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Abstract

Humans are known to be capable of inferring hidden preferences and beliefs of their con-

specifics when observing their decisions. While observational learning based on choices

has been explored extensively, the question of how response times (RT) impact our learning

of others’ social preferences has received little attention. Yet, while observing choices alone

can inform us about the direction of preference, they reveal little about the strength of this

preference. In contrast, RT provides a continuous measure of strength of preference with

faster responses indicating stronger preferences and slower responses signaling hesitation

or uncertainty. Here, we outline a preregistered orthogonal design to investigate the involve-

ment of both choices and RT in learning and inferring other’s social preferences. Partici-

pants observed other people’s behavior in a social preferences task (Dictator Game),

seeing either their choices, RT, both, or no information. By coupling behavioral analyses

with computational modeling, we show that RT is predictive of social preferences and that

observers were able to infer those preferences even when receiving only RT information.

Based on these findings, we propose a novel observational reinforcement learning model

that closely matches participants’ inferences in all relevant conditions. In contrast to previ-

ous literature suggesting that, from a Bayesian perspective, people should be able to learn

equally well from choices and RT, we show that observers’ behavior substantially deviates

from this prediction. Our study elucidates a hitherto unknown sophistication in human obser-

vational learning but also identifies important limitations to this ability.

Introduction

Each person’s unique set of preferences shapes the decisions they make: by closely observing

these decisions, one can gain valuable insights into their likes, dislikes, and priorities. Whether

and how one can learn and understand the preferences of others from observing their choices

has been well documented in the social and reinforcement learning literatures [1–7]. Yet,

focusing solely on choices is often not sufficient to determine the strength of a person’s prefer-

ence (i.e., the confidence with which the person has made their choice or how likely they are to

make the same choice again). That is, a person would choose option A if they found it twice as

valuable as option B, just as they would if they found option A 10 times as valuable. From the
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observer’s perspective, this leads to a many-to-one relationship between strengths of prefer-

ence and choice, making it impossible to narrow down the strength of preference from choices

alone (unless they can extrapolate from observing multiple choices). Fortunately, the decision-

making process offers more than just choices as an output. It also generates response times

(RTs), which have been found to decrease as the strength of preference increases. In other

words, when faced with equally liked options, individuals tend to take more time to make their

decisions. This negative relationship between RT and utility difference has been established in

many value-based domains, including decisions under risk [8–14], intertemporal choices

[13,15–17], food choices [18–27], happiness measurements [28], and social decision-making

[13,16,29–32].

Despite the critical information on strength of preference provided by RT, their impact on

learning about others’ preferences has received limited attention compared to the extensive

study of learning from choices. It has recently been proposed that taking RT into account can

be used to predict the choice of future unseen decisions, even when choices alone would fail to

make correct out-of-sample predictions [14,22,29,33–36]. Most of these studies, however, do

not use RT as information for humans to make inferences on someone else’s decision-making

process, but rather as a tool to improve model fitting or model simulation in predicting future

choices. On the other side, recent literature suggests that human adults [24,31,37–39] and chil-

dren [40] do take RT into account when estimating someone else’s hidden preference or com-

petence, in paradigms where observers were informed both about the decision-maker’s

choices and RT. Importantly though, all these studies only use RT as a supplementary measure

to choices, not as the sole piece of information available to the observer.

On theoretical grounds, this notion was taken even further and it has been proposed that

RT alone (i.e., without observed choices) could be used to infer preferences and predict future

choices. For example, Chabris and colleagues argued that RTs reveal key attributes of the cog-

nitive processes that implement preferences in an intertemporal choice setting [15]. Konovalov

and Krajbich used RT to infer an indifference point in risky choices, social decision-making,

and intertemporal settings [13]. Schotter and Trevino showed that the most informative trial-

based RT has out-of-sample predictive power for determining someone’s decision threshold in

a social decision-making setting [29]. So, in principle, it should be possible to infer latent infor-

mation or processes from RT alone, including preferences in value-based decisions. Yet, none

of these studies have tested empirically whether individuals are capable of using RT informa-

tion as effectively and to learn someone else’s preference by observing their RT alone.

To answer this question, we propose a preregistered orthogonal design to investigate the

role of both choices and RT in learning and inferring others’ social preferences. In our lab

study, participants (n = 46, here referred to as observers) observed other people’s decision pro-

cess in a Dictator Game [41,42], where the decision makers (N = 16, here referred to as dicta-

tors) were asked to choose between different monetary allocations between themselves and

another person. Based on their behavior in the Dictator Game, participants can be ranked on a

scale from selfish (choosing the allocation with the higher number of points for themselves) to

prosocial (choosing the allocation with the lower number of points for themselves). Conse-

quently, we assume that the dictators’ position on this scale reflects their preferred allocation:

their ideal ratio of points for themselves versus the other person. Therefore, a decision problem

with 2 options equally distant from the preferred allocation represents a choice between 2

equally liked allocations, resulting in high decision difficulty and the expectation that RT

should be very long. Conversely, if the options’ distances to the preferred allocation are

unequal (in other words, one option is much closer to the preference), this results in low deci-

sion difficulty and the expectation that RT should be very short. In this framework, we varied

the amount of information provided to the observers: choice and RT information was either
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hidden or revealed to observers in a 2-by-2 within-subject design. Behavioral analyses con-

firmed our hypothesis, as observers were able to learn the dictators’ social preferences when

they could observe their choices, but also when they could only observe their RT. To gain

mechanistic insights into these observational learning processes, we developed a reinforcement

learning (RL) model that takes both choices and RT into account to infer the dictator’s social

preference. This model closely captured the performance and learning curves of observers in

the different conditions. On the other side, recent studies have proposed (inverted) Bayesian

inference as the optimal framework underlying the cognitive process of social learning [24,43–

47], and (quasi-)optimal Bayesian learning has been reported in various fields such as reward-

based learning [48,49] or multisensory integration [50]. Motivated by this work, we designed a

benchmark Bayes-optimal (BO) model in which the observer’s belief on the dictator’s social

preferences and choice processes is updated using Bayes’ rule on prior and current observa-

tions. By comparing this BO model to the RL model, we show that, while observers’ learning is

close to optimal when they can observe choices, they substantially deviate from optimality

when they can only observe RT, suggesting that the underlying mechanisms are better cap-

tured by our approximate reinforcement learning model. Overall, our study proposes an inno-

vative approach to investigate the role of RT in learning and inferring preferences, identifies a

new sophistication in human social inferences, and highlights the importance of considering a

greater extent of decision processes when investigating observational learning.

Results

Experimental protocol

To test whether people learn someone else’s social preference when observing only their RTs,

we designed a two-task experiment involving a variant of the Dictator Game [41,42]. In this

variant, participants were asked to choose between 2 two-color circles, each representing a

proportion of points allocated to themselves (“self”) and to another person (“other,” Fig 1A).

For the “Dictator task,” we recruited a sample of 16 participants, which will be referred to as

dictators, and we recorded both their choices and RT. For the “Observer task,” we recruited a

sample of 46 participants. These participants, which will be referred to as observers, were

asked to first complete a shortened version of the Dictator task, before observing the (previ-

ously recorded) decisions of all 16 dictators. For the observation phase, we used a 2 × 2 within-

subject orthogonal design, manipulating the amount of information provided to the observers:

the dictator’s choices revealed or hidden, their RT revealed or hidden (Fig 1B). Before observ-

ing the decisions of a dictator, observers were informed that they were about to observe a new

person’s decisions, and whether they would see their choices, RT, both, or no information.

They were asked to estimate the social preference of this person (their most preferred alloca-

tion), once before observing any decision and then after every 4 trials, for a total of 4 estima-

tions over the 12 observed trials per dictator (estimation trials, Fig 1C). After observing the 12

trials, observers were asked to predict what this person would choose in 4 previously unseen

decision problems (prediction trials, Fig 1C). After these 4 prediction trials, the instruction

screen for a new dictator was presented. Crucially, all observed and predicted trials were deci-

sion problems that observers completed for themselves in the Dictator Game task before

observing the dictators.

Dictator Game results

We first ascertained that the social preference could, in principle, be learned in all conditions,

i.e., that the dictator’s choices and RT would be good predictors of their social preference. In

our task, their social preference refers to the same construct as their preferred allocation,
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Fig 1. Task design and validation of the social preference measure. (A) Trial sequence of the Dictator Game part.

(B) Orthogonal design of the observation part. Observers were presented with 4 successive conditions varying in the

visibility of the choice information (with or without, represented with a black square around the chosen option) and

the RT information (with or without, represented with a time interval between allocations onset and choice onset).

Both allocations were displayed in all conditions. (C) Task design of the observation part. Observers were explicitly

informed that they were about to observe a new dictator’s decisions, and in which condition. After observing all trials

of a said dictator, they were asked to predict what this person would choose in previously unseen decision problems.

(D) Regression coefficients with RT per trial as the dependent variable and trial difficulty as the independent variable,

for the complete Dictator Game task performed by the dictators. The difficulty was estimated as the difference in

subjective values between both allocations (Eq 2), using the preference fitted as a free parameter from RTs only (left),

choices only (middle), or both (right). Int.: intercept. Diff.: difficulty. Points indicate individual average, shaded areas

indicate probability density function, 95% confidence interval, and SEM. N = 16. (E) Dictators’ social preference fitted

from the RTs alone as a function of their preference fitted from the choices alone, and their preference extracted from

behavioral data in the Dictator Game task (Eq 2). ρ: Spearman’s coefficient. N = 16. ***p< 0.001. Data and analysis

scripts underlying this figure are available at https://github.com/sophiebavard/beyond-choices.

https://doi.org/10.1371/journal.pbio.3002686.g001
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defined earlier as their ideal ratio of points for themselves versus the other person. On each

trial, we calculated subjective values s(�) for each option (left and right), using the social prefer-

ence estimated as a free parameter (see Materials and methods):

sðleftÞ ¼ 1 � ðleft � PrefÞ2

where left is the objective value of the left (resp. right) option (i.e., the number of points allo-

cated to “self”) and Pref is the fitted social preference (see S1 Text for more details). Therefore,

an option close to the social preference will have a higher subjective value. We regressed the

RT with the difference in subjective values between both options and found a negative effect of

this difference in all conditions for all 16 dictators, suggesting that decision problems with

options of similar subjective values produce longer RT (Fig 1D). In addition, we found a sig-

nificant positive correlation between the preference estimated from the choices only fitting a

softmax rule, and the preference estimated from the RT only fitting a DDM (Spearman’s ρ(14)

= 0.83, p< 0.0001, Fig 1E), replicating previous results [13]. This suggests that both informa-

tion types are not only sufficient on their own to make inferences on someone else’s social

preference, but also lead to inferring the same preference. Together, these results show that, in

our Dictator task, RT is a good predictor of social preference as captured by the subjective val-

ues (Eq 2).

Observational learning results

After showing that social preference was a good indicator of how long it takes one to make a

decision in our task, we turned to the main experiment. The main goal of this study is to inves-

tigate whether observers can effectively learn someone else’s social preference by observing

their decisions, and more specifically either their RT alone, choices alone, or both (Fig 1D and

1E). To this end, we selected 12 trials per dictator to be observed by the observers (see Materi-

als and methods and S2 Fig for more details on the trial selection). To assess learning during

the task, observers were asked to estimate the dictator’s preference on several occasions: once

before any observation, then after each 4 trials. First, in accordance with our preregistered

analyses, we found significant correlations between the observers’ own preference and (1)

their first estimation (before any observation; Spearman’s ρ(44) = 0.38, p = 0.0099, S2A Fig),

as well as (2) their average estimation, depending on the amount of information provided to

them (average estimation per condition; none: Spearman’s ρ(44) = 0.56, p< 0.0001; RT only:

Spearman’s ρ(44) = 0.48, p = 0.0018; choice only: Spearman’s ρ(44) = 0.31, p = 0.038; both:

Spearman’s ρ(44) = 0.27, p = 0.073, S2B Fig). Then, according to our main preregistered

hypothesis, we analyzed observers’ accuracy in estimating the dictators’ preference (note that

for readability, statistical tests of this paragraph are summarized in Table 1 rather than

reported in the text). On average, observers were able to learn above the empirical chance level

(see Materials and methods, t(45) = 22.59, p< 0.0001, d = 3.33), even in the “RT only”

Table 1. Pairwise comparisons of average accuracy per condition. Emp: empirical, **p< 0.01, ***p< 0.001, Bonferroni-corrected for between-conditions pairwise

comparisons. Data and analysis scripts underlying this table are available at https://github.com/sophiebavard/beyond-choices.

none RT only choice only both

t-value p-value effect size t-value p-value effect size t-value p-value effect size t-value p-value effect size

emp. chance level 6.89 <0.0001*** 1.02 14.89 <0.0001*** 2.20 20.04 <0.0001*** 2.95 23.80 <0.0001*** 3.51

none - - - 3.45 0.0073** 0.64 8.37 <0.0001*** 1.37 8.71 <0.0001*** 1.51

RT only - - - - - - 4.54 0.00025** 0.90 5.88 <0.0001*** 1.06

choice only - - - - - - - - - 0.53 1.0 0.09

https://doi.org/10.1371/journal.pbio.3002686.t001
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condition (Fig 2A). Surprisingly, observers’ accuracy was above the empirical chance level in

the “none” condition as well (Fig 2A). However, the correlation between the dictators’ true

preference and the observers’ last estimation was not significant in this condition (Spearman’s

ρ(182) = 0.13, p = 0.071), whereas it was significant in all conditions where some information

was provided (RT only: Spearman’s ρ(182) = 0.41, p< 0.0001; choice only: Spearman’s ρ(182)

= 0.84, p< 0.0001; both: Spearman’s ρ(182) = 0.84, p< 0.0001). This suggests that observers

learned to distinguish more prosocial from more selfish dictators in conditions with informa-

tion but not in the “none” condition, where they mostly used their own preference (Figs 2B

and S3). Furthermore, while accuracy was higher in the “both” condition than in the “RT

only” condition, observers seemed to learn equally well in the “choice only” and “both” condi-

tions (Fig 2A). The latter result was in contrast with our predictions. All statistical analyses

across conditions are reported in Table 1. Finally, to get a more fine-grained understanding of

learning dynamics, we amended the preregistered analysis and performed a 4 × 4 ANOVA

with factors condition (“none,” “RT only,” “choice only,” “both”) x estimation number (1st,

2nd, 3rd, 4th). Consistent with our results so far, we found significant main effects of both con-

ditions (F(3,135) = 36.84, p< 0.0001, η2 = 0.45, Huynh–Feldt corrected) and estimation num-

ber (F(3,135) = 80.71, p< 0.0001, η2 = 0.64, Huynh–Feldt corrected), and more interestingly a

significant interaction (F(9,405) = 13.58, p< 0.0001, η2 = 0.23, Huynh–Feldt corrected), sug-

gesting that observers learned faster in the “choice only” and “both” conditions (Fig 2A).

Extrapolation to unseen decisions

After having observed all 12 trials of a dictator, we asked the observers to predict what the dic-

tator’s choices would be in a series of 4 previously unseen trials (see Materials and methods

for more details on the trial selection). From here on, in contrast with “choice only” and “RT

only” conditions, we define “choice visibility” and “RT visibility” as orthogonal factors in our

design representing whether or not the choice (resp. RT) information was displayed in each
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Fig 2. Behavioral results in the estimation phase. (A) Observers’ accuracy for each estimation as a function of the

condition (choice and RT visibility). Left: learning curves; right: average across all trials. Points indicate individual

average, shaded areas indicate probability density function, 95% confidence interval, and SEM. N = 46. (B) Reported

fourth and last estimation per observer per observed dictator, as a function of the true preference of each dictator, for

each condition. N = 184. ρ: Spearman’s coefficient. In all panels, ns: p> 0.05, **p< 0.01, ***p< 0.001, Bonferroni-

corrected for pairwise comparisons. Data and analysis scripts underlying this figure are available at https://github.com/

sophiebavard/beyond-choices.

https://doi.org/10.1371/journal.pbio.3002686.g002
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condition; for example, choice visibility is set to 1 in the “choice only” and “both” conditions,

and to 0 in the “RT only” and “none” conditions. We first looked at the accuracy, i.e., whether

the observer chose the same option as the dictator. In line with the estimation phase results, we

found a main effect of choice visibility on prediction accuracy (F(1,45) = 91.52, p< 0.0001, Z2
p

= 0.67), but no effect of RT visibility (F(1,45) = 2.07, p = 0.16, Z2
p = 0.04) and no interaction (F

(1,45) = 2.20, p = 0.15, Z2
p = 0.05, Fig 3A). We then looked at the consistency, i.e., whether the

observer’s choice was consistent with their last preference estimation of the dictator. We found

a small main effect of choice visibility (F(1,45) = 5.61, p = 0.022, Z2
p = 0.11), but no effect of RT

visibility (F(1,45) = 0.041, p = 0.84, Z2
p = 0.00) and no interaction (F(1,45) = 0.12, p = 0.73, Z2

p =

0.00, Fig 3B). Overall, both the average accuracy and consistency were higher than the chance

level of 0.5 (accuracy: t(45) = 23.11, p< 0.0001, d = 3.41; consistency: t(45) = 36.01,

p< 0.0001, d = 5.31), suggesting that observers were able to extrapolate their learning of the

R
es

po
ns

e 
tim

e 
(s

ec
)

C

0

1

2

3

4

5
Predicting others’ D

0

1

2

3

4

5
Choosing for self

none RT Ch both none RT Ch both

C
ho

ic
e 

ra
te

0

1

0.8

0.6

0.4

0.2

Consistency

none

Condition
RT Ch both

R
es

po
ns

e 
tim

e 
(s

ec
)

0

1

2

3

4

5

0

1

2

3

4

5

R
es

po
ns

e 
tim

e 
(s

ec
)

0

1

2

3

4

5

0

1

2

3

4

5

Sim
ilar dictators

D
issim

ilar dictators
A

ll dictators

lon
g

sho
rt

lon
g

lon
g

sho
rt

sho
rt

lon
g

sho
rt

lon
g

sho
rt

lon
g

lon
g

sho
rt

sho
rt

lon
g

sho
rt

Accuracy

C
ho

ic
e 

ra
te

A

ns *** ns

0

1

0.8

0.6

0.4

0.2

none

Condition
RT Ch both

ns nsns

B

Fig 3. Behavioral results in the prediction phase. (A) Observers’ accuracy (correct choice rate, i.e., whether they

chose the same allocation as the dictator) as a function of the condition (choice and RT visibility). (B) Observers’

consistency (choice rate, i.e., whether or not the chosen allocation is consistent with their last estimation for each

particular dictator) as a function of the condition (choice and RT visibility). (C) Observers’ RT when predicting the

dictators’ decision, as a function of the dictator’s RT for each condition. Top: average for all 16 dictators; middle:

average for 8 similar dictators only; bottom: average for 8 dissimilar dictators only. (D) Observers’ RT when choosing

for themselves, only in trials corresponding to the decisions they had to predict. Top: average over the corresponding

trials of all 16 dictators; middle: average over the corresponding trials of the 8 similar dictators; bottom: average over

the corresponding trials of the 8 dissimilar dictators. In all panels, points indicate individual average, shaded areas

indicate probability density function, 95% confidence interval, and SEM. N = 46. ns: p> 0.05, ***p< 0.001,

Bonferroni-corrected for pairwise comparisons. Data and analysis scripts underlying this figure are available at https://

github.com/sophiebavard/beyond-choices.

https://doi.org/10.1371/journal.pbio.3002686.g003
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dictators’ social preference to previously unseen decision problems, and they did so in accor-

dance with their last estimation.

Observers’ prediction speed mimics dictators’ decision speed

The analyses of observers’ accuracy when predicting decisions confirm that they efficiently

learned the dictators’ social preferences and were able to use this information to infer which

future decisions might be made in previously unseen contexts. Yet, the inspection of their

choices alone does not provide much information about the underlying mechanisms and

dynamics of how observers predict others’ decisions. To dig deeper into these mechanisms, we

analyzed observers’ RT during the prediction phase. Unbeknownst to the observers, they

always predicted 2 easy decisions (where the dictator’s RT was fast) and 2 hard decisions

(where the dictator’s RT was slow, S1 Fig). We ran a generalized linear mixed model

(GLMM), regressing the observers’ RT onto the independent variables: choice visibility (in the

estimation phase), RT visibility (in the estimation phase), and trial duration (i.e., whether the

dictator’s RT was short or long). We found a significant main effect of choice visibility (esti-

mate = −0.26, SE = 0.086, t = −3.04, p = 0.0024, Table 2), suggesting that observers made over-

all faster predictions when the choice information had been available in the estimation phase.

The main effect of RT visibility was also significant (estimate = 0.19, SE = 0.091, t = 2.05,

p = 0.041, Table 2), suggesting observers were overall slower to predict when the RT informa-

tion had been available in the estimation phase. For interaction effects, please refer to Table 2.

Critically, we also found a main effect of trial duration (estimate = 0.32, SE = 0.086, t = 3.71,

p = 0.00021, Table 2), suggesting that a choice set that elicited a long RT for the dictator also

elicited a long RT for the observer (Fig 3C, top). This main effect of trial duration is particu-

larly interesting as it suggests that observers put themselves in the shoes of the dictator and

predicted the decision in line with the dictator’s perceived difficulty. Under this assumption,

one would expect observers to show a long RT when predicting decisions that were hard for

the dictator, even if the observer themselves found the decision to be easy (and vice versa).

Importantly, however, this pattern should only emerge in the 3 conditions, in which observers

could learn inter-individual differences in social preferences, that is, in the “both,” “choice

only,” and “RT only” conditions, but not in the “none” condition.

To test this hypothesis, we leveraged the fact that option sets in the “prediction” stage were

a subset of option sets in the “self” stage. We then categorized all dictators based on how simi-

lar their social preferences were to each of the observers and performed the same regression as

Table 2. Results from GLMM fitted on observers’ RT in the prediction phase. The GLMM (generalized linear mixed model with Gamma distribution and identity link

function) was fitted on the observers’ RT, with choice visibility in the estimation phase, RT visibility in the estimation phase, and trial duration (i.e., whether the dictator’s

RT was short or long), as independent variables. Denotation: Du = duration (fast or slow), Ch = choice visibility (displayed or not), RT = RT visibility (displayed or not),

***p< 0.001, **p< 0.01, *p< 0.05. Data and analysis scripts underlying this table are available at https://github.com/sophiebavard/beyond-choices.

Predicting others’ decision Similar dictators Dissimilar dictators

Effect Estimate Std. Error t-value p-value Estimate Std. Error t-value p-value Estimate Std. Error t-value p-value

Intercept 1.54 0.11 14.54 <0.0001 *** 1.49 0.12 12.30 <0.0001 *** 1.61 0.12 13.54 <0.0001 ***
Duration 0.32 0.086 3.71 0.00021 *** 0.47 0.12 4.09 <0.0001 *** 0.15 0.099 1.54 0.12

Choice visibility −0.26 0.086 −3.04 0.0024 ** −0.14 0.10 −1.33 0.18 −0.38 0.12 −3.16 0.0016 **
RT visibility 0.19 0.091 2.05 0.041 * 0.28 0.12 2.32 0.020 * 0.098 0.10 0.93 0.35

Du x Ch 0.27 0.082 3.25 0.0012 ** 0.16 0.11 1.42 0.16 0.35 0.11 3.16 0.0016 **
Du x RT 0.37 0.090 4.01 <0.0001 *** 0.21 0.13 1.71 0.088 0.54 0.12 4.46 <0.0001 ***
Ch x RT −0.038 0.076 −0.50 0.62 −0.055 0.10 −0.52 0.60 −0.046 0.10 −0.45 0.65

Du x Ch x RT −0.28 0.12 −2.24 0.025 * −0.21 0.17 −1.25 0.21 −0.30 0.17 −0.180 0.073

https://doi.org/10.1371/journal.pbio.3002686.t002
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reported above on “prediction” RTs for the similar and dissimilar groups of dictators. As

expected, we found that observers’ prediction RT were longer for long RT of similar as well as

dissimilar dictators in the “both,” “choice only,” and “RT only” conditions (Fig 3C, middle

and bottom). In the “none” condition, however, this effect was only seen for similar dictators.

In line with these patterns, the regression analyses revealed a significant main effect of dura-

tion for similar dictators (as the effect was present in all 4 conditions) but significant interac-

tions of duration with both choice and RT visibility for dissimilar dictators (as the effect was

not present in the “none” condition”) (Table 2). These results are consistent with the notion

that observers put themselves in the shoes of the dictator whenever they could learn the dicta-

tor’s individual social preferences. In the “none” condition, however, observers most likely

used on their own preferences to make predictions (in line with the findings of the estimation

phase; S2B Fig). Thus, because of the high match of easy versus difficult choice sets with simi-

lar but not dissimilar dictators, the duration effect on prediction RT was seen in the former

but not the latter case.

To further substantiate this interpretation, we also applied the regression model to the

“self” RT on the trials shared with both types of dictators. Here, we would expect the duration

effect (short versus long) to be present for trials shared with the similar dictator in all condi-

tions, but to be entirely absent for trials shared with the dissimilar dictator. Indeed, the dura-

tion effect was significant for the trials shared with similar dictators (estimate = 0.40,

SE = 0.079, t = 5.01, p< 0.0001, Table 3 and Fig 3D, middle) but not for those shared with the

dissimilar dictators (estimate = 0.066, SE = 0.037, t = 1.79, p = 0.074, Table 3 and Fig 3D,

bottom).

Together, these results all converge to suggest that (1) observers were able to extrapolate the

learned social preference to predict decisions for someone else, even if this person had dissimi-

lar social preferences; (2) if a trial was difficult for the dictator, it was also difficult to predict

for the observer; (3) whether or not the decision problem was difficult for the observer them-

selves did not impact how difficult it was for them to predict the dictator. To conclude, in our

task, observers were not only able to learn other people’s social preference, but they also

applied this information to make decisions for this individual that matched the person’s pref-

erences and decision dynamics, even though they would behave differently when choosing for

themselves.

Computational formalization of the behavioral results

Behavioral analyses confirmed our hypothesis: trial-by-trial, observers were able to learn the

dictators’ social preferences when they could observe their choices, but also when they could

only observe their RT. To gain a more thorough understanding of the mechanisms underlying

social preference learning on the basis of observing different features of the decision process,

we developed a modified version of a well-established reinforcement learning model [51,52].

To infer the dictator’s social preference, the model takes both choice and RT information (if

available) into account, as well as features of the choice options. At each trial t, the estimated

Table 3. Results from GLMM fitted on observers’ RT in the Dictator Game task. The GLMM (generalized linear mixed model with Gamma distribution and identity

link function) was fitted on the observers’ RT when choosing for themselves in their Dictator Game task. Denotation: ***p< .001. Data and analysis scripts underlying this

table are available at https://github.com/sophiebavard/beyond-choices.

Choosing for self Similar dictators Dissimilar dictators

Effect Estimate Std. Error t-value p-value Estimate Std. Error t-value p-value Estimate Std. Error t-value p-value

Intercept 1.19 0.090 13.23 <0.0001 *** 1.19 0.089 13.35 <0.0001 *** 1.22 0.095 12.92 <0.0001 ***
Duration 0.23 0.043 5.23 <0.0001 *** 0.40 0.079 5.01 <0.0001 *** 0.066 0.037 1.79 0.074

https://doi.org/10.1371/journal.pbio.3002686.t003
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preference P is updated with a delta rule:

Pt ¼ Pt� 1 þ a∗dt

where α is the learning rate and δt is a prediction error term, calculated as the difference

between the outcome Ot (defined below) and the current estimation:

dt ¼ Ot � Pt� 1

The outcome Ot depends on the type and the amount of information provided to the

observer (RL model, see Materials and methods). Intuitively, when only the choice informa-

tion is available, the outcome is computed as whether or not the chosen option was the more

selfish one. When the RT information is available, it is used to categorize the decision between

fast and slow. In case of observing a slow decision, the outcome is always computed as the mid-

point between the objective values of both options (see S1 Text for more details). In case of

observing a fast decision, the outcome depends on whether or not the choice information was

displayed. If yes, it is computed as whether or not the chosen option was the more selfish one.

If not, the observer is assumed to believe that the option with the higher subjective value was

chosen. Finally, when no information was displayed, the outcome was computed as the mid-

point between the objective values of both options, implying that in case of receiving no infor-

mation, the observer is assumed to believe that the dictator was asked to make very difficult

decisions (and thus decisions that would be diagnostic of their social preference).

The model closely captures several key aspects of observers’ behavior. In particular, it

matches observers’ accuracy in all conditions (Fig 4A and 4B), as well as their last
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Fig 4. Qualitative model comparison. (A, D) Simulated data (colored dots) superimposed on behavioral data

(colored curves) representing the accuracy in the estimation phase for the RL model (A) and the BO model (D) in each

condition. Shaded areas represent SEM. N = 46. (B, E) RL model (B) and BO model (E) accuracy predictions as a

function a behavioral accuracy in the estimation phase for the last estimation of each participant in each condition.

Dashed line represents identity. N = 184. (C, F) Estimated difficulty extracted from RL model (C) and BO model (F)

predictions as a function of the estimated difficulty from behavioral data from observers and dictators, after the

estimation phase, for trials from the prediction phase. Each point represents 1 average trial difficulty for each duration

(fast/slow) for each condition for each observer. N = 368. ***p< 0.001. Data and analysis scripts underlying this figure

are available at https://github.com/sophiebavard/beyond-choices.

https://doi.org/10.1371/journal.pbio.3002686.g004
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estimation per dictator (S4C Fig). Besides matching accuracy, our model was able to repro-

duce the difficulty patterns (our best proxy for RT, which are not simulated by our model;

Figs 4C and S4A). In addition, the RL model also captured observers’ choices in the predic-

tion phase (S4B Fig). To compare the model and the empirical data of our study to an opti-

mal benchmark, we designed a Bayes-optimal inference model (BO model) that learns the

social preference by updating the posterior probability of the model’s parameters, given the

available information (see Materials and methods). We found that, while observers’ learn-

ing is close to optimal when they can observe choices, they substantially deviate from opti-

mality when they can only observe RT (BO model predictions versus behavioral last

estimation: Spearman’s ρ(44) = 0.10, p = 0.52; RL model predictions versus behavioral last

estimation: Spearman’s ρ(44) = 0.47, p = 0.0011; Fisher’s z = 1.89, p = 0.029; Fig 4D–4F).

Actually, while it is able to match observers’ behavior when they predict dictators’ decisions,

the BO model was unable to match observers’ accuracy in all conditions, contrary to the RL

model (S5 Fig). Together, these modeling results suggest that the computational mecha-

nisms underlying RT-based observational learning are better captured by our approximate

RL model.

Discussion

Humans and other animals are known to learn not only by experiencing rewards and punish-

ments themselves, but also by observing others’ actions and outcomes. On the one hand, this

allows learning from punishments and losses without incurring these negative outcomes

directly, which comes with obvious evolutionary benefits [7]. On the other hand, observing

others can reveal information about their beliefs and preferences, which may be critical for

future interactions [53]. So far, research on observational learning has focused on testing

whether and how people learn from others’ choices but has largely ignored other sources of

information. Here, we set out to fill this gap by studying the computational mechanisms of

learning from observing (only) the speed with which decisions are made. We find that people

are, indeed, capable of learning from observing RTs only, but that—contrary to previous asser-

tions [24,31,37]—this ability falls short of an optimal Bayesian learner and is instead better

described by an RL model.

In the Dictator Game, where one participant has the power to allocate money to another

participant, the RT of the dictator can provide insights into their underlying social preferences.

When individuals have a clear and strong preference for a particular allocation, they tend to

respond quickly and assertively. However, when faced with a decision where their preferences

are less well-defined or when considering 2 options with similar appeal, individuals often

exhibit longer RT, indicating hesitation or conflict in their decision-making process. This illus-

trates how RT can serve as a window into the underlying social preferences of individuals: RT

can be used as cues to infer other people’s social preferences. Their influence extends beyond

the choices individuals make, as RTs are intimately related to the cognitive decision-making

processes and reflect the complex interplay between preferences, beliefs, and social context.

Building on previous studies, which either suggested RT to be an important source of informa-

tion theoretically [13,15,29] or showed that humans do use RT to improve their predictions

[24,31,37], we designed a task where participants observed someone else’s decisions and had

to estimate their underlying preference and predict their future decisions. Combining a facto-

rial design that systematically varied the available sources of information, with asking partici-

pants to observe, estimate, and predict individual dictators over repeated trials, allowed us to

go beyond existing work in characterizing the computational mechanisms of observational

learning from different decision process in great detail.
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First, we showed that the dictators’ RT negatively correlated with the difficulty of the trial,

i.e., the subjective value difference between the 2 options. In other words, difficult decisions

tend to take more time in the social decision domain as well.

Second, we found that observers were able to learn the dictators’ preference in all condi-

tions where they had relevant information, even when they could only observe the dictators’

RT. Interestingly, compared to RT only, participants learned faster and better when they could

only observe the dictators’ choices or when they could observe both choices and RT, but their

accuracy did not differ between the last 2 conditions. These results suggest that, in our task,

participants used the RT information when no other piece of information was available, but

they seemed to disregard RT when the choice information was available. We cannot rule out

that there might have been an aleatoric uncertainty effect [54,55], already achieved in the

choice only condition, meaning that natural constraints (such as some noise in the dictator’s

responses, or some sort of representational noise on the observer’s end), prevented the addi-

tion of RT information on top of choice to improve participants’ performance beyond this

limit. In any case, since this latter result is not in line with recent literature, which suggests that

people sometimes use RT on top of choice-only information to improve their inferences and

predictions [24,31,37], further research is needed to dig deeper into these mechanisms. For

example, contrasting choice and RT as conflicting pieces of information would be more infor-

mative to answer this specific question, which was not the main goal of the current study.

Third, we found that participants were able to predict the dictators’ future decisions after

having learned their preferences reaching a prediction accuracy that was higher than chance

level. However, the arguably most interesting finding with respect to these predictions was that

participants’ RT patterns when predicting someone else’s decisions matched the other person’s

more than their own (Fig 3C versus Fig 3D). This result strongly suggests that people are able

to put themselves into someone else’s shoes when predicting their decisions.

Another interesting finding is that participants showed improvement in their social prefer-

ence estimation when no information (neither choice nor RT) was displayed, apart from the 2

options available to the other person. We believe that this unanticipated behavioral pattern

might reflect a form of higher-order inference, where participants were able to extract infor-

mation from observing the given options alone. Therefore, when no choice or RT information

was given, we assume that the participant believes that the other person was asked to make

very difficult decisions (and thus decisions that would be diagnostic of their social preference).

Although we implemented this idea of higher-order inference in our specification of the RL

model for the “none” condition and obtained support for it in our modeling results (Fig 4A),

future research should investigate this further.

Over the past decades, many cognitive neuroscience studies in the field of learning and

decision-making have used computational modeling to shed light on how people learn and

make decisions in social contexts. Current theories suggest that 3 strategies are at play in this

process [56]: vicarious RL, action imitation, and inference about others’ beliefs and intentions

(see [57] for a review). Of note, this distinction has been extensively discussed in developmen-

tal and comparative psychology—also referred to as “imitation versus emulation” distinction

(see [1] for a review). In opposition to vicarious RL where observers learn from others’ experi-

enced outcomes, or from action imitation where observers learn from others’ actions, our task

involves a more complex inference process about someone else’s hidden preferences. This

framework usually assumes that observers update their beliefs about others’ goals and inten-

tions in a Bayesian manner [24,43,44,47,58,59], combining their prior beliefs with evidence

they get from observing others’ actions, both choices [45,46,57] and RTs [24,31,37]. To gain

mechanistic insights into these observational learning processes, we compared such a Bayesian

inference model against an RL model that takes both choices and RT into account to infer the
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dictator’s social preference. Instead of learning the value of options or actions, as in more con-

ventional learning scenarios, the RL model seeks to learn the social preferences of others—in

our case, the preferred allocation of money in the Dictator Game. When only choices are avail-

able, this allocation is updated in accordance with the choice (selfish versus prosocial). When

only RTs are available, the updating rule depends on the speed of the decision. In case of slow

decisions, the midpoint of the 2 options is used for updating. In the case of fast decisions, the

observed agent is assumed to have chosen the higher-valued option, which strengthens any

existing belief about the agent’s preferred allocation. In our view, this implementation offers a

cognitively plausible approximation that allows inferring social preferences through repeated

observations of choices or RT. Accordingly, our model closely captured the performance and

learning curves of observers in all the different conditions.

When comparing the RL model to a Bayesian inference model adapted to learn social pref-

erence by updating the posterior distribution, qualitative model comparison suggests that,

while our participants’ learning is close to optimal when they can observe choices, they sub-

stantially deviate from optimality when they can only observe RT. A potential reason why

humans fall short of learning from RT in a Bayes-optimal way is its high computational com-

plexity. The complete Bayesian solution requires one to possess an accurate generative model

of the decisions and decision speed, such as a drift-diffusion model (DDM) that takes the pre-

ferred allocation, as well as the choice options into account to inform the drift rate. Further-

more, the belief distributions of a total of 5 parameters from this generative model must be

updated after each observation in an accurate manner. It is conceivable that humans simplify

the learning process (akin to our proposed RL model) to reduce the computational complexity

and avoid getting lost in a curse of (parameter) dimensionality. A second potential reason for

suboptimal performance in the RT only condition is the need to perceive the decision speed

accurately for classifying an observed decision as being either fast or slow. Making incorrect

classification or being uncertain in this regard will slow down learning substantially as it is

likely to produce a substantial number of erroneous inferences.

Taken together, our work deviates from previous literature by challenging the expectation

that, from a Bayesian perspective, people should be able to learn equally well from choices and

RTs. While our empirical results are in line with the Bayesian prediction on a qualitative level,

they diverge substantially from it on a quantitative level.

Our present work builds on a growing literature suggesting that RT alone should be suffi-

cient to produce an accurate estimation of someone’s preference [13,15,29]. Konovalov and

Krajbich recently used a DDM without the choice data to estimate individual preferences

using subjective value functions in 3 different settings: risky choice, intertemporal choice, and

social preferences. Our study replicates their findings, as we were able to accurately estimate

the DDM-based preference parameter from RT alone in the first sample of participants. We

then took this idea a step further and showed that a second sample of participants were able to

provide an accurate estimation of others’ social preference when they observed their RT alone.

To the best of our knowledge, this is the first time that this has been empirically tested and vali-

dated. Notably, other studies have attempted to increase out-of-sample predictive power with

other indices of information processing, such as eye movements [18,60–63] or computer

mouse movements [64–68]. In the neuroimaging literature, attempts have been made to move

beyond brain–behavior correlations and to predict behavior from brain activity without

choices [69–76] (see [77] for a review). Nevertheless, unlike eye movements or neural data, RT

are easy to collect from the experimenter’s point of view, and have the benefit of being directly

accessible to the actual observer, making them a stronger candidate than many of the other

variables mentioned above. Altogether, these and our findings point toward the richness of

process data in helping to better understand and predict behavior.
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An open question for future research is to elucidate the neural mechanisms that underlie the

remarkable ability to learn from observing decision speed and to use this information for making

predictions. Historically, brain activity tracking social inference computations was found in

regions that are known to be part of the Theory of Mind network, such as dorsomedial prefrontal

cortex, temporoparietal junction, and posterior superior temporal sulcus [6,45,78–80]. Nonethe-

less, as stated above, taking decision speed into account requires an accurate estimation of time

passage, suggesting that brain regions related to time perception, such as the pre-supplementary

motor area and the intraparietal sulcus [81], should play a critical role. Furthermore, our modeling

indicates that a prediction error signal, which quantifies the degree of mismatch (i.e., surprise)

between the anticipated and observed decision speed, should play a critical role in the RT-based

updating process. Interestingly, a recent EEG study has identified such a surprise signal when par-

ticipants categorized stimulus durations as being either fast or slow, and modeled this EEG signal

as reflecting the distance of a diffusion particle from the anticipated threshold in a DDM-like

model [82]. It is tempting to speculate that people compare the observed decision speed with their

own expectations in a similar way and that the ensuing (neural) surprise signal drives the social

observational learning process. Future research will need to test these predictions to further pro-

mote our understanding of how people make sense of other people’s behavior.

To conclude, by investigating the relationship between RT and social preferences in the

Dictator Game, we aim to contribute to the existing literature on decision-making, social cog-

nition, and economic behavior. Our findings shed light on the intricate interplay between RT,

learning and social preferences, expanding our understanding of the mechanisms underlying

human decision-making in social contexts.

Materials and methods

Ethics statement

The research was approved by the Ethics Committee of the Faculty of Psychology and Human

Movement Sciences of the University of Hamburg (approval number 2022_019) and carried

out following the principles and guidelines for experiments including human participants pro-

vided in the Declaration of Helsinki (1964, revised in 2013).

Preregistration

Our recruitment methods, task design, and procedures were preregistered on the Open Science

Framework (https://osf.io/tz4dq) prior to the completion of data collection. The preregistration

protocol included a within-subjects design with 2 factors (provided information: RTs and choices)

and 2 levels (with/without; Fig 1B). A power analysis computed in G*power [83] revealed that, in

order to identify an effect with the size of 0.2 (small-to-medium Cohen’s f, ANOVA with repeated

measures, within factors, 1 group, 4 measurements) with the power of 0.9, 46 participants should

be recruited for this experiment, which uses a pure within-subject design. Preregistered hypothe-

ses included (1) the average accuracy to be higher than chance in 3 out of 4 conditions; (2) the

accuracy to increase with the amount of information provided to the participants; and (3) the

accuracy to be positively correlated with their performance in the time perception task, especially

in conditions where response times are displayed. For clarity of focus in our report, preregistered

tests involving time perception have been described separately in S4 Text.

Participants

Dictator Game experiment. We recruited 16 participants from a student population at

the University of Basel, Switzerland, via 2 internal participant recruitment platforms (one for
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psychology students who received course credits for participation, one for students of any field

who received a monetary show-up fee of CHF 20 per hour). All participants gave written

informed consent, and the study was approved by the local ethics committee (Ethikkommis-

sion Nordwest und Zentralschweiz).

Main experiment. We recruited 46 participants (38 females, 8 males, 0 N/A, aged

21.89 ± 4.05 years old) from the pool of psychology students at the University of Hamburg via

an internal participant recruitment platform. Five additional participants were excluded

because they did not understand the task (e.g., they did not change the preference estimation

over the whole task). The Ethics Committee of the Faculty of Psychology and Human Move-

ment Sciences of the University of Hamburg approved the study and participants provided

written informed consent prior to their inclusion. To sustain motivation throughout the

experiment, participants were given a monetary bonus, whose value was determined by

randomly selected choices that the participants made throughout the different phases of the

task.

Behavioral tasks

Dictator Game experiment. After reading and signing the consent form, participants

received written instructions explaining how the task worked and that their final payoff would

be affected by their choices in the task. The instructions were then followed by a short training

session of 4 trials, aiming at familiarizing the participants with the response modalities. In our

task, point allocations were indicated by colored circles divided into a blue and a red segment.

Participants were informed that the blue (resp. red) segment represented their own points

(ranging from 100% to 0% of the circle) and the red (resp. blue) segment represented the

points allocated to another anonymous person (ranging from 0% to 100% of the circle). Blue

and red segments summed to 100%, and the color allocated to self/other was counterbalanced

across participants (Fig 1). On each trial, 2 cues were presented on different sides (left /right)

on the screen. The position of a given cue was randomized, such that a given cue was presented

an equal number of times on the left and on the right. The points allocations were determined

by increasing the “self” proportion in 10% steps. The 11 generated allocations were presented

in all possible binary combinations (55 in total, not including pairs formed by the same alloca-

tion). Each pair of cues was presented 3 times, leading to a total of 165 trials. On each trial, a

small noise was added to each allocation (drawn from a truncated normal distribution with

fixed mean μ = 0 and variance σ = 0.02, bounded between −0.05 and 0.05). Participants were

required to select between the allocations by pressing one of 2 keys on a standard computer

keyboard. The choice window was self-paced. After the key press, the cues disappeared and

were replaced by an inter-trial fixation screen, whose duration randomly varied from 1 to 4 s.

At the end of the experiment, a trial was randomly selected and participants received the “self”

points corresponding to the allocation they chose on this trial. In addition, the “other” points

from this trial were given to another participant of the same experiment. Hence, participants

received 2 bonuses: the proportion of points they chose for themselves converted to money,

and the ones they received from another participant.

Main experiment. The main experiment was divided into 2 parts: playing the Dictator

Game and observing the Dictator Game. After reading and signing the consent form, partici-

pants received written instructions explaining how the task worked and that their final payoff

would be affected by their choices in the task. The first part of the task was similar to the one

described in the previous paragraph, with the exceptions that (1) the combinations of alloca-

tions were presented only once, leading to a total of 55 trials; and (2) only the bonus corre-

sponding to their own points was paid out at the end of the experiment. In the second part of
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the task, participants were instructed that they would observe the decisions of other people

who had performed the same (Dictator Game) task. After an instruction screen specifying

which condition they were in (i.e., whether they would observe both choices and RT, only

choices, only RT, or none), participants observed a total of 12 trials for each of the 16 dictators,

in blocks of 4 dictators per condition. The order of the trials was not randomized within each

dictator, but the order of the conditions was pseudo-randomized across participants, and the

order of the dictators was pseudo-randomized so that each condition would display the widest

range of social preferences that could be learned. For each dictator, participants were asked to

estimate their social preference before observing anything, and after 4, 8, and 12 trials, leading

to a total of 4 estimations per dictator. To do so, they were asked to move a tick on a slider,

which simultaneously changed the visual proportion of an allocation displayed next to the

slider (S8 Fig). After observing the 12 trials, participants were asked to indicate which alloca-

tion the dictator would have chosen in 4 previously unseen binary decision problems, pre-

sented as in the first phase of the experiment. At the end of the experiment, 1 estimation trial

was randomly chosen, and an additional bonus was given to the participant, whose amount

was proportional to their accuracy on this trial.

All experiments were programmed in Python using PsychoPy (www.psychopy.org).

Trial selection

In order to maximize the likelihood of observers learning the dictators’ social preferences trial-

by-trial, we carefully selected which of the 165 trials would be displayed to the participants. To

this end, we considered the trials which would be most informative, in terms of both choices

and RT. We ran a linear regression on the RT with the subjective value distance as the inde-

pendent variable (see Results section; S1A Fig):

RT ¼ b0 þ b1∗jsðleftÞ � sðrightÞj ð1Þ

We categorized the trials into slow trials (RT>b0, the preference is at the midpoint between

both available allocations), fast trials (RT<b0+b1*(left−right)2, the preference is either between

0 and the most prosocial allocation, or between the most selfish allocation and 1), and uninfor-

mative trials (all the remaining trials; S1B Fig). Among the informative trials, we excluded all

noisy trials where dictators made an inconsistent choice, i.e., choosing the allocation with the

highest distance to their social preference. For each dictator in the estimation phase, we

selected the 6 fastest trials and the 6 slowest trials whose options’ midpoint was the closest to

the true preference (Fig 3B). To ensure that the trial order would not impair learning, we fitted

the social preference in all possible order combinations of all possible blocks of 4 trials each.

We selected the trial order which resulted in the smallest difference between the fitted and the

actual preference, over all the conditions. Hence, the 12 trials of each dictator were presented

in the same order for all participants. For the prediction phase, we selected the next 2 fastest

trials and 2 slow “midpoint-optimizing” trials, which were presented in a random order for all

participants.

Empirical chance level

We derived the empirical chance level in the estimation trials, i.e., the average accuracy one

would reach if they randomly guessed the preference for each dictator. To do so, we drew

10,000 samples from a uniform distribution of possible allocations (ranging from 0 to 1) and

calculated the corresponding accuracy; the accuracy averaged over samples represents the

chance level for each dictator. The chance level averaged over dictators represents the empiri-

cal chance level (0.65).
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Behavioral analyses

In the Dictator Game, we were interested in 2 variables reflecting the dictator’s/participant’s

social preference: (1) the proportion of choices towards the more selfish allocation; and (2) the

RT. In the estimation phase, we were interested in the accuracy of participant’s responses, i.e.,

the distance between the estimated preference and the dictator’s actual preference. In the pre-

diction phase, we were interested in 3 different variables reflecting participants’ strategy: (1)

the accuracy, i.e., whether they selected the same allocation as the dictator did; (2) the (inter-

nal) consistency, i.e., whether they chose the allocation with the lowest distance to the last pref-

erence estimation; and (3) the RT.

For choice analyses, statistical effects were assessed using repeated measures analyses of var-

iance (ANOVAs) with choice visibility (displayed or not) and RT visibility (displayed or not)

as within-participant factors. Post hoc tests were performed using one-sample t tests. We

report the t statistic, p-value (Bonferroni-corrected when applicable), and Cohen’s d to esti-

mate effect size. Given the large sample size (n = 46), the central limit theorem allows us to

assume normal distribution of our overall performance data and apply properties of normal

distribution in our statistical analyses, as well as sphericity hypotheses. Regarding the compari-

son of correlations from dependent samples, we report Fisher’s z test: z statistic and p-value.

Regarding ANOVA analyses, we report Levene’s test for homogeneity of variance, the uncor-

rected statistical, as well as Huynh–Feldt correction for repeated measures ANOVA (when

applicable), F statistic, p-value, partial eta-squared Z2
p, and generalized eta-squared η2 (when

Huynh–Feldt correction is applied) to estimate effect size.

For RT analyses, to avoid statistical fallacies arising from the assumption of normal distri-

bution and homoskedasticity for skewed datasets, we ran GLMMs on the winsorized RT

(0.05th percentile), with a Gamma distribution of the response variable and an Identity link

function, with duration (duration: fast or slow), choice visibility (infoCh: displayed or not;

only when predicting other), and RT information (infoRT: displayed or not; only when pre-

dicting other) as within-participant factors [84]:

RT � duration∗infoCh∗infoRTþ ð1þ durationþ infoChþ infoRTjobserversÞ

To analyze the trials where participants chose for themselves, we only included the duration

factor, as choice and RT information of another person are not shown in this phase, and adding

them to the GLMM did not significantly improve the fit (χ2 (13) = 20.34, p = 0.087, S1 Table):

RT � durationþ ð1þ durationjobserversÞ

We report the estimates, standard error, t statistic, and p-value. Post hoc tests were per-

formed using Wilcoxon signed rank tests, for which we report the Z statistic and p-value.

All statistical analyses were performed using MATLAB (www.mathworks.com) and R

(www.r-project.org).

Computational models

Estimating social preference based on all data. For the Dictator Game task, we calcu-

lated the subjective values s(�) for each option (left and right) at each trial t using the social

preference, which was estimated as a free parameter:

sðlefttÞ ¼ 1 � ðleftt � PÞ2

sðrighttÞ ¼ 1 � ðrightt � PÞ2; ð2Þ
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where left (resp. right) is the objective value of the left (resp. right) option (i.e., the number of

points allocated to “self”) and P is the estimated social preference (free parameter that is sub-

ject-specific).

Drift diffusion model. To estimate social preferences in the “RT only” condition, we used

a DDM, where we assumed that the drift rate in every trial is a linear function of the difference

in the subjective values of the 2 options. Intuitively, individual social preferences can be identi-

fied due to the fact that longer RT should be reflective of lower drift rates and thus smaller sub-

jective-value differences [24]. Thus, we use DDM-based probability densities to estimate the

preference parameter for each dictator, given the empirical distribution of RT. Because the

decision is unknown, we maximize the RT likelihood function across both choice boundaries

[13]:

llRT ¼
X

t
logðf ðRTt; choicet ¼ leftjb; t; vtÞÞ þ logðf ðRTt; choicet ¼ rightjb; t; vtÞÞ; ð3Þ

where f is the response time density function, RTt is the response time on a specific trial t,choi-

cet is the choice the dictator could have made on specific trial t,b is the DDM decision bound-

ary, τ is the non-decision time, and vt is the drift rate on specific trial t, which depends on the

difference in subjective values.

Choice-based softmax method. For the “choice only” condition, we estimate each dicta-

tor’s social preference with a softmax rule, where the probability of choosing the left option at

trial t is a logistic function:

Probt chooseleftð Þ ¼
1

1þ ebd∗ðsðrighttÞ� sðlef ttÞÞ
; ð4Þ

where βd>0 is the inverse temperature parameter for the dictator d. High temperatures

(βd!0) cause the action to be all (nearly) equiprobable. Low temperatures (βd!+1) cause a

greater difference in selection probability for actions that differ in their value estimates [52].

The social preference and the temperature are free parameters that can be estimated for each

dictator individually by maximizing a likelihood function [13]:

llCh ¼
X

t
logðProbtðchooseleftÞÞ � 1ðchoicet ¼ leftÞ þ logð1 � ProbtðchooseleftÞÞ � 1ðchoicet

¼ rightÞ; ð5Þ

where at each trial t,choicet is the choice made by the dictator and 1(�) is the indicator function.

Notably, the close correspondence of the softmax (or logit) choice model and the DDM has

been elaborated in previous work (e.g., [85]).

Learning social preference based on sequential observations. The goal of our learning

models is to infer the observed dictator’s social preference over trials and to choose the best

(i.e., subjective-value maximizing) allocation in the prediction phase. We compared 2 alterna-

tive computational models: an adapted reinforcement learning model which updates the sub-

jective value of the social preference with a delta-rule and a Bayes-optimal model that

integrates the posterior likelihood over a set of predefined parameter prior distributions.

Reinforcement learning models. To model participants’ behavior, we designed 2 modi-

fied versions of the standard RL model [52]. In both models, the initial estimated preference P0

was included as a free parameter. At each trial t, the estimated preference P is updated with a

delta rule [51]:

Pt ¼ Pt� 1 þ a∗dt; ð6Þ

where α is the learning rate and δt is a prediction error term, calculated as the difference
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between the outcome Ot (defined below) and the current estimation:

dt ¼ Ot � Pt� 1: ð7Þ

The outcome Ot depends on the amount of information provided to the participant.

When both choices and RT were displayed, the trial was categorized as either fast or slow,

depending on whether the trial RT was longer than the average RT observed for this dictator.

If the trial was slow, the outcome was computed as the midpoint between the objective values

of both options (proportion of points for “self”), reflecting the intuition that both options were

likely equidistant from the preferred allocation. If the trial was fast, the outcome was computed

as 1 or 0, depending on whether the chosen allocation was the more selfish or the more proso-

cial one:

Ot ¼

leftt þ rightt
2

if RTt > meanðRT1:tÞ

1 if choicet ¼ maxfleftt; righttg

0 if choicet 6¼ maxfleftt; righttg

ð8Þ

8
>>><

>>>:

When only the choices were displayed, the outcome was computed as 1 or 0, depending on

whether the chosen allocation was the more selfish or the more prosocial one:

Ot ¼
1 if choicet ¼ maxfleftt; righttg

0 if choicet 6¼ maxfleftt; righttg
ð9Þ

(

When only RT were displayed, the trial was categorized as either fast or slow as specified

above. If the trial was slow, the outcome was computed as the midpoint between the objective

values of both options (proportion of points for “self”). If the trial was fast, the outcome was

computed as 1 or 0, assuming that the allocation with the highest subjective value s(�), as given

in Eq 2, was chosen:

Ot ¼

leftt þ rightt
2

if RTt > mean RT1:tð Þ

1 if maxfsðlefttÞ; sðrighttÞg ¼ maxfleftt; righttg

0 if maxfsðlefttÞ; sðrighttÞg 6¼ maxfleftt; righttg

ð10Þ

8
>>><

>>>:

Intuitively, this implies that in the case of observing a fast decision, the observer is assumed

to believe that the option with the higher subjective value was chosen and to update the social

preference accordingly. When no information was displayed, the outcome was computed as

the midpoint between the objective values of both options (proportion of points for “self”) at

each trial:

Ot ¼
leftt þ rightt

2
ð11Þ

Intuitively, this implies that in case of receiving no information, the observer is assumed to

believe that the dictator was asked to make very difficult decisions (and thus decisions that

would be diagnostic of their social preference). In the version of the RL model presented in the

main text, the outcome was computed as a weighted sum between the choice-related
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information and the RT-related information, with the addition of a weight parameter 0<ω<1:

Ot ¼ OCh;t∗ð1 � oÞ þ ORT;t∗o ð12Þ

To fit the model to the data, maximum likelihood estimation was applied by minimizing

the deviance between the data and the model. For estimation trials, the negative log-likelihood

was computed as follows:

llt ¼ � logð�ðDt; Pt; sÞÞ ð13Þ

where ϕ(Dt,Pt,σ) represents the value of a normal distribution at Dt (actual participant’s esti-

mation) with mean Pt (model estimation) and standard deviation σ (fitted as a free parameter).

For the prediction trials, the negative log-likelihood was computed as follows:

llt ¼ �
1

1þ ebp∗ðsðunchosentÞ� sðchosentÞÞ
; ð14Þ

where βp>0 is the inverse temperature parameter for the participant p and s(�) represents the

subjective value of an allocation, computed as in Eq 2. To avoid local minima, model fitting

was performed with 50 different initial parameter values, randomly drawn from prior distribu-

tions, which we took to be Beta(1.1,1.1) for the learning rate α, Gamma(1.2,5) for the inverse

temperature βp, and a fixed number for the standard deviation σ [86].

We modeled participants’ choice behavior using a softmax decision rule representing the

probability of a participant choosing the left allocation:

Probt chooseleftð Þ ¼
1

1þ ebp∗ðsðrighttÞ� sðlefttÞÞ
; ð15Þ

where βp>0 is the inverse temperature parameter for the participant p. High temperatures

(βp!0) cause the action to be all (nearly) equiprobable. Low temperatures (βp!+1) cause a

greater difference in selection probability for actions that differ in their value estimates [52].

Bayes-optimal model. Based on prior work suggesting that observers might infer other

people’s choice processes via Bayesian inferences [24,43–47], we tested a model that assumes

observers estimate the dictator’s preference using such a Bayesian framework. More specifi-

cally, this framework suggests observers infer the optimal parameters by maximizing the poste-

rior distribution of the parameter set, given all the evidence collected so far. In other words, we

designed a benchmark Bayes-optimal model which assumes that observers seek to know what

is the most likely set of parameters (of a model they assume to be the generative model of the

decisions) for this dictator given the observation. To make such an inference, observers must

have a generative model of the dictator’s decision-making process (or a model that can be

expected to come reasonably close to the true generative model, which itself is unknown). Fol-

lowing previous work [24], we assumed this model to be a DDM, which indeed provides an

excellent account of both choices and RT in our Dictator Game task (S9 Fig). In this frame-

work, the drift rate depends on the social preferences and choice options as specified above.

On each trial, we computed the likelihood of the observed behavior given a set of parameters

from the joint parameters space as follows.

When both choices and RT were displayed, the likelihood was computed as the probability

density function of the Wiener first-passage time (WFPT) distribution [87], i.e., the diffusion

process given the observed choice and RT (Fig 1D, rightmost panel). When only choices were

displayed, the likelihood was computed as a softmax function (Eq 14 and Fig 1D, middle

panel). When only RT were displayed, the likelihood was computed as the probability density

function of the WFTP distribution given the RT, and integrated over both possible choices
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(Fig 1D, leftmost panel). When no information was displayed, the likelihood did not differ

from the priors for the joint parameter space, which we took to be Beta(3.5,3) for the estimated

preference 0<P<1, Gamma(1.2,5) for the temperature 0<β<100, Gamma(2,2) for the bound-

ary separation 0.1<α<10.1, Normal(0,5) for the drift rate 0<v<20, and a uniform distribution

for the non-decision time 0.1<Ter<0.5. The posterior distribution was then computed and

used as a prior for the next trial.
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**p< 0.01, ***p< 0.001. Data and analysis scripts underlying this figure are available at
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S4 Fig. RL model predictions. (A) Estimated difficulty extracted from RL model predictions
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option in the prediction phase, as a function of the behavioral data. (C) RL model predictions

for the fourth and last estimation per observer per observed dictator, as a function of the

reported fourth and last estimation, for each condition. N = 184. ρ: Spearman’s coefficient. In

all panels, ***p< 0.001. Data and analysis scripts underlying this figure are available at https://

github.com/sophiebavard/beyond-choices.
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S5 Fig. Additional qualitative model comparison. Average accuracy for the last estimation

predicted by the RL model (A) and BO model (B) for each condition, averaged over trials and

dictators, as a function of the observers’ behavioral accuracy. In all panels, N = 46, ns: p> 0.05,

*p< 0.05, **p< 0.01, ***p< 0.001. Data and analysis scripts underlying this figure are avail-

able at https://github.com/sophiebavard/beyond-choices.
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S6 Fig. Qualitative model comparison for full model space. Top: Simulated data (colored

dots) superimposed on behavioral data (colored curves) representing the accuracy in the esti-

mation phase for the main RL model (A), the basic RL model (B), the BO model with informa-

tive priors (C), and the BO model with uninformative uniform priors (D) in each condition.

Shaded areas represent SEM. N = 46. Bottom: accuracy predictions the main RL model (A),

the basic RL model (B), the BO model with informative priors (C), and the BO model with

uninformative uniform priors (D) as a function a behavioral accuracy in the estimation phase

for the last estimation of each participant in each condition. Dashed line represents identity.

N = 184. Data and analysis scripts underlying this figure are available at https://github.com/

sophiebavard/beyond-choices.

(PDF)

S7 Fig. Between-group comparisons in the estimation phase. Subset of observers’ accuracy

for each estimation as a function of the condition (choice and RT visibility). (A) Observers

whose first condition was “none.” (B) Observers whose first condition was “RT.” (C) Observ-

ers whose first condition was “Ch.” (D) Observers whose first condition was “both.” (E)

Observers whose last condition was “none.” (F) Observers whose last condition was “RT.” (G)

Observers whose last condition was “Ch.” (H) Observers whose last condition was “both.”

Data and analysis scripts underlying this figure are available at https://github.com/

sophiebavard/beyond-choices.
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S8 Fig. Visual representation of the estimation phase. The figure represents the screen seen

by observers to indicate what they thought the dictator’s preference was, by dragging-and-

dropping a red (resp. blue for counterbalanced observers) tick on a slider. The< Continue

with space bar> line was only displayed after they had made one first click, to avoid persevera-

tion effects. Translated from German for illustration purposes. Data and analysis scripts

underlying this figure are available at https://github.com/sophiebavard/beyond-choices.

(PDF)

S9 Fig. DDM simulations on the Dictator Game task. The DDM model was fitted on the

Dictator Game data for the 16 dictators, here represented in an increasing order based on their

social preference (estimated from their behavioral choices). The DDM is able to match dicta-

tors’ behavior both in terms of choices (top panels) and RT (bottom panels). Data and analysis

scripts underlying this figure are available at https://github.com/sophiebavard/beyond-

choices.

(PDF)
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S10 Fig. Results of additional experiments. (A) Observers’ accuracy in the time perception

task as a function of the difficulty of the trial, i.e., the time interval between 2 stimuli. Points

indicate individual average, shaded areas indicate probability density function, 95% confidence

interval, and SEM. N = 46. (B) Observers’ post-task SVO score as a function of their pre-task

SVO score and their social preference extracted from their choices in the Dictator Game (DG).

Black dashed lines represent categorical boundaries: competitiveness/individualism/prosocial-

ity/altruism. Red dashed lines represent a change of category from pre- to post-task scores.

SVO: Social Value Orientation scale; DG: Dictator Game; N = 46. Data and analysis scripts

underlying this figure are available at https://github.com/sophiebavard/beyond-choices.

(PDF)

S1 Table. Results from GLMM fitted on observers’ RT in the prediction phase. The GLMM

(generalized linear mixed model with Gamma distribution and identity link function) was fit-

ted on the observers’ RT, with choice visibility in the estimation phase, RT visibility in the esti-

mation phase, and trial duration (i.e., whether the dictator’s RT was short or long), as

independent variables. Denotation: Du = duration (fast or slow), Ch = choice visibility (dis-

played or not), RT = RT visibility (displayed or not), ***p< 0.001. Data and analysis scripts

underlying this figure are available at https://github.com/sophiebavard/beyond-choices.

(DOCX)
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