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Abstract

Tetrapods (amphibians, reptiles, birds, and mammals) are model systems for global biodi-

versity science, but continuing data gaps, limited data standardisation, and ongoing flux in

taxonomic nomenclature constrain integrative research on this group and potentially cause

biased inference. We combined and harmonised taxonomic, spatial, phylogenetic, and attri-

bute data with phylogeny-based multiple imputation to provide a comprehensive data

resource (TetrapodTraits 1.0.0) that includes values, predictions, and sources for body size,

activity time, micro- and macrohabitat, ecosystem, threat status, biogeography, insularity,

environmental preferences, and human influence, for all 33,281 tetrapod species covered in

recent fully sampled phylogenies. We assess gaps and biases across taxa and space, find-

ing that shared data missing in attribute values increased with taxon-level completeness

and richness across clades. Prediction of missing attribute values using multiple imputation

revealed substantial changes in estimated macroecological patterns. These results highlight

biases incurred by nonrandom missingness and strategies to best address them. While

there is an obvious need for further data collection and updates, our phylogeny-informed
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database of tetrapod traits can support a more comprehensive representation of tetrapod

species and their attributes in ecology, evolution, and conservation research.

Introduction

Over the past two decades, biodiversity science has seen a dramatic growth in large-scale

research in ecology, evolution, and conservation biology, enabled by near-global coverage for

study systems such as terrestrial vertebrates, or Tetrapoda (amphibians, reptiles, birds, and

mammals). These efforts usually rely on datasets spanning wide temporal, spatial, and taxo-

nomic scales [1] that ideally are fully harmonised and well curated. Despite terrestrial verte-

brates being a relatively well-known animal group when compared to invertebrates and plants

[2,3], notable gaps persist across various attributes, including fundamental aspects of species

natural history [4,5]. Consequently, trait-based research on biodiversity is often hampered by

spatially and phylogenetically incomplete datasets [6–8].

Understanding causes of missingness is instrumental to advancing biodiversity data cover-

age. For any species attribute, there are observed and unobserved entries, each with a probabil-

ity of being missing [9]. When all entries, whether observed or unobserved, share the same

likelihood of being missing, data are said to be missing completely at random (MCAR). If

missingness affects only observed entries, the data is termed missing at random (MAR). For

example, a depleted digital scale battery makes weighing subsequent specimens impossible in

the field, resulting in MAR data. Data is considered missing not at random (MNAR) when

missingness is tied to unobserved entries, indicating a link to the missing values themselves.

To illustrate, species exclusive to relatively inaccessible habitats, such as the forest canopy, may

be systematically overlooked in field surveys, with their data missingness linked to the occu-

pied microhabitat. These 3 missing mechanisms—MCAR, MAR, and MNAR—can lead to dif-

ferent configurations of the invisible fraction of the trait space [9–11].

While some missing mechanisms (e.g., MCAR, MAR) primarily affect a single attribute, the

underlying cause behind an attribute MNAR can influence multiple variables, resulting in co-

missingness or shared gaps. For example, a species might lack information on multiple eco-

logical aspects due to being known from only a few specimens with no details on where, when,

and how they were found [12]. Similar circumstances apply to rare species or those collected

solely through passive sampling techniques (e.g., pitfall traps), leaving ecological data unob-

served. Indeed, bias is recognised in the availability of trait data for certain taxa, regions, and

traits [4], and missing values for a given variable may be associated with incompleteness in

others. Such congruent or aggregated (as opposed to segregated) patterns in trait missingness

can arise from societal and research preferences for charismatic species [3], easily sampled tax-

onomic groups, or accessible geographical regions [6,13]. Conversely, segregated patterns may

reveal traits and taxa that are challenging to sample or underrepresented.

Despite the continued limitation of sampled data for many attributes in tetrapods, new

methods can help to minimise these gaps and improve our understanding of biodiversity. Past

practices have included the removal of species with missing data or the replacement of missing

values by observed averages, but these strategies may ultimately reduce statistical power and

increase bias [7,10,14]. More recently, growth in large-scale phylogenetic analyses has boosted

the development of methods to increase the accuracy of imputing missing values [15–18].

Among tetrapods, recent large-scale applications of imputation methods include the use of

phylogenetic regression methods and machine-learning techniques to predict missing values
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in trait data for amphibians [19], reptiles [19,20], birds [19,21], and mammals [19,21,22], as

well as to inform threat statuses for data deficient and non-assessed species [20,23,24].

We leveraged a fast and automated multiple imputation technique with additional data

mobilisation to provide a comprehensive database and assessment of key ecological attributes

of all extant 33,281 tetrapod species covered in recent fully sampled phylogenies, including

7,238 amphibians [25], 384 chelonians and crocodilians [20], 9,755 squamates and tuatara

[26], 9,993 birds [27], and 5,911 mammals [28]. Our assessment covered standardised species-

level attributes for taxonomy, body size, activity time, microhabitat, macrohabitat, ecosystem,

threat status, biogeography, insularity, environmental preferences, and human influence.

Since not all species have genetic data (representing an important source of the remaining

uncertainty about their placements in available phylogenies), we also evaluated completeness

in genetic sequences [29]. We pinpointed taxa exhibiting pronounced shared missingness in

natural history data to inform new strategies for data acquisition and mitigate biases in trait

databases. To enhance database consistency, we taxonomically harmonised data sources and

filled gaps using a phylogeny-based multiple imputation method [30–32] for which we verified

the performance and associated uncertainty.

We use this gap-filled database to assess the geographic, taxonomic, and trait-related biases

and evaluate how their model-based closure supports improved information and biological

inference. Due to the biodiversity knowledge paradox—high biodiversity in the tropics [33]

but better taxonomic sampling in temperate regions [4,5,34]—we expect larger unsampled

fractions in the tetrapod trait space for tropical species. Similarly, the high research capacity

(i.e., infrastructure and expertise availability) dedicated to birds and mammals relative to

amphibians and reptiles [2,3] contributes to the uneven sampling of trait space [4], likely pro-

ducing larger biases among historically undersampled taxa. Finally, species biology and sam-

pling methodologies are known to affect detection and collection rates in the field [35–37]. For

example, detectability is typically lower for small- than large-bodied species, and similarly so

for nocturnal relative to diurnal taxa [38–40], whereas sampling methodologies often favour

the collection and research of species living on the surface compared to fossorial or arboreal

groups [34,41–44]. We thus anticipate convergent missingness across trait space in tetrapods

and expect undersampled species to typically be small, nocturnal, and fossorial or arboreal.

Methods

We curated and assembled available databases for global tetrapod groups and used the latest

phylogeny-based methods to create the most comprehensive tetrapod attribute dataset to date.

While the TetrapodTraits database also covers a wide range of attributes derived from species

range maps (see S1 Table, Supporting information), our focus regarding the imputations pri-

marily centred on natural history traits, specifically: body length, body mass, activity time, and

microhabitat. Our procedures can be summarised in five general steps: (i) data acquisition; (ii)

taxonomic harmonisation; (iii) outlier verification; (iv) taxonomic imputation; and (v) phylo-

genetic multiple imputation.

Data acquisition

We compiled species-level attributes regarding taxonomy, body size, activity time, microhabi-

tat, macrohabitat, ecosystem, threat status, biogeography, insularity, environmental prefer-

ences, and associated data sources for each tetrapod species (S1 Table). We gathered

information from several global, continental, and regional databases, and complemented the

existing data from published (articles, book chapters, and field guides) and grey literature (e.g.,

technical reports, government documents, monographs, theses). We also incorporated
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unpublished data gathered during fieldwork performed by some of us. To minimise the

uneven representation of ecological attributes across clades, we initially identified genera and

families whose species did not have available data on body size, activity time, or microhabitat.

We then used species belonging to these genera and families to carry out additional online

searches on academic platforms (Google Scholar and Web of Science) and included comple-

mentary attribute data whenever possible. To improve the chances of finding relevant natural

history data [45,46], we conducted these searches using natural history terms in English (e.g.,

activity time, microhabitat, body size, length, mass, weight), Portuguese (e.g., tempo de ativi-

dade, micro-habitat, tamanho de corpo, comprimento, massa, peso), and Spanish (e.g., tiempo

de actividad, microhabitat, tamaño del cuerpo, longitud, masa, peso) along with the respective

species scientific name or unique synonyms (see Taxonomic harmonisation section). When

sources were available in other languages, we employed translation tools for inspection (e.g.,

Google Translate). In our examination of the data sources, we did not use trait values provided

solely at the genus level (e.g., mean value per genus).

Briefly, taxonomic data were represented by higher-level taxonomic ranks (Class, Order,

Family), scientific name (same spelling as used in recent fully sampled phylogenies), authority

name, and year of description. Three broad natural history traits—body size, activity time, and

microhabitat—have been compiled and harmonised across different tetrapod groups. Body

size data consisted of information on body length (mm) and body mass (g). Activity time

encompassed whether the species was diurnal and/or nocturnal. Cathemeral or crepuscular

species were considered as both diurnal and nocturnal. Microhabitat included 5 categories of

habitat use commonly reported in field guides and related literature: fossorial, terrestrial,

aquatic, arboreal, and aerial.

Microhabitat categories are not mutually exclusive, meaning that a species can be present in

more than one category to represent intermediate microhabitats, such as semifossorial (which

involves both fossorial and terrestrial categories) or semiarboreal (which combines terrestrial

and arboreal). Exceptionally for birds, we adapted microhabitat data from the EltonTraits

database [47], which describes the estimated relative usage for seven types of foraging stratum.

To make our definition of microhabitat similar across tetrapod groups, we reduced these

seven categories to four by: summing the relative usage of species foraging below the water sur-

face or on the water surface in the aquatic microhabitat; summing the relative usage of species

foraging on the ground and below 2m in understorey as terrestrial; summing the relative usage

of species foraging 2m upward in the canopy and just above canopy as arboreal. Species with

aerial microhabitat were kept as defined in EltonTraits database [47], and no fossorial bird was

reported in the later source. We then made binary the relative usage of aquatic, terrestrial,

arboreal, and aerial microhabitat using a threshold of 30% to consider a species as typical of a

given microhabitat type. In a departure from previous mammal databases that treated fossorial

and terrestrial species collectively as “terrestrial,” we have reviewed microhabitat data to con-

sider fossorial life-style separately from terrestrial [22,47].

Macrohabitat data followed the IUCN Habitat Classification scheme v. 3.1 [48]. This

scheme describes 17 major habitat categories in which species can occur and an 18th category

for species with unknown major habitat (not included here). We also gathered data on species’

major ecosystem (terrestrial, freshwater, and marine). For both macrohabitat and ecosystem,

we initially used the rredlist package [49] to obtain macrohabitat for 31,740 species and ecosys-

tem for 32,442 species. Our macrohabitat variables correspond only to the first level of IUCN

Habitat Classification scheme. For an additional 769 species, we extracted macrohabitat data

from relevant literature, bringing the coverage to 32,509 species (97.7% of all species consid-

ered). Ecosystem data was extracted from the literature for another 228 species, encompassing

32,670 species and accounting for >98.2% of the total number of species.
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We used the rredlist package [49] to obtain non-DD assessed status for 29,237 tetrapod spe-

cies based on IUCN red list v. 2023–1 [50]. For 490 species not available via rredlist, we used

non-DD assessed statuses matching those described in previous IUCN assessments and

included in works using the same taxonomy of fully sampled trees [20,24,26,51]. We also used

data on recent published assessment on amphibians [52] and chelonians [53] to inform

assessed status for additional 137 species. Across all sources consulted, data deficient species

totalled 2,936 species. We did not find an assessed status for 508 species. To enhance the

usability of TetrapodTraits, we also provide the respective IUCN binomials for 32,098 species

based on IUCN 2023–1 [50].

To compute spatially based attributes in TetrapodTraits, we derived expert-based range

maps for amphibians [24,48,54], reptiles [20,33,48], mammals [48,54–56], and birds [27,54].

We matched the authoritative expert range maps for each of the tetrapod groups with the cor-

responding phylogenies and edited species ranges to ensure that they represented the species

concept adopted in the corresponding phylogeny. Overall, our verification procedure of the

species range maps can be summarised under 10 scenarios: (i) no changes, where species

range maps matched directly with binomials in the phylogeny; (ii) synonyms, where species

range maps were direct synonyms to binomials in the phylogeny, thus requiring only an

updated name; (iii) split, where species range maps needed to be clipped from a parent species,

or when parent species needed to have part of their range removed; (iv) lumps, where species

range maps needed to be combined with those of other species; (v) new species-1, where no

range map was previously available, so we derived ranges based on recent literature; (vi) new

species-2, in the absence of any published map, we drew 10 km radius buffer around point

occurrence data (including the species type locality); (vii) new species-3, in the absence of

point occurrence data, we drew a polygon around nearby geographical features reported in the

literature (e.g., boundaries of a municipality or protected area). We used two additional sce-

narios for extinct species [56] by referencing the natural ranges of either (viii) extant or (ix)

extinct species that coexisted with fossil records of the target extinct species. The last scenario

refers to (x) domesticated species, which were represented by their natural ranges before

domestication. Homo sapiens had its range map represented by the overlapping of all range

maps. We did not derive range maps for 11 species (1 amphibian, 2 bats, and 8 squamates)

because information on their occurrence was either vaguely defined (e.g., continental land

mass or very large administrative unit) or completely absent.

Species expert-based maps were used to compute different attributes related to species

range and biogeography. We extracted the latitude and longitude centroids of each range map.

Range size was measured as the number of 110 × 110 km equal-area grid cells intersected by

each species, a spatial resolution that minimises the presence of errors related to the use of

expert ranges maps [57–59]. We recorded the presence of a species in a grid cell if any part of

the species distribution polygon overlapped with the grid cell. We then computed the propor-

tion of the species range overlapped by each biogeographical realm.

To define if a species was insular endemic or not, we used the literature available [60,61].

We further completed insularity data by registering species whose range maps intersected with

minor (<2 km2) and major islands worldwide. Island vector data was sourced from Natural

Earth (www.naturalearthdata.com, [62]) databases, v. 4.1.0 and v. 5.1.1 for minor and major

islands, respectively. Species missing range maps were assumed as non-insular based on the

collection of type specimens within major continental land masses (e.g., South Asia, South

America, West Africa).

Finally, to inform spatially based attributes we initially extracted the median value of envi-

ronmental [63,64] and human influence variables [65,66] per grid cell. We then calculated

their weighted average within each species range, using the species range occupancy per cell as

PLOS BIOLOGY A phylogeny-informed characterisation of global tetrapod traits addresses data gaps and biases

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002658 July 11, 2024 5 / 31

https://d.docs.live.net/e9aec6cfea3b2d18/00%20-%20ARTIGOS%20LIDERADOS/01%20-%20TETRAPOD%20DATASET/00%20Accepted%20PlosBiol/www.naturalearthdata.com
https://doi.org/10.1371/journal.pbio.3002658


weights. This approach aimed to reduce the impact of marginally occupied cells on the attri-

butes derived from within-range measurements [67]. All within-range attributes are individu-

ally described in the Results and discussion section (see also S1 Table).

Taxonomic harmonisation

The taxonomy of the TetrapodTraits database follows the respective taxonomies of the recent,

fully sampled phylogenies for each of the major tetrapod groups [20,25–28]. The amphibian

phylogeny taxonomy [25] follows the 19 February 2014 edition of AmphibiaWeb (http://

amphibiaweb.org), with 7,238 species. The phylogeny for chelonians [20] follows the Turtles of

the World (8th ed.) checklist [68], with the addition of Aldabrachelys abrupta and Al. grandi-
dieri, and the synonymisation of Amyda ornata with Am. cartilaginea, adding to 357 chelonian

species. For crocodilians [20], the taxonomy followed [69], complemented by the revalidation

of Crocodylus suchus [70] and Mecistops leptorhynchus [71], and the recognition of three Osteo-
laemus species [72,73], resulting in 27 species. The taxonomy of the squamate and tuatara phy-

logeny [26] follows the Reptile Database update of March 2015 (http://www.reptile-database.

org) with 9,755 species. For brevity, we refer hereafter to species in the latter phylogeny as

squamates, although we recognise that the tuatara, Sphenodon punctatus, is not a squamate.

The taxonomy of the bird phylogeny [27] followed the Handbook of the Birds of the World

[74], including 9,993 species. Finally, the taxonomy of the mammal phylogeny [28] follows the

IUCN [75] with modifications resulting in a net addition of 398 species, bringing the total to

5,911 species.

To maximise data usage from previous compilation efforts, and to ensure coherence among

species names and the multiple data sources, we built lists of synonyms and valid names based on

multiple taxonomic databases [48,76,77], and extracted the unique synonyms in each taxonomic

database. By unique synonym, we refer to a binomial (scientific name valid or not) applied to

only one valid name. We then performed taxonomic reconciliation based on four steps:

1. Direct match with data sources: We directly paired the names of each of the 33,281 species

in TetrapodTraits with the potential source of the data. Species-level attributes of closely

related species could appear as identical values if the attributes had been extracted from

sources in which different species were treated as synonyms. We minimised the inclusion

of duplicated values by flagging each taxonomic match between TetrapodTraits and exter-

nal data sources to ensure that each data entry was made only once.

2. Direct match with data source synonyms: For the species we were unable to directly match

with the data source in step 1, we updated the taxonomy using the list of unique synonyms,

and then performed a new matching operation which allowed us to extract and flag addi-

tional data whenever possible.

3. Direct match with TetrapodTraits synonymies: Some data sources may follow more recent

taxonomies than those inherited from the fully sampled phylogenies [20,25–28]. For species

without a direct match after step 2, we updated their taxonomy in the TetrapodTraits using

the list of unique synonyms and repeated the data extraction and flagging procedures.

4. Manual verification: For species without a direct match after step 3, we manually searched

the specialised taxonomic databases (amphibians [76], reptiles [77], birds [78], and mam-

mals [79]) for potential spelling errors and/or additional synonyms not yet included among

our synonym lists. Whenever possible, we updated the taxonomy applied to data sources

and then repeated the data extraction and flagging procedure. Species without data after the

completion of step 4 were classified as missing data.
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Outlier verification

We implemented two approaches to detect potential inconsistencies in continuous attribute

data, body length, and body mass, before applying phylogeny-based methods to impute miss-

ing values.

1. Interquartile range criterion: Species body length and body mass were log10 transformed

and then flagged as outliers if their value were outside the interval defined between

[q0.25−1.5 × IQR] and [q0.75 + 1.5 × IQR], where q0.25 and q0.75 are respectively the first and

third quartiles, and IQR is the interquartile range [q0.25 – q0.75].

2. Deviation from allometric relationship: Although allometric escape is a phenomenon

observed in nature, we used interactive scatterplots to flag species with unusual deviations

from the expected allometric relationship between body length and mass. We inspected

allometric relationships separately for species within each Class, Order, and Suborder.

For species flagged in steps 1 or 2 above, we checked body length and/or body mass for

validity and corrected these values where necessary. Data entries that could not be confirmed

using a reliable source were purged from the database.

Taxonomic imputation

The global scope of the present database inevitably includes some gaps that are hard to fill, e.g.,

natural history data for species known only from the holotype or a few specimens [12,80]. Pre-

vious studies have addressed this challenge and reduced data missingness by using values

imputed at the level of genus or from close relatives [47]. Although these earlier strategies of

“taxonomic imputation” might artificially reduce variability in attribute values, they are useful

for filling gaps in highly conserved attributes, and can ultimately help increase the perfor-

mance of phylogeny-based imputation methods applied in concert with correlated attribute

data [81,82].

We used taxonomic imputations for two cases of missing data in microhabitat: chiropter-

ans, who were considered “aerial” (112 species), and dolphins and whales who were considered

“aquatic” (5 species). For the remaining tetrapod species, we computed the per-genus propor-

tion of species in each type of activity time (diurnal or nocturnal), microhabitat (fossorial, ter-

restrial, aquatic, arboreal, aerial), macrohabitat (17 binary variables informing the IUCN

Habitat Classification scheme), and ecosystem (terrestrial, freshwater, marine). If a type of

activity time, microhabitat, macrohabitat, or ecosystem appeared in at least 70% of species in

the genus, we assumed this ecological attribute was also present among species with missing

data in the respective genus. Our goal was to reduce missing values in activity time, microhabi-

tat, and macrohabitat for groups with well-known ecologies (observed data available for at

least 70% of species) before running phylogeny-based imputation methods. The number of tet-

rapod species receiving taxonomic imputations totalled 866 for activity time, 1,110 for micro-

habitat, 772 for macrohabitat, and 611 for ecosystem. We did not use taxonomic imputation

for continuous attributes.

Phylogenetic multiple imputation

To minimise missing values and capture their uncertainty, we applied the mixgb method [30],

a recently developed approach that combines the tree-based algorithm XGBoost [83] with pre-

dictive mean matching (PMM) [84], a multiple imputation technique. XGBoost captures inter-

actions and nonlinear relations among variables, while PMM, alongside subsampling,

addresses variability associated with missing data. PMM assigns imputed values to each
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missing entry based on a group of k donors whose predicted values are the most similar

among the observed entries. One donor is then randomly selected, and its observed value is

used for imputation [84,85]. The process is repeated m times to produce multiple imputations.

When PMM uses a single donor without subsampling, imputations are expected to be

identical.

The XGBoost does not directly include a phylogenetic tree into its computations. To

account for phylogenetic information, we used the phylogenetic covariance matrix of each

fully sampled tree [20,25–28] to derive a set of phylogenetic filters (eigenvectors). We deter-

mined the number of phylogenetic filters to retain using the broken stick rule [86]. The selec-

tion of phylogenetic filters was performed separately for each tetrapod group and across the

subset of 100 trees.

To assess the reliability of imputed data, we initially filtered a subset of species with com-

plete data within each tetrapod group. Then, we randomly partitioned these subsets into 10

folds for cross-validation. In each iteration, one fold was excluded from the training process

and used as testing data in subsequent modelling. Continuous variables (body length and body

mass) were log10-transformed to reduce skewness, while binary variables represented types of

microhabitat (fossorial, terrestrial, aquatic, arboreal, aerial) and activity time (diurnal and noc-

turnal). Note that microhabitat and activity time types are non-mutually exclusive. For birds

only, we complemented the observed attribute data with 10 morphometric traits (log10-trans-

formed) made recently available through the AVONET database [87].

XGBoost places a central emphasis on the tuning of hyperparameters, covering aspects such

as learning rates, tree topology, subsampling, weighting, and regularisation [83,88]. Our tuning

procedure began with an initial grid search, exploring 1K parameter combinations uniformly

draw from specified ranges for five key hyperparameters: learning rate (η) from 0.01 to 0.3,

maximum tree depth from 3 to 12, subsample portion of training data from 0.7 to 1, minimum

child weight from 0.5 to 1.5, and number of boosting iterations (nrounds) from 30 to 1,000.

For continuous traits, our goal was to minimise the normalised root mean square error

(NRMSE) in XGBoost regression models using the “reg:squarederror” objective, while for

binary traits, we sought to reduce misclassification error in models using the “binary:logistic”

objective. We refined the hyperparameter selection by reassessing model performance with an

additional 1K parameter combinations uniformly drawn from the parameter ranges defined

by the top 5% of models. The tuning procedure was performed separately for each combina-

tion of response variable and tetrapod group. Other XGBoost parameters were kept at their

default values.

Following hyperparameter tuning, we trained mixgb models under the 10-fold cross-valida-

tion approach. Each mixgb model considered the predictive mean matching with 10 donors

and provided 10 imputations for each missing entry. The selection of donors, crucial for pre-

dictive mean matching in mixgb models, is based on exploring the multivariate predictor space

(i.e., phylogenetic filters and natural history traits) during the tree building process in XGBoost
models. Our framework yielded a total of 10K imputed values for each missing entry across

the subset of 100 phylogenetic trees (= 10 imputed values × 10 validation folds × 100 phyloge-

nies). In each iteration, we assessed the reliability of imputations using four distinct validation

metrics:

1. Pearson correlation: computed between imputed and observed values for continuous attri-

butes (body length and body mass).

2. Regression slope: computed between imputed and observed values, where slope values >1

indicate overestimation, and a slope<1 indicates the underestimation for continuous attri-

butes (body length and body mass).
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3. Normalised root mean square error (NRMSE): computed for continuous attributes (body

length and body mass), with lower values indicating higher accuracy [89].

4. Accuracy: measured the proportion of correctly classified entries, computed for binary cat-

egories representing microhabitat (fossorial, terrestrial, aquatic, arboreal, aerial) and activ-

ity time (diurnal and nocturnal).

Overall, the number of tetrapod species receiving phylogenetic multiple imputations

totalled 8,123 for body length, 6,752 for body mass, 6,756 for activity time, and 445 microhabi-

tat. All computations were carried out in R version 4.2.3 using the mixgb v. 0.1.0 [30], ape [90],

gmodels [91], hydroGOF [92], and stats [93] packages. Raw data, code, and the 10K imputed

values per missing entry per species are reported under data availability [94,95].

In our approach, there are four sources of variability when producing multiple imputed val-

ues for each missing data entry. Firstly, the PMM with 10 donors per entry increases variability

by avoiding a reduced number of donors. Secondly, the replication of the PMM technique 10

times to potentially select multiple values. Thirdly, the 10-fold cross-validation trained 10 dif-

ferent mixgb models per target variable. Finally, we incorporated 100 fully sampled phyloge-

netic trees, enabling species with imputed evolutionary relationships to vary their position in

the multivariate predictor space, guided by phylogenetic filters.

Our goal is to illustrate the utility of multiple imputation to uncover directional bias in nat-

ural history data. However, we recognise that this section does not constitute a comprehensive

investigation into the impacts of proportion of missing data and the degree of shared missing-

ness on model performance. Delving into this aspect is beyond the scope of the present study

and is an area for future research. For further details on mechanisms of data missingness, see

[96,97].

Patterns of shared missing data

We assessed co-occurrence patterns in missing data across species using the “checkerboard

score” (C-score; [98]), which is less prone to type II errors than other co-occurrence metrics

computed under a null model approach [99]. The C-score was based on a binary presence–

absence matrix (PAM) of species (columns) and missing attributes (rows). These attributes

were represented by five binary variables informing the absence of observed values in body

length, body mass, activity time, microhabitat, and threat status. Missing data in threat status

were represented by data deficient (DD) or non-assessed species. We computed the C-score

using individual PAMs for each genus and family with at least two species, and each pairwise

combination of attribute variables, following recommendations by [100].

To verify whether an observed C-score differed from the value expected by chance, we built

a null distribution of C-score values using a randomisation algorithm in which attribute com-

pleteness (rows sums) remained fixed while the probability of showing missing attribute values

was considered equal for all species. Null distributions were built for each individual PAM

using 10K iterations with a burn-in of 500. We then computed the standardised effect-size

(SES) of the C-score and associated p-values and identified the pairwise attribute combinations

with an aggregated (SES C-score <0 and p< 0.05) or segregated (SES C-score>0 and

p< 0.05) co-occurrence pattern of missing data per taxa. Computations were performed using

the EcoSimR [101] package in R.

Patterns and biases in imputed traits

If certain parts of the multivariate attribute space are missing, the inclusion of imputed values

may fill such “invisible fractions” and change emergent attribute properties per taxon or
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geographical assemblage (e.g., average value, geometric mean, proportion or prevalence of a

certain category). But changes in attribute property per taxon can also arise from the inclusion

of biased imputed values [81], since imputation errors can increase either with the percentage

of missing data or when multiple attributes are imputed simultaneously [15,81,82]. To verify

how the inclusion of imputed values affected attribute patterns per taxon, we calculated the

per-genus and per-family relative change in attribute property after adding imputed values.

Initially, we extracted the median (for continuous traits, body length, and body mass) or

the mean (for binary traits, categories of activity time and microhabitat) value per missing

attribute across 10K imputations. We then computed attribute properties per-genus, -family,

and -assemblage using (i) observed data only; and (ii) the combined dataset of observed and

imputed data. For continuous attributes, we used the geometric mean due to its lower sensitiv-

ity to outliers and fluctuations in the median position value. For binary attributes, we com-

puted the mean based on two scores derived from microhabitat and activity time categories:

verticality (0 = strictly fossorial, 0.25 = fossorial and terrestrial, 0.5 = terrestrial or aquatic,

0.75 = terrestrial and arboreal, and 1 = strictly arboreal or aerial) and nocturnality (0 = strictly

diurnal, 0.5 = cathemeral or crepuscular, 1 = strictly nocturnal). Relative change in attribute

property was expressed as the ratio of attribute property obtained with the combined dataset

(obs+imp) to attribute property with the observed data only (obs). We subtracted the relative

change from 1 to centre it around zero:

RelativeChange ¼ 1 � ðAttributePropertyobsþimp=AttributePropertyobsÞ
Positive values of relative change indicate the proportional increase in attribute property

after inclusion of imputed values, whereas negative values show the opposite. We used the R

function tree.merger of the RRphylo package [102] to build a tetrapod super tree by combining

the available global phylogenies for amphibians [25], chelonians and crocodilians [20], squa-

mates [26], birds [27], and mammals [28]. The full tetrapod tree topology was only used for

visualisation purposes. In the presence of severe data limitations (e.g., very low completeness,

highly uneven sampled data, and lack of inter-correlated attributes), the relative changes in

attribute properties could arise due to estimation errors instead of representing unsampled

fractions of the attribute space. We therefore used Kruskal–Wallis tests to assess whether the

relative increase or decrease of attribute properties differed with respect to the number of

simultaneously imputed attributes.

Results and Discussion

TetrapodTraits offers insights into species-level attributes related to taxonomy, body size,

activity time, microhabitat, macrohabitat, ecosystem, geography, environmental preferences,

and threat status of tetrapod species (S1 Table). Compilation efforts of previous works have

significantly benefited TetrapodTraits, with information extracted from datapapers contribut-

ing to 66.6% of the natural history data entries. Additional information, either unpublished or

compiled from original sources (e.g., articles, books, grey literature, and websites), accounted

for 15.4% of data entries, and imputed values represented 18.1% of the natural history infor-

mation (Fig 1). In total, data acquisition involved the scanning of more than 3,300 references,

including previously published databases.

Imputation performance showed high overall effectiveness across all tetrapods (S1–S3

Figs), particularly for body mass (average Pearson correlation coefficient, r = 0.950,

range = 0.692–0.973) and body length (r = 0.933, range = 0.585–0.976). Accuracy was also

high for activity time (average = 0.880, range = 0.625–0.886) and microhabitat (average = 0.897,

range = 0.742–0.891). Our imputation framework demonstrated a remarkably close match in

frequency distributions between observed and imputed values across the testing datasets, with
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the multiple imputations effectively capturing the shape, position, and frequency of data

entries (S4 Fig). The number of observed, taxonomically imputed, or phylogenetically imputed

data entries per tetrapod group are reported in S2 Table.

Data completeness

Our assessment of data gaps focused on five attributes with considerable missing data: body

length, body mass, activity time, microhabitat, and threat status. Across these five attributes,

we observed complete species-level data for 43% of tetrapod species (n = 14,321), 36.9% of gen-

era (n = 1,883), and 22.4% of families (n = 116). No genus or family showed zero completeness

for these five attributes combined. The lowest completeness levels were among attributes

related to body length (75.6%), activity time (77.1%), body mass (79.7%), and microhabitat

(95.3%, S2 Table). While assessed threat status was available for 98.5% of tetrapod species, this

number decreased to 89.6% when DD species were treated as missing data (Fig 2).

Across geographic assemblages, missingness of body length showed large variation, with

Neotropical and Afrotropical species presenting the lowest completeness (Fig 3A). The low

spatial variability in attribute completeness for body mass, activity time, microhabitat, and

Fig 1. Proportion of natural history data entries per source type in TetrapodTraits. To improve readability, the “Grey Lit.” boxes aggregate conference

proceedings, dissertations, technical reports, preprints, and government documents. “Books” boxes encompass data entries from books, field guides, and book

chapters. “Datapapers” boxes represent data entries sourced from datapapers and published articles, featuring raw data compiled from literature either in their

appendices or data availability sections. “Articles” boxes represent published articles not classified as datapapers. The data underlying this figure can be found

in https://doi.org/10.5281/zenodo.10582069.

https://doi.org/10.1371/journal.pbio.3002658.g001
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assessed threat status (Fig 3B–3E) reveals that species with missing data are mostly narrow-

ranged [4], which can limit the influence of these gaps in assemblage-level patterns. Of the

6,233 species missing at least 2 of the 5 attributes (body length, body mass, activity time,

Fig 2. Attribute data coverage (completeness) of tetrapod species by family. Colour rings show the proportion of species with observed attributes in each

tetrapod family for the 5 attributes with the lowest completeness. Phylogenetic relationships shown are simply the family-level topology of tetrapod families.

Darker colours indicate higher completeness. The data underlying this figure can be found in https://doi.org/10.5281/zenodo.10582069.

https://doi.org/10.1371/journal.pbio.3002658.g002
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microhabitat, and threat status), 77.3% occurred in 10 or fewer 110 × 110 km equal-area grid

cells. If we restrict missing data to 3 or more attributes, then 87% of species filtered occur in

�10 grid cells. The completeness of phylogenetic data in the fully sampled trees of tetrapods

[20,25–28] also showed high variation in spatial coverage (Fig 3F), with the Afrotropical and

Indomalayan realms emerging with the highest shortfall in phylogenetic data [29]. Overall, our

findings help illustrate that geographical patterns in data coverage can be strongly influenced

by data for wide-ranged species.

Patterns of shared missing data

We found nonrandom co-occurrence patterns in data gaps for 15.5% of the pairwise attribute

combinations at the genus-level and for 37% at the family-level. Almost all nonrandom co-

occurrence patterns showed aggregation of missing values, that is, missing data was shared

Fig 3. Average data completeness across tetrapod assemblages. Proportion of species with observed values for: (A) body length, (B) body mass,

(D) activity time, (E) microhabitat, (G) assessed threat status, (H) phylogenetic data, (J) attribute set, i.e., the average pattern for maps depicted in

ABDE, and (K) the complete database, i.e., average pattern for maps depicted in ABDEGH. Maps show grid cell assemblages of 110 × 110 km size in

an equal-area projection. Latitudinal plots (C, F, I, L) show the average values of these cells across latitudes. Colour ramps followed Jenks’ natural

breaks classification built separately for each panel. Boundaries of biogeographical realms were adapted from Ecoregions 2017 (https://storage.

googleapis.com/teow2016/Ecoregions2017.zip). The data underlying this figure can be found in https://doi.org/10.5281/zenodo.10582069. See S5–

S9 Figs for spatial patterns of attribute completeness for each tetrapod group.

https://doi.org/10.1371/journal.pbio.3002658.g003
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among multiple attributes for the same species, particularly among squamates and amphibians

(Fig 4A). This supports the perspective that amphibians and squamates are the least researched

tetrapod classes [2,3,34]. In our examination of shared gaps between threat status and other

attributes, we found higher co-missingness in several tetrapod genera representative of leaf lit-

ter-dwelling (Craugastor, Eleutherodactylus, Lerista, and Pristimantis), fossorial and semifos-

sorial (Atractus, Crocidura, and Tantilla), and arboreal or scansorial (Cyrtodactylus,
Dendroica, and Sphaerodactylus) species. These findings indicate the uneven sampling cover-

age of attribute space within certain clades.

Aggregated data gaps were more common among species-rich clades with a lower propor-

tion of missing data (Figs 4 and S9). That is, shared gaps were strongest in species-rich and

well-sampled taxa, particularly in those holding many species known only from their type

locality or holotype [80,103]. About 80% of the genera and 66% of families within the top 50

Fig 4. The top 50 tetrapod genera with the most pronounced patterns of shared data gaps. For each genus, the aggregation metric equals the median value

of the SES of the C-score metric computed across (A) all pairwise attribute combinations among the 5 focal traits and (B) all attribute pairs involving threat

status. Grey numbers on the left side of each panel indicate the species richness per genus. The data underlying this figure can be found in https://doi.org/10.

5281/zenodo.10582069. See S10 Fig for aggregation patterns computed at the family-level.

https://doi.org/10.1371/journal.pbio.3002658.g004
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taxa in shared gaps include “lost taxa,” species that have not been reliably observed in >50

years but are not yet declared extinct [12]. While the rediscovery of “lost” species is somewhat

common [103], their absence in attribute databases will not be easily filled through field obser-

vations [104]. The data gaps resulting from these poorly known species often prevent their

inclusion in trait-based research, potentially harming biogeographical research and conserva-

tion practice.

Biases uncovered by imputation-based gap filling

We found that the use of imputations to fill gaps resulted in substantial changes in aggregate attri-

bute properties and the insights they could support. These changes occurred in both directions

(increasing and decreasing values) and were strongest in continuous attributes (body length and

body mass). After the inclusion of imputed values, the average attribute value per genus decreased

in 6.1% of the attribute-genus combinations and increased in 5.3% of these combinations. At the

family-level, after the inclusion of imputed attributes, 16.1% of the attribute-family combinations

showed an increase in the average values, whereas 19.3% decreased (Fig 5).

Changes in attribute properties at the level of geographic assemblages revealed substantial

alterations in average body size in tropical regions (Fig 6A–6F). Such differences are mostly

absent in more temperate regions, reflecting the dedicated mobilisation and the resulting large

availability of natural history data throughout North America, Europe, and Asia [2,4,105].

After the inclusion of imputed values, there was a notable increase in the average nocturnality

of tetrapod assemblages, indicating a significant global bias in knowledge resulting from the

absence of observed activity time data (Fig 6H and 6I), particularly for squamates and to a

lesser extent, amphibians (S11–S15 Figs). We attribute this to both the low detectability of noc-

turnal species [39,40] and to the general lack of data for tropical regions where nocturnal spe-

cies predominate [106]. Changes in average verticality were less pronounced across tetrapod

assemblages (Fig 6K and 6L), which is somewhat expected given the relatively high complete-

ness of microhabitat data (S16 Fig).

Although imputation biases can increase in the absence of additional correlated attributes

[81], we found no relationship between the number of imputed attributes and changes in attri-

bute averages after imputation-based gap filling (S17 Fig). That is, changes in average attri-

butes were not higher in genera and families that included species with multiple missing

attributes. Moreover, changes in average attributes were either mostly unrelated to shared gaps

(S18 Fig) or occurred in opposite directions, with low shared gaps leading to greater changes.

Broadly, we found that the magnitude of change in average attributes from imputation-

based gap filling was associated with both completeness and richness (S19–S21 Figs). Those

taxa and assemblages with great incompleteness and with fewest species saw the most pro-

nounced changes in average attribute values. Lower attribute completeness creates more

opportunities for variation in attribute space after imputation-based gap filling, whereas low

species richness can enhance the relative importance of imputed values in the sample. Future

research replacing imputed values with empirical data will reveal the accuracy of these esti-

mates over time.

TetrapodTraits—A comprehensive, imputation informed attributes

database

The full phylogenetically coherent database we developed, TetrapodTraits, is being made pub-

licly available to support a range of research applications in ecology, evolution, and conserva-

tion and to help minimise the impacts of biased data in this model system. The database

includes 24 species-level attributes linked to their respective sources across 33,281 tetrapod
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Fig 5. Changes in family-level attributes values after imputation-based gap-filling. For continuous attributes (BL, body length; BM, body mass),

relative change in attribute property quantifies the proportional change in the geometric mean attribute per genus. For binary attributes (types of

activity time and microhabitat), relative change in attribute property measures the change in mean species nocturnality (Noct) and verticality (Vert)

scores. The inset donut chart denotes the proportion of genera (inner donut) and families (outer donut) by category of attribute change. The y-axis of

histograms is square-rooted to improve readability. The data underlying this figure can be found in https://doi.org/10.5281/zenodo.10582069.

https://doi.org/10.1371/journal.pbio.3002658.g005
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species. Entries across this database show at least 98% of completeness after the inclusion of

imputed values. Specific fields clearly label data sources and imputations in the TetrapodTraits

(S1 Table), while additional tables record the 10K values per missing entry per species.

1. Taxonomy–includes 8 attributes that inform scientific names and respective higher-level

taxonomic ranks, authority name, and year of species description. Field names: Scientific.

Name, Genus, Family, Suborder, Order, Class, Authority, and YearOfDescription.

2. Phylogenetic tree–includes 2 attributes that notify which fully sampled phylogeny contains

the species, along with whether the species placement was imputed or not in the phylogeny.

Field names: TreeTaxon, TreeImputed.

3. Body size–includes 7 attributes that inform length, mass, and data sources on species sizes,

and details on the imputation of species length or mass. Field names: BodyLength_mm,

Fig 6. Changes in average attribute per tetrapod assemblage after imputation-based gap-filling. For each grid cell, maps show the average

species attribute value and respective relative change in attribute value after inclusion of imputed values for (A–C) body length, (D–F) body mass,

(G–I) nocturnality, and (J–L) verticality. Body length and body mass were log10 transformed before computations. Grey cells indicate assemblages

without species with imputed values. Boundaries of biogeographical realms were adapted from Ecoregions 2017 (https://storage.googleapis.com/

teow2016/Ecoregions2017.zip). The data underlying this figure can be found in https://doi.org/10.5281/zenodo.10582069. See S11–S15 Figs for

patterns of attribute change for each tetrapod group.

https://doi.org/10.1371/journal.pbio.3002658.g006
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LengthMeasure, ImputedLength, SourceBodyLength, BodyMass_g, ImputedMass,

SourceBodyMass.

4. Activity time–includes 5 attributes that describe period of activity (e.g., diurnal, nocturnal)

as dummy (binary) variables, data sources, details on the imputation of species activity

time, and a nocturnality score. Field names: Diu, Noc, ImputedActTime, SourceActTime,

Nocturnality.

5. Microhabitat–includes 8 attributes covering habitat use (e.g., fossorial, terrestrial, aquatic,

arboreal, aerial) as dummy (binary) variables, data sources, details on the imputation of

microhabitat, and a verticality score. Field names: Fos, Ter, Aqu, Arb, Aer, ImputedHabitat,

SourceHabitat, Verticality.

6. Macrohabitat–includes 19 attributes that reflect major habitat types according to the

IUCN classification, the sum of major habitats, data source, and details on the imputation

of macrohabitat. Field names: MajorHabitat_1 to MajorHabitat_10, MajorHabitat_12 to

MajorHabitat_17, MajorHabitatSum, ImputedMajorHabitat, SourceMajorHabitat. Major-

Habitat_11, representing the marine deep ocean floor (unoccupied by any species in our

database), is not included here.

7. Ecosystem–includes 6 attributes covering species ecosystem (e.g., terrestrial, freshwater,

marine) as dummy (binary) variables, the sum of ecosystem types, data sources, and details

on the imputation of ecosystem. Field names: EcoTer, EcoFresh, EcoMar, EcosystemSum,

ImputedEcosystem, SourceEcosystem.

8. Threat status–includes 3 attributes that inform the assessed threat statuses according to

IUCN red list and related literature. Field names: IUCN_Binomial, AssessedStatus,

SourceStatus.

9. RangeSize–the number of 110 × 110 km grid cells covered by the species range map.

10. Latitude–coordinate centroid of the species range map.

11. Longitude–coordinate centroid of the species range map.

12. Biogeography–includes 8 attributes that present the proportion of species range within

each biogeographical realm. Field names: Afrotropic, Australasia, IndoMalay, Nearctic,

Neotropic, Oceania, Palearctic, Antarctic [107].

13. Insularity–includes 2 attributes that notify if a species is insular endemic (binary, 1 = yes,

0 = no), followed by the respective data source. Field names: Insularity, SourceInsularity.

14. AnnuMeanTemp–Average within-range annual mean temperature (Celsius degree). Data

derived from CHELSA v. 1.2 [63].

15. AnnuPrecip–Average within-range annual precipitation (mm). Data derived from

CHELSA v. 1.2 [63].

16. TempSeasonality–Average within-range temperature seasonality (Standard devia-

tion × 100). Data derived from CHELSA v. 1.2 [63].

17. PrecipSeasonality–Average within-range precipitation seasonality (Coefficient of Varia-

tion). Data derived from CHELSA v. 1.2 [63].

18. Elevation–Average within-range elevation (metres). Data derived from topographic layers

in EarthEnv [64].

PLOS BIOLOGY A phylogeny-informed characterisation of global tetrapod traits addresses data gaps and biases

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002658 July 11, 2024 18 / 31

https://doi.org/10.1371/journal.pbio.3002658


19. ETA50K –Average within-range estimated time to travel to cities with a population >50K

in the year 2015. Data from [66].

20. HumanDensity–Average within-range human population density in 2017. Data derived

from HYDE v. 3.2 [65].

21. PropUrbanArea–Proportion of species range map covered by built-up area, such as

towns, cities, etc. at year 2017 [65].

22. PropCroplandArea–Proportion of species range map covered by cropland area, identical

to FAO’s category “Arable land and permanent crops” at year 2017 [65].

23. PropPastureArea–Proportion of species range map covered by cropland, defined as Graz-

ing land with an aridity index >0.5, assumed to be more intensively managed (converted

in climate models) at year 2017 [65].

24. PropRangelandArea–Proportion of species range map covered by rangeland, defined as

Grazing land with an aridity index <0.5, assumed to be less or not managed (not con-

verted in climate models) at year 2017 [65].

Conclusions

The growth in mobilised attribute data over the last several decades has enabled significant

progress and increased geographic and taxonomic generality for global studies in comparative

biology [108–110], macroevolution [111], macroecology [112], and conservation [113–115].

Despite the richness of available data, research outcomes and their interpretation often

remained constrained by nonrandomly missing data [6,8,82], and by the lack of standardisa-

tion across data dimensions (trait, phylogenetic, spatial) and data sources [116]. We show a

clear latitudinal bias in the sampling of phylogenetic data, with limited availability of genetic

samples towards the Equator. In concert with taxonomic updates [117,118], these issues have

imposed significant limits on multi-taxon investigations and global biodiversity synthesis

[119–121]. We documented remaining global data gaps for key traits and then used imputa-

tion to fill these gaps, revealing the biases in our knowledge due to the missingness of attribute

data. By using phylogeny-based imputation methods in concert with inter-related ecological

attributes, we uncovered the hitherto invisible part of attribute space. Our findings confirmed

the predominance of attributes that share missing data and provide a comprehensive assess-

ment of gaps and biases across tetrapod groups.

Attributes predictions for species with missing data brought to light key correlates and

allowed us to identify the significant consequences these gaps can have for inference. For

example, larger body size has been related to both high species detectability [38,39,42] and dis-

covery probability [67,122–124], larger research effort and public interest [34,44,125,126],

increased availability of assessed status [127,128], and better data sampling. Despite the diffi-

culties associated with researching large-sized species—e.g., high sensitivity to disturbances

[129,130], lower abundance [131,132], challenges with collection or transport—the presence of

multiple data biases towards small-sized species confirm the struggle of biodiversity scientists

to accurately characterise the smallest organisms and the lower tail of size distributions in

nature.

Biodiversity knowledge shortfalls are also clearly related to activity time and microhabitat.

Nocturnal species often show lower detectability [39], and typically are less researched [44]

and underassessed with respect to threat status [127], which helps explain why diurnal species

are more likely to have activity time data. In addition, the higher detectability of terrestrial
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than arboreal or fossorial species via standard sampling methods [41,42] can lead to less biased

occurrence data [133] and more research effort [34,44]. Although foraging stratum may con-

strain certain aspects of our biodiversity knowledge, species verticality itself has a limited influ-

ence on the availability of microhabitat data.

Attribute imputations can be limited and biased [81,82]. For tetrapods generally and this

study specifically, these concerns were minimised by the already substantial taxon-specific

datasets and by the gap-oriented mobilisation of additional data. We had to impute all 4 focal

attributes (body length, body mass, activity time, and microhabitat) in only 182 tetrapod spe-

cies (<0.25%). No family or genus had the 4 focal attributes missing in all species. Two impor-

tant diagnostics offered strong support for the robustness of our attribute predictions. First,

there was no association between the number of imputed attributes and changes in average

attributes after imputation-based gap filling (S17 Fig). Second, there was no positive associa-

tion between shared gaps in attribute data and changes in average attribute values (S18–S21

Figs). We encourage researchers to consider how assumptions and uncertainty of any imputed

data might affect downstream use and interpretation. However, for many tetrapod research

cases, including species with imputed data is preferable to wholesale exclusion of data-limited

species.

We have demonstrated that even for Tetrapoda, a central model system in global biodiver-

sity science, our ecological knowledge on attribute data consistently lacks certain types of

traits, taxa, and regions. Through careful imputation, we discovered that these gaps have led to

attribute distributions with strong geographical and taxonomic biases. We expect that our

approach and likely our general insights regarding biodiversity knowledge shortfalls will tran-

scend taxa and systems. The consequences of biased data can percolate through trait-based

metrics and comparative analyses, and may ultimately mislead research on functional diversity

[8,19,134], extinction risk [6,21,135], and ecogeography [136–138]. The new phylogeny-based

attribute database we have constructed can help minimise the impact of biased data and sup-

port new avenues of research in tetrapod conservation, ecology, and evolution.

Supporting information

S1 Fig. Performance of phylogenetic multiple imputation across natural history traits of

tetrapods. The y-axis indicates the Pearson correlation coefficient for continuous traits (body

length and body mass, log10 transformed) and the proportion of correctly classified entries

(accuracy) for binary traits (types of activity time and microhabitat). The data underlying this

figure can be found in https://doi.org/10.5281/zenodo.10582069.

(PDF)

S2 Fig. Performance of phylogenetic multiple imputation for continuous attributes. Vali-

dation metrics were computed between imputed and observed log10 attribute values, and

include: NRMSE (normalised root mean square error), Pearson (Pearson correlation coeffi-

cient), and Slope (linear regression slope). The data underlying this figure can be found in

https://doi.org/10.5281/zenodo.10582069.

(PDF)

S3 Fig. Performance of phylogenetic multiple imputation in classifying activity time and

microhabitat types. The accuracy, measured as the proportion of correctly classified entries,

was computed by comparing imputed and observed binary values. Results are reported sepa-

rately for different types of activity time and microhabitat. The data underlying this figure can

be found in https://doi.org/10.5281/zenodo.10582069.

(PDF)
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S4 Fig. Comparison between observed and predicted values across tetrapods. (A, B) Fre-

quency distribution of data entry values for continuous variables (body length and body mass,

log10 transformed). (C–I) Relative frequency of data entries for binary variables representing

types of activity time (diurnal and nocturnal) and microhabitat (fossorial terrestrial, aquatic,

arboreal, and aerial). The data underlying this figure can be found in https://doi.org/10.5281/

zenodo.10582069.

(PDF)

S5 Fig. Average data completeness across amphibian assemblages. Proportion of species

with observed values for: (A) body length, (B) body mass, (D) activity time, (E) microhabitat,

(G) assessed threat status, (H) phylogenetic data, (J) attribute set, i.e., the average pattern for

maps depicted in ABDE, and (K) the complete database, i.e., average pattern for maps depicted

in ABDEGH. Maps show grid cell assemblages of 110 × 110 km size in an equal-area projec-

tion. Latitudinal plots (C, F, I, L) show the average values of these cells across latitudes. Colour

ramps followed Jenks’ natural breaks classification. Boundaries of biogeographical realms were

adapted from Ecoregions 2017 (https://storage.googleapis.com/teow2016/Ecoregions2017.

zip). The data underlying this figure can be found in https://doi.org/10.5281/zenodo.

10582069.

(PDF)

S6 Fig. Average data completeness across chelonian and crocodilian assemblages. Propor-

tion of species with observed values for: (A) body length, (B) body mass, (D) activity time, (E)

microhabitat, (G) assessed threat status, (H) phylogenetic data, (J) attribute set, i.e., the average

pattern for maps depicted in ABDE, and (K) the complete database, i.e., average pattern for

maps depicted in ABDEGH. Maps show grid cell assemblages of 110 × 110 km size in an

equal-area projection. Latitudinal plots (C, F, I, L) show the average values of these cells across

latitudes. Colour ramps followed Jenks’ natural breaks classification. Boundaries of bio-

geographical realms were adapted from Ecoregions 2017 (https://storage.googleapis.com/

teow2016/Ecoregions2017.zip). The data underlying this figure can be found in https://doi.

org/10.5281/zenodo.10582069.

(PDF)

S7 Fig. Average data completeness across squamate assemblages. Proportion of species with

observed values for: (A) body length, (B) body mass, (D) activity time, (E) microhabitat, (G)

assessed threat status, (H) phylogenetic data, (J) attribute set, i.e., the average pattern for maps

depicted in ABDE, and (K) the complete database, i.e., average pattern for maps depicted in

ABDEGH. Maps show grid cell assemblages of 110 × 110 km size in an equal-area projection.

Latitudinal plots (C, F, I, L) show the average values of these cells across latitudes. Colour

ramps followed Jenks’ natural breaks classification. Boundaries of biogeographical realms were

adapted from Ecoregions 2017 (https://storage.googleapis.com/teow2016/Ecoregions2017.

zip). The data underlying this figure can be found in https://doi.org/10.5281/zenodo.

10582069.

(PDF)

S8 Fig. Average data completeness across bird assemblages. Proportion of species with

observed values for: (A) body length, (B) body mass, (D) activity time, (E) microhabitat, (G)

assessed threat status, (H) phylogenetic data, (J) attribute set, i.e., the average pattern for maps

depicted in ABDE, and (K) the complete database, i.e., average pattern for maps depicted in

ABDEGH. Maps show grid cell assemblages of 110 × 110 km size in an equal-area projection.

Latitudinal plots (C, F, I, L) show the average values of these cells across latitudes. Colour

ramps followed Jenks’ natural breaks classification. Boundaries of biogeographical realms were
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adapted from Ecoregions 2017 (https://storage.googleapis.com/teow2016/Ecoregions2017.

zip). The data underlying this figure can be found in https://doi.org/10.5281/zenodo.

10582069.

(PDF)

S9 Fig. Average data completeness across mammal assemblages. Proportion of species with

observed values for: (A) body length, (B) body mass, (D) activity time, (E) microhabitat, (G)

assessed threat status, (H) phylogenetic data, (J) attribute set, i.e., the average pattern for maps

depicted in ABDE, and (K) the complete database, i.e., average pattern for maps depicted in

ABDEGH. Maps show grid cell assemblages of 110 × 110 km size in an equal-area projection.

Latitudinal plots (C, F, I, L) show the average values of these cells across latitudes. Colour

ramps followed Jenks’ natural breaks classification. Boundaries of biogeographical realms were

adapted from Ecoregions 2017 (https://storage.googleapis.com/teow2016/Ecoregions2017.

zip). The data underlying this figure can be found in https://doi.org/10.5281/zenodo.

10582069.

(PDF)

S10 Fig. The top 50 tetrapod families with most pronounced patterns of shared data miss-

ingness. For each family, the aggregation metric equals the median value of the standardised

effect-size (SES) of the C-score metric computed across (A) all pairwise attribute combinations

or (B) attribute pairs mandatorily involving threat status. Grey numbers on the left side of

each panel indicate the per-family species richness. The data underlying this figure can be

found in https://doi.org/10.5281/zenodo.10582069.

(PDF)

S11 Fig. Changes in average attributes per amphibian assemblage after imputation-based

gap-filling. For each grid cell, maps show the average species attribute value and respective rel-

ative change in attribute value after the inclusion of imputed values for (A–C) body length,

(D–F) body mass, (G–I) nocturnality, (J–L) verticality. Body length and body mass were log10

transformed before computations. Grey cells indicate assemblages without species with

imputed values. Maps draw at the spatial resolution of 110 × 110 km in an equal area projec-

tion. Boundaries of biogeographical realms were adapted from Ecoregions 2017 (https://

storage.googleapis.com/teow2016/Ecoregions2017.zip). The data underlying this figure can be

found in https://doi.org/10.5281/zenodo.10582069.

(PDF)

S12 Fig. Changes in average attributes per chelonian and crocodilian assemblage after

imputation-based gap filling. For each grid cell, maps show the average species attribute

value and respective relative change in attribute value after the inclusion of imputed values for

(A–C) body length, (D–F) body mass, (G–I) nocturnality, (J–L) verticality. Body length and

body mass were log10 transformed before computations. Grey cells indicate assemblages with-

out species with imputed values. Maps draw at the spatial resolution of 110 × 110 km in an

equal area projection. Boundaries of biogeographical realms were adapted from Ecoregions

2017 (https://storage.googleapis.com/teow2016/Ecoregions2017.zip). The data underlying this

figure can be found in https://doi.org/10.5281/zenodo.10582069.

(PDF)

S13 Fig. Changes in average attributes per squamate assemblage after imputation-based

gap filling. For each grid cell, maps show the average species attribute value and respective rel-

ative change in attribute value after the inclusion of imputed values for (A–C) body length,

(D–F) body mass, (G–I) nocturnality, (J–L) verticality. Body length and body mass were log10
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transformed before computations. Grey cells indicate assemblages without species with

imputed values. Maps draw at the spatial resolution of 110 × 110 km in an equal area projec-

tion. Boundaries of biogeographical realms were adapted from Ecoregions 2017 (https://

storage.googleapis.com/teow2016/Ecoregions2017.zip). The data underlying this figure can be

found in https://doi.org/10.5281/zenodo.10582069.

(PDF)

S14 Fig. Changes in average attributes per bird assemblage after imputation-based gap-fill-

ing. For each grid cell, maps show the average species attribute value and respective relative

change in attribute value after the inclusion of imputed values for (A–C) body length, (D–F)

body mass, (G–I) nocturnality, (J–L) verticality. Body length and body mass were log10 trans-

formed before computations. Grey cells indicate assemblages without species with imputed

values. Maps draw at the spatial resolution of 110 × 110 km in an equal area projection. Bound-

aries of biogeographical realms were adapted from Ecoregions 2017 (https://storage.

googleapis.com/teow2016/Ecoregions2017.zip). The data underlying this figure can be found

in https://doi.org/10.5281/zenodo.10582069.

(PDF)

S15 Fig. Changes in average attributes per mammal assemblage after imputation-based

gap filling. For each grid cell, maps show the average species attribute value and respective rel-

ative change in attribute value after the inclusion of imputed values for (A–C) body length,

(D–F) body mass, (G–I) nocturnality, (J–L) verticality. Body length and body mass were log10

transformed before computations. Grey cells indicate assemblages without species with

imputed values. Maps draw at the spatial resolution of 110 × 110 km in an equal area projec-

tion. Boundaries of biogeographical realms were adapted from Ecoregions 2017 (https://

storage.googleapis.com/teow2016/Ecoregions2017.zip). The data underlying this figure can be

found in https://doi.org/10.5281/zenodo.10582069.

(PDF)

S16 Fig. Proportion of samples across levels of changes in average attributes after imputa-

tion-based gap filling. Each bar shows the relative number of genera, families, and geographi-

cal assemblages facing changes in their average species attribute value after filling missing

attributes with imputed values. The data underlying this figure can be found in https://doi.org/

10.5281/zenodo.10582069.

(PDF)

S17 Fig. Relative change in attribute average across increasing number of imputed attri-

butes. Relative decrease (A, B) or increase (C, D) in attribute metric showed at the (A, C)

genus- and (B, D) family-level. Each box denotes the median (horizontal line) and the 25th

and 75th percentiles. Vertical lines represent the 95% confidence intervals, and black dots are

outliers. Horizontal lines denote the position of 25%, 50%, 75% of relative decrease (light to

dark blue) or increase (light to dark red) in attribute metric. Small capital letters denote the

results of the Kruskal–Wallis tests for the difference in medians across relative change in aver-

age attribute value. The data underlying this figure can be found in https://doi.org/10.5281/

zenodo.10582069.

(PDF)

S18 Fig. Changes in aggregate attributes after imputation-based gap filling in relation to

shared missing data. Relative changes in average attribute value per taxa (geometric mean for

body length and mass, and mean for nocturnality and verticality). Each point concerns a taxo-

nomic (A) genus or (B) family. R denotes the Spearman correlation coefficient between the
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relative decrease (blue) or increase (red) in the average attribute value. Only taxa with aggre-

gated patterns of missing data were used in these plots (median Standardised Effect Size of C-

score� −1.96). More negative values of SES C-Score indicate a higher degree of shared miss-

ing data. The data underlying this figure can be found in https://doi.org/10.5281/zenodo.

10582069.

(PDF)

S19 Fig. Changes in aggregate attributes after imputation-based gap filling in relation to

genus completeness and richness. Relative changes in average attribute value per genus (geo-

metric mean for body length and mass, and mean for nocturnality and verticality). Each point

concerns a combination between the relative change in average attribute for a taxonomic

genus. R denotes the Spearman correlation coefficient between the relative decrease (blue) or

increase (red) in the average attribute and (A) per genus attribute completeness and (B) genus

richness. The data underlying this figure can be found in https://doi.org/10.5281/zenodo.

10582069.

(PDF)

S20 Fig. Changes in aggregate attributes after imputation-based gap filling in relation to

family completeness and richness. Relative changes in average attribute value per family (geo-

metric mean for body length and mass, and mean for nocturnality and verticality). Each point

concerns a combination between the relative change in average attribute for a taxonomic fam-

ily. R denotes the Spearman correlation coefficient between the relative decrease (blue) or

increase (red) in the average attribute and (A) per family attribute completeness and (B) family

richness. The data underlying this figure can be found in https://doi.org/10.5281/zenodo.

10582069.

(PDF)

S21 Fig. Changes in aggregate attributes after imputation-based gap filling in relation to

assemblage completeness and richness. Relative changes in average attribute value per tetra-

pod assemblage (geometric mean for body length and mass, and mean for nocturnality and

verticality). Each point concerns a combination between the relative change in average attri-

bute for a tetrapod assemblage. R denotes the Spearman correlation coefficient between the

relative decrease (blue) or increase (red) in the average attribute and (A) per assemblage attri-

bute completeness and (B) assemblage richness. The data underlying this figure can be found

in https://doi.org/10.5281/zenodo.10582069.

(PDF)

S1 Table. Variables included in the TetrapodTraits database.

(DOCX)

S2 Table. Number of species with natural history data available per tetrapod group.

(DOCX)
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