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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Loss of synapses between spiral ganglion neurons and inner hair cells (IHC synaptopathy)

leads to an auditory neuropathy called hidden hearing loss (HHL) characterized by normal

auditory thresholds but reduced amplitude of sound-evoked auditory potentials. It has been

proposed that synaptopathy and HHL result in poor performance in challenging hearing

tasks despite a normal audiogram. However, this has only been tested in animals after

exposure to noise or ototoxic drugs, which can cause deficits beyond synaptopathy. Further-

more, the impact of supernumerary synapses on auditory processing has not been evalu-

ated. Here, we studied mice in which IHC synapse counts were increased or decreased by

altering neurotrophin 3 (Ntf3) expression in IHC supporting cells. As we previously showed,

postnatal Ntf3 knockdown or overexpression reduces or increases, respectively, IHC syn-

apse density and suprathreshold amplitude of sound-evoked auditory potentials without

changing cochlear thresholds. We now show that IHC synapse density does not influence

the magnitude of the acoustic startle reflex or its prepulse inhibition. In contrast, gap-pre-

pulse inhibition, a behavioral test for auditory temporal processing, is reduced or enhanced

according to Ntf3 expression levels. These results indicate that IHC synaptopathy causes

temporal processing deficits predicted in HHL. Furthermore, the improvement in temporal

acuity achieved by increasing Ntf3 expression and synapse density suggests a therapeutic

strategy for improving hearing in noise for individuals with synaptopathy of various

etiologies.
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Introduction

The inner hair cells (IHCs) of the mammalian organ of Corti transduce sounds into neural

activity through glutamatergic excitatory synapses onto primary auditory neurons, the type I

spiral ganglion neurons. These synapses are vulnerable to aging and noise exposure [1], i.e.,

even moderate noise exposure and/or normal aging result in loss of IHC synapses [2,3]. This

type of deafferentation, a.k.a. cochlear synaptopathy, has been well documented in various

mammalian species, including mice [1], guinea pigs [4], rats [5], gerbils [6], chinchillas [7],

and humans [8,9]. Animal studies have shown that moderate cochlear synaptopathy caused by

noise overexposure or aging causes “hidden hearing loss,” i.e., an auditory neuropathy that

manifests as a reduction in suprathreshold amplitudes of the first peak (peak I) of the audi-

tory-brainstem response (ABR) without a shift in cochlear thresholds [1].

It has been hypothesized that cochlear synaptopathy leads to neural coding deficits that impair

speech discrimination and intelligibility, especially in noisy environments, and to compensatory

increases in the “gain” of central circuits that cause hyperacusis and tinnitus [10]. Indeed, experi-

ments on animals with noise- or drug-induced cochlear synaptopathy show evidence for persis-

tent gain in central circuits, either in the enhancement of acoustic startle responses [11], or of

sound-evoked response rates in neurons from the inferior colliculus or cortex [12,13]. Cortical

responses from synaptopathic animals also show threshold elevations for detectability of tones in

noise without changes in tone detection in quiet [13]. However, other studies have failed to find

such correlation [14]. In humans, several studies have shown a relationship between noise-expo-

sure history and reductions in ABR suprathreshold amplitudes among those with normal audio-

metric thresholds [15], or a correlation between ABR peak I amplitudes and performance on

speech-in-noise tasks [16,17], but these studies did not provide direct demonstration of cochlear

synaptic loss. Furthermore, other studies have found no evidence for a relationship between noise

history or ABR amplitudes and impaired speech perception [18].

To explore the impact of cochlear synapse density on auditory function, and to probe the

effects of cochlear synaptopathy in the absence of cochlear insults like acoustic overexposure,

ototoxic drugs or aging, where damage may be more widespread than the loss of cochlear syn-

apses, we used transgenic mice in which IHC synapse density can be controlled via altering

neurotrophin 3 (Ntf3) expression in the IHC’s supporting cells [19]. We previously showed

that altering the levels of supporting-cell Ntf3 expression starting in the neonatal period per-

manently changes IHC synapse density, i.e., supporting-cell Ntf3 overexpression increases

IHC synapse numbers and enhances ABR peak I amplitudes, whereas supporting-cell-specific

Ntf3 knock-out decreases them [19]. Here, we tested the behavioral phenotypes of these trans-

genic mice, focusing on the acoustic startle reflex and its modulation. For the latter, we mea-

sured prepulse inhibition (PPI) and gap-inhibition of the acoustic startle (GPIAS), behaviors

used to assess stimulus salience, sensory gating, and temporal processing in both animals and

humans [20–26].

We found that, compared to control animals, GPIAS is stronger in animals with increased

IHC synapse density (and Ntf3 overexpression) and weaker in animals with decreased synapse

density (and Ntf3 knockdown), without any changes in the strength of the acoustic startle itself

or its PPI. As seen with noise- or age-related loss of synapses [5,11], the later ABR peaks, origi-

nating from auditory brainstem and midbrain nuclei, are unchanged after Ntf3 knockdown,

despite a decrease in peak I amplitudes, suggesting a compensatory central gain. In Ntf3 over-

expressors, ABR peaks I–IV are enhanced, suggesting there are no mechanisms for central

gain reduction after a peripheral gain of function. Together, these results are consistent with

the notion that enhancing IHC synapse density could lead to a general enhancement of tempo-

ral processing abilities.
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Results

Regulating IHC synapse density and sound-evoked auditory nerve activity

via Ntf3 knock-down or over-expression

To modify the levels of Ntf3 expression in IHC supporting cells, we used cell-specific inducible

gene recombination as in prior studies [19]. Briefly, the Plp1-CreERT transgenic line [27] was

used to drive gene recombination in IHC supporting cells via tamoxifen treatment during the

neonatal period [28]. This CreERT transgene was combined with either conditional Ntf3 KO

alleles (Ntf3flox/flox) [29] to reduce Ntf3 expression in these cells, or an inducible Ntf3 overex-

pression transgene (Ntf3STOP) to increase it [19]. Since Ntf3 is expressed by both IHCs and

their surrounding supporting cells in the cochlea [30], knockout of the Ntf3 gene from IHC

supporting cells in Ntf3flox/flox::Plp1-CreERT reduces cochlear Ntf3 level but does not eliminate

it [19]. As controls, we used mice with the conditional Ntf3 alleles without the CreERT

transgene.

Between the ages of 8 and 15 weeks, mutant and control mice underwent a variety of behav-

ioral and physiological tests (Fig 1). At 16 weeks, cochlear tissues were harvested to measure

Ntf3 expression levels and the number of synapses per IHC (synapse density). We present the

latter analyses first, which show that the Ntf3 manipulations had the expected effects on the

cochlea.

Quantitative RT-PCR (Fig 2A and 2B) confirmed that cochlear Ntf3 levels were reduced in

the Ntf3flox/flox::Plp1-CreERT, i.e., Ntf3 Knockdown (Ntf3-KD) mice and increased in the

Ntf3STOP::Plp1-CreERT, i.e., Ntf3 Overexpressor (Ntf3-OE), mice. Similarly, expression of

VGF mRNA, a gene downstream of neurotrophin receptor signaling [31], was decreased in

the cochleas of Ntf3-KD mice (Fig 2A) and increased in Ntf3-OE mice (Fig 2B). Furthermore,

there was a clear correlation between the mRNA levels of Ntf3 and VGF (Fig 2C), indicating

that the changes in Ntf3 expression impact TrkC signaling in the inner ear. Since the Plp1

gene is also expressed in oligodendrocytes in the brain, and auditory-driven behaviors such as

GPIAS are modulated by cortical circuits [32], we also measured the levels of Ntf3 and VGF in

the cerebral cortex. We found a small decrease in cortical Ntf3 mRNA levels in Ntf3-KD mice

(Fig 2D), no change in Ntf3-OE mice (Fig 2E), and most importantly, no changes in VGF

mRNA levels in either of the mutants (Fig 2D and 2E), indicating that the manipulation of

Ntf3 expression in Plp1-expressing cells is unlikely to have a direct effect on the central ner-

vous system (CNS).

We also immunostained cochleas to assess the numbers of synapses between IHCs and

auditory-nerve fibers. Whereas almost all auditory-nerve fibers contact a single IHC, each IHC

is contacted by numerous auditory-nerve fibers. Each of these glutamatergic synaptic contacts

can be identified as a closely apposed pair of puncta in cochleas immunostained for CtBP2, a

major component of the presynaptic ribbon, and GluA2, a subunit of the glutamate receptors

Fig 1. Timeline of the experiments. AU : AbbreviationlistshavebeencompiledforthoseusedinFigs1to9:Pleaseverifythatallentriesarecorrect:Experimental timeline showing the ages of mice for tamoxifen treatments, ABR

measurements, behavioral assay (ASR, PPI, GPIAS), and sample collections for quantitative RT-PCR and

immunostaining (P = postnatal day, wk = weeks). ABR, auditory-brainstem response; ASR, acoustic startle response;

DPOAE, distortion product otoacoustic emission; GPIAS, gap-inhibition of the acoustic startle; PPI, prepulse

inhibition.

https://doi.org/10.1371/journal.pbio.3002665.g001

PLOS BIOLOGY Inner hair cell synapse density influences auditory processing

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002665 June 27, 2024 3 / 21

https://doi.org/10.1371/journal.pbio.3002665.g001
https://doi.org/10.1371/journal.pbio.3002665


localized at the postsynaptic terminals (Fig 3A and 3E). In a normal mouse, the mean number

of synapses per IHC follows an inverted U-shaped function, peaking in mid-cochlear regions

at a value of roughly 20 synapses per IHC [2,19]. As we previously reported [19], reduced sup-

porting-cell Ntf3 expression levels decreased IHC synapse density in the basal half of the

cochlea by as much as 20%, while increased supporting-cell Ntf3 expression levels increased

IHC synapse density in the same cochlear regions by as much as 30% (Fig 3B–3D and 3F–3H).

The stronger impact of supporting-cell derived Ntf3 on synapse density in the basal half of the

cochlea likely reflects the fact that endogenous Ntf3 levels are lower in this region [30], making

it more sensitive to changes in expression.

At 8 weeks of age, we assessed cochlear function by measuring distortion product otoacoustic

emissions (DPOAEs), which reflect outer hair cell function, and ABRs, which reflect the summed

responses of the auditory nerve and several higher auditory centers [33]. While peak I reflects syn-

chronous sound-evoked activity of auditory-nerve fibers, the second peak (peak II) is dominated

by contributions from cochlear-nucleus bushy cells, and later waves represent bushy-cell targets

in the superior olivary complex and inferior colliculus [33–37]. These recordings confirmed that,

as we reported earlier [19], reduced Ntf3 expression by IHC supporting cells reduces ABR peak I

amplitudes without changing ABR and DPOAE thresholds (Fig 4A–4C), while increasing Ntf3

leads to normal thresholds with increased peak I amplitudes (Fig 4D–4F). An example raw

recording of DPOAE and ABR waveform is shown in Fig 4G and 4H. Like the changes in synapse

density, the effects of Ntf3 levels on peak I amplitudes are stronger in the middle and high fre-

quencies, which reflect responses arising from the middle/basal cochlear regions.

Whereas peak I amplitude was reduced in mice with reduced Ntf3 cochlear expression,

later ABR peak amplitudes were normal in these mice (Fig 5A), suggesting that decreased

Fig 2. Ntf3 expression in Plp1+ cells impacts TrkC signaling in the cochlea, not in the CNS. mRNA level of Ntf3 and

VGF, a gene downstream of TrkC signaling, are reduced in Ntf3-KD cochleas (A) and increased in Ntf3-OE cochleas (B).

Furthermore, cochlear of Ntf3 and VGF mRNA levels are correlated (C). In contrast, cortical Ntf3 mRNA level is slightly

decreased in Ntf3-KD mice (D) and unchanged in Ntf3-OE mice (E). No changes in VGF mRNA levels are observed in the

brains of either Ntf3-KD or Ntf3-OE mice (D, E). n = 6–8, ns = p> 0.05, * p< 0.05, ** p< 0.01, mRNA levels were

compared by two-tailed unpaired t test. The data underlying this figure can be found in S1 Data. Error bars represent SEM.

CNS, central nervous system.

https://doi.org/10.1371/journal.pbio.3002665.g002
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Fig 3. Ntf3 regulates IHC synapse density. Representative confocal images of IHC synapses at the 16 kHz cochlear

region from Ntf3-KD (A) and Ntf3-OE (E) mice and their respective controls immunolabeled for presynaptic ribbons

(CtBP2—red), postsynaptic receptor patches (GluA2—green), and hair cells (Myo7a - blue). Mean counts (± SEM) of

ribbons (B, F), GluA2 patches (C, G), and colocalized markers (D, H) in Ntf3 KDs and OEs. n = 5, ns = p> 0.05, *
p< 0.05, ** p< 0.01, *** p< 0.001, *** p< 0.0001. Synaptic markers were compared by two-way ANOVA. The data

underlying this figure can be found in S1 Data, the raw images were deposited in the Dryad repository (https://doi.org/

10.5061/dryad.k6djh9w8v). Error bars represent SEM. IHC, inner hair cell.

https://doi.org/10.1371/journal.pbio.3002665.g003
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sound-evoked activity of the auditory nerve leads to central gain in several higher auditory

centers, as seen after noise-induced or age-related synaptic loss [5,11]. In contrast, Ntf3 over-

expression resulted in increased amplitudes for ABR peaks I–IV (Fig 5B), indicating that

increased IHC synapse density enhances sound-evoked signaling along the ascending auditory

pathway. All peak latencies were normal in both mutants (Fig 6A and 6B), suggesting that

auditory nerve myelination and conduction velocity was not affected by the altered Ntf3 levels

and synapse densities [38].

IHC synapse density influences auditory processing but not the startle

reflex or sensory gating

To examine the impact of IHC synapse density on auditory processing, we tested 3 auditory-

driven behaviors; the acoustic startle response (ASR) [39], and 2 behaviors that involve

Fig 4. Ntf3 knockdown or overexpression influence ABR peak I amplitudes without effecting cochlear thresholds.

DPOAE (A, D) and ABR (B, E) thresholds in Ntf3-KD and Ntf3-OE mice are not different than their controls. In

contrast, Ntf3 knockdown reduces ABR P1 amplitudes (C), whereas overexpression leads to increased peak I

amplitudes (F). Representative traces of DPOAEs (G) and ABRs (H). n = 15–24. ABR P1 amplitudes were assessed at

80 dB SPL. ns = p> 0.05, *p< 0.05, **p< 0.01, ***p< 0.001, ***p< 0.0001 by two-way ANOVA. The data

underlying this figure can be found in S1 Data. Error bars represent SEM. ABR, auditory-brainstem response; DPOAE,

distortion product otoacoustic emission.

https://doi.org/10.1371/journal.pbio.3002665.g004
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Fig 5. Ntf3 knockdown or overexpression have different effects on the input-output function of ABR peaks I–IV. Mean amplitude vs. level functions

for ABR peaks I–IV in Ntf3-KD (A) and Ntf3-OE (B) mice and their respective controls at 16 kHz. Whereas peak I amplitudes are reduced in Ntf3-KD

mice, the amplitudes of the other peaks remain normal, indicative of central compensation (A). In contrast, Ntf3 overexpression increases amplitudes of

ABR peaks I to IV (B). N = 14–20, ns = p> 0.05, *p< 0.05, **p< 0.01, ***p< 0.001, ***p< 0.0001 by two-way ANOVA. The data underlying this figure

can be found in S1 Data. Error bars represent SEM. ABR, auditory-brainstem response.

https://doi.org/10.1371/journal.pbio.3002665.g005

Fig 6. Ntf3 expression levels do not influence the latencies of the ABR waveform peaks. Plots of peak latency recorded at 16 kHz against

sound stimulus level show that latencies of ABR peaks I–V are not altered by Ntf3-KD (A) and Ntf3-OE (B). n = 14–20, ns = p> 0.05 by two-

way ANOVA. The data underlying this figure can be found in S1 Data. Error bars represent SEM. ABR, auditory-brainstem response.

https://doi.org/10.1371/journal.pbio.3002665.g006
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modification of the ASR, prepulse inhibition of the ASR (PPI) [40], and gap-prepulse inhibi-

tion of the ASR (GPIAS) [41]. These tests have been a mainstay of studies on temporal process-

ing and hearing-in-noise deficits in animal models [22,42–44].

The ASR is a reflexive and rapid burst of muscular activity in response to a sudden, brief,

and intense sound. This is a robust and consistent behavior, easily quantified by measuring the

whole-body startle response [45]. To investigate the impact of alterations in IHC synapse den-

sity on the ASR, we measured responses to moderate-intensity narrowband stimuli (50 ms 65

dB SPL) centered at different frequencies (8, 12, 16, 24, and 40 kHz) (Fig 7A1) and response to

a high-intensity startle stimulus (20 ms 120 dB SPL broadband noise burst) (Fig 7B1), to detect

hyper-responsiveness to innocuous sound and to determine if responses to the prepulse sti-

muli are altered by changes in Ntf3 levels. As expected, the moderate intensity prepulse

Fig 7. IHC synapse density does not influence the acoustic startle response or prepulse inhibition. Schematics of

the protocols for prepulse stimulus (A1), startle stimulus (B1), and PPI stimuli (C1). (A1) The noise prepulse stimulus

is a narrowband noise (4 kHz width around variable center frequencies, 65 dB SPL, 50 ms duration). (B1) The startle

stimulus is a broadband noise (120 dB SPL, 20 ms duration). (C1) PPI consists of a noise prepulse and a startle

stimulus that starts 50 ms after the prepulse. (A2, A3) Reactivity to prepulse is not significantly different between

mutant and control mice. (B2, B3) Loud sound (120 dB SPL) elicits startle responses with amplitudes that were similar

in mutant mice and their control littermates. (C2, C3) The degree of prepulse inhibition of the startle response by a

prepulse was determined using the formula PPI ¼ 1 �
startle response withprepulse

startle response without prepulse. On average, the prepulse inhibit the startle

response by 40%. There is no significant difference between control and mutant mice. N = 20–24 mice/group for

response to prepulse (A2, A3); n = 18–20 mice/group for startle response (B2, B3); n = 11–17 mice/group for PPI (C2,

C3). ns = p> 0.05 by two-tailed unpaired t tests (B2, B3) or two-way ANOVA (C2, C3). The data underlying this

figure can be found in S1 Data. Mean ± SEM are shown. IHC, inner hair cell; PPI, prepulse inhibition.

https://doi.org/10.1371/journal.pbio.3002665.g007
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stimulus alone did not induce startle responses in either mutant or control mice (Fig 7A2 and

7A3). The high-intensity startle stimulus elicited strong responses with amplitudes that were

not different between control and mutants (Fig 7B2 and 7B3). These results indicated that

changes in Ntf3 expression, synapse density, and ABR peak I amplitudes do not affect reflexive

motor responses to sound.

PPI is commonly used to assess sensorimotor gating, i.e., the ability of a sensory stimulus to

suppress a motor response [26]. The PPI assay is quantified as the decrease in the ASR when a

prepulse stimulus is presented a few milliseconds before the startle stimulus [46]. We used the

50 ms prepulse stimulus described above ending 50 ms prior to the startle stimulus (Fig 7C1)

and quantified the magnitude of PPI as the fractional ASR reduction, i.e., 1 minus the ratio of

startle magnitude with and without prepulse [46]. On average, the prepulse inhibited the startle

response by 40%. There was no significant difference between control and mutant mice in PPI

(Fig 7C2 and 7C3), indicating that changes in synapse density and associated changes in audi-

tory-nerve activity do not affect sensorimotor gating.

Finally, we measured GPIAS, which is used to examine auditory temporal processing

[20,22,25,47] and correlates with speech recognition in humans [48,49]. In GPIAS, the suppres-

sion of the ASR is induced by the presentation of a brief silent gap in a continuous background

noise instead of a mild sound stimulus in silence. Gap detection was measured by presenting

animals in broadband background noise (BBN) with gaps of various durations (3 to 50 ms) end-

ing 50 ms before the startle stimulus (Fig 8A). Importantly, the startle amplitudes in background

noise were normal in mice with altered Ntf3 expression (Fig 8B and 8C), indicating that synapse

number does not alter the salience of the startle stimulus in the presence of background noise.

As done by others [14,22], we quantified GPIAS as the fractional reduction of startle, i.e.,

1 minus the ratio of the startle magnitude with and without a gap

(Gap inhibition ¼ 1 �
startle response with gap

startle response without gap). Analysis of gap inhibition as a function of gap

duration (Fig 8D and 8E) showed that, consistent with previous reports [22], GPIAS is

stronger with longer gaps. More importantly, Ntf3-KD mice showed a significant decrease

in the gap inhibition, whereas Ntf3-OE mice showed a significant increase compared to

their respective controls, indicating that IHC synapse density influences this modification

of the ASR. Importantly, gap inhibition for both genotypes was stable across different ses-

sions (S1 Fig), indicating that the results were not influenced by the age of the mice withing

the 8 weeks of testing. Furthermore, there was a strong correlation between gap inhibition

and ABR P1 amplitudes (S2 Fig), providing evidence that the magnitude of the sound-

evoked auditory potentials is critical for the GPIAS.

The conclusion that IHC synapse density influences GPIAS was also supported by 2 addi-

tional methods of quantitative analysis of the GPIAS, gap detection threshold and Rd’. Gap

detection threshold, which is used to measure the temporal acuity for acoustic transients, is

defined as the gap duration that elicits 50% of the maximal inhibition level [22,42,50–54]. As

for gap inhibition, gap-detection threshold was higher in Ntf3-KD mice (18.65 ± 3.473 ms)

compared to their controls (8.38 ± 1.413 ms), and lower in Ntf3-OE mice (6.712 ± 0.8304 ms)

compared to their controls (10.92 ± 1.775 ms) (Fig 8F and 8G). Similar conclusions could be

reached by analysis of Rd’, (Rd ¼ startle response without gap� response with gap
standard deviation of gap conditions ), a parameter that reflects the

salience of each gap condition for each mouse [55]. As shown in panels 8H and 8I, analysis of

Rd’ as a function of gap duration showed similar trends as for gap inhibition, i.e., Ntf3-KD

mice showed a significant decrease in the Rd’ curve, whereas Ntf3-OE mice showed a signifi-

cant increase compared to their respective controls (Fig 8H and 8I).

Since the spectral components and bandwidth of background noise also affects the behav-

ioral gap detection [55], we presented gaps of 50-ms duration when mice were subjected to
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narrowband background noise (NBN) centered around different frequencies (6 to 10 kHz, 10

to 14 kHz, 14 to 18 kHz, 22 to 26 kHz, and 38 to 42 kHz; spectral width: 4 kHz) (Fig 9A).

Whereas Ntf3 expression levels did not influence the startle responses at any frequency (Fig 9B

and 9C), the mutant mice showed consistent differences with the littermate controls with

NBN at all frequencies (Fig 9D and 9E). These results indicate that the difference in suppres-

sion level caused by altered Ntf3 expression cannot be attributed to impact on startle ampli-

tudes, and that the influence of Ntf3 expression levels on gap inhibition level is not restricted

to any specific frequency.

Discussion

Self-reporting studies indicate that 10% to 20% of adult humans with normal audiometric

thresholds have hearing difficulties [56–59]. Furthermore, humans with sensorineural hearing

loss, particularly in the high frequencies, have longer gap-detection thresholds that correlate

Fig 8. Ntf3 expression levels influence gap detection thresholds in broadband background noise. (A) Schematic

depiction of NO-GAP trials (left) and GAP trials (right). NO GAP trials consisted of a startle sound (120 dB SPL, 20 ms

duration) presented in continuous noise background (broadband noise, BBN, 65 dB SPL). In contrast, in the GAP

trials, a silent gap in the background noise of variable length (0–50 ms) was presented ending 50 ms before the startle

stimulus (S). (B, C) ASR amplitudes for the NO-GAP trials were similar in Ntf3 mutant mice and their control

littermates. (D, E) Show the level of gap inhibition vs. gap length and for Ntf3 KD and OE mice, respectively. The

inhibition of the startle reflex increases as the gap duration increases. (F, G) Show gap detection thresholds. Gap

detection threshold is increased in Ntf3-KD mice (H) and decreased in Ntf3-OE mice (I) compared to their littermate

controls. (H, I) Show level of Rd’ vs. gap length for Ntf3 KD and OE mice, respectively. n = 7–20 mice/group,

*p< 0.05, **p< 0.01, ***p< 0.001, ***p< 0.0001 by two-tailed unpaired t test (B, C, H, and I) or two-way ANOVA

(D, E, F, and G). The data underlying this figure can be found in S1 Data. Mean ± SEM are shown. ASR, acoustic

startle response; BBN, broadband background noise.

https://doi.org/10.1371/journal.pbio.3002665.g008
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with poorer speech perception [60–64]. It has been proposed that cochlear synaptopathy could

contribute to this highly prevalent auditory dysfunction [3,11,15]. However, since synaptopa-

thy in living human subjects cannot be assessed directly, and the impact of synapse density on

Fig 9. Ntf3 expression levels influence gap inhibition in NBN. (A) A schematic view of No gap trials (left) and gap

trials (right). No gap trials consist of a startle sound (120 dB SPL, 20 ms duration) presented in continuous noise

background (narrowband noise, NBN, 4 kHz width around variable center frequencies, 65 dB SPL). Gap-prepulse

inhibition of the acoustic startle (GPIAS) was tested in gap trials with the same background noise with a 50-ms gap

included as a prepulse followed 1 ms later by the startle-eliciting stimulus. (B, C) Responses to startle stimulus in

continuous NBN background are unaffected in the Ntf3-KD or Ntf3-OE mice. (D, E) GPIAS in narrowband noises

were significantly weakened in Ntf3-KD mice and strengthened in Ntf3-OE mice in a two-way ANOVA. Sidak

multiple comparison tests revealed a significant reduction at frequency of background noise band 10–14, 14–18, and

22–26 kHz in Ntf3-KD mice and no frequency-specific changes in Ntf3-OE mice. n = 10–14 mice/group, *p< 0.05,

**p< 0.01 by two-way ANOVA. The data underlying this figure can be found in S1 Data. Mean ± SEM are shown.

GPIAS, gap-inhibition of the acoustic startle; NBN, narrowband background noise.

https://doi.org/10.1371/journal.pbio.3002665.g009
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auditory processing had not been specifically tested in animal models without confounders

such as noise-exposure or aging, the causal link between IHC synaptopathy and hearing

impairments was previously hypothetical. Our findings using mice with reduced or enhanced

IHC synapse density due to changes in Ntf3 expression provide direct evidence that auditory

processing is influenced by cochlear synapse density and that IHC synaptopathy is sufficient to

degrade auditory processing and temporal acuity. Furthermore, our results suggest that

increased IHC density leads to enhanced temporal acuity, raising the possibility that therapies

that increase IHC synapse density could improve auditory performance in humans.

Analysis of ABR waveforms in our mouse models provides new insights into the impact of

IHC synapse density on the function of the ascending auditory pathway. We found that ABR

peaks II–V are normal in mice with IHC synaptopathy induced by Ntf3 knockdown despite

the reduced peak I amplitude. This finding is similar to that in animals with cochlear damage

[3,11–13,65], which has been interpreted as reflecting homeostatic compensation in the audi-

tory brainstem and midbrain after partial peripheral deafferentation. Our results provide fur-

ther support for this view. Most surprising was the observation that ABR peak I–IV

amplitudes are increased in mice with supernumerary IHC synapses. This finding indicates

that increased IHC synapse density enhances sound-evoked signaling along the ascending

auditory pathway. Our prior work showed that Ntf3-induced increase in synaptic counts is not

associated with a proliferation of auditory nerve fibers [19]. Thus, we presume that a fraction

of fibers now must make more than just 1 synaptic contact with an IHC. This, in turn, might

lead to better synchronization of onset responses and higher ABR amplitudes, which are then

propagated through the ascending central circuitry. It is possible that increased neural syn-

chrony contributes to the improved detection of noise gaps in the Ntf3 overexpressing mice,

suggesting that creating supernumerary IHC-SGN synapses could also improve auditory per-

formance in a wider range of stimulus contexts.

Since the Plp1-CreERT transgene also drives gene recombination in oligodendrocytes in

the CNS [27], and auditory cortical circuits contribute to gap detection [32], it was important

to determine if the mice had significant changes in Ntf3 expression and signaling in the CNS.

Finding little or no change in Ntf3 and VGF expression in the cortex of Ntf3 KD and OE mice,

together with data showing that few CNS neurons express the Ntf3 receptor TrkC in the brain

(see Expression Summary in [66]) suggests that the Ntf3 manipulations we created did not

directly affect cortical circuits. Thus, the phenotypes seen here are most likely dominated by

changes originating with the altered IHC synapse density.

Interestingly, mice with IHC synaptopathy due to Ntf3 knockdown did not show enhanced

magnitude either of the baseline acoustic startle or PPI. This contrasts with observations in

mice with synaptopathy induced by noise [11] or aging [46], where the hyper-responsiveness

has been interpreted as a sign of hyperacusis, a clinical disorder associated with noise-induced

or age-related hearing loss, in which moderate-intensity sounds become intolerably loud

[23,46,67–69]. There are several potential explanations for this apparent discrepancy. First,

whereas the noise- or age-induced acoustic trauma occurs after the circuits are fully formed,

the synapse reduction in our model originates during the neonatal period, when central cir-

cuits are still developing, raising the possibility that some aspects of auditory processing adapt

to the early onset of the synaptopathy, preventing the development of hyper-responsiveness.

Second, whereas the extent of synaptic loss in our model is 20% to 30%, the other studies

involved more extensive cochlear damage [11,46], which could lead to more dramatic central

dysfunction. Third, noise exposure induces stress or fear responses, which can play a role in

hyperacusis-like behavior [70].

Alterations in IHC synapse density influence performance in GPIAS but not in PPI, likely

reflecting different neural mechanism underlying these sound-driven modifications of the
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ASR, which are mediated by higher order nuclei [71,72]. During ASR, the auditory-nerve

inputs activate cochlear root neurons that project to nucleus reticularis pontis caudalis (PnC)

neurons, which then excite the spinal motor neurons that elicit the whole-body startle

response [73,74]. Prepulses and gaps are relayed from the cochlear root neurons to the inferior

colliculus (IC) [75], but their pathways diverge thereafter. Prepulse processing has been shown

to involve the lateral globus pallidus (LGP), whereas gap processing involves the auditory cor-

tex (AC) [54,76]. Thus, our results suggest that alterations in synapse density might affect pri-

marily the latter. Further studies on the impact of synapse density on these circuits could

provide new insights into the mechanisms by which peripheral responses influence central

auditory processing.

Published gap-detection thresholds for mice vary among studies, e.g., some reported them

to be around 2 ms [42,77,78], other 4 ms [32], or 8 ms [22], the latter being similar to our find-

ings. Several factors might contribute to this discrepancy, including the age of the animals

[42], the spectral components and bandwidth of the background noise [55], the gap and startle

onset/offset ramp [53], and the restrainer setting [79].

We previously demonstrated that increasing cochlear Ntf3 availability after noise exposure

induces IHC synapse regeneration and recovery of ABR peak I amplitudes [19,80,81]. More

recently, we showed that increasing cochlear Ntf3 expression levels in the middle-aged mouse

acutely increases ABR peak I amplitudes and slows the progression of age-related synaptopa-

thy, preserving the IHC synapse density of middle age until the end of the lifespan [82]. The

results from the current study suggest that Ntf3-based therapies could not only promote IHC

synapse health and numbers, but also improve auditory processing after noise trauma or in

aging.

In summary, our finding that cochlear synaptopathy elicited without cochlear insults such

as noise or ototoxic drugs results in temporal processing deficits further supports the notion

that synaptopathy is a key contributor to the impaired speech perception experienced by many

with hidden hearing loss. Furthermore, the improvement in temporal acuity achieved by

increasing Ntf3 expression and synapse density suggests a therapeutic strategy for improving

hearing in noise for individuals with synaptopathy of various etiologies.

Materials and methods

Animals

All experimental procedures complied with the National Institutes of Health guidelines and

were approved by the Institutional Animal Care and Use Committee of University of Michi-

gan, Michigan, United States of America (PRO00011287). Cochlear supporting-cell-specific

Ntf3 knock-down mice (Ntf3-KD, tamoxifen-treated Ntf3flox/flox::Plp1/CreERT mice) and Ntf3

overexpressing mice (Ntf3-OE, tamoxifen-treated Ntf3stop::Plp1/CreERT mice) were generated

as previously described [19]. Ntf3-KD mice and their controls (Ntf3flox/flox) were maintained

on C57BL/6 background that carry the wild-type allele of Cdh23, and therefore do not have

accelerated age-related hearing loss. Ntf3-OE and their controls (Ntf3stop) were on FVB/N

background. Both male and female mice were included in this study (Dryad DOI: https://doi.

org/10.5061/dryad.k6djh9w8v).

Tamoxifen administration

Tamoxifen was injected into intraperitoneal cavity of P 3–10 Ntf3stop::Plp1/CreERT mice or P

1–3 Ntf3flox/flox::Plp1/CreERT mice as previously described [19]. A 10 mg/ml solution of

tamoxifen was obtained by dissolution in corn oil. Injection was 33 mg/kg for Ntf3stop::Plp1/

CreERT mice and 50 mg/kg for Ntf3flox/flox::Plp1/CreERT mice.
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Real-time quantitative RT-PCR

Total RNA was isolated from the cortical brain and cochlea samples from 1-month-old mice

using RNA extraction kit and QIAzol Reagent (RNeasy mini kit; Qiagen, Germany), and

DNase treatment was performed (RNase-free; Qiagen). The complementary DNA was synthe-

sized using iScript cDNA synthesis kit (Bio-Rad, #1708891, USA), according to the manufac-

turers’ protocol. Quantitative RT-PCR was performed on a CFX-96 Bio-Rad reverse

transcription polymerase chain reaction detection system (Hercules, California, USA) using

iTaq Universal SYBR Green supermix (Bio-Rad, # 172–5121, USA) and primer pairs were syn-

thesized by IDT (Coralville, Iowa, USA). All samples and standard curves were run in tripli-

cate. Water instead of complementary DNA was used as a negative control. The 10 μl reaction

contained 5 μl of SYBR Green supermix, 6 pmol of each forward and reverse primer (0.6 μl),

1.9 μl nuclease-free of water, and 2.5 μl of cDNA sample. The mRNA expression levels in

Ntf3flox/flox::Plp1/CreERT or Ntf3STOP::Plp1/CreERT versus their Ntf3flox/flox or Ntf3STOP con-

trol counterparts were determined by a comparative cycle threshold (Ct) method and relative

gene copy number was calculated as normalized gene expression, defined as described previ-

ously [83]. Ribosomal protein L19 (RPL19) was used as the housekeeping gene. The following

specific oligo primers were used for the target genes: Rpl19, F: 50ACCTGGATGAGAAGGA

TGAG 30; R: 50ACCTTCAGGTACAGGCTGTG 30; Ntf3, F 50GCCCCCTCCCTTATAC

CTAATG 30; R: 50CATAGCGTTTCCTCCGTGGT 30; Vgf: F: 50GGTAGCTGAGGACGC

AGTGT 30; R: 50GTCCAGTGCCTGCAACAGT 30. Changes in mRNA expression were calcu-

lated as relative expression (arbitrary units) respective to the control group for each mouse

line.

Immunostaining and synaptic counts

Cochleas from 16-week-old mice were prepared for whole-mount imaging as described in

[19]. In brief, the samples were fixed with 4% formaldehyde for 2 h and then decalcified with

5% ethylenediaminetetraacetic acid (EDTA) for 3 to 5 days. Cochlear epithelia were micro-dis-

sected into 5 segments for whole mount processing. The cochlea segments were permeabilized

by freeze–thawing in 30% sucrose and then blocked with 5% normal horse serum for 1 h.

Afterwards, the following primary antibodies were used: (1) CtBP2 to visualize synaptic rib-

bons (mouse anti-CtBP2 at 1:200, BD Biosciences, catalog # 612044, RRID: AB_399431); (2)

GluR2 to visualize postsynaptic receptors (mouse anti-GluR2 at 1:2,000, Millipore, catalog #

MAB397, RRID: AB_2113875); and (3) Myosin VIIa to visualize IHCs (rabbit anti-Myosin

VIIa at 1:200; Proteus Biosciences, catalog # 25–6790, RRID: AB_10015251). Secondary anti-

bodies used were Alexa Fluor 488 conjugated anti-mouse IgG2a (1:1,000, Invitrogen), Alexa

Fluor 568 conjugated anti-mouse IgG1 (1:1,000, Invitrogen), and Alexa Fluor 647 conjugated

anti-rabbit (1:1,000, Life Technologies). Frequency maps were created using a custom ImageJ

plug-in. Images were captured from 5.6 to 45.2 kHz using a Leica SP8 with a 1.4 NA 63× oil

immersion objective at 3 digital zoom. Offline image analysis was performed using Amira

(Visage Imaging). Quantification of synapses was done by an investigator blinded to experi-

mental groups.

Distortion product otoacoustic emissions (DPOAEs) and auditory

brainstem responses (ABRs)

DPOAEs and ABRs were performed as previously described [19]. Mice were anaesthetized by

i.p. injections of xylazine (20 mg kg−1, i.p.) and ketamine (100 mg kg−1, i.p.). The DPOAEs

were elicited by 2 primary tones (f1 and f2) and recorded at (2 × f1)−f2. f1 level was 10 dB
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higher than the f2 level and frequency ratio f2/f1 was 1.2. The ear-canal sound pressure was

amplified and averaged at 4 μs intervals. DPOAE thresholds were defined as the f2 level that

produced a response 10 dB SPL higher than the noise floor. For ABR measurement, subdermal

electrodes were placed (1) at the dorsal midline of the head; (2) behind the left earlobe; and (3)

at the base of the tail (for a ground electrode). ABRs were evoked with 5 ms tone pips (0.5 ms

rise–fall) delivered to the eardrum. The frequencies of tone pips were 5.6, 8, 11.3, 16, 22.6, 32,

and 45.2 kHz, with 15 sound levels from 10 to 80 dB SPL for each frequency. The signals were

amplified 10,000 times and filtered through a 0.3 to 3 kHz passband. At each level, the average

of 1,024 signals was taken after “artifact rejection.” Both recordings were performed using

National Instruments input/output boards hardware. Offline analysis was performed using

Excel and custom ABR peak-analysis software that finds inflection points in the waveform,

subject to correction by an experienced observer.

For microphone and probe-tube calibration during ABR and DPOAE measurement, a brief

sound containing frequencies throughout the range to be calibrated is produced by one of the

earphones, voltage out of the acoustic-assembly microphone is measured while the sound pres-

sure near the probe-tube is measured simultaneously with a reference microphone. From the

results and the characteristics of the reference microphone, the system computes the ratio of

the voltage out of the acoustic-assembly microphone to the SPL at the end of the probe-tube.

ABR threshold was determined by visual analysis of stacked waveforms from highest to

lowest SPL. Threshold was determined as the lowest level at which a repeatable Wave I could

be identified. Wave I–V amplitude was defined as the difference between a 1-ms average of the

pre-stimulus baseline and the wave I–V peak, after additional high-pass filtering to remove

low-frequency baseline shifts. For DPOAE, pressure measurements in the ear canal were aver-

aged with spectral and waveform averaging, then the amplitudes of the DPOAE responses at

2f1-f2 then were analyzed as input-output functions. All thresholds were determined by 2

observers, including one blinded and experienced.

Pre-pulse inhibition (PPI) and gap inhibition of the acoustic startle

(GPIAS)

Mice were tested in a 10 × 4.5 × 4 cm cage inside a sound-isolation chamber that was placed

within a sound attenuating room. The sound source was located in the upper part of this

chamber. The piezoelectric motion sensor attached to the cage detected the vertical force of

the startle reflex. All ASR, PPI, and GPIAS stimuli and responses were generated and recorded

with Kinder Scientific Startle Monitor (Kinder Scientific, Poway, California, USA).

PPI tests were used for assessing sensorimotor gating on 8- to 15-old-week mice, twice a

week, each 2 days apart. PPI tests were conducted quiet. The startle stimuli were BBN bursts at

120 dB SPL, 20 ms in duration, 0.1 ms rise-fall times. The prepulse was a narrow-band sound

centered at 8, 12, 16, 24, and 40 kHz, 50 ms in duration, with 2-ms rise-fall ramps (Fig 7). PPI

test consisted of prepulse trials and startle-only trials, which were delivered alternatively. In

prepulse trials, a prepulse ended 50 ms before the startle stimulus. Startle-only trials were simi-

lar to the prepulse trials, but no prepulse was delivered. PPI startle ratio is the ratio of the star-

tle magnitude in prepulse trials over the startle magnitude in startle-only trials.

The GPIAS paradigm has been used for measuring auditory temporal processing [20,25].

Gap inhibition was assessed on 8- to 15-old-week mice, twice a week, 2 days apart. The testing

consists of 2 types of trials, gap trials and no-gap trials (Figs 8A and 9A) that were delivered

alternatively. In both trials, the startle stimulus was 20 ms BBN at 120 dB with 0.1 ms rise/fall

times. The startle was preceded either by gaps with varied durations (3-, 5-, 15-, 25-, or 50-ms

long) embedded in BBN or by a 50-ms gap embedded in a narrow-band background sound
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centered at 8, 12, 16, 24, and 40 kHz at 65 dB. Sensor calibration is accomplished with a 100 g

calibration weight. For sound-level calibration, the external ¼” microphone (B&K type 4136)

is mounted on top of the sensing plate and connected to a spectrum analyzed (Stanford

Research Systems, Model SR760).

For each mouse, PPI and gap-startle ratios were averaged from 11 sessions. Each session of

PPI and gap-PPI test included 60 pairs of prepulse and startle-only trials for PPI or gap and

no-gap trials for gap detection (5 prepulse or background sound frequencies, 12 pairs for each

frequency). The interval between trials was randomly varied between 5 and 15 s. Each session

began with a 2-min acclimatization period in the cage before startle testing began, and all tests

were conducted in darkness. Startle-only trials and no-gap trial amplitudes greater than or

equal to mean ± 2.5 standard deviations were eliminated. When a trial was eliminated, its

paired trial was also eliminated. About 8% to 13% of the trials were eliminated based on these

criteria. PPI ratios were calculated as the average with prepulse startle amplitude divided by

the mean without prepulse startle amplitude. We analyzed the GPIAS using gap inhibition

(inhibition ¼ 1 �
startle response with gap

startle response without gap), Rd’ (Rd ¼ startle response without gap� response with gap
standard deviation of gap conditions ), and/or gap

threshold method. For analysis of gap threshold, the data were fitted with a three-parameter

logistic function: f xð Þ ¼ d
1þexpðbðlogðxÞ� logðeÞÞÞ. Recordings with a fit coefficient (R2) below 0.6 were

excluded from the analysis [22]. The gap-detection threshold was considered as the value of

the fitted curve that elicited 50% of the maximal inhibition.

Statistical analyses

Analyses were performed using GraphPad Prism 6 (GraphPad Software Inc., La Jolla, Califor-

nia, USA) and RStudio packages. Data are shown as mean and standard error of the mean

(SEM). The number of replicates (n) is indicated in the results section and figure legends. No

explicit power analysis was used to predetermine sample sizes, but our sample sizes are similar

to those reported in our previous publications. Statistical differences in auditory physiology

(DPOAE threshold, ABR threshold, amplitude, and latency), ribbon synapse counts, behav-

ioral background movement, PPI ratio, gap-startle ratios were analyzed using two-way

ANOVA, followed by Bonferroni multiple comparisons test. mRNA expression, ASR ampli-

tude, and gap detection threshold were compared using unpaired Student’s t test. Correlations

were computed using Pearson’s correlation. Statistical threshold was set to alpha = 0.05.

Dryad DOI

https://doi.org/10.5061/dryad.k6djh9w8v [84]

Supporting information

S1 Fig. Gap inhibition is stable across different sessions for both genotypes. The relation-

ship between gap inhibition vs. gap length does not change between the 3 time points for

Ntf3-KD and Ntf3-OE mice. Mean ± SEM are shown. Summary data displayed in S1A–S1D

Fig can be found in S1 Data.

(TIF)

S2 Fig. The degree of gap inhibition correlates with ABR peak I. The amplitude of ABR

peak I versus gap inhibitory level of Ntf3-KD and their littermate controls (A) or Nft3-OE and

their littermate controls (B) show a linear correlation. Summary data displayed in S2A and

S2B Fig can be found in S1 Data.

(TIF)
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S1 Data. Raw data used for the generation of the graphs presented in Figs 2–9 and S1–S2.

(XLSX)
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