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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The ultraviolet (UV) radiation triggers a pigmentation response in human skin, wherein,

melanocytes rapidly activate divergent maturation and proliferation programs. Using single-

cell sequencing, we demonstrate that these 2 programs are segregated in distinct subpopu-

lations in melanocytes of human and zebrafish skin. The coexistence of these 2 cell states

in cultured melanocytes suggests possible cell autonomy. Luria–Delbrück fluctuation test

reveals that the initial establishment of these states is stochastic. Tracking of pigmenting

cells ascertains that the stochastically acquired state is faithfully propagated in the progeny.

A systemic approach combining single-cell multi-omics (RNA+ATAC) coupled to enhancer

mapping with H3K27 acetylation successfully identified state-specific transcriptional net-

works. This comprehensive analysis led to the construction of a gene regulatory network

(GRN) that under the influence of noise, establishes a bistable system of pigmentation and

proliferation at the population level. This GRN recapitulates melanocyte behaviour in

response to external cues that reinforce either of the states. Our work highlights that inher-

ent stochasticity within melanocytes establishes dedicated states, and the mature state is

sustained by selective enhancers mark through histone acetylation. While the initial cue trig-

gers a proliferation response, the continued signal activates and maintains the pigmenting

subpopulation via epigenetic imprinting. Thereby our study provides the basis of coexis-

tence of distinct populations which ensures effective pigmentation response while preserv-

ing the self-renewal capacity.

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002776 August 20, 2024 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Aggarwal A, Nasreen A, Sharma B, Sahoo

S, Aswin K, Faruq M, et al. (2024) Distinct

melanocyte subpopulations defined by stochastic

expression of proliferation or maturation programs

enable a rapid and sustainable pigmentation

response. PLoS Biol 22(8): e3002776. https://doi.

org/10.1371/journal.pbio.3002776

Academic Editor: Colin Jamora, Institute for Stem

Cell Science and Regenerative Medicine, INDIA

Received: September 12, 2023

Accepted: July 30, 2024

Published: August 20, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pbio.3002776

Copyright: © 2024 Aggarwal et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All the sequencing

data generated in this study is available at GEO

under the accession GSE233198 superseries.

https://orcid.org/0000-0002-8537-5471
https://doi.org/10.1371/journal.pbio.3002776
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002776&domain=pdf&date_stamp=2024-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002776&domain=pdf&date_stamp=2024-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002776&domain=pdf&date_stamp=2024-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002776&domain=pdf&date_stamp=2024-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002776&domain=pdf&date_stamp=2024-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002776&domain=pdf&date_stamp=2024-08-30
https://doi.org/10.1371/journal.pbio.3002776
https://doi.org/10.1371/journal.pbio.3002776
https://doi.org/10.1371/journal.pbio.3002776
http://creativecommons.org/licenses/by/4.0/


Introduction

Melanocytes are specialised skin cells responsible for producing pigment, which serves as a

defence mechanism against harmful UV radiation [1–4]. When human skin is exposed to UV

rays, melanocytes activate 2 protective responses: stress response which includes proliferation

[5] and pigmentation, to prepare the cells for future exposure [6]. Intriguingly, both of these

programs are triggered by the same signal and regulated by the dynamics of MITF [7]. In an

earlier study, it was shown that dedifferentiation is associated with cell proliferation. Herein

most pigmented clones were small and most unpigmented clones large [8]. However, it

remains unclear how melanocytes maintain both these programs within the same population.

Moreover, the classical notion is that the human epidermis consists of only the terminally dif-

ferentiated state of melanocyte. However, recent studies have challenged this notion.

For instance, a study identified a stem cell population in the interfollicular epidermis

that can differentiate into pigmented melanocytes [9]. Another study showed that melano-

cytes derived from developmentally distinct iPSC-derived progenitors differ in their pig-

mentation, migration, and proliferation potential [10]. In certain altered states of the skin,

such as hypertrophic scars following burn injury, amelanotic melanocytes have been

observed, which can potentially become pigmented upon treatment with alpha melanocyte

stimulating hormone (α-MSH) [11]. Three separate studies in the recent years have shown

the diversity and plasticity of the melanocyte population in the hair follicle niche [12–14].

These studies suggest the existence of melanocyte states other than the terminally differenti-

ated pigmented state in the epidermis and especially in the hair follicle (which is shielded

from UV). This hair follicle cycle serves as a trigger for the interconversion of these states

under the defined program controlled by the niche. However, the coexistence of such tran-

scriptionally distinct melanocyte subpopulations in the epidermal skin is not yet known,

and if they do exist, whether they can interchange between states upon environmental trig-

gers such as UV remains speculative.

We hypothesise that the diversity inherent in a seemingly uniform population can facilitate

rapid adaptation by enabling swift interchangeability when needed. Advancements in single-

cell sequencing (scRNA-seq) technologies have provided evidence of heterogeneity within pre-

viously thought homogeneous cell populations [15]. This heterogeneity possibly allows the

cells to respond differentially to external cues according to their specific needs. While genetic

mutations were initially attributed as the primary source of heterogeneity, nongenetic factors

such as inherent gene expression variability are emerging as important determinants of cellular

diversity [16–19]. Such variability in intrinsic cell states is proposed to be an inherent feature

that enables faster and more efficient responses to external cues [18].

In this study, we utilise single-cell-based methodologies to identify transcriptional and phe-

notypic states of melanocytes. Our findings demonstrate that the human and zebrafish skin

contains proliferation and pigmentation-competent melanocyte states, which can be captured

under culture conditions. Using a temporally resolved progressive pigmentation model, we

observe stochasticity in the attainment of high- and low-pigmented (proliferative) states.

Through single-cell RNA sequencing (scRNA-seq), we observe a sequential transition of popu-

lation dynamics over time and identify the preexistence of proliferation and pigmentation pro-

grams in separate subpopulations. Manipulating the α-MSH pathway using a pharmacological

activator alters the dynamics of these states, shifting melanocytes towards either proliferative

or pigmented states. A GRN derived from active enhancers in the 2 states independently simu-

lates the coexistence of these 2 melanocyte states. Thereby, we establish a conserved network

that supports the coexistence of 2 distinct melanocyte states, differing in proliferation and pig-

mentation, using 2 independent cell-based model systems.
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Results

Pigmentation and proliferation programs are maintained in distinct

subpopulation within the melanocyte pool

To understand how melanocytes maintain the divergent programs of pigmentation and prolif-

eration within the population, we reanalysed the NHEM scRNA data from GSE151091 [20].

After the initial dimensionality reduction and clustering of the melanocyte subset using Seurat

[21], we observed that age group, donor ID, or plate ID were a possible source of heterogeneity

that was reflected in the UMAP space (S1A Fig). While Belote and colleagues [20] identified

the age and site-specific differences within the human melanocyte pool, we were interested in

looking beyond and identifying functionally distinct melanocyte states, if any, irrespective of

their location in the body or the age group from which they were isolated. Hence, we regressed

out these effects using Harmony [22] and identified 5 distinct clusters (S1B Fig), possibly rep-

resenting distinct functional states of melanocytes. Cluster markers and their functional anno-

tation revealed a mature cluster, which showed high expression of MITF, TYR, and DCT, a

proliferative cluster which showed enrichment of MKI67 and TOP2A, and an immature popu-

lation having expression of both proliferation and pigmentation genes. A stem cell-like cluster

enriched for genes such as TWIST1, TWIST2, and AXL. Interestingly, 1 cluster showed enrich-

ment of interferon (IFN) signalling genes, such as IFIT1, IFIT2, and STAT1 (Figs 1A, S1C, and

S1D).

While studies have reported IFN gene signatures in melanocytes [23,24], especially in dis-

ease conditions such as vitiligo [25], this is the first time a stable state enriched for interferon

signatures has been identified in melanocytes from human skin. While the majority of the

mature and the IFN-enriched cells came from the adult sample, the stem cell-like and the pro-

liferative cells were enriched in the foetal skin. Although the proportions of these subpopula-

tions were different, these states were present across all age groups (S1E Fig). This analysis

corroborates Belote and colleagues’ [20] findings and suggests the existence of multiple mela-

nocyte cell states in the human epidermal skin. The same could be observed in another pub-

licly available human melanocyte data set from adult epidermal cells derived from human

skin, EGAS00001002927 [26] (S2A–S2D Fig). Therefore, it is tempting to speculate that mela-

nocytes, much like immune cells and neurons, can exhibit distinct functional states in the

same environment [27,28].

These transcriptionally distinct clusters are deduced from cross-sectional single-cell data

sets from the human epidermis. This raises the following questions: Do these subpopulations

coexist in the same environment? Does each cell in these clusters transition between these

states following a set trajectory? Or are these states stable and self-sustaining in nature?

To confirm the coexistence of these states in another in vivo environment we utilised the

zebrafish model system. We isolated melanocytes from zebrafish embryos at 24 hours post fer-

tilisation (hpf) and conducted scRNA-seq. Our analysis revealed the existence of 2 distinct

clusters, with 1 cluster exhibiting a higher expression of proliferation-related genes and the

other cluster enriched in pigmentation-related genes confirming that the pigmentation and

proliferation programs are indeed maintained in distinct melanocyte subpopulations in vivo

(Fig 1B and 1C).

To address the remaining questions, we revisited the NHEMs in culture. We used an

already established mode of altering melanocyte phenotype using forskolin (fsk) as an external

agent. fsk elicits a UV-like response in melanocytes by activating cyclic adenosine monophos-

phate (cAMP) and the downstream signalling cascade. Daily treatment of pigmented MNT1

cells results in a more proliferative phenotype, while treatment every alternate day gives rise to

a hyperpigmentation response at the population level [7]. To dissect these phenotypes at a
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more granular level, we resorted to a flow cytometry-based approach to estimate pigmentation

at a single-cell resolution [29], while cell count served as a surrogate for proliferation. In the

untreated melanocytes, we observed a gradient of pigmentation with a non-normal distribu-

tion containing a shoulder peak representing highly pigmented cells (Fig 1D). While fsk treat-

ment increases the melanocyte population compared to untreated, the change observed in

alternate day treated cells are higher compared to the daily treatment of fsk (Fig 1E). This sug-

gests that fsk effects are retained in NHEMs and hence this model offers a platform to dissect

these potential functional states.

We performed single-cell RNA sequencing on the daily and alternate-day fsk-treated mela-

nocytes. Upon dimensionality reduction and clustering, we observed 3 clusters, with 2 (clus-

ters 0 and 1) composed of cells mostly from the alternate day-treated sample while the third

(cluster 2) contained cells mostly from the daily-treated sample (Fig 1F). Scoring these clusters

for the cell cycle genes revealed that clusters 0 and 1 primarily consisted of cells in G1 phase

Fig 1. PigmentationAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1; 2; 4; and5:Pleaseverifythatallentriesarecorrect:and proliferation programs are maintained in distinct melanocyte subpopulations. (A)

UMAP visualisation of the human skin derived melanocyte coloured by the identified states that are labelled. This

scRNA-seq data is meta-analysed from non-cultured NHEMs from skin (GSE151091). (B) UMAP visualisation of the

zebrafish melanophores (mitfa+ cells isolated at 24 hpf) coloured by the identified states. This scRNA-seq data is

submitted to (GSE240655). (C) Dot plot depicting markers of proliferative and mature states of the zebrafish

melanophores (mitfa+ cells isolated at 24 hpf) with the bubble size showing the percent of cells expressing the gene and

colour showing the scaled mean expression value (Wilcoxon–Mann–Whitney test with average log fold change>0.25

and adjusted p-value�0.05). (D) Density plot showing the distribution of pigmentation in cultured NHEM with daily

or alternate day treatment of forskolin. (E) Mean side scatter intensity and cell count of cultured NHEM treated with

daily or alternate day treatment of forskolin (unpaired Students t test, n = 4, *: p-value�0.05, **: p-value�0.01, ns: p-

value>0.05). (F) UMAP visualisation of cultured NHEM coloured by the clusters (top), treatment (bottom left), cell

cycle phase (bottom right). This scRNA-seq data is submitted to (GSE233137). (G) Heatmap showing the gene-set

activity scores (z-score of mean) of each of the cultured NHEM clusters for the human melanocyte mature, immature,

and proliferative state. (H) UMAP visualisation of cultured NHEM coloured by the annotated states based on cluster

markers and human skin melanocyte state score. (I) Stacked bar plot showing the proportion of different melanocyte

states upon daily and alternate forskolin treatment. All numerical data are listed in S1 Table and S1 Data. hpf, hours

post fertilisation; NHEM, normal human epidermal melanocyte.

https://doi.org/10.1371/journal.pbio.3002776.g001
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(non-cycling) while cluster 2 consisted of cells in S/G2/M phase (cycling) (Fig 1F). To ascertain

the identities of these clusters, we scored the cells for human skin melanocyte states. Cluster 0

scored highest for the mature state, cluster 1 for the immature state, and cluster 2 for the prolif-

erative state (Fig 1G). This, along with the cluster markers and GO term enrichment, allowed

us to infer the identity of the clusters (Fig 1H). Based on the cluster composition, the daily and

alternate day-treated samples contained all 3 identified states in different proportions.

Although the stem cell-like and IFN-enriched states were not observed, probably due to non-

conducive culture conditions, 3 of the 5 states namely proliferative, mature, and immature

were faithfully recapitulated in cultured NHEMs. Our observations thus confirmed that,

indeed, these melanocyte states are stable and coexist. As inferred from the flow cytometry

data, alternate day treatment enriches the mature states, whereas daily fsk treatment enriches

the proliferative state (Fig 1I). This observation suggests that the distinct coexisting states of

melanocytes identified in this study are also interconvertible, depending upon the external

cue.

However, to confirm the existence of these states beyond RNA-level information obtained

from single-cell RNA sequencing, we conducted immunofluorescence (IF) analysis using 2

distinct markers for proliferation and pigmentation: Ki67 and Tyr, respectively. Normal

human epidermal melanocytes (NHEM) treated alternately or daily with fsk were subjected to

IF. Ki67 labelled a small subset of cells under untreated conditions, and this proportion

increased with daily fsk treatment compared to alternate day treatment (S3A and S3B Fig).

The presence of these 2 states was further validated through western blot analysis using cMyc

as a proliferation marker and Tyr for differentiation (S3C Fig). This was also corroborated

with MNT-1 cells using both IF as well as FACS analysis (S4 Fig). Whether these 2 states are

equally responsive to the cue and how these transitions are orchestrated remains to be

understood.

Low and high pigment states correspond to proliferative and mature

transcriptional states in B16 progressive pigmentation model

To identify the core networks maintaining the melanocyte cell state dynamics, we leveraged

the already established B16 pigmentation model that mimics the tanning and de-tanning

response [30,31]. This model offers a temporal resolution of pigmentation induction, allowing

us to capture any alterations in cell states and complement the NHEM-based approach. Pro-

gressive pigmentation of the cell population is observed at the bulk level in this system. How-

ever, heterogeneity in melanin content is observed at the microscopic level. Flow cytometry

offers a way to identify pigmented cells within the population [29,32,33]. Henceforth, we utilise

flow cytometry-based estimation of side scatter as a surrogate measure for pigment content in

melanocytes. We used this information to develop a method to estimate melanin content in

single cells using imaging flow cytometry (S5A–S5C Fig). Though at day 7, the cell pellet is

completely black with eumelanin, imaging flow cytometry revealed that the cells show a clear

bimodal pigmentation distribution suggesting the presence of broadly 2 kinds of population:

low pigment (LP) and high pigment (HP) (S5D Fig). This confirms the presence of a heteroge-

neous cell population in this progressive pigmentation model, endorsing the observations

made in cultured NHEMs and melanocytes in vivo.

To map the transcriptional footprint of the low- and high-pigmentation states at day 7, we

sorted these 2 populations using a flow cytometer (S5E Fig) and subjected them to single-cell

RNA sequencing. Dimensionality reduction and unsupervised clustering revealed that low-

and high-pigmented cells segregated into 2 different clusters. Interestingly, upon increasing

the resolution further, 2 distinct subclusters emerged within the low- and high-pigment
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clusters (Fig 2A). Scoring the cells for the cell cycle genes showed that both the low- and high-

pigmented clusters contained a G1 (non-cycling) and an S/G2/M (cycling) subpopulation

(Fig 2A). Cluster markers and their GO term enrichment allowed us to infer the possible func-

tional state of each cluster. Cluster 3 was enriched for mature state markers such as Mitf and

Tyr, while cluster 2 was enriched for proliferative markers such as Mki67 and Top2a. More

interesting was cluster 1, containing stem cell-like markers Klf4 and Hes1, but was relatively

less proliferative than the other clusters suggesting a quiescent state. Cluster 0 had enrichment

of both mature and proliferative markers, possibly representing an intermediate state before

the melanocytes acquire a hyperpigmented mature state (Fig 2B). To confirm the identity of

each cluster, we scored each of these for the previously identified human melanocyte state

markers. Scoring confirmed our inference based on the cluster markers, with cluster 1 having

the highest score for the human melanocyte stem cell-like state markers and cluster 0 having

highest score for the immature state. Cluster 2 scored highest for the proliferative state, while

cluster 3 for the mature state (Fig 2C). We scored these clusters for melanocyte states derived

from mouse hair follicle single-cell RNA sequencing data [14] and obtained similar results

(S2E Fig).

Fig 2. Correlation of pigmentation with proliferative and mature states in B16 cells. (A) UMAP plot showing B16

day 7 cells coloured by pigmentation (top), seurat clusters (middle), or cell cycle status (bottom). This scRNA-seq data

is submitted to GSE233136. (B) Dot plot showing the top 20 marker genes enriched in each cluster with the size

showing the percent of cell expressing the gene and colour showing the scaled mean expression value in each cluster

(Wilcoxon–Mann–Whitney test with average log fold change>0.25 and adjusted p-value�0.05). (C) Heatmap

showing the gene-set activity scores (z-score of mean) of each of the B16 clusters for the human melanocyte mature,

immature, proliferative, and stem cell-like state. (D) UMAP plot showing B16 day 7 cells coloured by the cell states

identified using marker genes, GO term enrichment analysis, and scores for human melanocyte cell states. (E) UMAP

plot showing B16 day 7 cells coloured by pseudotime (top left), Mitf expression (bottom left), or E2f1 expression

(bottom right). (F) UMAP plot showing cultured NHEM coloured by pseudotime (top left), MITF expression (bottom

left), or E2F1 expression (bottom right). This scRNA-seq data is submitted to GSE233137. All numerical data are listed

in S1 Table and S1 Data. NHEM, normal human epidermal melanocyte.

https://doi.org/10.1371/journal.pbio.3002776.g002
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These results allowed us to annotate the B16 cell states (Fig 2D). We confirmed the exis-

tence of distinct cell states in B16 cells through 2 independent approaches: immunofluores-

cence and western blot-based analysis. For immunofluorescence, light and heavily pigmented

colonies were imaged for the presence of ki67 and Tyr (S6A and S6B Fig). Further validation

was performed using western blot analysis after FACS sorting the 2 populations based on side

scatter (S6C Fig). While the markers were differentially enriched as anticipated in the western

blot, it was interesting to observe that the highly proliferative LP colony had a high ki67 label-

ling with a concomitant low Tyr. Pigmented cells were low on ki67 and had high Tyr levels

confirming the existence of 2 cell states as observed in the single-cell sequencing data.

The presence of similar cell states between the B16 mouse melanoma cells and NHEMs

encouraged us to use the B16 pigmentation model to uncover the underlying gene regulatory

networks (GRNs) governing melanocyte states. It was interesting to observe that all these states

were maintained even at this stage in the pigmentation model when presumably the cells would

have attained their terminal state of differentiation. Whether these states could switch from one

to another was still unclear. To test this in silico, we used the Dynverse [34] package in R to

infer a trajectory that would indicate the transition potential of these states. Upon applying the

Scorpius algorithm, we observed a linear trajectory starting from the stem cell-like state and

ending at the mature state with the proliferative and the immature states in between (Fig 2E).

This highlights the switching potential of the stem cell-like state to the mature hyperpigmenting

state if the need arises. A similar inference could be derived from cultured NHEM single-cell

data wherein the cells transit from a proliferative to a mature state via the immature state in

between (Fig 2F). This explains the different proportions of cell states observed with fsk treat-

ments. Thereby, using 2 different cultured cell-based models, we demonstrate the coexistence of

multiple melanocyte states with the possibility of transitions between these states.

Progressive pigmentation model exhibits stochastic melanocyte state

transitions

NHEM-based state transitions are unlikely to be driven by genetic mutations. The progressive

pigmentation model, being a cancer cell-based system, could have acquired mutations over the

course of time, resulting in the observed heterogeneity. The other possibility would be that at

some point during progressive pigmentation, a few cells “switch on” the expression of pigmen-

tation genes and then are destined to become pigmented, which would suggest stochastic

(nongenetic) state transitions. To rule out the genetic component, we applied the Luria–Del-

brück’s fluctuation test and used a single clonal cell-derived population for further experi-

ments. Two independent clonal populations gave rise to the similar bimodal distribution

observed earlier, suggesting this phenomenon to be nongenetic in nature.

Since this progressive pigmentation model is a cell density-dependent phenomenon, we

slightly modified the Luria–Delbrück’s approach to test the genetic or nongenetic nature of

this heterogeneity. Herein, we subjected the cells to one round of pigmentation and different

treatments to obtain varying proportions of low- and high-pigmented cells (Fig 3A). We then

started another round of pigmentation process using these differentially pigmented cells. The

pigmentation state of the cells at the end of the second round of pigmentation was assessed

using imaging FACS. We observed that irrespective of the starting proportion of pigmented

cells, the final distribution of pigmentation was the same for all samples (Fig 3B). Since, in this

model, cells grow as separate colonies, we assessed the colony pigmentation using high-

throughput imaging. We observed that the colonies also showed the same pigmentation distri-

bution irrespective of the starting proportion of pigmented cells (S7A and S7B Fig), thereby

confirming that the transitions in this system are stochastic in nature.
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Interestingly, the median standard deviation in mean grey value for intra-colony variability

(2.1) was lower than the inter-colony variability (9.9) (Fig 3C). This pigmentation distribution

of colonies suggested that the cells maintained 2 broad states with either low or very high pig-

mentation (S7C Fig). Since each colony is derived from a single cell, this suggests that the cells

are indeed biased towards maintaining either of the 2 broad phenotypic states of proliferation

or pigmentation. Microscopically, we observed that the colonies in the low-pigmented state

were bigger compared to the high-pigmented colonies. Pearson’s correlation analysis between

the colony pigmentation and area was −0.5 suggesting a moderate negative correlation

between pigmentation and colony area (Fig 3D). This is indicative of pigmenting cells to have

a lower proliferation potential.

Fig 3. Progressive pigmentation model exhibits stochastic melanocyte state transitions. (A) Density plot showing

the distribution of pigmentation (log scale) in single cells across differentially pigmented B16 samples with normal,

high, or low pigment content achieved by treating with iso-butyl methyl xanthine (IBMX) or phenyl thiourea (PTU),

respectively. Inset: statistical analysis of mean pigmentation normalised to normal pigmented sample, Student’s t test,

n = 3, **: p-value�0.01, ns: p-value>0.05. Normal pigment: untreated, high pigment: 50 μm IBMX, low pigment 1 3b:

100 μm PTU, low pigment 2: 200 μm PTU. (B) Density plot showing the distribution of pigmentation (log scale) in

single cells at the end of the second round of pigmentation model setup using differentially pigmented B16 samples in

panel A. Inset: statistical analysis of mean pigmentation normalised to normal pigment sample in panel A, Student’s t
test, n = 3, **: p-value�0.01, ns: p-value>0.05. (C) Representative inverted image of a single B16 colony at the end of

pigmentation (left panel). Colonies were divided into concentric rectangles and the pigmentation in each sectors

quantified. The circular heatmap (right) shows the pigmentation in each of the 4 sectors (inner to outer circle) for each

colony. (D) Binned scatter plot showing the inverse relation between colony area and pigmentation. Inset: Raw data

scatter plot with correlation coefficient derived from Pearson’s correlation analysis and the equation derived from

linear regression analysis between pigmentation and log2(Area). (E) (Left) Time-course tracking and analysis of colony

pigmentation (colour of the circle) and area (size of the circle) from days 5 to 7 of the progressive pigmentation model.

(Top right) Dot plot showing the top colonies with least change in pigmentation or highest change in area. (Bottom

right) Statistical analysis of change in area from days 5 to 7 between low- and high-pigmented colonies (Wilcoxon–

Mann–Whitney test). (F) Schematic representation of the dichotomy in fate decision resulting in 2 broad states in the

progressive pigmentation model. All numerical data are listed in S1 Data.

https://doi.org/10.1371/journal.pbio.3002776.g003
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As pigmentation is a time-dependent slow process, it takes around 4 to 7 days before the

actual phenotype presents itself and is detectable in the cell. With this, it becomes important to

estimate the stage at which the pigmentation process starts, which presumably would be earlier

than the phenotype is observable. A time-resolved model such as this progressive pigmentation

confers an advantage to simultaneously infer the kinetics of both pigmentation and prolifera-

tion. We performed high-throughput imaging of the colonies on days 5, 6, and 7 of the pig-

mentation model. We observed that pigmented colonies on day 5 maintained their high-

pigmentation state till day 7 and concomitantly had a lesser increase in colony area. Whereas

less-pigmented colonies on day 5 proliferated more, maintaining their low pigmentation status

till day 7. Thereby, these cells commit towards either pigmentation or proliferation fate as

early as day 5 in this system, suggesting an early fate biasing decision that is retained in the

daughter cells (Fig 3E).

These analyses along with the scRNA seq revealed that B16 cells, when put through the pro-

gressive pigmentation exhibit stochastic state transitions leading to 2 broad phenotypic states:

low pigmentation (LP) coupled to high proliferation and high pigmentation (HP) coupled to

low proliferation (Fig 3F).

Stochastic gene expression leads to transcriptionally distinct melanocyte

cell states

Visually the phenotypic heterogeneity in the pigmentation model was evident. From the time

course tracking of individual colonies, it could be inferred that once the cells commit to a par-

ticular fate of either pigmentation or proliferation, their progeny retains the same state. Having

ruled out the genetic factor, it is likely that epigenetic inheritance could explain the daughter

cells retaining the parental state [17,35]. To address both the transcriptomic footprint and the

epigenetic landscape, we performed single-cell multi-omics sequencing across days 0, 3, and 5

of the progressive pigmentation model with varying levels of pigmentation (S7D Fig).

Quality control was performed based on both RNA and ATAC parameters, and the RNA

data was analysed first to identify the transcriptionally distinct clusters. We observed 4 differ-

ent clusters possibly representing 4 different states. Colouring the UMAP based on the day

revealed that 3 of the 4 clusters were predominantly composed of cells pertaining to different

days of the pigmentation model. A technical replicate of day 5 was included in the analysis and

both the technical replicates overlayed completely, confirming the absence of batch effects

driving the clustering. We then used the weighted nearest neighbour approach in Seurat and

Signac [36] to make a joint neighbourhood graph representing both the RNA and ATAC data

in the UMAP space. Although the ATAC data alone was able to explain the differences in the

days 0, 3, and 5 cells, it was not enough to segregate cluster 3 from the rest. Therefore, we used

the RNA data to annotate the clusters. Based on the differentially expressed genes in each clus-

ter and GO term enrichment (S1 Table), we annotated the clusters as B16 native state enriched

in both stem cell-like (Sox10) and proliferative signatures (Cenpa, Cdk1), differentiating state

enriched with markers such as Mitf, Oca2, and Mlph, proliferative state with high expression

of Mki67 and Top2a and a mature state having an enrichment of classical melanin synthesis

genes such as Tyr and Dct among others (Fig 4A). We observed that the native, differentiating,

and proliferative states were mainly present at days 0, 3, and 5, respectively, while the mature

state emerged as early as day 3 (Fig 4B). This was surprising because visually pigmented cells

could not be detected on day 3.

Enrichment of different state markers in the day 0 cluster indicated the preexistence of het-

erogeneity in the starting population. To investigate this further, we subclustered the day 0

sample individually. We used the markers of all the other states in the pigmentation model as
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variable features for dimensionality reduction and clustering. The cells segregated into 3 clus-

ters with cluster 0 having relatively high expression of proliferative state markers and cluster 1

having enrichment of mature state markers (Figs 4C and S7E). Cell state scoring for the

human melanocyte states confirmed the relative enrichment of proliferative, mature, and

immature state markers in clusters 0, 1, and 2, respectively (Fig 4D). This confirmed our

hypothesis that day 0 cells, even though a genetically and phenotypically identical clonal popu-

lation, natively harbour a heterogeneous cell population, possibly due to stochastic gene

expression. This heterogeneity is likely to prime the cells to switch into the proliferative or the

pigmented state that are observed in the model.

From this analysis, we confirmed that during progressive pigmentation, cells start to differ-

entiate by day 3 and give rise to 2 broad states: proliferative and mature at the end of day 5.

These subpopulations correspond to the low- and high-pigmented populations observed on

day 7 using scRNA seq as well as imaging-based techniques.

Fig 4. Stochastic gene expression leads to transcriptionally distinct melanocyte cell states. (A) UMAP plot showing

B16 cells coloured either by the clusters (top), the day of the pigmentation model (middle), or by their cell cycle status

(bottom). This multiome data is submitted to GSE233134. (B) Stacked bar plot showing the distribution of the 4

identified states at different days of the progressive pigmentation model. (C) UMAP plot showing subclusters of day 0

(initial state) of B16 cells coloured either by the clusters (left) or by their cell cycle status (right). (D) Heatmap showing

the gene-set activity scores (z-score of mean) of each subcluster of day 0 B16 cells for the human melanocyte mature,

immature, and proliferative state. (E) DARs derived from the single cell ATAC seq data around pigmentation genes

(significantly different, adjusted p-value�0.05) and proliferation genes (not significant, adjusted p-value>0.05)

between mature and proliferative states. This ATAC seq data is submitted as a part of multiome to GSE233134. (F)

Volcano plot of H3K27Ac ChIP-seq data from low and high pigmentation cells, showing genes whose regions are

differentially acetylated. Some of the key pigmentation genes are highlighted. The Chip-Seq data is submitted to

GSE233135. (G) DHAcRs based on H3K27Ac ChIP-seq data around pigmentation genes (significantly different,

adjusted p-value�0.05) and proliferation genes (not significant, adjusted p-value>0.05) between mature (high

pigment) and proliferative states (low pigment). All numerical data are listed in S1 Table and S1 Data. DAR,

differentially accessible region; DHAcR, differentially hyperacetylated region.

https://doi.org/10.1371/journal.pbio.3002776.g004
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Active enhancers guide the melanocytes towards the mature state

While the cultured NHEM model revealed the coexistence and the transition of the melano-

cyte states, the progressive nature of the B16 pigmentation model allowed us to trace the

dynamics of these state transitions in a time-resolved manner. The time-course tracking of col-

onies revealed that the daughter cells retain the parental states of low- and high-pigmentation,

pointing towards an epigenetic driving force. Epigenetics influence the cell state dynamics and

possibly regulates the cell state heritability across multiple cell divisions [17,35,37,38]. To iden-

tify the key players governing these melanocyte states, we resorted to an integrated approach

involving chromatin accessibility (scATAC seq), an appropriate upstream histone modifica-

tion (ChIP seq) and the downstream gene expression footprint across the LP and HP popula-

tion (scRNA seq).

We analysed the scATAC seq data of the single-cell multi-omics experiment performed on

days 0, 3, and 5 of the pigmentation model. We observed enrichment of open chromatin

regions around the TSS for all the 4 states (S7F Fig). We found subtle differences in chromatin

accessibility with only 2,713 differentially accessible regions (DARs) (adjusted p-value�0.05)

across the 4 states, with 371 regions enriched in the mature state (S1 Table). Melanocytes

maintained 2 broad stable states, proliferative and mature, corresponding to the low- and

high-pigment phenotype. We compared these 2 states for chromatin accessibility differences

and observed 397 and 162 regions to be differentially accessible in these respective states

(adjusted p-value�0.05). Mapping the differentially accessible regions to the nearby genes

revealed a few regions associated with known pigmentation genes such as Mitf and Slc24a5.

These regions had higher chromatin accessibility in the mature state while the regions associ-

ated with proliferation genes had comparable chromatin accessibility across both the states

(Fig 4E). Motif enrichment analysis yielded several transcription factor motifs among these

DARs. Since single-cell ATAC seq data is very sparse in nature, which may make it difficult to

capture subtle differences in chromatin accessibility across substates of the same cell type,

accounting for the fewer DARs observed.

H3K27ac has been shown to be abundant on pigmentation genes in melanocytes [7,39]. In

one of our earlier studies, we have shown that, through a pH-mediated feed-forward loop,

H3K27ac selectively activates pigmentation genes and accentuates melanocyte differentiation

at the population level [40]. Hence, we decided to investigate whether H3K27ac differences

could explain the existence of these cell states. As the epigenetic regulation is likely to precede

the transcriptional differences observed on day 7, we selected day 5 for our analysis. We per-

formed chromatin immunoprecipitation of H3K27ac followed by sequencing (ChIP seq) in LP

and HP cells sorted using flow cytometry on day 5 of the pigmentation model (S7G Fig). Peak

calling, using a well-established program, macs3 [41], gave us 13,008 peaks in the LP, while

25,999 peaks in the HP, a marked increase compared to LP. Annotating the peaks using the

ChIPseeker package [42] in R revealed that around 80% of the marked regions were within the

3 kb promoter in LP, which reduced to around 50% in HP with a concomitant increase in the

first intron and distal intergenic region (S8A Fig). Differential peak analysis using DiffBind

[43] gave us 12,579 differentially marked regions (FDR� 5%), with almost all of those

(12,540) having increased H3K27ac in HP (Fig 4F). After associating these differentially

marked regions with the nearby genes using the rGREAT package [44], we observed Mitf and

some other pigmentation-associated genes to have higher H3K27ac in the HP population (Fig

4G). The regions associated with proliferation genes had similar H3K27ac levels across both

states (Fig 4G) similar to what we observed in our scATAC data. Motif enrichment analysis

using HOMER [45] revealed 242 motifs, corresponding to several transcription factors (TFs)

including MITF and Lef1, in the differentially hyperacetylated regions (DHAcRs) of HP.

PLOS BIOLOGY Single cell sequencing unravels multiple melanocyte cell states

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002776 August 20, 2024 11 / 26

https://doi.org/10.1371/journal.pbio.3002776


Thereby the mature state is primarily driven by histone acetylation possibly by influencing the

chromatin accessibility. Whereas the proliferative state is not driven by histone acetylation and

DARs do not prominently map to proliferative genes indicating alternate mechanisms of con-

trolling the expression of key proliferation genes.

To decipher this, in the third approach we set out to identify TF activity that could explain

the differential gene expression across LP and HP states on day 7. We used Dorothea and

Viper libraries in R [46–48] to estimate the TF activity from the gene expression data. After

constructing the TF activity by cell count matrix, we performed unsupervised clustering and

observed that LP and HP segregated into 2 different clusters. This allowed us to identify the

TFs that govern the differential transcriptome in the LP and HP population (S8B Fig). We

then identified the common overlapping set of TFs whose footprint is represented in all the 3

independent analyses (scATAC, H3K27ac, and gene expression footprint) described above

(Fig 5A). This resulted in a set of 7 TFs enriched in HP (Fig 5B). A similar analysis for LP pop-

ulation resulted in a larger set of 86 common TFs, as there were no DHAcRs in LP (S1 Table).

Hence using DHAcR and DAR marks that overlap with TF enrichment data set, we decipher

the orchestrator of pigmented state, whereas DAR overlap with TF enrichment was used for

the proliferation state.

Fig 5. Active enhancers guide GRN underlying melanocytes state transitions. (A) Schematic showing combination

of different approaches (scATAC, H3K27ac, and gene expression footprint) to identify melanocyte state-specific

transcription factors. (B) Depiction of motifs derived from the intersection of motifs enriched in DHAcRs, DARs, and

TF’s enriched in melanocyte mature and proliferative states. (C) GRN, constructed from the common TF motifs,

responsible for governing melanocyte cell state dynamics. (D) Steady-state solutions of simulations showing the

presence of various stable states allowed by the GRN. Colour bar shows the z-normalised simulated expression levels of

the listed genes with red representing higher expression and blue representing lower expression. (E) Histogram with

corresponding kernel density estimate showing the bimodality in the expression of pigmentation genes based on

simulations. (F) Simulated overexpression of MITF or MYC results in increase or decrease of high-pigment state,

respectively (Students t test, *: p-value�0.01). (G) Heatmap showing expression (top) and activity (bottom) of TF’s

governing melanocyte cell states in cultured NHEM single-cell RNA seq data GSE233137. All numerical data are listed

in S1 Table and S1 Data. DAR, differentially accessible region; DHAcR, differentially hyperacetylated region; GRN,

gene regulatory network; NHEM, normal human epidermal melanocyte; TF, transcription factor.

https://doi.org/10.1371/journal.pbio.3002776.g005
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Melanocyte cell state GRN reliably predicts the state transitions

To construct a GRN that explains the coexistence and transitions of melanocyte cell states, we

used the state-specific TFs identified above along with evidence from the literature [49–53].

Cell cycle as a bistable switch has been modelled previously in the context of general mamma-

lian cell cycle entry decision-making circuit [54]. We used this information and constructed a

GRN coupling pigmentation associated genes—MITF and LEF1 with the cell cycle associated

genes—RB, E2F, and MYC TF along with 2 key cell cycle regulators CycE and CycD (Fig 5C).

Next, we sought to simulate to study the steady states allowed by this model and if it can

explain the inverse association between melanocyte pigmentation and proliferation. To

achieve this, we used the computational framework RACIPE (Random Circuit Perturbation),

which solves a set of coupled ordinary differential equations (ODEs) to examine the various

phenotypic states enabled by a GRN [55]. It does this by sampling an ensemble of kinetic

parameter sets from a biologically relevant parameter range. For each distinct parameter set, it

chooses initial conditions based on random sampling from within a log-uniform distribution

for each node and then solves ODEs to obtain the possible steady states [56]. For some param-

eter sets, more than 1 steady state (phenotype) is achieved, suggesting possible stochastic

switching among those states under the influence of noise.

Using RACIPE, we found that the constructed GRN can give rise to 4 main states—a high-

pigmented state with low cell cycle genes, a state expressing both pigmentation and cell cycle

genes, a high proliferation state with low pigmentation and a non-cycling stem cell-like state

(Fig 5D). Simulated expression profile of pigmentation genes showed a clear bimodal distribu-

tion with distinct high and low pigmentation states (Fig 5E). Principal component analysis

highlights the expression of MYC, E2F, and pigmentation genes (S8D Fig), unravelling 4 states

similar to those observed in our single-cell data (Fig 2D).

Mitf is the master regulator of melanocyte biology, associated with multiple functions [57].

An increase in Mitf levels is suggested to control melanocyte differentiation and survival, and

its expression relatively goes down with pigmentation [7,58]. Our multi-omics experiment

suggested a similar scenario with the differentiating state (observed on day 3) showing the

highest Mitf expression that decreased subsequently on day 5 (S8E Fig). One of the consistent

themes that emerged from all our analyses was that in already differentiated melanocytes, Mitf
had significantly high expression in the mature state compared to the proliferative state across

all the data sets (S8F Fig). Therefore, we simulated the overexpression of MITF or MYC and

investigated the effects on the frequency of high-pigmented state. While overexpression of

MITF significantly increased the proportion of high-pigmented state, overexpression of MYC

decreased it, thus pushing the cells towards a high-proliferative state (Fig 5F). Overall, the

results suggest that the steady-state dynamics of the underlying GRN play a crucial role in the

emergent property of inverse association between melanocyte pigmentation and proliferation

programs.

State switching in cultured NHEMs is guided by the melanocyte cell state

GRN

We revisited the forskolin response in melanocytes that activates either proliferation or pig-

mentation programs based on the frequency of administration of fsk (Fig 1H). Our scRNA seq

analysis demonstrated that the treatments rather altered the proportion of the cell states

enriched in these 2 diametrically opposite programs within the population. The GRN derived

from the B16 progressive pigmentation model explained the coexistence of distinct B16 cell

states. We then tested whether this GRN could explain the switch in proliferation and pigmen-

tation states in NHEMs with the addition of fsk. We derived the activity of the key TFs in this
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GRN using the target gene expression in the proliferative and the 2 pigmenting states (mature

and immature). We observed that LEF1 and MITF were active in the mature state, whereas

MYC and E2F1 were active in the proliferative state (Fig 5G), suggesting that the same GRN is

responsible for the coexistence and further orchestrates the transition of the human melano-

cyte states.

Discussion

Here, using in vitro cell-based models and single-cell methodologies, we demonstrate that

specified melanocytes exhibit distinct cell states that are governed by a GRN containing regula-

tors of pigmentation (MITF, LEF1) and proliferation (MYC, E2F1). We coupled the known

proliferation circuit with the pigmentation regulators and showed that variability in the

expression/activity of these factors, under the influence of noise (stochasticity), resulted in the

coexistence of multiple functionally distinct melanocyte states. Physiologically, during the hair

cycle, melanocyte stem cells are known to differentiate to give rise to a mature pigmented state

through a proliferative state. This is shown to be governed by the interplay of external signal-

ling factors that are spatiotemporally controlled [14]. A recent study showed that the transit

amplifying (proliferative) state can either differentiate into a mature pigmented state or dedif-

ferentiate into an McSc state in a WNT-dependent manner [12]. Whether it is the cue that pri-

marily induces these states or these are preexisting within the seemingly homogeneous

melanocyte population remained unclear.

Stochasticity in gene expression has been shown to govern melanoma cell states, giving rise

to a drug-resistant state even before the addition of any drug. These states are largely predeter-

mined and are further strengthened by epigenetic programs resulting in clonal expansion

[16–18]. In this current work, we observed preexisting transcriptional variability in day 0 cells

with a mature-like and a proliferative subpopulation (Figs 4C, 4D, and S7E). It is likely that

these cells are the ones that give rise to the mature state in the B16 progressive pigmentation

model, and low-density culturing appears to be the trigger for these state transitions. Using

high-throughput imaging on days 5, 6, and 7 in the model, we observed that the 2 broad states,

LP and HP, are maintained throughout as independent colonies suggesting inheritance of the

parental state across subsequent cell cycles. Our earlier work demonstrated the role of

H3K27ac in melanocyte differentiation through a pH-mediated feed-forward loop involving

Mitf and its targets. We observed hyperacetylation of pigmentation genes on day 5 [40]. In this

work, we map the hyperacetylation of H3K27 predominantly to the HP state. The default acti-

vation state appears to be proliferation. This notion is strengthened by the observation that

almost all proliferation related genes that are differentially expressed have comparable accessi-

bility across the 2 states. This suggests that the mature and the proliferative state, much like the

drug-resistant state in melanoma, are preexisting, with the mature state getting reinforced via

hyperacetylation at H3K27 whenever a trigger is presented.

In a normal physiological scenario, melanocytes are constantly exposed to UV radiations

resulting in the tanning response involving cAMP pathway, which in this study is simulated by

fsk treatment. While the response of cells to fsk is well recognized, an elegant study by Malcov-

Brog and colleagues [7] demonstrated that proliferation and pigmentation are differentially

activated depending upon the frequency of exposure. Our study, using in vitro cell models,

deciphers that melanocytes exhibit these 2 programs in separate subpopulations that preexist

before the trigger. Differential exposure to fsk results in the enrichment of one state. On recur-

rent exposure, the proliferating state is expanded, while infrequent exposure leads to the

enrichment of the pigmented state. Mitf dynamics remain at the centre of melanocyte func-

tioning. Malcov-Brog and colleagues [7] demonstrated that an increase in Mitf levels induces
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the cell survival program in the melanocyte population. In the B16 progressive pigmentation

model, we observed the highest Mitf levels in the differentiating state, followed by a decrease,

once the cells differentiate at day 5 (S8E Fig). Interestingly after differentiation, we observed

that cells in a proliferative state had relatively lower Mitf expression compared to the mature

population (S8F Fig). Drawing parallels from this model suggests that exposure of melanocytes

to a cue such as UV radiation/fsk results in the elevation of Mitf, leading to the initiation of the

cell survival program and increased proliferation. Subsequently, Mitf decreases, and in the

absence of additional exposure, cells with relatively higher levels of Mitf get biased towards the

mature state while others remain in the proliferative state. The proliferation regulators such as

Myc then further suppress Mitf to maintain the other cells in the proliferative state. However,

further investigation is needed to delineate these cell state dynamics in detail. In all, stochasti-

city coupled with a programmed regulatory network explains the coexistence of melanocyte

cell states, and ultimately, the population-level diversity. The coexistence of these states is likely

to permit the system to adapt quickly to external cues by altering the cell state dynamics.

Material and methods

Ethics statement

Fish experiments were performed in strict accordance with the institutional animal ethics

approval (IAEC) of the CSIR-Institute of Genomics and Integrative Biology (IGIB), India

(Proposal No 45a). IEAC approval number–IGIB/IAEC/25/28/202. All efforts were made to

minimise animal suffering.

B16 pigmentation model and NHEM culturing

All the cells were maintained at 37˚C and 5% CO2.

B16 cells were cultured in Dulbecco’s Modified Eagle’s Media (DMEM-high glucose,

Sigma-Aldrich, D5648) supplemented with 10% fetal bovine serum (FBS, Gibco, 10270106).

MNT-1 cells were cultured in DMEM-high glucose (Sigma-Aldrich, D5648) supplemented

with 20% FBS (Gibco, 10270106) and 10% AIM-V media (Gibco, 12055083).

For the progressive pigmentation model, B16 cells were seeded at a very low density of 100

cells/cm2 and cultured for appropriate number of days as per the experimental requirement,

for a maximum of 7 days. As per the requirement, the cells were either treated with 50 μm

3-Isobutyl-1-methylxanthine (IBMX, Sigma-Aldrich, I7018-100MG) to enhance pigmentation

or with 100/200 μm N-Phenylthiourea (PTU, Sigma-Aldrich, P7629) to prevent pigmentation,

1 day after seeding the cells. The establishment of progressive pigmentation in B16 cells is

available in the protocol.io [30].

NHEMs were purchased from Lonza (CC-2504). Cells were revived in Lonza MGM4 media

(CC-3250) supplemented with supplied factors (CC-4435). Post revival, cells were transferred

to and maintained in Medium 254 (Gibco M254500) supplemented with human melanocyte

growth supplement (HMGS-2, Gibco S0165). A total of 50,000 cells were seeded in 3 wells of a

6-well plate. One well was treated daily while the other was treated every alternate day with

20 μm forskolin (Sigma-Aldrich, F3917) for 7 days. Equal volume of DMSO was added in the

remaining well to serve as a control.

Melanin estimation using NaOH method

Melanin estimation was performed as described earlier [59]. Briefly, equal number of cells

(approximately 25 Lacs) from each sample were centrifuged at high speed, dissolved in 250 μl

of 1N NaOH, vortexed, and kept at 80˚C for 2 h. The solution was spun down at high speed
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and 100 μl supernatant, in duplicates, was transferred to a 96-well plate. The absorbance was

measured at 400 nm. Synthetic melanin (Sigma-Aldrich, M8631) was used to generate the

standard curve and estimate the melanin content in each sample.

Melanin estimation using imaging flow cytometer

Cells were trypsinized, washed with 1× Dulbecco’s phosphate buffer saline (DBPS) 2 times and

resuspended in 1× DPBS. Each sample was run sequentially on Amnis Imagestream Mk II

after initializing the system. Initial gating was done using the area and aspect ratio parameters

to select only single round cells. A total of 10,000 cells were captured for each sample after the

gating. The analysis was done on the Ideas software.

Pigmentation estimation using ImageJ

All the microscopy images were analysed in Fiji. A threshold was applied to the images such

that only the dark spots corresponding to melanin were visible in pigmented colonies and

nothing was visible in depigmented colonies. Colonies were marked using the ROI tool and

mean grey value estimation for each colony was taken as the pigmentation content in the colo-

nies. Any colonies appearing to be merged (morphologically) from multiple individual colo-

nies were left out of the analysis.

Immunocytochemistry

Cells (B16 or MNT-1 or NHEMs) were seeded on UV-treated sterile coverslips (Corning) in

6-well plates. Cells were fixed with 4% paraformaldehyde in PBS for 10 min at 37˚C. Further,

they were permeabilized with 0.1% Triton X-100 in PBS for 15 min at room temperature on

slow orbital shaking. After 3 consecutive washes with 1× PBS, cells were blocked with 5% NGS

(Jackson’s immunoresearch) for 1 h at room temperature on slow orbital shaking. Cells were

given a single wash of PBS and incubated with anti-Ki67 antibody (ab16667, 1:100) or anti-

TYR (custom synthesised genscript, 1:100) in 1% NGS for 2 h at room temperature. Post pri-

mary antibody incubation cells were washed thrice with PBST (PBS + 0.1% Triton X-100) for

5 min each on slow orbital rotation and then incubated in secondary Alexa Fluor 488 anti-rab-

bit antibody (1:500 in 1% NGS) for 1 h at room temperature in dark. Finally, cells were washed

thrice with IX PBST and mounted on glass slides with 10 μl of antifade DAPI and sealed the

coverslips using acetone. Imaging was done using Leica confocal microscopy and quantitated

using Image J software.

Western blot analysis

Whole-cell lysates of B16 or MNT-1 or NHEMs were resuspended in NP40 Lysis Buffer

(Thermo; ALF-J60766-AP) reconstituted with protease and phosphatase inhibitors (750 μl of

NP40 lysis buffer, 1× PIC, 10 mM sodium pyrophosphate, 1 mM sodium orthovanadate, 10

mM sodium glycerophosphate, 1 mM phenyl methyl sulphonyl fluoride (PMSF). Cells were

incubated in lysis buffer overnight at −80˚C and centrifuged at 13,000 rpm for 20 min at 4˚C,

protein supernatant was collected and estimated using standard BCA protocol (Pierce BCA

protein assay kit; Thermo). The 25 μg of the protein was used for proteins in the size range of

20 to 150 kDa. Primary antibody incubations were done for overnight in cold room (4˚C).

Subsequent to incubation with the primary antibody, the membrane was washed thrice with

TBST containing 0.1% tween and were further incubated with corresponding HRP conjugated

secondary antibody at 1:10,000 dilution in 5% Skim milk or for 1 h at room temperature.
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Membrane was washed in TBST with 0.1% Tween-20, thrice for 15 min each and developed

using ECL reagent.

Time-course tracking and analysis of B16 colonies

High-content live cell imaging was done at days 5, 6, and 7 of the pigmentation model. First

the colonies at day 5 were marked using the ROI tool and then the same colonies were traced

at day 6 and then at day 7 by using the edges of the well as reference. Colonies that got merged

and were untraceable in the subsequent days were filtered out. Colony pigmentation and area

was estimated using Fiji and the data was plotted in R Studio using ggplot2.

Human melanocyte single-cell data analysis

The human melanocyte single-cell RNA sequencing data was analysed using Seurat v4 in R

Studio. Raw counts were downloaded from GSE151091. The data was filtered for low-quality

cells and gene count was normalised. Clustering and dimensionality reduction was performed

using first 29 PC’s. Melanocytes were extracted based on the gene expression profile and were

further sub-clustered. The clusters were batch corrected using harmony.

Single-cell RNA sequencing and analysis of B16 cells

B16 cells were taken at day 7 of the pigmentation model and sorted into low- and high-pig-

mented population using side scatter intensity. The single-cell RNA libraries were prepared

for both samples using the 10× genomics Chromium Next GEM Single Cell 30 Reagent Kit

v3.1. The library QC and quantification was done using Agilent bioanalyzer HS DNA kit. The

libraries were pooled and sequenced on the NextSeq 2000 platform. Raw bcl files were con-

verted to final count matrix using Cell Ranger v6.1.2 software following the tutorial provided

on the 10x genomics website. All the downstream analysis was performed in R Studio using

Seurat v4 package. Low-quality cells and genes expressing in less than 3 cells were filtered out.

The data was log normalised and 3,000 highly variable genes and 30 principal components

were used for dimensional reduction and clustering.

Single-cell multi-omics sequencing and analysis of B16 cells

B16 pigmentation model was setup on different days to obtain days 3 and 5 sample on the

same day and the cells used to seed days 3 and 5 sample were maintained at high density and

taken as day 0 sample. The multiome libraries were prepared using the Chromium Next GEM

Single Cell Multiome ATAC + Gene Expression kit. The library QC and quantification was

done using Agilent bioanalyzer HS DNA kit. The libraries were pooled and sequenced on the

NextSeq 2000 platform. Raw bcl files were converted to final count matrix using Cell Ranger

ARC v2.0.2 software following the tutorial provided on the 10x genomics website. All the

downstream analysis was done in R Studio using Seurat v4 and Signac v1.9 packages. Both

RNA and ATAC parameters were used for initial quality control. The clusters were identified

using the RNA data and the ATAC data was overlayed on it using joint neighbour calling to

finally arrive at the joint UMAP reduction.

Melanocyte state score calculation

To score clusters for melanocyte states, the marker genes representing each state was obtained

for human (GSE151091) and mouse (GSE147299) melanocytes, respectively. These state-spe-

cific marker genes were used as gene sets and gene set activity score was obtained for the clus-

ters in the query data sets using AddModuleScore utility in Seurat v4. Then, the mean of the
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scores were calculated for each state in each cluster and the z-scores of the mean values were

plotted as heatmap.

Single-cell sequencing and analysis of NHEMs

Forskolin daily and alternate treated cells were taken for library preparation using the 10x

genomics Chromium Next GEM Single Cell 30 Reagent Kit v3.1. The single-cell RNA libraries

were prepared for both samples using the 10x genomics Chromium Next GEM Single Cell 30

Reagent Kit v3.1. The library QC and quantification was done using Agilent bioanalyzer HS

DNA kit. The libraries were pooled and sequenced on the NextSeq 2000 platform. Raw bcl

files were converted to final count matrix using Cell Ranger v6.1.2 software following the tuto-

rial provided on the 10x genomics website. All the downstream analysis was performed in R

Studio using Seurat v4 package. Low-quality cells and genes expressing in less than 3 cells were

filtered out. The data was log normalised and 3,000 highly variable genes and 22 principal

components were used for dimensional reduction and clustering.

Single-cell RNA sequencing and analysis of zebrafish melanophores

Tg(mitfa:GFP) line of the zebrafish were bred, raised, and maintained at 28.5˚C according to

standard protocols [60] and were housed at the CSIR-IGIB, Mathura Road New Delhi, India.

Embryos were staged based on time (hpf) and morphological features, according to [61]. Sin-

gle-cell RNA sequencing was performed on 24 hpf mitfa:GFP positive zebrafish cells using 10x

genomics Chromium Next GEM Single Cell 30 Reagent Kit v3.1. Zebrafish embryos were pro-

cessed and prepared for flow cytometry as described previously [62]. The cells positive for

mitf:GFP were sorted using the BD FACSAria II cell sorter and taken up for library prepara-

tion according to manufacturer’s instructions. Sequencing was performed on NextSeq 2000

platform. Raw bcl files were converted to final count matrix using Cell Ranger v6.1.2 software

after generating the reference genome for zebrafish following the tutorial provided on the 10x

genomics website. All the downstream analysis was performed in R Studio using Seurat v4

package. Low-quality cells and genes expressing in less than 3 cells were filtered out. The data

was log normalised and 3,000 highly variable genes and 50 principal components were used

for dimensional reduction and clustering. The cells expressing endogenous mitfa and repre-

senting the pigment lineage were extracted and clustered again using 24 principal components.

The xanthophore cluster was removed and only the melanophore population was used for fur-

ther analysis.

H3K27ac chromatin immunoprecipitation and sequencing

Chromatin immunoprecipitation was performed using the protocol provided by Upstate Bio-

technology with modifications as suggested in the Fast ChIP protocol. Briefly, B16 cells were

taken at day 5 of the pigmentation model. Cells were sorted into low and high pigment popula-

tion based on side scatter intensity, fixed with 10% formaldehyde (Sigma-Aldrich, F8775) at

37˚C for 10 min and resuspended in SDS lysis buffer (1% SDS (Sigma-Aldrich, L3771), 10 mM

EDTA (Sigma-Aldrich, E6758), 50 mM TRIS (Sigma-Aldrich, T6066) (pH 8.1)) after washing

with ice cold 1× DPBS containing protease inhibitors. Lysis was done for 30 min on ice and

then chromatin lysate was obtained by manual shearing in a bath sonicator using 6 to 7 cycles

of 7.5 min keeping the sonicator on for 30 s and off for 45 s. Chromatin was quantified using

qubit HS DNA kit and equal amount of chromatin was taken for each set of replicates for chro-

matin immunoprecipitation using the anti-H3K27ac antibody (ab4729). Unsorted cells were

used for control ChIP using anti-IgG antibody (ab172730). Libraries were prepared using NEB
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Ultra II DNA library prep kit (E7103S) following manufacturer’s instructions and sequencing

was done, after pooling the libraries together, on the NextSeq 2000 platform.

ChIP-seq analysis

All the analysis was done using default parameters unless specified. The raw bcl files were con-

verted to fastq using bcl2fastq. Quality control was done using fastqc and bad quality bases

were trimmed using trimmomatic (CROP:150 LEADING:3 TRAILING:3 SLIDINGWIN-

DOW:4:15 MINLEN:50). Poly-G/poly-x overrepresented sequences and any remaining

adapter traces were removed using fastp. Alignment was done to mm10 genome using bowtie2

and samtools was used to fix mate coordinates, sorting and marking duplicates to get the final

bam file. MACS3 was used to call narrow peaks and bedtools was used to identify the common

and unique peaks between the samples. Differentially acetylated regions were identified using

DiffBind and rGreat was used to annotate the regions to the nearby genes in R Studio.

HOMER was used for motif enrichment analysis in the differentially acetylated regions.

Gene regulatory network simulations

Random Circuit Perturbation (RACIPE) is a computational framework that generates an ensem-

ble of kinetic models for a given GRN and simulates its dynamics for a range of biologically rele-

vant parameters and initial conditions. The RACIPE input network consists of inhibitory and

activating links between each node. To calculate the expression of each node in the network,

RACIPE uses a set of ODEs defined as follows: dXi/dt = gXi∏jHs(Xj,Xji0,nji,λji)−kXiXi.

In the RACIPE framework, each node in the input GRN is represented by a concentration

variable Xi, where i2{1,2,3,4,5}. The expression level of each node is determined by a set of

ODEs that consider various parameters, including the basal production rate g, basal degrada-

tion rate k, and the shifted Hill function Hs. The shifted Hill function is used to incorporate

the activating or inhibitory links between nodes and to determine the production rate for each

node. The parameters λ, n, and X0 correspond to each regulatory link in the network and rep-

resent the fold-change parameter, Hill’s coefficient, and threshold value for the Hill’s function,

respectively. Through the RACIPE framework, an ensemble of kinetic models is generated for

the given GRN, and its dynamics are simulated for a range of biologically relevant parameters

and initial conditions. Initial condition for each node is randomly sampled from a log-uniform

distribution of minimum to maximum levels of that node. RACIPE steady states obtained are

z-normalised for all further analysis. The perturbation experiments were done by increasing

the basal production rates by 20-fold and comparing the percent of high-pigmented states (z-

score >0.22 obtained from the bimodal pigmentation score distribution for the control case)

to the control case where the basal production rate was not over expressed.

Statistical analysis and graphs

All the statistical analysis was performed in R Studio using ggpubr library. All the plots were

made using ggplot2 library. P-value (P) >0.05 is represented as ns, P� 0.05 as *, P� 0.01 as

**, P� 0.001 as ***, and P� 0.0001 as ****.

Supporting information

S1 Fig. Analysis of epidermal NHEM scRNA-seq data taken from GSE151091 (related to

Fig 1). (A) UMAP visualisation of the human skin melanocyte coloured by age group (top),

donor ID (bottom left), plate ID (bottom right). (B) UMAP visualisation of the human skin

melanocyte coloured by the clusters. (C) Dot plot showing the top 10 marker genes enriched
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in each cluster, with size depicting the percent cells expressing the gene and colour depicting

the scaled mean expression value in each cluster (Wilcoxon–Mann–Whitney test with average

log fold change >0.25 and adjusted p-value�0.05). (D) Dot plot depicting top 5 GO terms

enriched in each cluster identified using cluster markers. (E) Stacked bar plot showing the dis-

tribution of different age groups in each of the identified cell states. All numerical data are

listed in S1 Data.

(DOCX)

S2 Fig. Analysis of epidermal NHEM scRNA-seq data taken from EGAS00001002927 and

mouse hair follicle data set (GSE147299) (related to Figs 1 and 4, respectively). (A) UMAP

visualisation of the human skin melanocyte coloured by the clusters. (B) Dot plot of depicting

the top 10 marker genes enriched in each cluster with size showing the percent cells expressing

the gene and colour depicting the scaled mean expression value in each cluster (Wilcoxon–

Mann–Whitney test with average log fold change > 0.25 and adjusted p-value�0.05). (C) Dot

plot depicting top 5 GO terms enriched in each cluster identified using cluster markers. (D)

Heat map depicting the gene-set activity scores (z-score of mean) of each of the epidermal

NHEM clusters for the human melanocyte mature, proliferative, IFN enriched, and stem-like

state. (E) Heatmap depicting the scores (z-score of mean) of each of the B16 clusters for the

mouse hair follicle melanocyte mature, proliferative and stem-like state. All numerical data are

listed in S1 Data.

(DOCX)

S3 Fig. Immunofluorescence and western blot analysis of daily and alternate day forskolin-

treated NHEMs. (A) Immunofluorescence images of NHEMs treated either daily or every

alternate day with forskolin and stained for proliferative and pigmenting marker proteins.

Nuclear DNA stained with DAPI (blue), Ki67 and TYR in green. Scale bars represent 150 μm.

(B) Quantitation of corrected total cell fluorescence (CTCF) of individual cells for Ki67 and

TYR in daily and alternate day forskolin-treated NHEMs. p-value via an unpaired, two-tailed

Student’s t test, with significant values (p< 0.05) is displayed on the graph. (C) Western blot

analysis of daily and alternate day forskolin-treated NHEM cells. Numbers below the blot rep-

resents fold change wrt daily forskolin-treated cells. (DF) Daily forskolin, (AF) alternate for-

skolin-treated NHEMs.

(DOCX)

S4 Fig. Immunofluorescence, western blot, and FACS analysis of daily and alternate day

forskolin-treated human MNT-1 cells. (A) Immunofluorescence images of MNT-1 cells

treated either daily or every alternate day with forskolin and stained for proliferative and pig-

menting marker proteins. Nuclear DNA stained with DAPI (blue), Ki67 and TYR in green.

Scale bars represent 150 μm. Quantitation of corrected total cell fluorescence (CTCF) of indi-

vidual cells for Ki67 and TYR in daily and alternate day forskolin-treated MNT-1 cells. p-value

via an unpaired, two-tailed Student’s t test, with significant values (p< 0.05) is displayed on

the graph. (B) Western blot analysis of c-MYC and TYR in daily and alternate day forskolin-

treated MNT-1 cells. Numbers below the blot represents fold change wrt daily forskolin-

treated cells. (C) Quantitation of percent Ki67/TYR positive cells from 2 biological replicates

of MNT-1 with daily or alternate day forskolin treatment. Two-way ANOVA was performed.

Adjusted P-values: ** P-value<0.001, *** P-value<0.0001, **** P-value <0.00001. (D) Quan-

titation of mean fluorescence intensity per cell from 2 biological replicates of MNT-1 with

daily or alternate day forskolin treatment. Two-way ANOVA was performed. Adjusted P-val-

ues: ** P-value<0.001, *** P-value<0.0001, **** P-value <0.00001.

(DOCX)
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S5 Fig. Assessment of low and high pigmentation melanocyte states (related to Fig 2). (A)

Bright field images of day 7 B16 low and high pigmenting colonies. The bottom panel repre-

sents images of single cells sorted using imaging flow cytometry from the differentially pig-

mented day 7 sample. Scale bars are indicated. (B) Pearson’s correlation analysis between the

average melanin content per cell estimated using NaOH method and the different parameters

of imaging flow cytometer. (C) Linear regression analysis of mean brightfield intensity of

imaging flow cytometer and average melanin content per cell estimated using NaOH method.

(D) Distribution of pigmentation in B16 cells at day 7 of the progressive pigmentation model.

(E) Side scatter intensity distribution (representing pigmentation) of B16 cells at days 0 and 7

of the progressive pigmentation model. Rectangle gate represents high pigment cells. All

numerical data are listed in S1 Data.

(DOCX)

S6 Fig. Immunofluorescence and western blot-based analysis of differentially pigmented

B16 mouse melanoma cells. (A) Immunofluorescence images of day 7 B16 cells depicting low

(LP) and high (HP) pigmenting colonies that were stained for proliferative and pigmenting

marker proteins. Nuclear DNA stained with DAPI (blue), Ki67 (green), and TYR (red). Scale

bars represent 150 μm. (B) Quantitation of corrected total cell fluorescence (CTCF) of individ-

ual cells for Ki67 and TYR in low and high pigmenting B16 cells. (MEL LOW) low melanin,

(MEL HIGH) high melanin content based on visual inspection in bright field image. p-value

via an unpaired, two-tailed Student’s t test, with significant values (p< 0.05) is displayed on

the graph. (C) Western blot images and quantitation of protein levels of TWIST 1, C MYC,

LEF 1, TYR, and DCT in B16 day 7 cells sorted based on pigmentation. Quantitation with

respect to low pigmenting cells is depicted below the blot images. (LP) Low pigmenting, (HP)

high pigmenting B16 cells sorted based on FACS using side scatter information. Experiments

were performed in duplicates.

(DOCX)

S7 Fig. Imaging based assessment of differentially pigmented B16 states and quality con-

trol of scMultiomics data (related to Figs 3 and 4). (A) Density plot showing the distribution

of pigmentation (log scale) in single cells across differentially pigmented B16 samples. Inset:

statistical analysis of mean pigmentation, Wilcoxon–Mann–Whitney test, n = 3, ****: p-

value� 0.0001, ns: p-value >0.05. High pigment: 50 μm IBMX, low pigment: 100 μm PTU.

(B) Density plot showing the distribution of pigmentation (log scale) in single colonies at day 7

of the pigmentation model setup using the B16 samples in panel E. Inset: statistical analysis of

mean pigmentation, Wilcoxon–Mann–Whitney test, ****: p-value�0.0001, ns: p-value>0.05.

(C) Distribution of pigmentation in B16 colonies at day 7 of the progressive pigmentation

model. (D) Side scatter intensity distribution (representing pigmentation) of B16 cells at days

0, 3, and 5 of the progressive pigmentation model. Rectangle gate represents high pigment

cells. (E) Dot plot showing the top 15 marker genes enriched in each subcluster of day 0 B16

cells with the size showing the percent of cell expressing the gene and colour showing the

scaled mean expression value in each cluster (Wilcoxon–Mann–Whitney test with average log

fold change >0.2 and adjusted p-value�0.05). (F) Distribution of ATAC peaks around the

TSS in different melanocyte states of the progressive pigmentation model. (G) Side scatter

intensity distribution (representing pigmentation) of B16 cells at days 0 and 5 of the progres-

sive pigmentation model. Rectangle gate represents high pigment cells. All numerical data are

listed in S1 Data.

(DOCX)
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S8 Fig. Analysis of H3K27ac ChIP and scRNA-seq data sets (related to Figs 4 and 5). (A)

Plots showing distribution of H3K27ac peaks around the TSS (top), annotation of peaks (bot-

tom left), and distribution of peaks relative to TSS in day 5 LP and HP population. (B) UMAP

plot showing day 7 cells of the progressive pigmentation model coloured by clusters identified

using TF activity (top) and pigmentation (bottom). (C) Heatmap showing top TF active in LP

and HP population at day 7 (right). TF activity derived from scRNA data using Dorothea and

Viper packages. (D) PCA plot showing expression of Myc (top), E2f (middle), and pigmenta-

tion genes (bottom) in the artificial cells simulated using RACIPE. (E) Violin plot showing

Mitf expression in differentiating, mature, native, and proliferative melanocyte states in the

progressive pigmentation model. (F) Violin plot showing Mitf expression in mature and prolif-

erative states across different scRNA-seq data sets: human epidermal melanocytes (top), day 7

of the progressive pigmentation model (middle) and days 0, 3, and 5 of the progressive pig-

mentation model. All numerical data are listed in S1 Data.

(DOCX)

S1 Table. List of differentially expressed cluster markers.

(XLSX)

S2 Table. ICC and FACS data quantitation table.

(XLSX)

S1 Data. All numerical data is listed that was used to generate plots shown in main and

supplementary figures.

(XLSX)

S1 Raw Images. Full blot images for the blots represented in the study.

(PDF)
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