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Abstract

The unpredictable nature of our world can introduce a variety of errors in our actions, includ-

ing sensory prediction errors (SPEs) and task performance errors (TPEs). SPEs arise when

our existing internal models of limb-environment properties and interactions become misca-

librated due to changes in the environment, while TPEs occur when environmental perturba-

tions hinder achievement of task goals. The precise mechanisms employed by the

sensorimotor system to learn from such limb- and task-related errors and improve future

performance are not comprehensively understood. To gain insight into these mechanisms,

we performed a series of learning experiments wherein the location and size of a reach tar-

get were varied, the visual feedback of the motion was perturbed in different ways, and

instructions were carefully manipulated. Our findings indicate that the mechanisms

employed to compensate SPEs and TPEs are dissociable. Specifically, our results fail to

support theories that suggest that TPEs trigger implicit refinement of reach plans or that

their occurrence automatically modulates SPE-mediated learning. Rather, TPEs drive

improved action selection, that is, the selection of verbally sensitive, volitional strategies that

reduce future errors. Moreover, we find that exposure to SPEs is necessary and sufficient to

trigger implicit recalibration. When SPE-mediated implicit learning and TPE-driven improved

action selection combine, performance gains are larger. However, when actions are always

successful and strategies are not employed, refinement in behavior is smaller. Flexibly

weighting strategic action selection and implicit recalibration could thus be a way of control-

ling how much, and how quickly, we learn from errors.

Introduction

Humans often have to perform actions under challenging and changing conditions. For exam-

ple, a golfer may have to tee off against a constant breeze; a dancer may be required to perform
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while wearing a new, heavier costume; or a patient may have to adjust their gait to compensate

for an emerging neurological disorder. Understanding how we adapt our actions to such

changes and delineating the neural systems that support such learning has been a major goal

in cognitive neuroscience. Laboratory tasks often simulate such perturbing conditions using

various novel visual [1–3] or dynamic [4,5] environments that induce errors in our move-

ments. These perturbations can create a mismatch between the intended and actual sensory

consequences of action or sensory prediction errors (SPEs). SPEs are essentially limb-related

execution errors that result from a miscalibrated internal model of the properties of the body

and the environment. At the same time, perturbing environments can bring about a failure to

accomplish the intended task goal (task performance errors, TPEs). While years of work has

demonstrated that we can learn to adjust our motor plans to account for such perturbation-

induced errors, a gap exists in our understanding of the relative influence of various errors and

the mechanisms they stimulate to enable such learning.

Experimental investigations and theoretical models suggest that SPEs drive iterative changes

in motor plans by implicitly updating our internal models of the relationship between actions

and their sensory consequences [6–8]. Implicit learning driven by SPEs has some distinct fea-

tures: it evolves slowly [9], asymptotes similarly for different error magnitudes [10,11], can be

quite inflexible [12], and is impervious to verbal instruction [3,6]. Learning from SPEs also

seems to be dependent on intact cerebellar and posterior parietal circuits [1–3]. Thus, there

seems to be a reasonably strong body of knowledge about how SPEs influence motor output.

In contrast, controversy exists about how outcomes such as task success or failure influence

the updating of action plans. One possibility is that performance failures, or TPEs, trigger

deliberative, volitional strategies to reduce perturbation-induced errors [13]. In particular,

missing a reach target may make people consciously aware of the perturbation and so they

might deliberatively adjust their aim to compensate for that error. However, alternative views

have emerged from work examining the influence of binary success/failure information on

error-based learning [14–16]. These studies have generally shown that learning is greater when

TPEs occur compared to when they do not. Such findings can be explained by including a sec-

ond, TPE-driven implicit process in computational models of learning [16,17]. Thus, in this

framework, TPEs independently induce implicit learning, and this process additively com-

bines with the SPE-mediated implicit component to determine the net change in action plans.

A third possibility is that learning is actually only SPE-driven, but is modulated by TPEs

[16,18]. Specifically, when a movement is unsuccessful, a gain factor amplifies learning driven

by SPEs (or alternatively, a positive reinforcement signal associated with a successful move-

ment dials it down). Given these competing hypotheses—one positing deployment of voli-

tional strategies, another postulating the stimulation of an independent implicit process, and a

third advocating for modulation—a clear understanding of the mechanistic effects of task out-

comes has remained elusive.

In this work, we set out to address this gap and probe how different error sources influence

the planning of future actions. In our first experiment, we manipulated target size and location

(through target “jumps”) but kept visual feedback of hand motion (a cursor displayed on a

screen) clamped towards the original target location. Aiming to the new location in the pres-

ence of the cursor clamp induced SPEs, but a binary goal-related TPE was either present or

not depending on whether the cursor either hit (no TPE) or missed (TPE present) the jumped

target. We found greater learning when the TPE occurred than when it did not, a finding that

could be accounted for by both the “independent” and the “interacting (modulatory)” mecha-

nistic frameworks. In our second experiment, we hypothesized that given the insensitivity of

implicit learning to verbal instruction [3,6], learning should be evident even under conditions

where TPEs (but not SPEs) are present, but subjects are explicitly instructed to ignore them.

PLOS BIOLOGY Dissociable error-sensitive mechanisms in sensorimotor learning

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002703 July 3, 2024 2 / 22

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pbio.3002703


Note that the Interaction model predicts no learning here, but the Independent Error model

predicts that learning would indeed occur. We found no learning, leading us to set aside the

idea that task-related errors independently trigger implicit mechanisms. In our third experi-

ment, we took a closer look at the idea that SPEs and TPEs interact, and tested whether the

presence of a TPE leads to a default modulation of SPE-driven learning. We again used cursor

clamps and target jumps to induce SPE-driven learning in the presence or absence of TPEs,

but unlike Experiment 1, instructed subjects to reach to the original target location. Here, the

Interaction framework predicts learning differences between conditions in which TPEs are

present versus not. But, we did not find any, leading us to reject this “interaction” possibility as

well. We finally turned to the possibility that TPEs set in motion deliberative strategies, and

indeed found this to be the case in our fourth experiment in which target-jump-induced TPEs

were present but SPEs were not.

In sum, our results fail to support the view that task-related performance failures, or TPEs,

independently induce implicit learning; we rather note that implicit learning is driven only by

limb-related SPEs. We also do not find evidence favoring the view that TPEs readily modulate

SPE-driven learning. Rather, our results advocate that TPEs trigger time-consuming strategic

processes that are responsive to verbal instruction and suggest that sustained task success

reduces or eliminates strategy use during learning. Flexibly combining SPE-based implicit pro-

cesses and TPE-driven strategic action selection could then be a way for the sensorimotor sys-

tem to optimize how much and how rapidly we learn from errors.

Results

Experiment 1

In our first experiment, 2 groups of participants performed point-to-point reaching movements

in 3 blocks: baseline, learning, and washout. The hand was not directly visible during the reach,

but visual feedback was provided by means of an on-screen cursor (Fig A in S1 Text). On each

learning trial, the target was shifted or “jumped” to a location 10˚ counterclockwise to the origi-

nal location. Subjects were expected to reach to this new target location. For one group (“Hit”),

this jump was accompanied by an increase in target size; for the other group (“Miss”), the target

size was not changed (Fig B in S1 Text). Critically, on the learning trials, motion of the feedback

cursor was always clamped in the direction of the original target. This clamp ensured that the

cursor always missed the new (jumped) target for the Miss group. This failure to strike the tar-

get with the cursor resulted in a TPE in the Miss participants. However, for the Hit group, the

increase in target size ensured that the cursor always hit it, and thus, no TPE occurred. Impor-

tantly, however, both groups experienced an SPE early on, which occurred as subjects directed

the hand to (the center of) the new target (and expected the cursor to follow), but the cursor

remained clamped in the direction of the original target. In sum, the Miss group experienced

both an SPE and a TPE, while the Hit group experienced only an SPE.

When exposed to target shifts on learning trials, Hit participants began gradually aiming

towards the new target but did not go outside the target envelope (Fig 1A). In contrast, the

Miss participants (Fig 1B) quickly began directing the hand to the new target, but remarkably,

continued to aim well beyond it, with some saturation emerging towards the end of the learn-

ing phase. This pattern was also seen in the group data (Fig 1C). During early learning, the

mean hand deviation of the Miss participants was already greater than zero

(mean = 3.870 ± 1.727, CI = [0.166, 7.573]). Additionally, this deviation was greater than that

seen in the Hit participants, but the group difference was not statistically reliable (Fig 1D; Hit

mean: 0.910 ± 0.630˚, t(17.66) = −1.61, p = 0.125, Cohen’s d = −0.588) perhaps due to higher

variability in the Miss participants’ reaches.
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Fig 1. Hand trajectories of example subjects of the (a) Hit and (b) Miss groups during the learning block. Earlier trials are in lighter shades. The first 10 cm of the

movement (corresponding to the target distance) are shown. The cursor path is indicated by green arrows. (c) Group averaged hand deviation (relative to the original

target direction) across cycles of the experimental blocks. Shaded regions denote SEM. (d) Hand deviation during the early learning phase. (e) Group averaged RT
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The Miss group also showed a large change in reaction time (RT) from late baseline levels com-

pared to the Hit group (Fig 1E). In fact, RTs continued to be elevated for the Miss participants

throughout the learning block when compared to the Hit group, although a decreasing trend was

seen for the Miss participants as learning progressed. Statistically, there was a larger change in RT

(relative to baseline) for the Miss group during the early learning phase compared to the Hit

group (Fig 1F, t(18.94) = −3.07, p = 0.0063, Cohen’s d = −1.123). Notably, RT for Hit participants

did not differ from baseline at this time point (t(14) = 0.25, p = 0.806, Cohen’s d = −0.065).

As learning progressed, changes in reach direction occurred in both groups. However, by the

end of learning, the Miss group had deviated much more (Fig 1G, t(23.99) = −4.878, p< 0.001,

Cohen’s d = −1.781). Critically, it was not the case that the Hit group showed no change; a direct

comparison between the early and late learning phases of this group revealed a clear increase in

hand deviation (t(14) = −2.726, p = 0.016, Cohen’s d = −0.704). However, relative to Miss partici-

pants, this learning was conspicuously attenuated. Moreover, we found no relationship between

the change in hand angle from late baseline to early learning, and the change over the remainder

of the learning block (Fig A in S2 Text; Hit: R2 = 0.004, p = 0.812; Miss: R2 = 0.082, p = 0.3). The

absence of such an association suggested that changes in hand angle beyond the initial stage were

largely independent of changes that might have occurred early on.

During early washout (without cursor feedback), hand deviation continued to be large for

the Miss group (13.978 ± 1.740˚) indicating the presence of after-effects. After-effects were

also evident in the Hit group (3.960 ± 1.792˚, CI = [0.117, 7.803]) although they were smaller

(Fig 1H; t(27.98) = −4.011, p< 0.001, Cohen’s d = −1.465). Importantly, these after-effects

were sustained for an extended period, with both groups continuing to show large deviations

even after cursor feedback was restored (Miss: 8.026 ± 0.966˚, CI = [5.955, 10.097]; Hit:

3.191 ± 1.442˚, CI = [0.1, 6.283]). In fact, for the Miss group, after-effects did not return to

zero even after all washout trials had ended (mean = 5.114 ± 1.036˚, CI = [2.891, 7.336]).

Mathematical modeling

What drives the larger change in hand angle in the Miss (the group that experienced TPEs)

compared to the Hit group (the group that does not experience TPEs)? To address this, we

considered 2 mathematical models that include the influence of both SPE and TPE on iterative

changes to motor output [16].

In the first “Independent Error” model, the presence of TPEs sets off an independent

implicit learning process that combines with SPE-mediated implicit learning to produce the

net change in motor output on a trial-by-trial basis. The equations governing the trial-wise

updates in this framework are the following:

XSPEðnþ 1Þ ¼ ASPE∗XðnÞ þ BSPE∗SPEðnÞ ð1Þ

XTPEðnþ 1Þ ¼ ATPEðnÞ þ BTPE∗TPEðnÞ ð2Þ

XðnÞ ¼ XSPEðnÞ þ XTPEðnÞ; ð3Þ

where XSPE(n) and XTPE(n) denote the state of SPE-driven and TPE-driven implicit learning

components on the nth trial, respectively, while X(n) denotes the net motor output. ASPE and

across cycles of the experimental blocks. (f) Change in RT during the early learning phase relative to late baseline. (g) Hand deviation during the late learning and (h)

early washout phases. Dots represent individual participants. (i) Independent Error model and (j) Interaction model fits to the data of Experiment 1. Solid lines

represent the experimentally observed hand deviation while dashed lines represent the model fits. Shaded region denotes SEM. Source data can be found at https://doi.

org/10.6084/m9.figshare.25907746.v1.

https://doi.org/10.1371/journal.pbio.3002703.g001
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ATPE are retention factors that determine how much of the prior learning is carried over to the

next trial, while BSPE and BTPE are learning rates for the SPE- and TPE-driven implicit mecha-

nisms, respectively.

In the second “Interaction” model, TPEs cannot by themselves induce implicit learning,

but can only modulate implicit learning induced by SPEs. The equations governing the trial-

by-trial updates to motor output then are the following:

Xðnþ 1Þ ¼ GA∗ASPE∗XðnÞ þ GB∗BSPE∗SPEðnÞ: ð4Þ

Here, the state update is driven only by SPEs, but the modulation factors GA and GB (for

ASPE and BSPE, respectively) modulate this learning when TPEs are present. For fitting, the val-

ues of GA and GB are assumed to be one when TPEs are present, while they are allowed to vary

when TPEs are absent.

Independent error model fit. We first fit the Independent Error model to the data from

Experiment 1 (Fig 1I). To begin, since the Hit participants did not experience TPEs, only the

SPE-based component (equation 1) was fit to data from the Hit participants. We obtained a

good fit (R2 = 0.81, RMSE = 0.7553) that yielded parameter estimates as ASPE = 0.8184 and

BSPE*SPE = 0.8441. We then used these estimates in the combined model that was fit to the

data of the Miss group and estimated the value of ATPE and BTPE*TPE. Again, we obtained a

good fit (R2 = 0.90, RMSE = 2.6833) with the parameter values as ATPE = 0.7987,

BTPE*TPE = 3.9622.

Interaction model fit. The Interaction model assumes that the learning is only SPE driven

but the presence of a TPE brings about its modulation. To estimate model parameters, we fit

this model to the data of the Miss group, while keeping GA and GB fixed at 1 (Fig 1J). We again

obtained a good fit (R2 = 0.89, RMSE = 2.819), and parameter values were estimated as ASPE =

0.6735, and BSPE*SPE = 7.2607. We then used these estimated parameter values to fit the

model to the mean data of the Hit group and probe how GA and GB would change. We

obtained R2 = 0.7938 and RMSE = 0.7724, while GA and GB were estimated to be 1.1534 (CI =

[0.2147, 1.4347]) and 0.1401 (CI = [0.0249, 0.4913]), respectively (confidence intervals derived

from fits to 10,000 bootstrap samples of data from this group). Importantly, the confidence

intervals of the parameter values indicated that while GA was not different from 1, GB differed

significantly from this value. This indicated that modulation of the SPE-driven learning (the

BSPE*SPE parameter) could occur via TPEs.

Thus, our modeling effort revealed that both, the Independent Error model as well as the

Interaction model could account for the differences between the Hit and Miss groups of

Experiment 1.

Experiment 2

The success of both models in accounting for the results of Experiment 1 presented a conun-

drum. In particular, the success of the Independent Error model suggested that it was at least

mathematically possible to account for the higher learning in the Miss group via an implicit

mechanism triggered by TPEs that acted in concert with a different, SPE-driven implicit pro-

cess. A pivotal empirical prediction of this framework is then the following: since implicit

learning is impervious to verbal instruction [3,6], some learning (change in hand angle) should

occur even in conditions where only a TPE is present, but participants are explicitly instructed

to ignore it. We tested this hypothesis in our second experiment. We recruited 2 groups of par-

ticipants that underwent training like the Miss group of Experiment 1 (TPEs present) but were

told to ignore the (10˚ or 20˚) jump-induced TPE and reach to the original target location.

Notably, as in Experiment 1, the visual cursor was clamped in the direction of the original
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target. Since subjects were told to move towards the original target location and the cursor also

followed in the same direction, the classically defined SPE was not induced. That is, since there

was no mismatch between the expected and actual cursor motion, the SPE was zero. To reiter-

ate, in this second experiment, subjects were asked to ignore the non-zero TPE resulting from

the cursor missing the jumped target while they experienced no SPE. We expected that if the

TPE is capable of inducing implicit learning independently, then a change in hand angle must

occur despite the instruction to ignore it.

What do our 2 models predict in these conditions? The Independent Error model suggests

that learning would still progress because the TPE-based implicit process would not be sup-

pressed by verbal instruction. In contrast, the Interaction model predicts no change in hand

direction because in this framework, what drives learning is an SPE, which was absent in this

case (Fig 2A). Remarkably, our experimental data revealed little change in reach direction. As

can be seen in Fig 2B and 2C, the hand was almost always directed towards the original target,

even though it had been extinguished and a new one was displayed at a location 10˚ (Fig 2B)

or 20˚ (Fig 2C) clockwise from it. The absence of a change in reach direction was consistent in

the group-averaged data as well (Fig 2D). During early learning, hand deviation (Fig 2E)

remained close to zero for the 10˚ (−0.154 ± 0.29˚, CI = [−0.777, 0.468]) as well as the 20˚

(0.687 ± 0.378˚, CI = [−0.123, 1.498]) groups. This continued to be the case at the end of

Fig 2. (a) Predictions of the Independent Error model and Interaction model for Experiment 2. Since there is no SPE, the

Interaction model would predict no learning as shown by the dotted line. The Independent Error model, represented by the solid

line, suggests normal learning. Hand trajectories of example subjects in the (b) 10˚ and (c) 20˚ target jump groups during the

learning block. Earlier trials are in lighter shades. The first 10 cm of the movement are shown. The green arrows indicate the

clamped cursor trajectory. (d) Group-averaged hand angle deviation across cycles of different blocks. Shaded regions denote

SEM. (e) Mean hand deviation during the early and late learning stages, as well as the early washout phase. Dots represent

individual subjects. Source data can be found at https://doi.org/10.6084/m9.figshare.25907746.v1.

https://doi.org/10.1371/journal.pbio.3002703.g002
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learning as well (Fig 2E; 10˚: −1.843 ± 0.887˚, CI = [−3.747, 0.06], 20˚: −1.182 ± 0.863˚, CI =

[−3.033, 0.67]). Furthermore, after-effects on the early no-feedback washout trials were absent

in both groups (Fig 2E; 10˚: −0.951 ± 1.183˚, CI = [−3.488, 1.585]; 20˚: −0.648 ± 0.708˚, CI =

[−2.167, 0.871]), which continued to be the case in the second washout block with visual feed-

back as well (10˚: −1.051 ± 0.702˚, CI = [−2.556, 0.453]; 20˚: −0.033 ± 0.612˚, CI = [−1.345,

1.278]).

Thus, when instructed to ignore performance failures, no adaptive changes in reach behav-

ior occurred; this would not be the case if these task errors were driving implicit tuning of

reach plans. This result effectively ruled out the Independent Error framework as an explana-

tion of the findings from Experiment 1. In other words, TPEs cannot independently induce

implicit learning; rather an SPE is required for implicit learning to be set in motion.

Experiment 3

The results of Experiment 2 helped us disambiguate the Independent Error and the Interaction

models and appeared to support the latter. However, they might not directly substantiate the

Interaction model because no SPE was present in this experiment, and therefore any automatic

modulation of SPE-driven learning in the presence of a TPE cannot be ascertained. To deci-

sively test whether SPE-driven learning is influenced by TPEs, we performed a third experi-

ment in which 2 groups of subjects reached under 30˚ counterclockwise error clamp

conditions; we expected that this clamp-induced SPE would bring about an implicit change in

hand angle in both groups. However, for one of the groups (“Clamp+Jump”), the reach target

was also jumped 30˚ counterclockwise on each learning trial, which caused the clamped cursor

to always strike it at the end of the stipulated movement distance. Since the cursor always hit

the target, no TPE occurred. In the other group (“Clamp”), the target remained stationary and

thus the (clamped) cursor never struck it, resulting in a TPE. This arrangement allowed us to

probe if and how SPE-mediated learning induced by the error clamp changed in the presence/

absence of the TPE. If the TPE modulates SPE-mediated learning as a default, there would be

differences in how much the hand angle changes in the 2 groups. Such a difference is also pre-

dicted by the Interaction model. Specifically, the model predicts a large change in hand angle

for the Clamp group which experiences TPEs, but attenuated learning in the Clamp+Jump

group which does not experience them (Fig 3A).

Remarkably, our experimental data revealed no group differences. A clear shift in the hand

angle over the learning phase was evident in both groups (Fig 3B and 3C), which was confirmed

in the group data as well (Fig 3D). RT data also did not show any group differences, with RT

increasing initially for both groups perhaps due to the introduction of the novel clamped feed-

back condition, but reducing rapidly thereafter as learning progressed (Fig 3E). A closer look at

the hand deviation data revealed that the groups did not differ during the early learning phase

(Fig 3F; Clamp: 1.653 ± 0.580˚, Clamp+Jump: 1.999 ± 0.685˚, t(27.261) = −0.385, p = 0.703, CI

of mean difference = [−2.184, 1.492], Cohen’s d = −0.141, BF10 = 0.364). By the end of learning,

both groups showed robust changes in hand angle (Fig 3G; Clamp: 8.087 ± 1.323˚, t(14) = −-

4.839, p< 0.001, Cohen’s d = −1.249; Clamp+Jump: 9.464 ± 1.836˚, t(14) = −4.081, p< 0.001,

Cohen’s d = −1.054), but again, group differences were not significant at this time point (t(28)

= −0.608, p = 0.548, CI of mean difference = [−6.011, 3.259], Cohen’s d = −0.222, BF10 = 0.396).

As was the case in Experiment 1, there was no association between the change in hand angle

from late baseline to early learning and the change over the rest of the learning phase (Fig B in

S2 Text; Clamp: R2 = 0.127, p = 0.192; Clamp+Jump: R2 = 0.053, p = 0.409).

During the early no-feedback washout trials, large after-effects were present in both groups.

Hand deviation of the Clamp group on the early after-effect trials was not different from late
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Fig 3. (a) Predictions of the Interaction model for Experiment 3. This model predicts a robust change in hand angle for

the Clamp group, but attenuated learning for the Clamp+Jump group. Hand trajectories of example subjects of the (b)

Clamp and (c) Clamp+Jump groups during the learning block. Earlier trials are in lighter shades. The first 10 cm of the

movement are shown. The cursor path is indicated by green arrows. Group averaged (d) hand deviation (relative to the

original target direction) (e) and RT across cycles of the experimental blocks. Shaded regions denote SEM. Hand

deviation during the (f) early learning, (g) late learning, and (h) early no-feedback washout phases. Dots represent

individual participants. (i) Interaction model fits to the data of Experiment 3. Solid lines represent the experimentally

observed hand deviation (shaded region denotes SEM), while the dashed lines show the model fits. Source data can be

found at https://doi.org/10.6084/m9.figshare.25907746.v1.

https://doi.org/10.1371/journal.pbio.3002703.g003
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learning (Fig 3H; mean = 7.185 ± 0.752˚, t [14] = −1.114, p = 0.284, Cohen’s d = −0.288),

which was also the case for the Clamp+Jump group (mean = 8.434 ± 1.336˚, t [14] = −1.069,

p = 0.303, Cohen’s d = −0.276). A direct comparison of this early after-effect magnitude

between the 2 groups indicated no significant differences (t(28) = −0.815, p = 0.422, CI of

mean difference = [−1.25, 1.533], Cohen’s d = −0.298, BF10 = 0.443). Furthermore, after-effects

persisted even when cursor feedback was restored (Clamp: 6.559 ± 0.533˚, CI = [5.415, 7.703];

Clamp+Jump: 6.744 ± 1.017˚ CI = [4.563, 8.926]), with no significant group differences (t

(21.16) = −0.161, p = 0.873, CI of mean difference = [−2.538, 2.167], Cohen’s d = −0.059, BF10

= 0.348). Remarkably, hand deviation did not reach baseline levels even on the last washout

cycle for either group (Clamp: 1.762 ± 0.626˚, CI = [0.420, 3.103]; Clamp+Jump:

2.779 ± 0.655˚, CI = [1.373, 4.184]).

In sum, the experimental data revealed that despite experiencing a TPE, the overall perfor-

mance of the Clamp group was not different from that of the Clamp+Jump group which had

not encountered any TPE.

Interaction model fit. We then fit the Interaction model (equation 4) to the data from

Experiment 3 to probe for any potential groups difference in model parameters (Fig 3I). First,

we fit the model to the mean data of the Clamp group while holding GA and GB at 1. We

obtained a good fit (R2 = 0.8242, RMSE = 1.3519), and model parameters were estimated as

ASPE = 0.9199 and BSPE*SPE = 0.7181. We then used these parameter values and fit the model

to the data from the Clamp+Jump group to estimate GA and GB. Note that if the estimated val-

ues of GA and GB from this latter fit differ significantly from 1, it would imply that the TPE

experienced by the Clamp+Jump group has some influence on the SPE-mediated learning

induced by the error clamp. However, we obtained GA and GB estimates as 0.9986 (CI =

[0.9667, 1.0292]) and 1.1019 (CI = [0.6118, 1.6640]), respectively (confidence intervals derived

from fits to 10,000 bootstrap samples of data from this group). This suggested that the TPE did

not produce any modulatory effect.

Experiment 4

Data from our first 3 experiments and our modeling efforts suggested that experiencing TPEs

neither triggered independent implicit learning mechanisms (Experiments 1 and 2) nor did

their presence automatically modulate implicit learning set in motion by SPEs (Experiment 3).

Yet, as Experiment 1 showed, there was a much larger change in hand angle when TPEs were

present and subjects were expected to respond to them (Miss group) compared to when they

did not occur (Hit group). How then do TPEs contribute? In the Introduction, we presented 3

possibilities: first that TPEs set off independent implicit mechanisms, second that they modu-

late SPE-driven implicit learning, and third that they induce strategic re-aiming to rapidly

reduce the imposed errors. Having ruled out the first 2, we considered the final possibility that

the occurrence of TPEs triggers the use of deliberative strategies. Our final experiment was

designed to test this idea. In Experiment 4, 2 groups of subjects made reaching movements

under conditions in which cursor feedback was always veridical with the hand, thereby elimi-

nating any SPE. However, one group experienced a 10˚ counterclockwise target jump with

respect to the original target, while the other experienced a 30˚ clockwise jump, thus creating

TPEs early on. Subjects in both groups were instructed to reach to the on-screen target, but at

the end of learning and just before the after-effects block, the 30˚ jump group received the

additional instruction that the target would stop jumping and that they should bring their

hand to the original target location. This instruction was not given to the 10˚ jump group. We

predicted that subjects in both groups would show increased RT and fleeting after-effects, clas-

sic signatures of a re-aiming strategy [19].
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Fig 4A shows the hand trajectories of example subjects from the 10˚ (top) and 30˚ (bottom)

jump groups, respectively, while Fig 4B shows the group-averaged change in hand angle over

the course of the experiment. It is evident that on the learning trials, the hand was directed

towards the displaced target within a few trials but did not go substantially beyond it. Further,

as shown in Fig 4C, RT during the learning phase increased for both groups (10˚: top, 30˚: bot-

tom) and continued to remain elevated relative to late baseline trials.

Statistically, for both groups, there was a clear change in hand angle early on itself (10˚: Fig

4D, t(9) = 3.76, p = 0.0045, Cohen’s d = 1.189; 30˚: Fig 4G, t(14) = 5.352, p< 0.001, Cohen’s

d = 1.382). The increase in RT during the early phase (10˚: Fig 4E, 96.17 ± 24 ms; 30˚: Fig 4H,

229.27 ± 44.55 ms) was also statistically robust (10˚: t(9) = 4.015, p = 0.003, Cohen’s d = −1.27;

Fig 4. (a) Hand trajectories of example subjects groups during the learning block. Earlier trials are in lighter shades. The first

10 cm of the movement are shown. Group averaged (b) hand deviation and (c) RT across cycles of different experimental

blocks. Shaded regions are SEM. In all panels, the upper row represents 10˚ target jump group while the lower row represents

30˚ jump group. (d) Change in hand angle during early and late learning relative to the late baseline stage for the 10˚ group,

and (g) hand angle during early and late learning stages for the 30˚ group. (e, h) Group-averaged RT during the late baseline

and early learning phases along with the RT difference. (f, i) Group-averaged hand deviation on the early no-feedback and

feedback washout trials. In each case, dots are individual participants of the 10˚ (green) and 30˚ (blue) groups. Source data can

be found at https://doi.org/10.6084/m9.figshare.25907746.v1.

https://doi.org/10.1371/journal.pbio.3002703.g004
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30˚: t(14) = 5.146, p< 0.001, Cohen’s d = 1.329). By the end of learning, the mean change in

hand angle relative to the late baseline stage was 9.014 ± 0.653˚ and 28.883 ± 1.008˚, both of

which were remarkably close to the magnitude of the jumps that the 2 groups experienced.

Furthermore, in sharp contrast to Experiments 1 and 3, the early changes in hand angle were

negatively correlated with changes over the rest of the learning block (Fig C in S2 Text; 10˚: R2

= 0.587, p = 0.0097; 30˚: R2 = 0.8, p< 0.001). In other words, if the initial change in hand angle

was large enough to offset the error, no further learning occurred.

A dichotomy emerged in the after-effects of the 2 groups on the early no-feedback washout

trials. For the 10˚ jump group (Fig 4F), the hand remained somewhat deviated early on

(mean = 3.95 ± 0.566˚, CI = [2.667, 5.227]), but for the 30˚ jump group (Fig 4I), there was an

immediate return to baseline (mean = 1.595 ± 0.777˚, CI = [−0.072, 3.262]). By the end of the

first washout block however, hand deviation of even the 10˚ group reached near zero

(mean = 0.757 ± 0.526˚, CI = [−0.434, 1.948]) and the 30˚ group continued to maintain similar

levels (mean = −0.028 ± 1.002, CI = [−2.178, 2.122]). There was no further change in hand

angle over the remaining washout trials and hand deviation at the end of the feedback washout

trials hovered around zero for both groups (10˚: mean = −0.245 ± 0.452˚, CI = [−1.266, 0.777];

30˚: 0.900 ± 0.654, CI = [−0.503, 2.303]). This suggested that after-effects of both groups were

highly labile, but the 30˚ group showed a very rapid return to baseline since they were able to

disengage from the strategy when explicitly instructed prior to the start of the washout block

(also see Fig A in S3 Text). Additional analyses involving a direct comparison of this decay in

these 2 TPE-only groups to that of the Hit and Miss groups of Experiment 1 confirmed the

fleeting nature of the after-effects (S3 Text). This result, complemented with the robust

increase in RT on the early learning trials, suggested that subjects accounted for the jump-

induced TPEs via time-consuming re-aiming strategies that were rapidly disengaged when

they were no longer relevant.

Discussion

Error is believed to be the currency that drives sensorimotor adaptation to novel task condi-

tions. We investigated the influence of different error signals on adaptive changes in motor

output; we specifically asked how limb-related SPEs and task-related TPEs contribute to learn-

ing. Our findings are at odds with the notion that performance failures bring about implicit

recalibration of action plans [16,17]; rather, we observe that implicit learning is engaged only

by SPEs. We also do not find evidence that SPE-driven learning is obligatorily modulated by

the occurrence of TPEs [18]. Rather, TPEs appear to set in motion distinct, verbally sensitive

strategic action selection mechanisms to rapidly offset the error. The combination of TPE-

driven strategies and SPE-driven implicit recalibration then likely determines how much and

how rapidly our future action plans are tuned based on errors that we experience.

A hallmark of implicit recalibration is its imperviousness to verbal instruction [3,6]. That is,

people will demonstrate implicit learning even when they are explicitly asked to ignore the

error. However, rather than insensitivity, we found remarkable enslaving of TPE-induced

responses to verbal directives. Consider the subjects who were expected to respond to the TPE

by aiming to a new target location—the Miss group of Experiment 1 and the 2 jump groups of

Experiment 4. All these participants demonstrated an increase in RT and a rapid change in

hand direction on the early learning trials, both of which are signatures of deliberative strategy

use to offset the error. Furthermore, during washout, the participants of Experiment 4, who

experienced only jump-induced TPEs, showed transient (10˚ jump) or negligible (30˚ jump)

after-effects, indicating almost immediate disengagement from the learned behavior, another

robust feature of strategy use. Even more remarkable was the performance of subjects in
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Experiment 2, who were instructed to ignore the TPE. In complete compliance with the

instruction, these subjects showed a notable lack of change in reach direction and no after-

effects. Taken together, these findings refute the notion that TPEs, at least those induced via

target shifts, independently induce implicit recalibration, and strongly advocate that responses

to TPEs involve deliberate, strategic selection of actions that bring about a change in move-

ment direction. This ability to either deploy or disengage strategies “on call,” despite being a

time-consuming process, provides a powerful means to adjust motor behavior to task

demands. While the specific nature of these strategies remains to be elucidated, potential can-

didates include volitional, goal-directed control [19] or mental rotation of the original move-

ment plan [20,21].

Besides compensating for performance errors as shown here, recent work has revealed

another major advantage of strategy use during learning. Notably, employing deliberative re-

aiming could be the gateway to long-term storage of updates made to actions plans, and

expression of the acquired memory as “savings”. More specifically, strategies that lead to

rewarding task outcomes could be reinforced and recalled later, resulting in faster learning

upon re-exposure to the original learning conditions [22,23]. In contrast, if strategy formation

is prohibited by limiting movement planning time, by preventing exposure to performance

errors, or by forcing only implicit learning, savings is blocked [24,25]. This suggests that

unsuccessful task outcomes and associated strategy use are essential for forming long-term

motor memories.

While our results argue that TPEs stimulate volitional strategy use, a pertinent question is

why don’t TPEs induce implicit recalibration? One possibility is that for recalibration to occur,

the sensorimotor system must attribute the error to some internal source, such as a limb-

related execution failure [26,27]. It may be that TPEs, particularly those induced via target

shifts, are instead seen as resulting from an external cause [26]. The concomitant failure to

accomplish the task goal could then be seen as arising from an action selection error (rather

than an execution error), which then only requires the selection of a different action on the

next trial (i.e., re-aiming) rather than updates to our internal models of the body and the

world. In case of consistently occurring TPEs, action selection could be enhanced by learning

the task structure (extracting as much information about the environment as possible) instead

of engaging the slower implicit system [19]. Once such learning has occurred, actions could be

guided by representations of the outcomes they produce and what these outcomes are worth,

which, in fact, is precisely what is advocated in model-based reinforcement learning theory. It

is also known that such algorithms can be adjusted rapidly to account for outcome revaluation

as well as changes in the evironment and action goals [19,28,29]. The quick, instruction-driven

disengagement and return to near-baseline behavior on the after-effect trials of Experiment 4

is well-aligned with this idea and suggests that “learning” from TPEs could proceed in this

fashion.

Is it possible that TPEs induced through target jumps also give rise to use-dependent execu-

tion biases in addition to driving deliberative changes in hand movement direction [30,31]? A

careful examination of the 30˚ jump group of Experiment 4 may provide some insight into

this because in this group, there remained a small “after-effect” of approximately 1.5˚ on aver-

age even after the explicit component was disengaged through instruction. The point is that

subjects learn to move towards the new target location (consistently approximately 30˚ away

from the original target in this case), and these movements could be seen as becoming “habit-

ual.” The early set of movements to the original target at the beginning of the no-feedback

washout block would then act as “probes,” and the small “after-effect” may reflect execution

biases wherein reaches in the direction of the original target are slightly deviated towards the

previously adapted, shifted target direction. We note however that we used 4 different target
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directions covering 4 quadrants on the learning trials rather than a single habitual target as in

most studies of use-dependent learning. Furthermore, unlike typical experiments designed to

test use-dependent biases, we did not require a large number of learning trials and no prepara-

tion time constraints were imposed. Finally, there was no consistent pattern across subjects in

terms of the bias, with “after-effects” ranging from −2.396˚ to 6.906˚ (also see Fig 4I). Had this

been a true bias, we would have expected a consistently positive hand angle across all subjects.

The mean after-effect of approximately 1.5˚ was also not different from zero. Collectively,

these factors do not appear to support the view that responses to TPEs induced via target

jumps drive use-dependent execution biases on top of deliberative adjustments to reach

direction.

Our current findings indicate that implicit learning is stimulated only when an SPE is pres-

ent. In the presence of a concurrent TPE that subjects are expected to respond to, this implicit

learning likely rides on top of the strategic adjustments to reach direction that the TPE sets in

motion. This is precisely what we believe is the case with the Miss subjects of Experiment 1. As

we noted earlier, our data from this group suggest that their early response involves explicit re-

aiming to the shifted target location. This re-aiming then creates an SPE as people expect the

cursor to follow the hand being aimed to the new target, while it remains clamped in the direc-

tion of the original target. The occurrence of this SPE in turn sets in motion implicit recalibra-

tion, which dominates to bring about further changes in hand angle and produce after-effects

(see S2 Text for more details). Note that this SPE is just like a “classic” SPE that occurs as peo-

ple move in an instructed direction while feedback about that motion is shown in another.

However, our novel task design enables us to create it “on the fly” by requiring the Miss sub-

jects to (first) respond to the TPE. Importantly, in this scheme, when strategy use is not

employed—either due to verbal instruction or the absence of TPEs—net updates to action

plans are determined entirely by the implicit process. This likely explains the attenuated learn-

ing in the Hit group of Experiment 1 as well as the Clamp and Clamp+Jump subjects in Exper-

iment 3, and is perhaps also the basis for the reduced learning seen in other studies in which

performance errors are eliminated [14–16].

Relatedly, in Experiment 2, although subjects experience a TPE like the Miss group of

Experiment 1, they are asked to ignore it and reach the orignal target location. These subjects

do not re-aim and no SPE is created since the hand and the clamped cursor are both directed

towards the original target. Because no SPE occurs, no adaptive response occurs even though

TPEs are present. These findings are reminiscent of classic work showing that in the presence

of prediction errors, humans compulsively update their action plan in an implicit manner

even if such learning bears a cost on performance [6]. In line with this result, stroke patients

with lesions to right inferior frontal and dorsolateral prefrontal cortices, who demonstrate

clear performance errors when exposed to a perturbation, have no problem implicitly updating

their reach direction in response to SPEs [32]. Tellingly, recent work [33] suggests that the pre-

diction error dominance may be so strong that task outcomes may have negligible influence,

at least in canonical learning paradigms. Our results also strengthen this view.

We also did not find any default modulatory influence that the occurrence of TPEs pro-

duces on implicit recalibration engaged by SPEs. In Experiment 3, neither the rate nor the

amount of implicit learning was influenced by the presence (Clamp group) or absence (Clamp

+Jump group) of TPEs. This is at odds with recent work that also employed target jumps to

induce TPEs but found evidence for modulation, albeit using within-subject, trial-by-trial

designs [18,34]. How do we reconcile this difference? In typical trial-by-trial designs, TPEs are

varied on each trial while the SPE is kept fixed. This results in unpredictability not just in the

TPE magnitude, but also in the relationship between the SPE and TPE. This is not the case in

block designs wherein these aspects remain fixed. The unpredictability in trial-by-trial designs
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could make the errors more salient, whereas in block designs, the errors might lose their

salience. This difference might lead to modulatory effects in one but not the other. Another

possibility is that for the jump-induced TPE to interact with implicit learning, the location of

the shifted target needs to be in the vicinity of the original one, i.e., the TPE needs to be small.

While we employed a large jump of 30˚ in Experiment 3, jump magnitudes were much smaller

in work that showed a modulatory influence of TPEs on implicit recalibration [18,34]. In our

case, the TPE may be so large that it loses its relevance and participants simply ignore it. Fur-

ther, because it is always predictable, it may fail to capture attention, and implicit recalibration

can proceed unhindered and to the same extent as the no-jump condition. Other experimental

differences such as the timing of the jump, among others, could also be a factor. These possibil-

ities can be disambiguated in future studies.

The lack of modulation is not to say however that the presence of binary TPEs cannot

“influence” the net learning (change in hand angle). As our results clearly show, such an influ-

ence certainly arises when subjects are expected to respond to TPEs. This is specifically

reflected in the fact that although both groups experienced TPEs, the hand deviation of the

Miss group of Experiment 1 (which was expected to respond to the target shift and aim to the

new target) was nearly 3 times larger than that of the Clamp subjects of Experiment 3 (who

were instructed to ignore the jump and move their hand to the original target location). We

believe that the requirement to respond to the TPE triggered strategic adjustment of aiming

direction in the Miss group initially (followed by SPE-mediated implicit adjustments, as noted

above) resulting in a much larger net change than the Clamp group. Barring such an instruc-

tion, the TPE carries no influence, and net learning is driven completely by the SPE, which is

perhaps what transpired in the Clamp group. Our results thus point to a dichotomy in mecha-

nisms that the 2 error sources stimulate.

A final point must be made that the current study only examines the between-trial influence

of TPEs. That is, we only probed how errors experienced on the current trial influence hand

direction on the next trial. In contrast, studies that have focused on within-trial, online correc-

tions to TPEs induced through target shifts indicate that such corrections may be automatic

and occur even without conscious awareness [35–38]. In other words, online corrections to

jump-induced TPEs may well be implicit. However, one of the main points of the current

work is that between-trial learning induced by TPEs shows hallmarks of explicit, deliberative

learning. This is not to say that TPE-driven learning cannot become implicit with extensive

practice; this is indeed a feature of other forms of motor learning [39,40].

The distinction between learning processes that limb-related SPEs and goal-related TPEs

stimulate suggests that these mechanisms are likely neurally separable as well. While predic-

tion-error-based implicit learning depends on the cerebellum [2,3] and parietal cortex

[1,41,42], performance errors activate reward-sensitive cortico-striatal pathways [26,43]. Fail-

ure to obtain reward could trigger re-aiming via processes dependent on M1 and premotor

cortex [44,45]. Changes in these regions following learning [46,47] may thus partially reflect

changes in action plans driven by such processes. Future work could probe the communica-

tion between these 2 systems, which, neuroanatomically, could be sustained by reciprocal con-

nections between the basal ganglia and the cerebellum [48].

Materials and methods

Participants

A total of 115 healthy, right-handed adults (85 males, 30 females, age range: 18 to 40) partici-

pated in the study. None of the participants reported any neurological, orthopedic, or cognitive

impairments. All subjects gave written informed consent and were monetarily compensated
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for their time. The project was approved by the Institute Ethics Committee of the Indian Insti-

tute of Technology Gandhinagar and study procedures followed the principles expressed in

the Declaration of Helsinki.

Apparatus

The experimental setup consisted of a virtual reality system wherein participants sat facing a

digitizing tablet (GTCO Calcomp, Scottsdale, AZ) and used a stylus to make hand movements

on it (Fig A in S1 Text). A high-definition display was mounted horizontally above the tablet

and was used to show circular start positions and targets for the reach, as well as a feedback

cursor that would typically indicate the hand (stylus) location on the tablet. Participants looked

into a mirror which was placed between the display and the tablet, and which reflected the dis-

play screen. The mirror also functioned to block direct vision of the arm. This arrangement

enabled us to dissociate motion of the feedback cursor from that of the hand. For instance, cur-

sor feedback could be veridical with the hand, “clamped” in certain directions independent of

hand movement direction, or eliminated altogether.

Task procedure and experimental design

The general task involved making center-out reaching movements from a fixed start circle to a

target. To initiate a trial, participants first moved their hand (cursor) into the start circle. After

500 ms, the reach target was displayed along with a beep, which indicated to subjects that they

should begin moving. No constraint was placed on reaction time or movement time. Targets

were presented at a distance of 10 cm and could appear at one of 4 locations arranged radially

around a virtual circle in 90-degree increments (0˚, 90˚, 180˚, 270˚). The order of target appear-

ance was pseudo-random; a target appeared in one of the 4 locations only once over 4 consecu-

tive trials. This order was maintained across all participants. Cursor feedback, whenever

provided, was shown continuously (throughout the movement) for a distance of 10 cm at which

point the cursor “froze” and stayed in place even though the hand could continue moving.

Experiments 1 and 2. In Experiments 1 and 2, subjects performed 3 continuous blocks of

trials: baseline, learning, and washout. The baseline and washout blocks comprised of 2 sub-

blocks each. In the first “no-feedback” baseline sub-block (20 trials), the cursor was not shown

during the reach, while in the second “feedback” sub-block (20 trials), the cursor was shown

veridical with the hand. Following baseline, subjects experienced 240 learning trials, which

were followed by the 2 washout sub-blocks that were identical to baseline (20 no-feedback, 20

veridical feedback trials). Each subject thus performed 320 trials in all. During the baseline and

washout blocks, the originally displayed target (at one of the 0˚, 90˚, 180˚, 270˚ locations)

remained “stationary,” i.e., its location did not change during the trial. During the learning

block however, the target was displaced, or “jumped,” by 10˚ in the counterclockwise direction

on every trial. This was achieved by extinguishing the originally presented target as the hand

reached mid-way to it, and displaying a new target at the 10˚, 100˚, 190˚, or 280˚ locations.

Importantly, on these trials, the motion of the feedback cursor was always “clamped” in the

direction of the original target. In other words, the cursor always followed a direct, straight

path to the location of the original target regardless of the direction of hand motion.

Experiment 1. In Experiment 1, a start circle of 0.9 cm diameter and targets of 0.98 cm

diameter were used. Participants were randomly divided into 2 groups, “Miss” or “Hit” (n = 15

each), which differed in terms of the learning trials experienced. For the Miss group, the origi-

nal and the new target were of the same size, but for the Hit group, the diameter of the new tar-

get was increased from the original 0.98 cm to 4.6 cm (Fig B in S1 Text). Since cursor motion

was always clamped towards the original target, the target jump resulted in the cursor missing
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the new target for the Miss group, thereby resulting in a task performance failure (TPE). How-

ever, for the Hit participants, the increase in target size ensured that the cursor would still hit

the new target, thus preventing the task error. This hit was obviously not in the center of the

new target.

Subjects were explained the task conditions prior to start of the experiment. They were

instructed to reach towards the target on the screen. For baseline and washout trials, this obvi-

ously meant the original, fixed target. However, for learning trials, since the original target was

extinguished and a new one displayed in an easily predictable location, we expected subjects to

start aiming in the direction of the new target. However, no specific attempt was made to either

dissuade or encourage this behavior. In addition, subjects were also informed and made to under-

stand that on the jump (learning) trials, cursor motion would be fixed and would not depend on

the direction of their hand movements. They were also explicitly told to ignore this cursor feed-

back. A reminder to this effect was provided at the halfway point of the learning block.

Experiment 2. The overall task design for Experiment 2 remained identical to Experiment

1. We recruited 2 groups of subjects (n = 15 each), who experienced target jumps of different

amplitudes (10˚ or 20˚) while the cursor remained clamped towards the original target. This

led to conditions similar to the Miss group of Experiment 1 where the cursor did not strike the

new, shifted target thus creating TPEs. Critically however, both groups of subjects were now

also explicitly instructed to ignore the change in target location and reach towards the original

target location. As in Experiment 1, subjects were reminded of this halfway into the learning

block.

Experiment 3. In Experiment 3, subjects performed 400 center-out reaching movements

from a start circle (1.2 cm diameter) to 4 different targets (1.5 cm diameter) in 3 continuous

blocks: baseline (40 trials with veridical cursor feedback), learning (200 trials), and washout

(40 no-feedback and 120 veridical feedback trials). In the learning block, the cursor was visible,

but was rotated and clamped at 30˚ counterclockwise relative the target direction. That is, the

cursor always followed a fixed, rotated path relative to the target independent of the direction

of the underlying hand motion.

Participants of Experiment 3 were randomly divided into 2 groups, “Clamp” and “Clamp

+Jump” (n = 15 each) that differed in terms of the learning trials experienced. While the 30˚

cursor clamp was enforced for both groups during learning, the reach target was also jumped

for the “Clamp+Jump” participants to a location that was 30˚ counterclockwise to the original

target location. This was not the case for the “Clamp” group, for whom the original target

remained “stationary” and visible on the screen throughout. Given this arrangement, the

Clamp subjects always experienced both an SPE and a TPE since the rotated, clamped cursor

never hit the target. In contrast, the Clamp+Jump participants experienced an SPE due to the

clamp, but no TPE since the cursor always landed on the shifted target at the end of the stipu-

lated movement distance. The Clamp subjects were instructed to ignore the cursor and reach

to the on-screen target, while the “Clamp+Jump” subjects were additionally asked to ignore

the shift in target location and continue reaching to the original target location.

Experiment 4. In our fourth experiment, subjects once again performed 3 blocks of cen-

tre-out reaching trials: baseline, learning, and washout. Subjects were randomly divided in 2

groups. One of the groups (n = 10) performed 40 baseline trials (20 no-feedback, 20 feedback),

240 learning trials, and 40 washout trials (20 feedback, 20 no-feedback) from a start circle (0.9

cm diameter) to 4 different targets (0.98 cm diameter). The second group (n = 15) performed

40 feedback baseline trials, 200 learning trials, and 160 washout trials (40 no-feedback, 120

feedback) from a start circle of 1.2 cm diameter to targets of 1.5 cm diameter. For both groups,

cursor feedback, when shown, was always veridical with the hand. However, subjects in the

first group experienced a 10˚ counterclockwise target jump on the learning trials, while
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subjects in the second groups experienced a 30˚ clockwise target jump. Given that the cursor

was always veridical with the hand, no SPE occurred. However, the target shift would induce a

consistent TPE during the learning block in both groups.

Participants in both groups were instructed to reach to the target on the screen. This meant

the originally displayed target on the baseline and washout trials, and the new, shifted target

on the learning trials. Importantly, at the end of the learning block and prior to start of the

washout block, participants in the 30˚ jump group were given the additional instruction that

the target would stop jumping and that they should reach to the original target location. Such

an instruction was not given to the 10˚ jump group.

Mathematical modeling

We used different variants of the state-space model framework of motor adaptation to better

understand our behavioral findings, particularly those of Experiment 1, and make predictions

about subsequent experiments [16]. The model equations are typically of the following form:

Xðnþ 1Þ ¼ A∗XðnÞ þ B∗eðnÞ;

where e represents the error on the nth trial, X represents the motor output, and A and B repre-

sent a retention factor and error sensitivity, respectively.

Independent error model. First, we considered a framework in which both SPEs and

TPEs drive independent implicit processes. The net motor output reflects the sum of these

SPE- and TPE-based processes. The model equations are the following:

XðnÞ ¼ XSPEðnÞ þ XTPEðnÞ

XSPEðnþ 1Þ ¼ ASPE∗XSPEðnÞ þ BSPE∗SPE

XTPEðnþ 1Þ ¼ ATPE∗XTPEðnÞ þ BTPE∗TPE:

In Experiment 1, in the Hit condition, the TPE-based update does not occur (since

TPE = 0) and learning can be presumed to be driven only by the SPE-based process. However,

for the Miss case, both processes get updated since the SPE and TPE are both present, and the

net output is the sum of these 2 processes.

We first fit only the SPE-sensitive process of the Independent Error model to the cycle-wise

data of the Hit group using the fmincon function of Matlab. Additionally, BSPE*SPE was esti-

mated as a single parameter since the SPE remained fixed due to the clamp. ASPE was the other

parameter estimated from the fit. Data from the baseline, learning and no-feedback washout

blocks were included, with the BSPE*SPE term being set to zero for the no-feedback washout

cycles. The feedback washout data were not used since the SPE was no longer constant in this

condition (clamp was removed) and could change as subjects changed their hand direction.

The estimated values of ASPE and BSPE*SPE derived from model fits to the Hit participants’

data were then used while fitting the model that included the TPE-based process to the data of

the Miss participants of Experiment 1. Thus, only ATPE and BTPE*TPE terms were estimated

from these latter fits. For both fits, ASPE and ATPE were constrained between 0 and 1, while

BSPE*SPE and BTPE*TPE were constrained between 0 and 10˚. The 10˚ value corresponds to

the maximum “error” (angle between new target direction and clamped cursor direction) on

any given trial.

Interaction model. In our second “Interaction” model, TPEs cannot by themselves

induce implicit learning, but can only modulate implicit learning induced by SPEs. The
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equations governing the trial-by-trial updates to motor output can be given by the following:

Xðnþ 1Þ ¼ GA∗ASPE∗XðnÞ þ GB∗BSPE∗SPEðnÞ:

Here, X represents the internal state, SPE signifies the sensory prediction error, A and B are

the retention factors and error sensitivity respectively, and GA and GB represent parameters

that modulate them. When fitting to the data from Experiment 1, for the Miss group, GA and

GB can be set as 1, while they can be estimated from model fits for the Hit group (alternatively,

GA and GB can also be set as 1 for the Hit group and estimated for the Miss group). Further,

since the SPE remains constant in the error clamp, B*SPE is estimated as a single term.

For Experiment 1, we first fit the model to the data of the Miss group and estimated the val-

ues of ASPE and BSPE*SPE (GA and GB were set to 1). We then used these estimates when fitting

the model to the data of the Hit group and estimated the values of GA and GB. The same proce-

dure was followed in Experiment 3. The model was first fit to the data of the Clamp group

(with GA and GB set to 1) and the values of ASPE and BSPE*SPE were estimated. These values

were then used when fitting the model to the Clamp+Jump group to estimate GA and GB.

Empirical data analysis and statistics

Hand position data (X-Y coordinates) were filtered using a low-pass Butterworth filter with

10-Hz cutoff frequency. Velocity values were obtained by differentiating the position data. The

primary dependent variable was the deviation in hand direction relative to the original target

direction. This was computed as the angle between the line connecting the start position to the

original target, and the line connecting the start position to the hand position at peak move-

ment velocity. We also calculated RT as the time elapsed between presentation of the go

“beep” and movement initiation. Movement initiation was defined as the point at which hand

velocity first crossed 5% of the peak velocity during the trial. Trials in which participants did

not initiate a movement or lifted the stylus off the tablet mid-trial leading to loss of data were

marked as “bad trials” and excluded from the analysis. Additionally, trials in which hand devi-

ation was more than 85˚ were also removed. Collectively, across the 115 participants, 1.41%

trials were excluded. We then calculated baseline directional biases, defined as the mean hand

deviation across all baseline trials. These biases were subtracted from the trial-wise hand devia-

tion data.

Learning was quantified using the cycle-by-cycle values of the baseline subtracted hand

deviation over the learning block (1 cycle = 10 trials). For each subject, early learning was

defined as the mean deviation over the first 10 learning trials while late learning was character-

ized by the mean deviation over the last 10 learning trials. RT during early learning was gener-

ally assessed in terms of a change from late baseline levels. This was done by subtracting the

mean RT of the last 10 baseline trials from the mean RT of the first 10 learning trials. Early

after-effect magnitude was quantified as the mean deviation over the first 10 trials of the no-

feedback washout block. To assess whether they were sustained, average after-effect magnitude

on the first 10 trials of the feedback washout block was also calculated.

Group differences in hand deviation and reaction time during early and late learning as

well as the different after-effect stages were compared using Welch’s t tests if the normality

assumption, assessed with the Shapiro–Wilk test, was violated. Paired t tests were used for

assessing changes in hand deviation across different time points within a group. Significance

levels were set at 0.05. Cohen’s d was used for estimating the effect size of the differences. We

also ocassionally used the 95% confidence interval to probe for significant deviation in hand

angle during early and late learning as well as the different after-effect stages. Lack of signifi-

cant differences were augmented with Bayes factors.
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38. Pisella L, Gréa H, Tilikete C, Vighetto A, Desmurget M, Rode G, et al. An “automatic pilot” for the hand

in human posterior parietal cortex: toward reinterpreting optic ataxia. Nat Neurosci. 2000; 3:729–736.

https://doi.org/10.1038/76694 PMID: 10862707
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