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Abstract

The human brain is organized as segregation and integration units and follows complex

developmental trajectories throughout life. The cortical manifold provides a new means of

studying the brain’s organization in a multidimensional connectivity gradient space. How-

ever, how the brain’s morphometric organization changes across the human lifespan

remains unclear. Here, leveraging structural magnetic resonance imaging scans from 1,790

healthy individuals aged 8 to 89 years, we investigated age-related global, within- and

between-network dispersions to reveal the segregation and integration of brain networks

from 3D manifolds based on morphometric similarity network (MSN), combining multiple

features conceptualized as a “fingerprint” of an individual’s brain. Developmental trajectories

of global dispersion unfolded along patterns of molecular brain organization, such as acetyl-

choline receptor. Communities were increasingly dispersed with age, reflecting more disas-

sortative morphometric similarity profiles within a community. Increasing within-network

dispersion of primary motor and association cortices mediated the influence of age on the

cognitive flexibility of executive functions. We also found that the secondary sensory corti-

ces were decreasingly dispersed with the rest of the cortices during aging, possibly indicat-

ing a shift of secondary sensory cortices across the human lifespan from an extreme to a

more central position in 3D manifolds. Together, our results reveal the age-related segrega-

tion and integration of MSN from the perspective of a multidimensional gradient space, pro-

viding new insights into lifespan changes in multiple morphometric features of the brain, as

well as the influence of such changes on cognitive performance.

Introduction

The development of the human brain is an intricate process that underpins cognition [1] and

behavior [2,3]. This process is also responsible for brain disorders [4–6]. The brain is neither

born mature nor static across the human lifespan [7]. Consequently, regional morphometric
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changes correspond to chronological human neurodevelopmental changes [8–10]. However,

the cerebral cortex comprises parallel, segregated organizations of brain regions central to pro-

cessing distinct information [11]. The brain connectome indicates that these regional changes

complement ongoing maturation of structural networks that involve broad cognitive develop-

ment or aging processes [12–15].

The developmental trajectory is characterized by significant changes in 2 canonical struc-

tural brain connectomes: the white matter fiber tractography [16] and the between-subject

morphological/structural covariance network (SCN). The white matter tracts between highly

linked hubs are disproportionately influenced by development, such that the frontal-subcorti-

cal and frontal-parietal tracts strengthen across late adolescence [15], and the hubs of the

brain’s SCN have a long period of adolescence and early adult myelination, with delayed onset

of maturity but later onset of decline [17]. However, the white-matter tractography presents

challenges, such as estimating the connection strength of long-distance projections, and the

SCN generally cannot be used individually [18,19]. These concerns were recently overcome by

using a within-subject morphometric similarity network (MSN) [20], which individually cap-

tures the interregional correlations of multiple morphometric features [21]. Human MSN

modules recapitulate cortical cytoarchitectonic divisions, and regional MSN are related to the

co-expression of genes enriched for neuronal terms, axonal connectivity in the macaque, and

between-subject variability in human intelligence [21]. A prior investigation using MSN dis-

covered age-related brain quadratic and cubic changes in healthy controls and stimulant use

disorders [22]. Therefore, investigating the developmental organization of brain connectomes

may provide important insights into typical brain developmental mechanisms and their devia-

tions in neurodevelopmental disorders.

Topographical patterning of the large-scale connectome proceeds gradually in a natural

axis of spatial organization through the cortex [23,24]. This gradient axis of the human brain’s

architecture is based on various neurobiological features that are important for neurodevelop-

ment [25,26]. Instead of depicting brain boundaries, connectivity gradients characterize each

region based on its position along large-scale morphometric gradients. Our previous study of

MSN demonstrated that the principal gradient is anchored by motor and sensory cortices at 2

extreme ends and recapitulates fundamental cortical organization properties from gene

expression and cyto- and myelo-architecture to evolutionary expansion [27], all of which are

evolutionarily rooted. The principle gradient axis, in particular, mirrors a system segregation

[23]. The second and third gradients were likewise predicted to illustrate morphometric dis-

tinctions of unimodal- and transmodal-related regions. To address age-related changes in

multidimensional gradients, a recent study proposed a Euclidean distance to quantify similari-

ties between points within a manifold space, i.e., dispersion [28]. Global, within-network, and

between-network dispersion derived from the functional connectivity manifold supports per-

formance in specific cognitive domains across the adult lifespan. Furthermore, within- and

between-network dispersions enhance sensitivity to age-related brain changes when compared

to other approaches to measuring network changes [28]. To our knowledge, however, no

study has explored the age-related changes of dispersion with coordinated morphometric fea-

tures throughout almost the entire human lifespan.

To this end, we used structural neuroimaging in the Human Connectome Project (HCP)-

Development (HCP-D), Young Adult (HCP-YA), and Aging (HCP-A) cohorts, which

included healthy individuals aged between 5 and 100+ years. Multidimensional morphometric

features were constructed for individual MSNs. To extract a global framework from the MSN,

we used the dimensionality reduction technique of diffusion map embedding. We initially

investigated age-related changes in global dispersion, as well as the link with molecular factors.

Then, we assessed whether dispersion of within- and between-networks changed as we age.
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Brain Atlas (AHBA; http://human.brain-map.org/),

and genetic data were preprocessed with abagen

toolbox (https://github.com/netneurolab/abagen).
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developmental express tool was obtained from

http://genetics.wustl.edu/jdlab/csea-tool-2. PET-

derived tracer images were obtained in neuromaps

(https://github.com/netneurolab/neuromaps). The

data underlying all main and supplementary figures

can be found in S1_Data.xlsx, S2_Data.xlsx and

S3_Data.xlsx. The source code for all results is

available at https://github.com/weiliao81/MSN_

Development and https://zenodo.org/records/

10977355.
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Finally, we examined how the global, within-, and between-network dispersions were linked

to cognitive domains [29,30]. The analysis schematic is shown in Fig 1.

Results

In HCP-D (n = 652), 13 participants under the age of 8 years were excluded because of insuffi-

cient data available for 5 to 7 year olds. For HCP-YA (n = 1,206), 93 participants without

T1-weighted images (T1w) and 668 participants with siblings in the same family were excluded

to reduce bias. For HCP-A (n = 725), 13 participants over the age of 89 were excluded because

of the data non-availability. A flowchart of the study participants is shown in S1 Fig. Finally,

1,790 participants (mean age: 35.67 years; age range: 8 to 89 years; 974 females) were included

(S2 Fig).

In accordance with our prior work, 5 morphometric features were extracted from 1,533

cortical regions and used to construct individual MSNs [27]. We also constructed the MSN

matrix using 7 features (2 more features from diffusion-weighted imaging) to test the

robustness of the MSN (S1 Table). We found a comparable MSN pattern derived from 5 and

7 features across subjects (r[mean ± standard deviation] = 0.70 ± 0.03; S3 Fig). The top 3

embedding components (gradients) were then identified by computing cortical connectivity

gradients using a diffusion map embedding technique. The gradients described principal

spatial axes along which morphometric similarities varied across cortices. Regions that

resembled each other with respect to morphometric features occupied similar positions

along the gradient. Individualized MSN gradients were aligned to a template generated by

averaging all MSNs using a ComBat harmonization due to variance in magnetic resonance

imaging (MRI) collecting procedures [31]. Morphometric communities were compactly

localized in the group-average 3D gradient space (Fig 1). The principal gradient (G1) drove

the insular cortices to the extreme and segregated locations. The second gradient (G2) like-

wise drove the association cortices to extreme locations. The secondary sensory class occu-

pied one side of the third gradient (G3).

Fig 1. Schematic illustration of this study. (A) Construction of an MSN. Using T1w data, we constructed an MSN for each individual using 5

morphometric features, including GMV, SA, CT, intrinsic curvature, and MC. (B) Measuring cortical manifold. After obtaining individual MSN, we

mapped the connectome into gradient space and calculated the global, within-, and between-network dispersions for each individual from 3D manifold

spaces. (C) Association lifespan. We used the GAMLSS model to measure age-related changes in brain dispersion across the human lifespan. The cartoons

were created with BioRender.com. CT, cortical thickness; GC, Gaussian curvature; GMV, gray matter volume; MC, mean curvature; MSN, morphometric

similarity network.

https://doi.org/10.1371/journal.pbio.3002647.g001
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Age-related differences in global dispersion

We first investigated whether global dispersion, defined as the sum of squared Euclidean dis-

tances of all regions to the global centroid in the 3D cortical manifold, changed with age. A

small/large global dispersion value indicated that the overall morphometric similarity profiles

across all regions diverged by a low/high amount along 3D gradients. We used a generalized

additive model for location, scale, and shape (GALSS), a robust method for modeling nonlin-

ear growth trajectories [7], to construct brain charts for the human lifespan. After controlling

sex and estimated total intracranial volume (eTIV), we found that the global dispersion

increased with age (R2 = 0.05, P = 6e-6; Fig 2A), and the development trajectory was similar to

the MSN matrix derived from 7 features (S4 Fig). To determine the developmental windows of

significant morphometric network integration, we measured the first derivative of the age

smooth term, which indicates the change in global dispersion at a given age [32,33]. Age-fit

derivatives revealed distinct timings of developmental changes in different dispersions of

Fig 2. Global dispersion of the MSN connectome. (A) Distribution of average manifold eccentricities and age-related

changes in global dispersions across the human lifespan. The dotted lines represent 25% and 75% centiles. The filled

bar above the x-axis depicts the derivative of the GAMLSS and corresponds to developmental windows of significant

global dispersion. The red bar color represents significant global dispersion increases, and the blue bar color represents

significant global dispersion decreases. (B) Regional manifold eccentricities measured by Euclidean distance between

the center and each region. The age effects (R2 values) were the age-related regional manifold eccentricities across the

human lifespan. Statistically significant regions were corrected by FDR. The data underlying this figure can be found in

S1 Data. FDR, false discovery rate; MSN, morphometric similarity network.

https://doi.org/10.1371/journal.pbio.3002647.g002
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MSN. The global dispersion increased most significantly during childhood to adolescence and

late adulthood (Fig 2A).

Furthermore, we segmented participants into 4 age windows (late childhood to adoles-

cence: 8 to 19 years, young adulthood: 20 to 39 years, middle adulthood: 40 to 59 years, and

late adulthood: 60 to 89 years) based on a previous study [7], to assess age-dispersion relation-

ships for each age group. Similarly, we found an increase in global dispersions during adoles-

cence and late adulthood and a relatively stable tendency during young and middle adulthood

(S5 Fig). Given the importance of executive functions (EFs) in human development [34], we

conducted a mediation analysis to explore whether the influence of age on EFs might be

explained by changes in global dispersions. We utilized 2 core EFs: cognitive flexibility and

inhibition control. For significance testing, bootstrapping was used. We found that the

increase in global dispersion was associated with age (path a: β = 0.003, P = 0.002), and lower

cognitive flexibility in EF was related to age (path c: β = −0.093, P< 0.001). There was no asso-

ciation between global dispersion and cognitive flexibility in EFs (path b: β = −0.211,

P = 0.563) after adjusting for age. Mediation analysis, however, revealed that global dispersion

was not a significant mediator (indirect effect = −0.001, P = 0.570). In terms of inhibition con-

trol of EFs, we found that an increase in global dispersion was associated with age (path a:

β = 0.003, P = 0.002), and lower cognitive flexibility of EFs was related to age (path c: β =

−0.102, P< 0.001). There was no association between global dispersion and cognitive flexibil-

ity in EF (path b: β = 0.093, P = 0.764) after age adjustment. However, mediation analysis

revealed that global dispersion was not a significant mediator (indirect effect <0.001,

P = 0.765).

Furthermore, we found that during human aging, cortical regions exhibited unique pat-

terns of increased (i.e., expansion) and decreased (i.e., contraction) global dispersions (Fig 2B,

upper panel). To identify which regions showed significant changes in global dispersions

across the human lifespan, we corrected for multiple comparisons using false discovery rate

(FDR) correction (q< 0.05). We found that regions within the secondary sensory cortices

showed substantial declines across the cortical cortex, indicating that these regions were mor-

phometrically segregated from the rest of the brain during aging (Fig 2B, lower panel). How-

ever, dorsal prefrontal and insular cortices expanded significantly and increased with age,

presumably indicating that these regions with increased morphometrically segregated from

the other regions during aging.

Associations with neurotransmitter receptors and gene expression patterns

We next quantified the contributions of molecular factors to global dispersions. The spatio-

temporal gene expression trajectories reveal human cortical developmental hierarchy [35]. We

thus used transcriptomic and developmental enrichment analyses to contextualize the age-

related global dispersions to patterns of postmortem gene expressions from the Allen Human

Brain Atlas (AHBA), which is a whole-brain transcriptomic dataset. We used partial least

squares (PLS) regression analyses to determine the relationships between age-related global

dispersions (Fig 3A) and gene expressions (7,645 genes). The first component of PLS (PLS1)

explained 29% of the variance (Pspin = 0.005; Fig 3B). The PLS1 weighted gene expression map

spatially correlated with the age-related global dispersion map (R2 = 0.29, Pperm = 0.001;

Fig 3C). We ranked the normalized weights of PLS1 based on multiple univariate Z tests.

Among the list of most strongly associated genes (PFDR < 0.05; Fig 3D), we selected the top

1,000 genes and performed developmental gene set enrichment analysis using the cell type-

specific expression analysis (CSEA) tool, which compared the selected gene list with develop-

ment enrichment profiles. This analysis highlights developmental time windows across
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Fig 3. Transcriptomic analysis. (A) Age-related changes in regional manifold eccentricity in the left hemisphere (unthresholded). (B) A weighted regional

gene expression map of the first component of PLS (PLS1) scores in the left hemisphere (unthresholded). (C) A scatterplot of regional PLS1 scores and age-

related changes in regional manifold eccentricity (R2 = 0.29, Pperm = 0.001). (D) Ranked PLS1 loadings. (E) The top 1,000 genes (PFDR < 0.05) were used in

development analysis, showing strong associations with the cortex and amygdala during early childhood to adolescence. The data underlying this figure can

be found in S1 Data. FDR, false discovery rate; PLS, partial least squares.

https://doi.org/10.1371/journal.pbio.3002647.g003
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macroscopic brain regions where genes are strongly expressed. We found marked expression

of genes enriched from late infancy onward in the amygdala, striatum, and hippocampus (Fig

3E). Genes were also enriched for expression in the thalamus during transition from early fetal

life to late infancy. However, the identified genes were not expressed in the cerebellum.

Neurotransmitter receptors drive synaptic plasticity, modify neural states, and ultimately

form network-wide communications [36]. However, it is uncertain how the patterning of dif-

ferent neurotransmitter receptors relates to global dispersion across the human lifespan. We

used 8 distinct neurotransmitter systems using positron emission tomography (PET) data

[36], including serotonin, dopamine, histamine, acetylcholine, cannabinoid, glutamate,

GABA, and noradrenaline. After assigning the receptor distribution maps to DK-1,533 brain

regions, we used a multiple linear regression model combining all 8 neurotransmitter systems

using the relaimpo package in R (Fig 4A). The model explained 28% of the variance in the

global dispersion across the human lifespan (F(8, 1524) = 72.8, Pspin = 0.0008; Fig 4B). Further-

more, we found that acetylcholine (Pspin = 0.0032, FDR-correction) receptor can predict global

dispersions, and dopamine (Pspin = 0.07, FDR-correction) and glutamate (Pspin = 0.07, FDR-

correction) receptors marginally predicted global dispersion (S2 Table). Notably, in our

model, the glutamate receptor exhibited the largest dominance in global dispersions (Fig 4C).

Within- and between-networks dispersion changes across the human

lifespan

Age-related differences for within- and between-network dispersions were estimated for the

von Economo cytoarchitectonic parcellation with 7 networks. We used GAMLSS to depict the

Fig 4. Contributions of neurotransmitter receptors to age-related changes in regional manifold eccentricity. (A) A multiple linear regression model

was used to determine the relationships between neurotransmitter receptors and age-related changes in regional manifold eccentricity. (B) The predicted

age-related changes in regional manifold eccentricity and a plot of the predicted versus observed R2-values (adjusted R2 = 0.28, P< 0.001). (C) The relative

importance of each neurotransmitter receptor contributed to the multiple linear regression model. Error bars denote 95% bootstrap CIs. Asterisks indicate

a statistically significant contributor. The data underlying this figure can be found in S1 Data. CI, confidence interval.

https://doi.org/10.1371/journal.pbio.3002647.g004
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relationships of age-related differences, similar to the fitting curve of global dispersions, show-

ing that all networks exhibited increased overall within-network dispersion with increasing

age (S3 Table). Most networks followed nonlinear within-network morphometric similarity

patterns (Fig 5A). After identifying the developmental windows of significant within-network

dispersion, we found that the association and limbic cortices increased rapidly during late

childhood to adolescence, and within-network dispersion of primary motor and secondary

sensory cortices increased rapidly during middle adulthood.

Furthermore, we evaluated the developmental trajectories in 4 age windows. The primary

motor and secondary sensory classes showed decreases within-network dispersion during late

childhood to adolescence and increases from young adulthood to late adulthood (S6 Fig). The

dispersion of the primary motor class increased rapidly during late adulthood, and the second-

ary sensory class increased rapidly during young adulthood (S4 Table). The association 1 and

association 2 classes showed a steep ascent of within-network dispersions from late childhood

to adolescence, with a slower ascent thereafter. The limbic class also showed a steep rise of

within-network dispersion from late childhood to adolescence, but a slower descent during

late adulthood. The primary sensory and limbic classes exhibited increased within-network

dispersions across the whole age and increased rapidly during young adulthood. To further

validate these results, we used the Yeo-7 functional atlas. Similar to the von Economo atlas, we

found that most functional networks were significantly increased with age, especially within-

network dispersions of frontoparietal, default mode, and dorsal attention networks during

adolescence. However, the within-network dispersions of a limbic class increased during ado-

lescence and thereafter decreased from young adulthood to late adulthood (S7 Fig).

Furthermore, we tested whether within-network dispersions mediated the effects of age on

EF using multilevel mediation analysis. The joint effects of age on within-network dispersions

(path a) and within-network dispersions on EFs (path b), as well as the total (path c) age effect

on EFs, were examined. In addition, bootstrap analyses were performed to assess the statistical

significance of the mediation analysis, for which a 95% confidence interval (CI) without zero

was equivalent to a significance level of 0.05. After accounting for within-network dispersions,

the effect of age on cognitive flexibility of EFs was weakened (path c’: β = −0.076, P< 0.001,

from path c: β = −0.093, P< 0.001). Age-related differences in cognitive flexibility of EFs were

mediated by the primary motor class (path a: β = 0.019, PFDR < 0.001; path b: β = −1.404, PFDR

< 0.001; indirect effect = −0.027, 95% CI = [−0.041, −0.013], PFDR < 0.001) and association

cortices (path a: β = 0.013, PFDR < 0.001; path b: β = 2.670, PFDR = 0.007; indirect effect = 0.034,

95% CI = [0.013, 0.058], PFDR = 0.008) (S5 Table). Computing the effect size yielded a media-

tion effect of 19.4% variance (Fig 5B), corresponding to a medium to large effect size. In addi-

tion, we found that the 2 classes jointly mediated the relationships between age and the

cognitive flexibility of EFs (indirect effect = 0.032, 95% CI = [0.001, 0.062], P = 0.04; direct

effect = 0.519, 95% CI = [0.448, 0.590], P< 0.001) during late childhood to adolescence. How-

ever, when within-network dispersion was considered, the age effect on inhibition control of

EFs remained relatively stable (path c’: β = −0.16, P< 0.001, from path c: β = −0.162,

P< 0.001), and within-network dispersion did not mediate the relationships between age and

inhibition control of EFs (indirect effect = −0.002, P = 0.799).

Nonlinear between-network dispersion (the distance between the centroids of each net-

work) usually occurred between primary and secondary sensory classes, as well as other net-

works (Fig 6 and S6 Table). Between-network dispersions in association-secondary sensory

and association-limbic cortices exhibited curvilinear decreases with age. Except for the disper-

sion between association 1 and secondary sensory classes, which showed the most descent in

late adulthood, the rapid descent stage of other between-network dispersions occurred during

late childhood to adolescence (S8 Fig and S7 Table). The dispersion between association

PLOS BIOLOGY Cortical manifold in MSN across lifespan
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Fig 5. Age-related changes in within-network dispersions. (A) The associations were measured in 7 cytoarchitecture classes, whose dispersions increased

with age. The dotted lines represent 25% and 75% centiles. The filled bar above the x-axis depicts the derivative of the GAMLSS and corresponds to

developmental windows of significant within-network dispersion. The red bar color represents significant within-network dispersion increases, and the

blue bar color represents significant within-network dispersion decreases. (B) Within-network dispersion mediated the influence of age on the cognitive

flexibility of EFs. The data underlying this figure can be found in S1 Data. EF, executive function.

https://doi.org/10.1371/journal.pbio.3002647.g005
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cortices and primary sensory classes decreased from late childhood to middle adulthood, while

they increased during late adulthood. The between-network dispersions of primary motor-

association cortices and primary motor-limbic significantly increased during late childhood to

adolescence, and the dispersions of primary motor-secondary sensory and primary motor-pri-

mary sensory significantly increased until adolescence, then decreased thereafter. Similarly,

the secondary sensory-limbic and secondary sensory-insular exhibited increases in between-

network dispersions during adolescence, and the decreased thereafter. The secondary sensory-

primary sensory exhibited an increased trend and increase in accelerating trend during late

adulthood. Similar to the von Economo atlas, most between-network dispersions defined by

Yeo-7 functional atlas decreased with age, especially between the visual network and other

Fig 6. Age-related changes in between-network dispersions. (A) Nonlinear between cortical network age-related differences in dispersions with a

statistically significant nonlinear relationship with age accounting for sex and eTIV as covariates. The dotted lines represent 25% and 75% centiles. The

filled bar above the x-axis depicts the derivative of the GAMLSS and corresponds to developmental windows of significant between-network dispersion.

The red bar color represents significant between-network dispersion increases, and the blue bar color represents significant between-network dispersion

decreases. (B) Distribution of the R2-values of between-network dispersion across the human lifespan. Network borders are scaled according to the size of

the total effect from communities. The data underlying this figure can be found in S1 Data. eTIV, estimated total intracranial volume.

https://doi.org/10.1371/journal.pbio.3002647.g006
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networks (S9 Fig). However, between-network dispersion was not the mediator between age

and the cognitive flexibility of EFs (indirect effect = 0.017, P = 0.232) and inhibition control of

EFs (indirect effect = 0.018, P = 0.166).

Discussion

Using the cortical manifold of the MSN, we evaluated lifespan age-related differences in 3D

gradient dispersions. Global dispersion gradually increased with increasing age. The manifold

eccentricity of visual cortices—the distance between visual cortices and global centroids—con-

tracted as age increased, whereas manifold eccentricities of prefrontal cortices expanded dur-

ing aging. Molecular neurotransmitter systems have recognized that spatial distribution of

multiple neurobiological systems, including glutamate, dopamine, and acetylcholine neuro-

transmitters, recapitulated the age-related differences in global dispersions. Decoding the

global dispersions with postmortem gene expression maps implicated genes enriched in mid-

dle/late childhood and adolescence, again identifying to both cortical and subcortical targets.

In addition, we found that all within-network dispersions gradually increased with age. With

the exception of primary sensory cortices, secondary sensory cortices almost uniformly moved

closer toward the center of all other networks. Finally, within-network dispersions, including

primary motor, association, and insular cortices could mediate the effect of age on the cogni-

tive flexibility of EFs. Taken together, our results showed the importance of MSN integration

for EF from a multidimensional perspective.

By leveraging advanced manifold learning, we could depict macroscale MSN connectome

organization along principal axes. This technique provided a valuable perspective to bridge

low-dimensional representations of cortical organizations and human cognition in a data-

driven and spatially unconstrained manner [14,23]. The MSN connectome shared topological

properties with structural and functional networks, such as community structure, degree dis-

tribution, and rich club [21]. Furthermore, MSN abnormalities have been reported to be

involved in numerous brain disorders [37–40]. However, our prior study reported that the

principal MSN gradient was anchored by motor and sensory cortices at 2 extreme ends [27].

Notably, the MSN gradient fundamentally recapitulated cortical organization, ranging from

gene expression and cyto- and myeloarchitecture to evolutionary expansion, which showed

similar patterns to human development [41]. Because gradient dispersion is sensitive enough

to detect changes in brain connectomes during individual progression [28], we were able to

show age-related changes in cortical dispersions of MSN connectomes, which added our

understanding of morphometric segregation across the human lifespan using multiple modal-

ity features in multidimensional space. Age-related differences in global dispersions therefore

increased across the human lifespan. Increased dispersions captured increased differentiation

of overall MSN profiles across regions in the 3D cortical spaces of the MSN connectome.

Global dispersion reflects network segregation at the whole-brain level. Consistent with an ear-

lier study [42], we found that global dispersion increased during late childhood to adolescence,

indicating an enhanced discrete distribution of brain regions in gradient space. Previous func-

tional findings reported that in older adults, the visual cortices showed signs of hyperactivity

combined with decreased activation in control and default mode networks [28,43]. Notably,

after measuring eccentricity for each region, we found that age-related changes were primarily

characterized by manifold contraction (i.e., decreased dispersions) of secondary sensory corti-

ces, as well as expansion (i.e., increased dispersions) of transmodal areas of the prefrontal and

insular cortices, which might fit with the prior findings of increasing differentiation of higher-

order association cortices from the rest of the brain, based on structural connectomes [14].

Thus, at 3D manifolds, we observed increased global dispersions across the human lifespan.
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Brain development encompasses numerous processes, such as synaptogenesis, migration,

and synaptic plasticity. These activities are regulated by neurotransmitters, such as glutamate

receptors. In the present study, glutamate receptors were primarily responsible for the age-

related changes in manifold eccentricity. Glutamate is the major excitatory neurotransmitter

in adults, mediating neuronal communication in the nervous system during human develop-

ment [44]. Besides its unique role, the glutamate receptor is co-localized in many brain regions

[45], and its balanced interaction with GABA receptors is crucial for normal brain develop-

ment [46]. Thus, deficit or dysregulation of glutamate receptors may affect an individual’s sub-

sequent development and normal functioning, leading to various neurodevelopmental and

psychiatric disorders [47–49]. In addition, we found that dopamine and acetylcholine recep-

tors significantly contributed to manifold eccentricity changes across all aspects of human

development. Acetylcholine, as a neuromodulator, is essential in the developing and mature

brain [50]. A recent study reported that ionotropic nicotinic receptors, where acetylcholine

signals through this class of receptors, contributed to the maturation of glutamatergic synap-

ses, indicating the critical role of acetylcholine signaling in synaptic development [51]. Dopa-

mine plays an important role in cognition, learning, and memory. Dysfunctions of the frontal

cortical dopamine system have been implicated in several developmental neuropsychiatric dis-

orders [52]. Elucidating the relationships between age-related differences and neurotransmit-

ters in the brain might therefore help us to better understand the precise function of

neurotransmitter receptors during development and mature brain processing.

By associating macroscopic changes in manifold eccentricity with microscopic gene expres-

sions provided by the AHBA, we identified gene sets expressed in cortical regions, amygdala,

and hippocampus during middle and late childhood and adolescence. Brain development and

function depend on the precise regulation of gene expressions [53]. Spatial-temporal waves of

gene expression changes are involved in different brain regions and human developmental

time windows [53,54]. A previous study reported that coupled brain networks and molecular

changes may ultimately affect cortical and subcortical circuit properties, including the balance

of excitation (glutamatergic) and inhibition (GABAergic) (E/I) [14]. During adolescence, E/I

balance shifts the dominant inhibitory bias in early developmental stages toward stronger

excitatory drive in later stages, suggesting that these may be responsible for the maturation of

working memory and executive control functions [55–57]. A transient E/I imbalance during

early development generally underlies the development of several neurological and psychiatric

disorders, such as autism, schizophrenia, and attention-deficit hyperactivity disorder. Despite

these findings being associative and based on a separate dataset, they support our results that

brain network changes across the human lifespan implicate micro- and macroscale factors in

both cortical and subcortical networks.

Cortical within-network dispersions increased nonlinearly with age, possibly reflecting

more complicated age-related stages of morphometric refinements. The strongest increased

within-network dispersions were observed in the insular and primary motor cortices, and in

the association and secondary sensory cortices. Increased dispersion captures decreased simi-

larity within specific networks across multidimensional spaces of the MSN connectome. This

finding aligns well with prior reports of broadly weakened within-network connectivities

across the human lifespan [58]. Specifically, during late childhood to adolescence, increased

within-network dispersions in association cortices and decreased dispersions within primary

motor and secondary sensory classes were consistent with previous studies [26,59], suggesting

that multidimensional within-network dispersion development occurred along the sensorimo-

tor-association cortical axis from late childhood to adolescent. In addition, primary motor and

secondary sensory classes exhibited cubic developmental trends from adolescence and middle

adulthood, and then slowly increased during late adulthood, whereas association cortices
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increased rapidly during adolescence, with a slower increase thereafter. The differences sug-

gested the existence of network-specific dispersion development trajectories with age [28].

Combining these results with previous findings that EFs relied on complex and continuous

interactions within the human brain connectome and declined with age [34], we speculated

that age-related changes in within-network dispersion were closely associated with the age-

accompanied declines in EFs. We found that motor, insular, and association cortices mediated

negative associations of age with the cognitive flexibility of EFs, suggesting a central role for

attention and frontoparietal control systems in the maturation of the normal EFs [34]. In addi-

tion, consistent with previous findings of increased brain connectivities during aging [58], we

found a nonlinear decrease in between-network dispersions, which was mainly focused on sec-

ondary sensory cortices. Similar to the global dispersion findings, the secondary sensory corti-

ces became more like the rest of the cortices, moving closer to the center of other networks

across the human lifespan [28]. However, with increasing age, we found increased morpho-

metric dispersions between several networks, particularly between primary sensory and sec-

ondary sensory, and limbic, association cortices, as well as between association cortices. This

finding was consistent with a prior report that increased structural differentiation between

default mode and attention, frontoparietal regions, as well as between sensory and limbic, ven-

tral attention, and visual networks [13], likely reflected ongoing morphometric segregations of

primary and heteromodal systems. Thus, the within- and between-network dispersions might

serve as a biomarker for aging. Together, these results further confirmed our conjecture that

age-related changes in network dispersion may represent healthy EFs change across the

human lifespan.

Some methodological considerations should be noted. First, the present findings were

based on a cross-sectional cohort, but we could not directly investigate individualized disper-

sion changes over time. Thus, our discussion focused on the effects of age and its correlations.

Future studies should use longitudinal cohorts to confirm whether the gradient dispersion can

detect changes in morphometric reorganization during individual progressions. The second

limitation was that participants younger than 8 years and older than 89 years were excluded

due to the limited number of participants in these age groups. Future studies should include a

greater number of participants, to investigate age-related dispersion changes across the entire

human lifespan. Third, we used the Yeo-7 functional atlas to validate our results, and found a

similar tendency across the human lifespan. However, future studies should identify brain

regions or networks that have been highly implicated in specific cognitive processes, such as

the theory of mind and empathy [60], sustained attention [61], and encoding of emotion con-

cepts [62]. In addition, the human brain has less functional connectivities within networks and

greater connectivities between networks during aging, which helps to sustain cognitive func-

tion and is a typical response to aging [63]. Thus, the capacity to maintain connectivities

between networks might protect brain health [64]. Cognitive reserve is another similar possi-

bility. Cognitive training and engagement in social activities may enhance brain network con-

nectivity to increase brain resilience [65]. The current age-related changes in the MSN

manifold showed a standardized assessment of multiple morphometric features in atypical

brains, providing new insights into the influence of such changes on cognitive performance.

Finally, we investigated the relationships between age-related changes in dispersion and

molecular factors. The AHBA gene data and neurotransmitter receptor data came from sepa-

rate cohorts, limiting the examination of molecular-neuroimaging associations across the

entire human lifespan, and possibly omitting individual effects.

In summary, we identified age-related changes in global, within-, and between-network dis-

persions in a multidimensional gradient framework using morphometric similarity organiza-

tion. Our findings revealed that associations and secondary sensory cortices showed an
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expansion and contraction of their corresponding connectome manifold signatures, respec-

tively. The cytoarchitecture communities themselves were increasingly dispersed with increas-

ing age and could mediate the effect on age-related cognitive flexibility of EFs decline. Our

multidimensional framework described within-network disassortativity and between-network

assortativities in the brain, enriching our understanding of developmental characterization.

Methods

Study participants

We included normal healthy participants from childhood to advanced ages. We used 3 neuro-

imaging datasets (total n = 1,790) publicly available from Lifespan Human Connectome Proj-

ect (HCP) in Development (hereafter, HCP-D, age range: 8 to 21 years), in Young Adult

(HCP-YA, age range: 22 to 35 years), and in Aging (HCP-A, age range: 36 to 100 years) [66].

In accordance with the Declaration of Helsinki, all participants gave written informed consent.

Participants under 18 years were accompanied by a parent or legal guardian who gave

informed, written permission for their child’s participation. For the HCP dataset, ethical

approval was given by the Washington University Institutional Review Board (IRB

#201204036).

HCP-D. The samples of normally developing children and adolescents were scanned in

Boston, Los Angeles, Minneapolis, and St. Louis [67]. To ensure the validity of samples, indi-

viduals were excluded if they were born prematurely, required special educational services,

had MRI contraindications, or had a history of serious medical problems, head injury, endo-

crine disorders, psychiatric disorders, or neurodevelopmental disorders. Among the initially

considered participants, 19 participants were excluded because they were younger than 8

years. As a result, the present analyses included 633 participants (339 females) with 3T scan-

ning neuroimaging data from the HCP-D 2.0 Release. The included participants had ages

between 8.08 and 21.92 years, with a mean age of 14.65 ± 3.90 years.

HCP-YA. The sample of healthy young adults was obtained through the WU-Minn

Human Connectome Project at Washington University in St. Louis [68]. Participants in

HCP-D were screened by following the exclusionary criteria of HCP-YA, and additionally,

individuals with mini-mental state examination scores below 25 were excluded. At the time of

the present study, neuroimaging data were available for 1,113 participants from the HCP

S1,200 Release. Because the HCP-YA included twins and non-twin siblings, only 1 participant

from each family was randomly selected, resulting in 445 participants (239 females). The

included participants had ages between 22 and 36 years, with a mean age of 28.64 ± 3.73 years.

HCP-A. The sample of cognitively normal aging adults, older than 36, was recruited and

scanned at Washington University St Louis, University of Minnesota, Massachusetts General

Hospital, and the University of California Los Angeles [69]. Like the exclusionary criteria used

in HCP-D and HCP-YA, individuals with impaired cognitive abilities were excluded from

HCP-A based on tiered age-appropriate cut-off scores. At the time of analysis, there were 725

participants with available neuroimaging data from the HCP-A 2.0 Release. Individuals were

excluded if they were over 89 years old, resulting in 712 participants (406 females). The

included participants had ages between 36.00 and 89.86 years, with a mean age of

60.36 ± 14.88 years.

MRI acquisition

The participants’ MRI data were obtained using different 3-T scanners and acquisition param-

eters based on the cohort they belonged to. All MRI data are available at HCP’s Connectome

Database (https://www.humanconnectome.org/software/connectomedb).
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For the initial HCP-YA dataset, participants were scanned on a Customized Siemens 3T

Connectome Skyra (Siemens Healthineers) with a 100 mT gradient coil and a 32-channel head

coil. The T1w images were acquired using a 3D single-echo magnetization prepared rapid gra-

dient echo (MP-RAGE) sequence with the following parameters: repetition time (TR) = 2,400

ms, echo time (TE) = 2.14 ms, inversion time (TI) = 1,000 ms, flip angle (FA) = 8˚, field of

view (FOV) = 224 × 224 mm2, matrix = 320 × 320, voxel size = 0.7 mm isotropic, with 256 sag-

ittal slices.

For HCP-D and HCP-A datasets, participants were scanned on Siemens PRISMA (Siemens

Healthineers) with an 80 mT/m gradient coil and a 32-channel head coil. Slight variations

were made in the acquisition parameters to account for the unique challenges of working with

younger and older populations [70]. Scans for the HCP-D and HCP-A participants were per-

formed on a variant of the HCP-YA Connectome scanner, the Siemens 3T Prisma, equipped

with the T1w multi-echo MP-RAGE scans that were acquired with the following parameters: 4

echoes per line of k-space, TR = 2,500 ms, TI = 1,000 ms, TE = 1.8/3.6/5.4/7.2 ms, FA = 8˚,

FOV = 256 × 240 × 166 mm3, matrix = 320 × 300 × 208 slices, and voxel size = 0.8 mm isotro-

pic. These acquisition parameters slightly differed from those in the HCP-YA, which

accounted for the unique challenges of working with younger and older populations [70].

MRI data processing

All 3D T1w data were preprocessed using the HCP minimal processing pipeline [71]. Brain

extraction and readout distortion correction using a field map were then conducted. Anatomi-

cal surfaces were generated from the individual T1w image in native space, then reconstruc-

tion of the gray/white interface and the pial surface was conducted. Five morphometric

features were obtained from the individual surface, including gray matter volume (GMV), sur-

face area (SA), cortical thickness (CT), Gaussian curvature (GC), and mean curvature (MC)

[27,37–39].

MSN construction

The cortical D-K atlas was divided into 1,533 spatially contiguous regions of approximately

1 cm2 size [27,72]. For each participant, 5 morphometric feature vectors were z-normalized

across regions to account for variations in value distributions between features. Pearson’s cor-

relation coefficients were calculated based on the morphometric features between each paired

cortical region, forming a 1,533 × 1,533 morphometric similarity matrix [27,38]. In addition,

we used 2 more features (i.e., fractional anisotropy and mean diffusivity) derived from diffu-

sion-weighted images to measure the robustness of the MSN matrix.

Manifold construction of the MSN

To identify spatial axes (connectivity gradients) of inter-regional morphometric variations, we

performed morphometric similarity manifolds analyses using the BrainSpace toolbox [73].

First, we utilized row-wise thresholding to maintain the top 10% connections per row, and

then computed the cosine distance between each row to produce an affinity matrix that effec-

tively captured similarities in the profiles of the MSN [27,74–76]. Second, we used diffusion

map embedding [23] and a nonlinear dimensionality reduction technique, to identify principal

gradient components, explaining connectivity variations in descending order. Following rec-

ommended guidelines [77], we set the manifold parameters to a = 0.5 and t = 0, ensuring the

preservation of global relations between data points within the embedded space. To provide

the basis for comparing changes in the MSN across the human lifespan, we constructed a

group manifold from the averaged MSN matrix across all participants (after harmonizing
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MSN to remove site effects). This group manifold underwent the same aforementioned mani-

fold construction procedures, and as such, we aligned all individuals’ MSN manifolds to the

group manifold via Procrustes rotations [78]. All follow-up analyses on the aligned manifolds

were performed using the top 3 gradients.

The 3D gradient dispersions

We computed the Euclidean distance between a single region and the manifold centroid as

global dispersion [14,28,78,79] at an individual level. It relates to eccentricity and provided a

scalar index of whole-brain integration and segregation. The distal regions with greater global

dispersion were more segregated than proximal regions that were more broadly integrated.

Within-network dispersion was quantified as the sum squared Euclidean distance of each

region’s gradient score from a specific network centroid [28,79,80]. It thus captured the simi-

larity of MSN profiles within a given network. Lower values suggested more uniform MSN

patterns within the network. Between-network dispersion was calculated as the Euclidean dis-

tance between network centroids, which provided a measure of the differentiation of 2 given

networks from one another. Lower values suggested less differentiated MSN patterns across

different networks. Lower within-network/between-network dispersion values were described

as segregation of within or between networks. This analysis used the Von Economo atlas-

defined 7 cytoarchitectural classes.

Age was associated with 3D gradient dispersions

We constructed an association model with lifespan age and gradient dispersion. Before fitting

the association, we first removed multi-site (scanner) effects on dispersions [81] using the

ComBat technique [31,82]. Based on our previous study [28], GAMLSS calculated in statistical

software R [83] was used to estimate the association between ages and brain dispersions,

including global, within-, and between-network dispersions. GAMLSS used a penalized maxi-

mum likelihood approach to estimate smoothness parameters (effective degrees of freedom),

which were subsequently used to estimate the μ and σ parameters. The adequacy of fit for

these parameters in the GAMLSS algorithm was determined by minimizing the generalized

Akaike information criterion (GAIC) index. Each fitting curve was modeled using 1 distribu-

tion according to the GAIC to estimate nonlinear normative growth curves. Age was included

as a continuous variable in the models, with sex and eTIV as covariates. To identify develop-

mental windows of brain significant dispersion, we measured the first derivative of the smooth

age term, which indicates the change of spline fit at every age. We operationalized the window

of significant age-related change as the period at which the 95% point-wise CI of the spline’s

estimated slope did not include 0 [32,33]. According to a previous study [84], we evaluated the

age effects (R2) in each GAMLSS model. The effect size of age spline is calculated as the change

in generalized (Pseudo) R-square, which is the proportion of variance explained by a full

model that is not explained by a reduced model, using the Rsq function in the GAMLSS

model. Because R2 describes effect size but not direction (i.e., increasing or decreasing brain

dispersion with age), we extracted and applied the sign of the age coefficient from nonlinear

model [32,33].

Structural equation modeling

A cognitive variable representing an index of EF (both fluid intelligence and multi-tasking)

can be used to predict brain imaging [34,85]. These conjectures of brain and behavior relation-

ships were then related to age-related declines in EFs [86–88]. Thus, modeling of more specific

neural properties may be necessary to inform neurocognitive theories of aging [89,90]. We
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used structural equation modeling (SEM), a powerful multivariate technique that fits observed

covariances between variables, to identify age-related changes in multi-networks dispersions.

The SEM was fit using maximum likelihood estimation and passed the bootstrap test via the

Lavaan package in R. The mediating influence values of multiple mediations were calculated

as follows:

a1� b1ð Þ þ a2� b2ð Þ þ � � � þ an� bnð Þ

a1� b1ð Þ þ a2� b2ð Þ þ � � � þ an� bnð Þ þ c0
:

The simple middle of a mediating variable is depicted in the following equation:

a� bð Þ

a� bð Þ þ c0
:

Molecular fingerprints underpinning age-dispersion association. Brain-wide gene
expression profiles. We identified the potential biological explanations of associations with age-

related changes in global dispersions at different biological scales. We first analyzed its consis-

tency with spatial variations of the whole brain gene expression system [91]. The microarray

expression data were obtained from 6 postmortem brains provided by the AHBA (http://

human.brain-map.org/) [92]. Genetic data were preprocessed with the abagen
toolbox (https://github.com/netneurolab/abagen) using the D-K1533 atlas. Briefly, probes

were reannotated using data provided by Arnatkeviciute and colleagues [93] and filtered based

on an expression intensity-based threshold of 50%. Samples were assigned to brain regions

within 2 mm of a given parcel. If a brain region was not assigned a sample from any donor

based on the above procedure, the tissue sample closest to the centroid of that parcel was inde-

pendently identified for each donor. The average of these samples was taken across all donors,

and weighted by the distance between the parcel centroid and the sample, to estimate the par-

cellated expression values for the missing regions. Gene expression values were then normal-

ized across tissue samples using an identical procedure. Considering that the AHBA dataset

included only 2 right hemisphere data, only the left hemisphere was considered in our analysis.

Samples assigned to the same brain region were averaged, yielding a regional expression with

767 regions and 15,632 genes. A threshold of 0.1 was used to further filter the stable genes on

the differential stability of each gene, resulting in 7,645 retained genes.

The PLS regression analysis [94] was used to investigate the relationships between develop-

mental changes in global dispersions (R2-values obtained from 767 cortical regions in the left

hemisphere) and transcriptional activity for all 7,645 genes. Gene expressions data were served

as predictor variables for developmental changes in global dispersions within the PLS regres-

sion framework. The first PLS (PLS1) component represented a linear combination of gene

expression values that exhibited the strongest correlation with developmental changes in

global dispersions. Age was permutated and the relationships between global dispersions and

PLS regression analysis were recalculated 1,000 times to test whether the actual correlation was

greater than the permutated associations. Bootstrap resampling was used to estimate the vari-

ability of each gene’s PLS1. The ratio of the weight of each gene to its bootstrap standard error

was calculated to determine the z-scores and rank the genes according to their contributions

to PLS1 [40]. The top 1,000 genes constituted the developmental changes in the global disper-

sion gene list.

The top 1,000 significant gene list was subjected to enrichment analysis using the CSEA

developmental express tool (http://genetics.wustl.edu/jdlab/csea-tool-2) [95]. The CSEA aims

to investigate the neurodevelopmental impact of genes within a given set by analyzing their
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involvements in the formation and differentiation of specific brain structures, such as the

amygdala, cerebellum, cortex, hippocampus, striatum, and thalamus, across various develop-

mental stages, ranging from early fetal life to young adulthood. Significance was calculated

based on Fisher’s exact test with FDR correction.

Neurotransmitter receptors profiles. The brain-wide neurotransmitter receptor densi-

ties were estimated using 18 PET-derived tracer images from Hansen and colleagues [36]

(https://github.com/netneurolab/hansen_receptors) and Markello and colleagues [96] (neuro-

maps, v0.0.1, https://github.com/netneurolab/neuromaps). These receptors/transporters com-

bined into 8 neurotransmitter systems as follows: dopamine (D1, D2, DAT), norepinephrine

(NET), serotonin (5-HT1A, 5-HT1B, 5-HT2, 5-HT4, 5-HT6, 5-HTT), acetylcholine (α4β2,

M1, VAChT), glutamate (mGluR5), GABA (GABAa), histamine (H3), and cannabinoid (CB1)

[97]. We re-warped the cortical DK1533 parcellation onto volumetric PET image space. Next,

neurotransmitter receptor profiles were parcellated to 1,533 brain regions and z-scored, result-

ing in a 1,533 regions × 8 receptors matrix of relative densities.

A multivariate linear regression model combining 8 neurotransmitter receptors was used to

identify the molecular contributions to age-related changes in global dispersions [98,99]. The

age-related changes in global dispersion (R2-values) as responder and receptor matrix as pre-

dictors were included into the relaimpo package (relative importance of regressors in linear

models, version 2.2–5) in R. Relative importance metrics can be used to address linear regres-

sion with multiple collinear regressors.
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