter mask and then submitted to the
SLIC toolbox (https://www.nitrc.org/projects/slic/) to generate a data-driven, group-balanced
functional atlas consisting of 195 functional parcels, as shown in S1 Fig. The gray matter mask
was adapted from dHCP infant tissue template.

(PNG)

S2 Fig. The distribution of age-related resting-state functional connectivity (RSFC) based
on Euclidean distance. The Euclidean distance of RSFC is computed using the square root of
the sum of squared differences between the central coordinates of corresponding ROIs. In this
figure, regions with positive age-related RSFC are depicted in red, while those with negative
age-related RSFC are depicted in blue. The figure does not exhibit a discernible contrast
between the positively and negatively age-related RSFC, suggesting that distance may not be a
significant factor influencing the increase or decrease of RSFC with age.

(PNG)

S3 Fig. TSNR analysis. We conducted tSNR analyses on fetal and infant data sets, and the
resulting plot of average SNR across networks is provided here. When we analyzed the signal
and noise separately, we found that the mean signal levels (middle column in the figure below)
are quite comparable between the fetal and infant data sets. However, the fetal data exhibits
higher variance, indicating increased noise. This outcome aligns with the challenges typical in
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fetal imaging.
(PNG)

S4 Fig. Quality control analysis of the final sample. This figure shows that the average
RSFC-motion-distance correlation is negligible (< + 0.2).
(PNG)

S5 Fig. A lollipop plot and a distribution plot of scan ages. The lollipop plot displays each
participant as a row, with points indicating visit times, color-coded as shown in the legend.
Males are represented in blue, and females in pink. Separate density plots for participant ages
are also provided for both fetal and infant MRI scans.

(PNG)

S6 Fig. Effects of LongCombat Harmonization. (A) Additive effects of different sequences
before and after applying LongCombat. (B) Comparison of positively age-related RSFC before
and after LongCombat. (C) Comparison of negatively age-related RSFC before and after Long-
Combat.

(PNG)

S1 Table. GAMM regression table for term s(Age).
(DOCX)

S1 Data. Data used to generate Figs 1D, 3B, 3D, and 4. Global-level resting-state functional
connectivity (RSFC) values from 184 observations, as well as age and scan information are pro-
vided. Column A: Subject ID. Column B: Session ID. Column C: Scan condition (fetal vs.
infant). Column D: gestational age at scan. Column E: Scan sequence ID. Column F: Averaged
RSFC across all connectivity edges that show increasing RSFC with age. Column G: Averaged
RSFC across all connectivity edges that show decrease RSFC with age. Fig 1D plots the data in
Column F and G. Column H: Averaged global efficiency across all nodes that show increasing
global efficiency with age. Column I: Averaged global efficiency across all nodes that show neg-
ative global efficiency with age. Fig 3B plots the data in Column H and I. Column J: Averaged
local efficiency across all nodes that show increasing local efficiency with age. Fig 3D plots the
data in Column J. Column K and L involved age-related RSFC results evaluated within the
fetal period. Fig 4A plots the data in Column K and L. Column M and N involved age-related
RSFC results evaluated within the infant period. Fig 4B plots the data in Column M and N.
(CSV)

$2 Data. Data used to generate Fig 2. Network-level RSFC values before Combat harmoniza-
tion, as well as age are provided. Column A: observation ID. Column B: Subject ID. Column
C: gestational age at scan. Column D: Scan sequence ID. Column E to AN: 36 pairs of RSFC
within and between 8 network, following the order: “RS-RS,” “RS-LS,” “RS-LT,” “RS-Occ,”
“RS-Sub,” “RS-Inf,” “RS-Sup,” “RS-RT,” “LS-LS,” “LS-LT,” “LS-Occ,” “LS-Sub,” “LS-Inf,”
“LS-Sup,” “LS-RT,” “LT-LT,” “LT-Occ,” “LT-Sub,” “LT-Inf,” “LT-Sup,” “LT-RT,” “Occ-Occ,”
“Occ-Sub,” “Occ-Inf,” “Occ-Sup,” “Occ-RT,” “Sub-Sub,” “Sub-Inf,” “Sub-Sup,” “Sub-RT,”
“Inf-Inf,” “Inf-Sup,” “Inf-RT,” “Sup-Sup,” “Sup-RT,” “RT-RT.” RS, R sensorimotor; LS, L sen-
sorimotor; LT, L temporal; Occ, Occipital and Cerebellum; Sub, Subcortical; Inf, Inferior fron-
tal; Sup, Superior frontal; RT, R temporal.

(CSV)
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