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Abstract

The gastrointestinal tract is densely colonized by a polymicrobial community known as the

microbiota which serves as primary line of defence against pathogen invasion. The micro-

biota can limit gut-luminal pathogen growth at different stages of infection. This can be traced

to specific commensal strains exhibiting direct or indirect protective functions. Although these

mechanisms hold the potential to develop new approaches to combat enteric pathogens,

they remain far from being completely described. In this study, we investigated how a mouse

commensal Escherichia coli can outcompete Salmonella enterica serovar Typhimurium

(S. Tm). Using a salmonellosis mouse model, we found that the commensal E. coli 8178

strain relies on a trojan horse trap strategy to limit S. Tm expansion in the inflamed gut. Com-

bining mutants and reporter tools, we demonstrated that inflammation triggers the expression

of the E. coli 8178 antimicrobial microcin H47 toxin which, when fused to salmochelin sidero-

phores, can specifically alter S. Tm growth. This protective function was compromised upon

disruption of the E. coli 8178 tonB-dependent catecholate siderophore uptake system,

highlighting a previously unappreciated crosstalk between iron intake and microcin H47 activ-

ity. By identifying the genetic determinants mediating S. Tm competition, our work not only

provides a better mechanistic understanding of the protective function displayed by members

of the gut microbiota but also further expands the general contribution of microcins in bacte-

rial antagonistic relationships. Ultimately, such insights can open new avenues for developing

microbiota-based approaches to better control intestinal infections.

Introduction

Salmonella enterica serovar Typhimurium (S. Tm) is a foodborne pathogen and a leading

cause of non-typhoidal salmonellosis (NTS). NTS is responsible for an estimated 93 million

cases of gastroenteritis worldwide, some of which escalate into life-threatening systemic infec-

tions [1]. Alongside its implication in diarrheal diseases, the emergence of drug-resistant S.
Tm strains poses as a major global health concern which has amplified the urgency for alterna-

tive treatment options [2,3].
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Our understanding of S. Tm invasion and pathogenicity has been greatly advanced using

antibiotic pretreated or gnotobiotic mouse models that are permissive to oral infections [4,5].

By alleviating gut colonization resistance, these approaches allow efficient gut infections by S.
Tm [6,7]. Colonization resistance, identified in the 1950s after observing a significant increase

in intestinal S. Tm loads upon antibiotic pretreatment, refers to the ability of an unperturbed

gut microbiota to act as a natural protective barrier restricting the growth of incoming patho-

gens [8–10]. Gut commensal bacteria appear to limit pathogen growth in various ways. One of

them involves resource limitation, where commensal strains affect the growth of their competi-

tors by depriving them of nutrients necessary for their proliferation. This scenario is exemplified

by the commensal Klebsiella michiganensis and Escherichia coliMt1B1 strains which were

shown to attenuate S. Tm growth through the consumption of the sugar-alcohol galactitol

[11,12]. In a similar fashion, depletion of Clostridia was shown to increase luminal oxygenation

favouring S. Tm bloom, while the human probiotic E. coliNissle 1917 strain (Mutaflor) has

demonstrated an efficient ability to outcompete S. Tm via oxygen depletion [13–15]. Besides

oxygen intake, E. coliNissle can outgrow S. Tm through the acquisition of iron, a crucial metab-

olite whose availability is restricted during inflammation [16]. This effect was attributed to the

energizing TonB protein which facilitates the active uptake of siderophores in the iron-limited

inflamed gut. Mechanistically, how E. coliNissle outgrows S. Tm using similar and shared side-

rophores is unknown. As an alternative to consuming common nutrients, members of the gut

microbiota can directly compete against pathogenic strains through interference mechanisms

such as antimicrobial metabolites or toxins. For instance, commensal Bacteroides spp. can pro-

duce propionate which dampens S. Tm growth in a pH-dependent fashion [17]. In another

example, E. coliNissle utilizes low-molecular weight proteins called microcins to specifically tar-

get E. coli and S. Tm competitors in the gut [18]. Despite the promising potential of the gut

microbiota as a mean of preventing and treating S. Tm infections, only a small number of pro-

tective commensal strains have been successfully isolated and thoroughly characterized.

Upon intestinal infection, S. Tm employs the type-three secretion systems (T3SSs) encoded

within the Salmonella pathogenicity islands (spi) -1 and -2 to respectively invade the intestinal

epithelium cells and survive within tissue phagocytes [19]. The resulting immune activation

and inflammation not only further disrupts the gut microbiota and its associated protective

function but also liberates growth fuelling metabolites benefiting S. Tm as well as members of

the Enterobacteriaceae family [19–28]. This co-blooming phenomenon arises from a strong

metabolic overlap between S. Tm and closely related E. coli isolates, such as E. coli 8178, that

were shown to exhibit protective functions [7,15,25]. E. coli 8178 is a murine gut commensal

with a remarkable ability to limit the growth of S. Tm in various mouse infection models

[25,29,30]. E. coli 8178’s capacity to attenuate S. Tm invasion can synergize effectively with

additional competing strains, and complete clearance of S. Tm from the gut of infected animals

is achieved when combined with a mucosal vaccination raising secretory IgA [30,31]. How-

ever, despite the potential of E. coli 8178 in limiting S. Tm infection, the mechanism underly-

ing this protective function remains undiscovered. In the present study, we aimed at

understanding how E. coli 8178 outcompetes S. Tm in the murine gut. For this purpose, we

employed a Salmonellamouse infection model and bacterial genetic approaches to decipher,

at the molecular level, how E. coli 8178 eliminates S. Tm in vivo.

Results

E. coli 8178-mediated S. Tm elimination is triggered by inflammation

The 129S6/SvEvTac mice are known to develop chronic Salmonellosis with persistent infec-

tion, making them a suitable model for studying the S. Tm attenuating capacity of E. coli 8178
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[32]. However, E. coli 8178 was originally isolated from the microbiota of C57BL/6 mice where

it can efficiently outcompete S. Tm, and it remains unclear whether E. coli 8178-mediated

elimination can occur in a different mouse line harboring a distinctly complex gut microbiota

[25]. To answer this question, we conducted in vivo experiments using specific pathogen-free

(SPF) microbiota-colonized 129S6/SvEvTac mice. Prior to infection, animals were pretreated

with a single dose of streptomycin to impair gut colonization resistance and facilitate bacterial

invasion (Fig 1A) [6]. Antibiotic-pretreated SPF 129S6/SvEvTac mice infected exclusively with

the S. Tm SL1344 strain exhibited a high pathogen load throughout the 4 days of the infection,

averaging 109 to 1010 S. Tm cells per gram of faecal samples (Fig 1B). Besides the slight

decrease (approximately 10-fold) in S. Tm loads visible at the early stage of infection (24 h p.i),

co-infection with a 1:1 ratio of S. Tm and E. coli 8178 led to equivalently high gut pathogen

luminal loads after 48 h of infection (Figs 1B and S1A). This load displayed a more striking

decline (1.000- to 10.000-fold) 72 to 96 h post-infection (Figs 1B and S1A) which aligned with

previous observation in C57BL/6 mice and prompted us to investigate the underlying mecha-

nisms [25]. In that perspective and although S. Tm was similarly outcompeted in E. coli
8178-preinoculated animals (S1B and S1C Fig), we opted for a co-infection experimental

setup. We next assessed the effect of E. coli 8178 on S. Tm-elicited intestinal inflammation. For

this purpose, we quantified the level of faecal host lipocalin-2 which serves as a general marker

of gut inflammation [33]. S. Tm-infected 129S6/SvEvTac mice experienced intestinal inflam-

mation starting from 24 h post-infection peaking 48 h after infection (Fig 1C). This inflamma-

tion level remained stable throughout the entire course, in accordance with earlier

observations [34]. Apart from the early stages of infection (24 h p.i), the presence of E. coli
8178 did not impact the onset of S. Tm-elicited inflammation (Fig 1C). This observation indi-

cated that E. coli 8178-mediated S. Tm competition occurred in the later stages of infection,

particularly when inflammation is established (Fig 1B and 1C). Inflammation is associated

with drastic immune and metabolic changes affecting bacterial composition and competitive

behavior in the gut lumen [18,24,35]. Given the severely elevated level of gut inflammation

observed when S. Tm began to be outnumbered by E. coli 8178, we hypothesized that inflam-

mation might serve as a trigger for such antagonistic interaction. To test this hypothesis, we

evaluated the competitiveness of E. coli 8178 against an isogenic S. Tm mutant that was unable

to initiate inflammation. For this purpose, we used a S. Tm strain deprived of the T3SSs

encoded in the spi-1 and spi-2 regions (spi-1/spi-2) [21]. Comparably to C57BL/6 animals,

antibiotic pretreated 129S6/SvEvTac mice infected with S. Tm spi-1/spi-2 mutant displayed a

high bacterial load averaging 108 cells per gram of faeces 96 h post-infection (Fig 1D) [21]. In

this context, no severe inflammation was detectable (S1D and S1E Fig) and although stably col-

onizing, addition of E. coli 8178 did not alter the growth of the S. Tm spi-1/spi-2 mutant (Figs

1D, S1E and S1F). To confirm the contribution of inflammation in E. coli 8178’s protective

behavior, we conducted a competitive infection experiment with E. coli 8178 and the S. Tm

spi-1/spi-2 mutant in mice where intestinal inflammation was restored by the addition of the

WT S. Tm strain (S1E Fig). In the resulting triple-infected animals (WT S. Tm + spi-1/spi-2 S.
Tm + E. coli 8178), the WT and spi-1/spi-2 S. Tm strains were both outcompeted by E. coli
8178 (Fig 1D). We thus concluded that inflammation acts as a triggering factor for E. coli 8178

to exert its competitive advantage against S. Tm in the gut.

E. coli 8178 relies on tonB to outcompete S. Tm in the inflamed gut

Numerous colonization resistance mechanisms between closely related strains were reported

to rely on nutrient utilization [11,12,16,36]. To identify the metabolic pathway responsible for

S. Tm growth reduction, we designed a barcoded mutant pool of E. coli 8178. For this purpose,
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Fig 1. Inflammation triggers S. Tm elimination by the commensal E. coli 8178. (A) Experimental scheme. Streptomycin-pretreated SPF 129S6/SvEvTac mice

were infected with either S. Tm or an equal mixture of S. Tm + E. coli 8178. The E. coli 8178 and S. Tm loads were determined by selective platting from faecal

samples collected 24, 48, 72, and 96 h after infection. Mice were euthanized at day 4 p.i. (B) E. coli 8178 reduces the load of S. Tm in vivo. The S. Tm load is plotted

and compared between S. Tm mono-infected and S. Tm + E. coli 8178 infected mice. (C) Influence of E. coli 8178 in S. Tm-elicited inflammation. The inflammation

level is determined by measuring the host inflammation-associated marker lipocalin-2 (LCN2) from faecal samples of independently infected mice at different time
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we rationally targeted metabolic genes that are known to play a significant role in E. coli’s com-

petitiveness in the murine gut [12,14,16,29,30,37]. Given that E. coli 8178 competes against

S. Tm in an inflammation-dependent manner, we hypothesized that mutations affecting E. coli
8178’s competitiveness toward S. Tm would be disadvantageous during inflammation but neu-

tral in a non-inflamed condition. We thus infected mice with a 1:1:1. . . mixture of E. coli 8178

mutants and WT, screening for mutations that were (1) neutral when competing against the

S. Tm spi-1/spi-2 strain; and (2) attenuated in presence of the WT S. Tm (Fig 2A). The fitness

of each individual mutant was assessed by quantitative PCR (qPCR) through the detection of a

unique DNA barcode and calculated as a normalized competitive index (C.I) [38]. All E. coli
8178 mutants were found to stably colonize the murine gut as no growth defect was observed

24 h post-infection (S2A Fig). However, several mutants featured a pronounced and significant

growth attenuation (up to 1,000-fold) 96 h post-infection (Fig 2B). In line with earlier work

indicating the release of electron acceptors (different than fumarate) during S. Tm-elicited

inflammation, an E. coli 8178 incapable of fumarate respiration (ΔfrdABCD) exhibited a com-

petitive disadvantage that was less pronounced in the inflamed than in the non-inflamed gut

(Fig 2B) [23,39,40]. Conversely, the fitness of the E. coli 8178moaA, tonB, and cydABmutant

was exclusively attenuated in the presence of the WT S. Tm strain, while remaining neutral in

mice co-infected with the S. Tm spi-1/spi-2 mutant (Fig 2B). This led us to consider that either

E. coli 8178moaA, tonB, or cydAB was potentially playing a role in mediating S. Tm elimina-

tion in the inflamed gut. cydAB andmoaA are respectively involved in the aerobic and molyb-

denum-dependent anaerobic bacterial respiration while tonB participates in the energy-

dependent uptake of metabolites [16,37,41–43]. To directly assess the contribution of these

bacterial processes in S. Tm gut competition, we infected mice with an equal mixture of S. Tm

and the respective E. coli 8178 mutants. In contrast tomoaA and cydAB, disruption of tonB in

E. coli 8178 resulted in a higher survival of S. Tm in the mouse intestine (Fig 2C). However,

this attenuated competitive effect was associated with a reduced E. coli 8178 tonB gut coloniza-

tion, raising the alternative hypothesis that tonB deletion could indirectly affect E. coli
8178-mediated competition by impacting bacterial growth (S2B Fig). To establish a direct or

indirect participation of tonB, we decided to further decipher its contribution in S. Tm

elimination.

E. coli 8178 salmochelin siderophore plays a pivotal function in S. Tm

competition

TonB is an inner membrane protein facilitating the energy-dependent transport of several

molecules [44,45]. Among these are vitamin B12 and iron-siderophore complexes, which were

shown to transit through different tonB-dependent receptors (TBDRs) [43]. Notably, recent

work in the literature demonstrated the contribution of the E. coliNissle tonB gene in limiting

S. Tm growth in vivo [16]. This effect was attributed to the incapacity of an E. coliNissle tonB
mutant to compete for iron, thereby allowing the bloom of S. Tm in the inflamed gut. Drawing

from this example, we speculated that E. coli 8178 outgrows S. Tm through iron acquisition.

To test this hypothesis and identify the specific tonB-related pathway responsible for S. Tm

elimination, we tested a set of different TBDR mutants in E. coli 8178. First, we evaluated the

points. (D) Inflammation initiates E. coli 8178 –S. Tm competition. Competitive infection experiments using a combination of bacterial strains including E. coli 8178,

S. Tm and a S. Tm mutant deprived of the main inflammation-triggering factors (Δspi-1Δspi-2). The strains used in each condition are depicted below. The S. Tm

load collected 96 h after infection is presented. +: presence; -: absence. (B–D) The x-axis represents the time post-infection (in hours). Bars: median. Dotted line:

limit of detection. c.f.u: colony forming units. Two-tailed Mann–Whitney U tests to compare 2 groups in each panel. p� 0.05 not significant (ns), p< 0.05 (*),
p< 0.01 (**), p<0.005 (***). The data underlying this figure can be found in S1 Data. p.i, post-infection; SPF, specific pathogen-free.

https://doi.org/10.1371/journal.pbio.3002616.g001
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Fig 2. E. coli 8178’s TonB is required to effectively outcompete S. Tm in vivo. (A) Screening strategy. Streptomycin-pretreated SPF 129S6/

SvEvTac mice were infected with the E. coli 8178 WT and a pool of rationally designed barcoded mutants. The fitness of the individual mutant was
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contribution of the vitamin B12 uptake pathway by creating an E. coli 8178 mutant deprived

from the main tonB-dependent vitamin B12 uptake receptor, BtuB [46]. As expected, a btuB
mutant was successfully outgrowing S. Tm in co-infection mice experiments, indicating

that E. coli 8178 is not competing against S. Tm through vitamin B12 uptake (Figs 3A and

S3A). Next, we systematically evaluated all TBDR genes involved in E. coli 8178 iron uptake,

namely cirA, chuA, fhuA, fhuE, fepA, fiu, iroN, fuyA contributing to heme, catecholate-, yer-

siniabactin-, and hydroxamate- siderophores intake (S3B Fig) [47]. Due to the functional

redundancy of the catecholate (cirA/fepA/iroN/fiu) and hydroxamate (fhuE/fhuA) sidero-

phore receptors, we additionally deleted fepB and fhuD which respectively act downstream

of the catecholate and hydroxamate uptake systems (S3B Fig) [48–50]. The resulting E. coli
8178 mutants were individually barcoded, pooled, and their fitness assessed by qPCR, with

our primary focus on mutations that were (1) neutral when competing against the S. Tm

spi-1/spi-2 strain; and (2) attenuated in presence of the WT S. Tm at 96 h post-infection

(Figs 3B and S3C). The E. coli 8178 strains unable to uptake hemin (chuA), hydroxamate

(fhuA, fhuE, fhuD), and yersiniabactin (fuyA) did not exert any fitness disadvantage in pres-

ence of inflammation, suggesting that none of these siderophores is responsible for S. Tm

competition in that context. Disruption of the catecholate receptors iroN, fiu, and fepA
attenuated the fitness of E. coli 8178 when grown in presence of the WT S. Tm, compared to

the S. Tm spi-1/spi-2 mutant. This effect was further exacerbated in a fepBmutant which

displayed a significant fitness defect exclusively in the inflamed gut, while having no growth

disadvantage in a non-inflamed condition (Fig 3B). Altogether, these observations indicated

that catecholate siderophores, which play a role in mediating E. coli 8178’s survival under

the iron-limited inflamed, may potentially contribute to E. coli 8178-mediated S. Tm com-

petition. To directly test this hypothesis, we infected mice with a mixture of S. Tm and the

E. coli 8178 fepBmutant. Compared to a WT strain, an E. coli 8178 fepBmutant has lost its

ability to outgrow S. Tm in vivo (Figs 3C and S3D). We thus concluded that, similar to

E. coli Nissle, E. coli 8178 relies on catecholate siderophore to outcompete S. Tm in the

inflamed gut [16]. Catecholate molecules belong to a subfamily of siderophores that bind

free iron through hydroxyl groups [51]. Enterobactin is a catecholate siderophore com-

monly found within the Enterobacteriaceae family. Beyond enterobactin, previous studies

have shown that certain S. Tm and E. coli strains were able to produce salmochelin, a sidero-

phore resulting from the glycosylation of enterobactin [52–54]. To further identify the cate-

cholate siderophore responsible for S. Tm growth reduction, we initiated a genomic search

for the enterobactin and salmochelin synthesis clusters and found that E. coli 8178 harbors

both iron acquisition systems. Mutation of the entA gene abrogating the synthesis of entero-

bactin and thereby salmochelin attenuates E. coli 8178’s ability to outperform S. Tm

(Figs 3D and S3E). A similar trend was observed with an iroBmutant strain which, lacking

its homolog mchA, is incapable of converting enterobactin into salmochelin (Figs 3D and

S3E). Collectively, our data indicated that the catecholate siderophore salmochelin plays a

critical role in providing E. coli 8178 with a competitive advantage over S. Tm.

compared to the WT strain by qPCR under conditions involving different S. Tm strains conditioning the competition outcome. Mock data are

depicted in the graph. (B) Analysis of E. coli 8178’s competitive factors in vivo. The normalized C.I of each individual E. coli 8178 mutant (listed) is

determined 96 h p.i and plotted (y-axis) for each condition tested (x-axis). Dotted line: C.I expected for a fitness-neutral mutation. (C) Competitive

infection experiments. The S. Tm load is plotted and compared between S. Tm mono-infected and S. Tm + E. coli 8178 infected mice. The E. coli
8178 mutant strains tested are listed. The x-axis represents the time post-infection (in hours). Dotted line: limit of detection. c.f.u: colony forming

units. (B, C) Bars: median. Two-tailed Mann–Whitney U tests to compare 2 groups in each panel. p� 0.05 not significant (ns), p< 0.05 (*),
p< 0.01 (**). The data underlying this figure can be found in S1 Data. C.I, competitive index; p.i, post-infection; qPCR, quantitative PCR; SPF,

specific pathogen-free.

https://doi.org/10.1371/journal.pbio.3002616.g002
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Fig 3. E. coli 8178 relies on salmochelin siderophore to attenuate S. Tm growth in the gut. (A) Competitive infection

experiments. The S. Tm load is plotted and compared between S. Tm mono-infected and S. Tm + E. coli 8178 infected mice. The

E. coli 8178 mutant strains tested are listed. (B) Analysis of E. coli 8178’s TBDRs and siderophore uptake contribution in vivo.

The normalized C.I of each individual E. coli 8178 mutant (listed) is determined 96 h p.i and plotted (y-axis) for each condition

tested (x-axis). Dotted line: C.I expected for a fitness-neutral mutation. (C, D) E. coli 8178’s catecholate siderophores are

required to reduce S. Tm fitness in vivo. The S. Tm load is plotted and compared between S. Tm mono-infected and S. Tm + E.

coli 8178 infected mice. The E. coli 8178 mutant strains tested are listed. The x-axis represents the time post-infection (in hours).

Dotted line: limit of detection. (A–D) Bars: median. c.f.u: colony forming units. Two-tailed Mann–Whitney U tests to compare 2

groups in each panel. p� 0.05 not significant (ns), p< 0.05 (*), p< 0.01 (**). The data underlying this figure can be found in S1

Data. C.I, competitive index; p.i, post-infection; TBDR, tonB-dependent receptor.

https://doi.org/10.1371/journal.pbio.3002616.g003
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Microcin-bound salmochelins are produced by E. coli 8178 to outcompete

S. Tm in the inflamed gut

Competition for iron is a common process through which microorganisms utilize optimized

siderophore systems to outgrow their niche rivals [55]. This strategy is exemplified by certain

S. Tm or E. coli strains that utilize salmochelin to acquire iron, thereby gaining an advantage

over competing strains relying on enterobactin whose availability is limited by the host

[54,56]. However, in the current case, a high similarity between their salmochelin gene clusters

raised questions about how E. coli 8178 could more effectively benefit from salmochelin than

S. Tm. We therefore suspected that E. coli 8178 does not rely on the iron acquisition property

of salmochelin per se but instead utilizes an alternative killing mechanism dependent on sal-

mochelin synthesis. Besides chelating iron, siderophores can act as cargo molecules for the

transport of toxic proteins in a phenomenon known as the “trojan horse” strategy [57,58]. This

is further illustrated by E. coliNissle, which was shown to eliminate S. Tm through the secre-

tion of siderophore-bound microcins in vivo [18]. A genomic search for antimicrobial gene

clusters in E. coli 8178 revealed the presence of several toxins (colibactin, microcins) and anti-

microbial contact-dependent machineries (type six-secretion system, contact-dependent

growth inhibition). To investigate their contribution, we systematically deleted each interfer-

ence system and individually tested the mutant’s competitiveness against S. Tm (Fig 4A). With

the exception ofmchB, all mutants analyzed were effective in outcompeting S. Tm 96 h post-

infection. ThemchB gene encodes for the precursor of a low-molecular weight antibacterial

toxin named microcin H47, which is fused to a salmochelin siderophore moiety and is

exported as a microcin H47-bound salmochelin complex [59–61]. Notably, an E. coli 8178

deficient for (1) microcin H47 and salmochelin synthesis (mchB/iroB); or (2) microcin H47

synthesis and salmochelin intake (mchB/iroN), phenocopies amchBmutant (Figs 4B and

S4A). This confirmed that the growth attenuation of S. Tm by E. coli 8178 is solely dependent

on microcin H47 synthesis rather than salmochelin acquisition. To demonstrate E. coli 8178’s

ability to produce microcin H47 in the inflamed gut, we created a plasmid-based reporter

(p-PmchI-luc) expressing a luciferase gene under the control of the microcin H47 synthesis

gene cluster promoter [62]. Inoculation of S. Tm infected mice with E. coli 8178 bearing the

p-.PmchI-luc reporter resulted in a strong luciferase signal visible at 96 h post-infection,

which was drastically reduced in animals experiencing no severe intestinal inflammation

(Figs 4C and S4B). To further prove that inflammation acts as a cue to trigger microcin

H47-dependent competition, and considering the difficulties associated with detecting

microcin H47 from in vivo samples, we designed an E. coli 8178 mchI/mchB double mutant.

This strain lacks the gene responsible for microcin immunity and synthesis, making it sus-

ceptible to microcin-dependent killing by the WT strain. Triple infection experiments with

S. Tm along with the WT andmchI/mchB E. coli 8178 strains resulted in the attenuation of

the microcin-sensitive mutant in a microcin H47- and inflammation-dependent manner

(Fig 4D). Finally, in trans expression of themchI immunity gene in S. Tm increased the

pathogen’s survival against E. coli 8178 (Figs 4E and S4C). Taken together, these data indi-

cate that in contrast to E. coli Nissle that predominantly uses microcin M, E. coli 8178 pro-

duces microcin H47 in an inflammation-dependent manner to eliminate closely related

competitors such as S. Tm in vivo [18].

Although these observations conclusively indicate microcin H47 as the primary contributor

of S. Tm elimination, it remained unclear why an E. coli 8178 tonB and fepBmutant displayed

a reduced capacity to attenuate S. Tm growth in vivo. To reconcile our findings, we investi-

gated whether disruption of fepB and tonB gene might interfere with the microcin H47-depen-

dent killing of E. coli 8178. For this aim, we established an in vitro killing assay and assessed
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Fig 4. E. coli 8178 produces microcin H47-bound salmochelin to effectively eliminate S. Tm in vivo. (A) Individual contribution

of E. coli 8178’s interference systems against S. Tm. The faecal load of S. Tm collected 96 h p.i is plotted and compared between S.
Tm mono-infected and S. Tm + E. coli 8178 infected mice. The E. coli 8178 mutant strains tested are listed in the x-axis and

categorized based on the nature of the interference system disrupted. (B) Competitive infection experiments. The S. Tm load is

plotted and compared between S. Tm mono-infected and S. Tm + E. coli 8178 infected mice. The E. coli 8178 mutant strains tested

are listed. (C) E. coli 8178 produces microcin H47 in an inflammation-dependent manner. Microcin H47 expression is assessed

using a plasmid-based transcriptional reporter (p-PmchI-luc). The luciferase signal, indicative of the microcin H47 gene expression

level, is measured at 96 h p.i from faecal samples, both in the presence (+ S. Tm WT) and absence (+ S. Tm spi-1/spi-2) of

inflammation. Negative and positive controls corresponding respectively to the luciferase signal from an empty (-) and a

constitutively expressing luciferase plasmid (+) are also shown. RLU: relative light unit. The mean and standard deviation are

represented. (D) Microcin H47-dependent killing is effective during inflammation. The fitness of the E. coli 8178 microcin-sensitive

strain (ΔmchIB) is compared to the WT or microcin synthesis-defective strain (ΔmchB) in the presence (+ S. Tm WT) or absence (+
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the level of microcin H47 synthesis in different E. coli 8178 mutant backgrounds under iron-

deprived condition, a cue co-occurring with intestinal inflammation and known to trigger

microcin production [18,61]. The cleared supernatant from stationary phase grown E. coli
8178 inhibited the growth of an E. coli K-12 prey strain in a microcin H47-dependent fashion

(Fig 4F). However, upon incubating E. coli K-12 with the supernatant of an E. coli 8178 tonB
or fepBmutant, no growth inhibition was observed (Fig 4F). This indicated an unexpected

functional crosstalk between siderophore uptake and microcin H47 production and/or secre-

tion. To further characterize this intertwined relationship, we assessed the microcin produc-

tion capacity of different E. coli 8178 mutants by incubating their bacterial lysate with E. coli
K-12 (Fig 4F). In comparison to the WT strain, the intracellular fraction of the E. coli 8178

tonB and fepBmutant did not inhibit E. coli K-12 growth, indicating a defect in the synthesis

of active microcin H47 in these strains. To confirm the impaired microcin H47-dependent

killing upon disruption of tonB and fepB from an in vivo perspective, we engineered an E. coli
8178 tonB and fepBmutant susceptible to microcin H47 (E. coli 8178 tonB/mchB/mchI and

fepB/mchB/mchI) and analyzed their fitness under inflamed conditions. In line with our in

vitro data, the E. coli 8178 tonB and fepBmutant failed to outcompete the microcin H47-sensi-

tive tonB and fepB strains (Fig 4G). Production of active microcin H47 molecules involves a

multistage process including the synthesis of the siderophore carrier, the microcin H47 pre-

cursor, and their maturation [59,60]. Using our plasmid reporter tool, we discovered that the

expression of the microcin H47 synthesis cluster was comparable among E. coli 8178 WT,

tonB and fepB strains under iron-limited condition (S4D Fig). This indicated that disruption

of tonB and fepBmay impact siderophore production and/or microcin maturation instead.

Together, these data suggest that the attenuated S. Tm competition capacity of the E. coli 8178

tonB and fepBmutant is not attributed to iron acquisition but rather a defect in the formation

of mature microcin H47 molecules.

Discussion

Gut inflammation is associated with significant changes that are reflected at both the microbial

community and environmental composition [20,21,63]. Upon infection, the host limits the

availability of essential trace minerals, such as iron, to restrict bacterial proliferation. This phe-

nomenon, commonly referred to as nutritional immunity, is ensured by the production of

iron-scavenging and the lipocalin-2 enterobactin-sequestering proteins which respectively

limit the availability of free- and bacterial siderophore bound-iron in the gut [64,65]. Bacteria

can overcome host-mediated iron limitation through the synthesis of iron-rich ferrosome

organelles, or the secretion of lipoproteins attaching to enterobactin, thereby preventing

sequestration by the host lipocalin-2 [66,67]. Alternatively, certain members of the Enterobac-
teriaceae family can synthetize salmochelin, an enterobactin-derived siderophore that evades

spi-1/spi-2) of inflammation. The normalized C.I of E. coli 8178 ΔmchIB is determined 96 h p.i and plotted (y-axis) for each

condition depicted. Dotted line: C.I expected for a fitness-neutral mutation. (E) The microcin H47 immunity gene confers a higher

S. Tm survival against E. coli 8178. The S. Tm load is plotted and compared between S. Tm mono-infected and S. Tm + E. coli 8178

infected mice. S. Tm (p-mchI): S. Tm constitutively expressingmchI immunity gene. (F) Disruption of the catecholate siderophore

intake system impacts microcin H47 production in E. coli 8178. In vitro killing assay assessing the level of secreted (top) and

intracellularly produced (bottom) microcin H47 in each E. coli 8178 strains listed. Microcin H47 activity killing is detected by the

apparition of a lysis zone using E. coliMG1655 as a prey. (G) Deletion of tonB or fepB impairs microcin H47-dependent killing in

vivo. The fitness of the microcin-sensitive tonB (ΔtonB ΔmchIB; left axis) and fepB (ΔfepB ΔmchIB; right axis) strains is compared

respectively to the E. coli 8178 tonB and fepBmutant, in presence of inflammation (+ S. Tm). The normalized C.I of the microcin-

susceptible E. coli 8178 mutants is determined at 96 h p.i. Dotted line: C.I expected for a fitness-neutral mutation. (A, B, D, E, G)

Bars: median. c.f.u: colony forming units. Two-tailed Mann–Whitney U tests to compare 2 groups in each panel. p� 0.05 not

significant (ns), p< 0.05 (*), p< 0.01 (**). (A, B, E) Dotted line: limit of detection. (A–G) The data underlying this figure can be

found in S1 Data. C.I, competitive index; p.i, post-infection.

https://doi.org/10.1371/journal.pbio.3002616.g004
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lipocalin-2 attachment [52–54,56]. Apart from the ongoing battle for iron against the host,

bacteria are also engaged in a competition with each other to gain a better access to the limited

iron supply. In this iron tug-of-war, bacteria can specifically target niche competitors through

the utilization of sophisticated contact-dependent secretion machineries (i.e., T6SS) or by re-

purposing siderophore-scaffolds to deliver toxic molecules [18,68,69]. This holds true for

E. coli 8178 which, despite encoding numerous antimicrobials systems, primarily relies on

microcin H47 to outcompete S. Tm in infected 129S6/SvEvTac mice (Fig 4A). The preference

for such diffusible toxins may be attributed to their long-range effect, which particularly bene-

fit a population experiencing high loads, as E. coli 8178 encounters during gut inflammation

(S1A Fig) [25,70]. However, it is important to note that E. coli and more generally members of

the Enterobacteriaceae family are underrepresented in the healthy gut which consequently lim-

its the average toxin concentration at the luminal side [71]. It remains yet to be determined

whether diffusible molecules such as microcins can still provide benefits under these

circumstances.

Microcins stand out as a narrow-spectrum toxin targeting bacteria from the Enterobacteria-
ceae family [72]. Based on their size and structural characteristics, microcins can be subdivided

into different classes. Microcin H47 is part of the class IIb family that carries a C-terminal

post-translation modification involving a catecholate-siderophore moiety [61,72]. Such singu-

larity makes microcin H47 a highly specific antimicrobial molecule conferring to the producer

strain an exceptionally efficient strategy for eliminating closely related rivals relying on similar

siderophores. As a result, microcin H47 was shown to exert an antibacterial activity against

several members of the Enterobacteriaceae family in vitro, a finding now corroborated in vivo

using the natural mouse commensal isolate E. coli 8178 [61,73]. Specifically, an E. coli 8178

mutant incapable of synthetizing the microcin H47 precursor, or the siderophore carrier, dis-

played a decreased competitiveness against S. Tm (Figs 3D and 4A). Besides the mouse com-

mensal E. coli 8178 which relies on microcin H47, the human probiotic E. coliNissle was

shown to predominantly utilize a different class IIb microcin family member, microcin M, to

mediate the elimination of S. Tm ATCC 14028 from the mammalian gut [18]. Although the

reasons why E. coli 8178 and Nissle utilize different microcins to target S. Tm serovars remain

unclear, recent in vitro studies revealed a heterogenous target spectrum of class 2B microcins

[74]. This suggests the existence of specific microcin/target pairings and hints at undiscovered

resistance mechanisms that will be an interesting topic for future work. Apart from commensal

bacteria, microcin synthesis loci are also found in uropathogenic E. coli (UPEC) strains and

more globally enriched within the invasive E. coli B2 phylogroup, which highlights their gen-

eral contribution in microbial antagonistic relationships [57,75,76].

In addition to hijacking siderophore synthesis for antimicrobial purposes, bacteria can also

gain an advantage over their competitors through the uptake or iron. This has been illustrated

in E. coliNissle which was shown to outgrow S. Tm through the tonB-dependent uptake of

siderophores [16]. Similarly, we found that E. coli 8178 requires tonB and more precisely the

catecholate intake siderophore protein fepB to eliminate S. Tm. However, while studying the

E. coli 8178 tonB- and fepB-contribution in S. Tm competition, we found that microcin H47

synthesis was abrogated in these backgrounds. This observation, coupled with the redundant

effect of a microcin H47- and siderophore synthesis-deficient strain (mchB/iroB), or a micro-

cin H47-synthesis and salmochelin uptake-deficient mutant (mchB/iroN), suggested that the

lost competitiveness of the E. coli 8178 tonB or fepBmutant against S. Tm is not attributed to a

defect in iron acquisition but rather to the incapacity of producing microcin H47 (Fig 4B, 4F

and 4G). Mechanistically, disruption of tonB or fepB in E. coli 8178 did not directly impact the

expression of the microcin H47 synthesis gene cluster (S4D Fig), suggesting a potential effect

at the level of siderophore synthesis and/or the microcin H47 maturation step instead.
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Alternatively, it is worth noting that tonB is involved in the uptake of various other substrates

(i.e., carbohydrates, copper, nickel) while fepB function is not restricted to catecholate sidero-

phore uptake but can be further expanded to virulence [77,78]. A defect in either of these

genes may have a pleiotropic effect, which could account for our observation. Such crosstalk

requires careful and mechanistic disentanglement to further expand the function of tonB/fepB
in bacterial physiology but also avoid any potential misinterpretation.

Methods

Animals and ethic statement

Male and female 8 to 12 weeks old 129S6/SvEvTac (Jackson Laboratory) mice were randomly

assigned to experimental groups and used in this study. Mice were held under SPF conditions

in individually ventilated cages at the EPIC mouse facility of ETH Zurich. All animal experi-

ments were reviewed and approved by Tierversuchskommission, Kantonales Veterinäramt

Zürich under licence ZH158/2019, ZH108/2022, ZH109/2022 complying with the cantonal

and Swiss legislation.

Strains, media, and chemicals

All strains, plasmids, and oligonucleotides used in this study are listed in S1–S3 Tables. The

E. coli 8178 strains originate from previous work published in [25] (accession number:

NZ_JAEFCJ010000000). Bacterial strains were routinely grown in lysogeny broth (LB) supple-

mented or not with bactoagar (1%). Plasmids were maintained and mutants selected through

antibiotic addition: streptomycin (100 μg/ml), ampicillin (100 μg/ml), kanamycin (50 μg/ml),

and chloramphenicol (30 μg/ml). Gene deletions were achieved in E. coli 8178 using a modi-

fied version of the lambda red recombinase-dependent one-step inactivation procedure [79].

Briefly, the antibiotic cassette (kanamycin for gene deletion, ampicillin for barcode insertion)

was PCR-amplified using primer pairs carrying a 50-nucleotide extension homologous to the

adjacent targeted region. Mutants were obtained through the electroporation of the PCR prod-

uct into E. coli 8178 cells expressing the lambda red recombinase from the pSIM5 plasmid and

incubated on selective media [80]. Gene deletion was confirmed by colony PCR. In a similar

fashion, barcoded strains were created through the insertion of 40-bp DNA WISH (Wild-type

Isogenic Standardized Hybrid) tags within a fitness-neutral region of the E. coli 8178’s genome

[38].

Mouse infection experiments

The 8- to 12-weeks-old mice were orally pretreated with streptomycin (25 mg) 24 h before

inoculation. S. Tm and E. coli cultures were grown on LB at 37˚C for 4 h and washed twice

with a phosphate-buffered saline solution (PBS: 137 mM NaCl, 2.7 mM KCl, 10 mM

Na2HPO4, and 1.8 mM KH2PO). Prior to colonization, E. coli strains were electroporated with

the pRSF1010 plasmid from Salmonella enterica serovar Typhimurium SL1344 which confers

streptomycin resistance [6,81]. Each mouse was orally given a single 50-μl dose containing

approximately 5.107 colony forming units (c.f.u) of an inoculum mixture composed of an

equal ratio of the indicated strains. Faeces samples were collected 24 h and 96 h post-infection.

Animals were euthanized by CO2 asphyxiation at day 4 post-infection. Faecal samples were

suspended in 1 ml PBS and homogenized using a TissueLyser (Qiagen). The bacterial load was

determined by plating the suspension on MacConkey or LB agar supplemented with proper

antibiotics.
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Fitness measurement of barcoded strains

Faecal E. coli cells were inoculated in 3 ml LB (37˚C, overnight) supplemented with ampicillin

to select and enrich for living E. coli barcoded strains. The bacterial cells were pelleted and

stored at −20˚C. DNA was extracted from thawed pellets using commercial kits (Qiagen Mini

DNA) according to the manufacturer’s instructions. The relative densities of the different bar-

codes were determined by real-time PCR quantification using tag-specific primers [38]. The

obtained ratio was multiplied by the number of c.f.u recovered from selective plating to calcu-

late the absolute loads of each tagged strain. The load of every single mutant strain was normal-

ized to the inoculum and used to calculate the normalized C.I in order to compare their fitness

to the WT (the C.I of a WT strain and respective mutant in a competitive infection was deter-

mined as a ratio between the c.f.u (mutant) and c.f.u (WT) divided by the ratio of both strains

in the inoculum).

Luciferase activity measurement

The expression of the microcin H47 synthesis gene cluster was assessed through the p-PmchI-
luc reporter plasmid. Approximately 108 E. coli 8178 cells carrying the p-PmchI-luc plasmid

were isolated from freshly collected faecal samples and subsequently pelleted by centrifugation

(5,000 rpm, 100). Intracellular luciferase proteins were released by bacterial cells lysis through

freeze–thaw cycles. The lysate was aliquoted in a 96-well plate and processed following the

instructions provided with the Nano-Glo Luciferase Assay System kit (Promega). Lumines-

cence levels were detected by the BioTek Synergy H1 (Agilent) plate reader. For in vitro

growth cultures, the same procedure was achieved, with the exception that the luminescence

signal collected was adjusted to the optical density (O.D).

In vitro killing assay

The attacker E. coli 8178 and prey MG1655 strains were individually incubated at 37˚C, under

agitation (160 rpm), in liquid LB supplemented with the iron chelator 2,20-Bipyridyl (0.2 mM).

Once the late stationary phase reached (O.D600 ~ 3), the prey was diluted (final O.D: 0.003)

into a freshly prepared LB agar solution (1% m/v agar) containing 0.2 mM of 2,20- Bipyridyl.

The presence of microcin H47 was monitored by incubating 5 μl of the 0.2 μm-filtered super-

natant from the attacker strains onto the LB agar containing the prey mix, overnight at 37˚C.

Lipocalin

The host Lipocalin-2 protein level was measured using the DuoSet ELISA Development kit

(R&D Systems) from faeces samples homogenized in 1 ml of PBS.

Histological procedures

Caecal tissues from infected mice were collected, embedded in O.C.T (Sakura Finetek, USA),

snap frozen in liquid nitrogen, and stored at −80˚C. Cryosections (5 μm) were mounted on

glass slides, air dried, and stained with hematoxylin and eosin (HE). Cecum pathology was

evaluated blindly using the histopathological scoring scheme described previously [6,82].

Molecular biology

Custom oligonucleotides were synthetized byMicrosynth and are listed in S3 Table. PCRs

were performed using the Phusion DNA polymerase (Thermo Scientific) and PCR products

were purified using the Nucleospin Gel and PCR clean-up mini kit (Macherey-Nagel). The

constitutivelymchI expressing plasmid (p-mchI) and microcin expression reporter (p-PmchI-
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luc) were constructed by restriction-free cloning (Gibson assembly, New England Biolabs) and

verified by DNA sequencing (Microsynth). The QIAprep Spin Miniprep kit (Qiagen) was used

to extract plasmid from bacterial pellets. Real-time PCR was performed using the FastStart

Universal SYBR Green Master (Sigma-Aldrich) according to the manufacturer’s instructions.

Statistical analysis

The statistical analysis and data graphical representation were performed using GraphPad

Prism 9.2.0 version for Windows (GraphPad Software, La Jolla California, USA, www.

graphpad.com). When applicable, the unpaired Mann–Whitney U-test (comparison of ranks)

was used to assess statistical significance when 2 groups were compared. P values< 0.05 were

considered to indicate statistical significance.

Supporting information

S1 Data. Excel spreadsheet containing, in separate sheets for each figure, the underlying

and individual numerical data used for Figs 1B–1D, 2B, 2C, 3A–3D, 4A–4G, S1A, S1B,

S1C, S1D, S1E, S1F, S2A, S2B, S3A, S3C–S3E and S4A–S4D.

(XLSX)

S1 Fig. Impact of inflammation on E. coli 8178’s ability to outgrow S. Tm. (A) The load of

E. coli 8178 in S. Tm + E. coli 8178 infected mice (from Fig 1B) is plotted on the y-axis over

time (x-axis). (B, C) Pre-inoculating mice with E. coli 8178 results in similar S. Tm growth

kinetics as in co-infected animals. The experiment scheme (B) and S. Tm loads in E. coli 8178

pre-inoculated mice (C) are shown. PBS: phosphate-buffered saline solution. (D) The S. Tm

spi-1/spi-2mutant is unable to trigger inflammation in streptomycin-pretreated 129S6/SvEv-

Tac animals. Top: Histopathological analysis of the caecal tissues at 96 h post-infection (p.i)

from streptomycin pre-treated 129S6/SvEvTac animals that were independently infected with

either the S. Tm WT (left) or spi-1/spi-2mutant (right). The hematoxylin and eosin (HE)

stained caecal tissue sections were scored for edema in the sub-mucosa, polymorphonuclear

leukocytes (PMNs) infiltration, reductions in the numbers of goblet cells and epithelial layer

damages. Bottom: Representative images of HE-stained caecal tissue sections from mice

infected with the S. Tm WT or spi-1/spi-2 strain. Lu. = Lumen. S. E = Sub-mucosal edema. Ep.

= Epithelium. Black arrow indicates epithelium gap. Scale bar = 100 μm. (E, F) Faecal lipoca-

lin-2 (LCN2) (E) and E. coli 8178 (F) levels in mice infected with a combination of E. coli 8178,

S. Tm WT, and spi-1/spi-2 mutant (from Fig 1D). +: presence; -: absence. (A, C–F) The x-axis

represents the time post-infection (in hours). p.i: post-infection. Dotted line: limit of detection.

Bars: median. c.f.u: colony forming units. Two-tailed Mann–Whitney U tests to compare 2

groups in each panel. p� 0.05 not significant (ns), p< 0.05 (*), p< 0.01 (**). The data under-

lying this figure can be found in S1 Data.

(TIFF)

S2 Fig. Screening for competitive factors of E. coli 8178 in vivo. (A) Normalized competitive

index of E. coli 8178 mutants analyzed in Fig 2B at 24 h post-infection (p.i). Dotted line: C.I

expected for a fitness-neutral mutation. x-axis: S. Tm conditioning strain added. (B) Competi-

tive infection experiments. Level of individual E. coli 8178 mutant collected in infected animals

from Fig 2C. Dotted line: limit of detection. (A, B) Bars: median, two-tailed Mann–Whitney U

tests to compare 2 groups in each panel. p� 0.05 not significant (ns), p< 0.05 (*), p< 0.01

(**). The data underlying this figure can be found in S1 Data.

(TIFF)
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S3 Fig. The uptake and synthesis of siderophore by E. coli 8178 contribute to S. Tm elimi-

nation. (A, D, E) Level of individual E. coli 8178 mutant collected in infected animals from

Fig 3A, 3C and 3D. p.i: post-infection. Dotted line: limit of detection. Bars: median. c.f.u: col-

ony forming units. Two-tailed Mann–Whitney U tests to compare 2 groups in each panel.

p� 0.05 not significant (ns), p< 0.05 (*), p< 0.01 (**). The data underlying this figure can be

found in S1 Data. (B) Schematic representation of TBDRs and downstream actors facilitating

siderophore uptake in E. coli 8178. (C) Normalized competitive index (C.I) of each individual

E. coli 8178 mutant (listed) from Fig 3B, 24 h post-infection. Dotted line: C.I expected for a fit-

ness-neutral mutation.

(TIFF)

S4 Fig. E. coli 8178 relies on microcin H47 to outcompete S. Tm in the gut. (A) Level of

individual E. coli 8178 mutant collected in infected animals from Fig 4B and 4E. (B) The

microcin H47 reporter plasmid does not impact E. coli 8178 growth in the mouse gut. Level of

E. coliWT and E. coli (p-PmchI-luc) collected in S. Tm-infected animals at 24 h and 96 h post-

infection. (C) Constitutive expression of the microcin H47 immunity (mchI) does not impact

S. Tm fitness in the gut. The competitive index of themchI-expressing S. Tm (S. Tm p-mchI)
mutant relative to the WT strain is assessed at 24 h and 96 h post-infection, in absence of

E. coli 8178. Dotted line: C.I expected for a fitness-neutral mutation. (D) Deletion of tonB of

fepB does not impair expression of the microcin H47 synthesis gene cluster. Microcin H47

expression is evaluated using a plasmid-based transcriptional reporter (p-PmchI-luc) in the

E. coli 8178 WT, ΔtonB and ΔfepB strains, after 8 h incubation in an iron-deprived medium.

Negative and positive controls corresponding respectively to the luciferase signal from an

empty (-) and a constitutively expressing luciferase plasmid (+) are also shown. RLU: relative

light unit. The mean and standard deviation of n = 5 biological replicates are represented.

(A–C) p.i: post-infection. Bars: median. (A–D) Two-tailed Mann–Whitney U tests to compare

2 groups in each panel. p� 0.05 not significant (ns), p< 0.05 (*), p< 0.01 (**). The data

underlying this figure can be found in S1 Data.
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