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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Although sex chromosomes have evolved from autosomes, they often have unusual regula-

tory regimes that are sex- and cell-type-specific such as dosage compensation (DC) and

meiotic sex chromosome inactivation (MSCI). The molecular mechanisms and evolutionary

forces driving these unique transcriptional programs are critical for genome evolution but

have been, in the case of MSCI in Drosophila, subject to continuous debate. Here, we take

advantage of the younger sex chromosomes in D. miranda (XR and the neo-X) to infer how

former autosomes acquire sex-chromosome-specific regulatory programs using single-cell

and bulk RNA sequencing and ribosome profiling, in a comparative evolutionary context.

We show that contrary to mammals and worms, the X down-regulation through germline

progression is most consistent with the shutdown of DC instead of MSCI, resulting in half

gene dosage at the end of meiosis for all 3 X’s. Moreover, lowly expressed germline and

meiotic genes on the neo-X are ancestrally lowly expressed, instead of acquired suppres-

sion after sex linkage. For the young neo-X, DC is incomplete across all tissue and cell

types and this dosage imbalance is rescued by contributions from Y-linked gametologs

which produce transcripts that are translated to compensate both gene and protein dosage.

We find an excess of previously autosomal testis genes becoming Y-specific, showing that

the neo-Y and its masculinization likely resolve sexual antagonism. Multicopy neo-sex

genes are predominantly expressed during meiotic stages of spermatogenesis, consistent

with their amplification being driven to interfere with mendelian segregation. Altogether, this

study reveals germline regulation of evolving sex chromosomes and elucidates the conse-

quences these unique regulatory mechanisms have on the evolution of sex chromosome

architecture.

Introduction

Sex chromosomes often show unusual expression patterns relative to autosomes. Repeat-rich

and gene-poor Y chromosomes are often epigenetically silenced [1–3]. X chromosomes, in

response, have evolved dosage compensation (DC) in many species to equalize expression of
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the sex chromosomes and autosomes in both sexes [4–7]. This is accomplished via diverse

mechanisms found in different taxa including down-regulation of 1 copy of the X in female

mammals and reduced expression of both X copies in worms [5,8,9]. In Drosophila, DC occurs

via hyper transcription of the single X in males. This is achieved via the sequence-specific

recruitment of the male-specific lethal (MSL) complex to so-called chromatin entry sites

(CESs) on the X which induces the activating histone tail modification H4K16 acetylation

(H4K16ac) at nearby transcribed genes [10–12].

Germline regulation of sex chromosomes also appears to be uniquely distinct from autosomes.

In many organisms, expression on the X is highly reduced during meiosis of spermatogenesis, a

phenomenon known as meiotic sex chromosome inactivation (MSCI) [13–15]. In mammals, the

X is sequestered in a silencing compartment in the nuclear periphery known as the sex-body dur-

ing late meiotic prophase [16–20]. Similarly, the germline of XO male worms creates a structure

analogous to the sex-body, where the X is associated with the repressive histone tail modification

H3K9-methylation [13,21]. Despite the apparent conservation, the evolutionary importance of

MSCI remains unclear but MSCI may prevent unwanted recombination between the heterolo-

gous sex chromosomes [22], safeguard the meiotic progression of asynapsed chromosomes [23],

silence the expression of a feminized X chromosome to reduce sexual antagonism [24] or inacti-

vate sex-linked selfish genetic elements that distort sex ratio [25–27].

Interestingly, unlike other model organisms such as mice and worms, the status of MSCI in

the male germline of Drosophila has been contentious [28–36]. In the apical tip of the fly testes,

germline stem cells (GSCs) are supported by somatic hub and cyst cells. After differentiation,

the spermatogonia (SG) undergo typically 4 rounds of mitotic divisions with incomplete cyto-

kinesis resulting in multinucleated cysts containing 16 spermatocytes (SC) that enter meiotic

division. Late spermatocytes exit meiosis forming haploid spermatids (ST) that remain con-

nected until spermiogenesis when sperm maturation, individualization, and elongation occur

to form mature sperm bundles. X-linked expression across the germline appears to be reduced

when assayed with qPCR of targeted genes [30,34], reporter constructs [28,34], and chromo-

some-wide transcriptome analyses [29–32]. However, whether the regulatory basis of this

down-regulation is specific to meiotic tissues or can be attributed to MSCI has been debated.

In particular, the status of dosage compensation confounds the interpretation of germline X-

regulation in the Drosophila testes. While MSL-dependent dosage compensation is well-char-

acterized in somatic tissues, its presence in the testes is unclear. Cytological studies of testis

have failed to detect the MSL complex or the H4K16ac modification it induces in GSC, SG,

and SC [37]. However, recent genomic studies have revealed X-linked expression patterns and

nuclear topologies which suggest that a distinct mechanism maintains X dosage in the premei-

otic stages of spermatogenesis [20,35,38].

Gene content and gene expression evolution further complicates inferences of chromo-

some-wide expression patterns of sex chromosomes during spermatogenesis. Genes that are

expressed in testis have been found to move off the X chromosome [39–42], while sexually

antagonistic selection could result in an excess or deficiency of genes with male- or female-

biased expression on sex chromosomes, depending on underlying population parameters [43–

46]. In particular, female-biased transmission of the X may select for an excess of female-spe-

cific genes/a deficiency of male-specific genes, and overall lower expression of the X compared

to autosomes in males (“demasculinization” of the X; [43,47]). Male-beneficial genes, on the

other hand, should be overrepresented on the male-specific Y chromosome [43,48–50].

Because sex chromosomes typically have autosomal origins [51,52], newly sex-linked chro-

mosomes will gradually acquire regulatory features of older sex chromosomes over evolution-

ary time. Due to its unusual sex chromosome architecture, Drosophila miranda has been a

model species for understanding sex chromosome evolution (Fig 1A). Unlike the ancestral
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Fig 1. Transcriptional dynamic of D. miranda testes at single-cell resolution. (A) Picture of D. miranda female and male adults. (B) Picture

of a pair of testes (T) attached by the seminal vesicle (SV) to the accessory glands (Ac). (C) Male karyotype evolution showing multiple fusions

creating neo-sex chromosomes of different ages. Red, purple, and orange denote the 3 X-chromosomes of different ages: Muller A (~50MY),

Muller AD (~15MY), and Muller C (~1.5MY), respectively. The Y chromosome arms are in shades of blue, and the autosomes are in gray.

Unless otherwise stated, this color-coding of the chromosomes will be maintained throughout. (D) Expression of genes used for clustering

cells into cell types; number of cells (UMIs) in each type is in parentheses. Yellow and magenta represent high and low expression. (E) UMAP

reduced dimension projection showing cells from scRNA-seq clustered into 8 different cell types corresponding to different stages of

spermatogenesis. Progression of spermatogenesis is outlined by curved arrow. For projection of all cells including unidentified clusters, see S1

Fig. (F) Distributions of normalized gene counts from different chromosomes across cell types. For each gene, counts are aggregated across

cells of the same cell types. Boxplots depict the distribution of normalized expression for each chromosome and cell type. Cell types are labeled

as somatic, germline, mitotic, and meiotic above the plot. For number of reads in each cell type and chromosome, see S1 Table. For number of

genes used for each chromosome, see S2 Table. The data underlying this figure can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3002605.g001
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karyotype of Drosophila where a single chromosome arm (Muller A) is the X chromosome, D.

miranda has 2 additional X chromosome arms that are younger (Fig 1C). A metacentric fusion

linked one autosome, Muller D, with Muller A ~15MYA, causing the former to become X-

linked. Muller D has evolved the stereotypical characteristics of a sex chromosome, with the

non-recombining homolog almost fully degenerate, and the X-linked homolog having evolved

full dosage compensation [53] (note that we refer to this chromosome arm as Muller AD,

since a pericentric inversion moved some Muller A genes onto Muller D). A secondary fusion

between Muller C and the Y occurred around ~1.5MYA creating a Y-linked copy of Muller C

that is male exclusive (i.e., the neo-Y). Its former homolog, while not fused to Muller A and D,

is transmitted as 2 copies in females and 1 copy in males, making it a neo-X chromosome. The

neo-X and neo-Y, once a homologous pair of autosomes, have been evolving characteristic

traits of sex chromosomes, like X dosage compensation [2,54] and Y degeneration [55–58],

and are at an intermediate stage in the transition from an ordinary autosome to a pair of differ-

entiated sex chromosomes [57,58]. The acquisition of dosage compensation on the neo-X

occurred through co-opting insertions of a transposable element that harbors the sequence

motif targeted by the MSL complex [53,59].

D. miranda’s unique sex chromosome architecture offers an ideal opportunity to character-

ize meiotic sex chromosome regulation. Specifically, because the evolving neo-X represents an

intermediate to autosomes and the X, the status of MSCI can be tested without the confound

of significant demasculinization. Further, because the neo-X is a separate chromosome from

Muller A and AD, X-specific regulation must arise independently on this chromosome and

cannot simply be explained by linkage to the older X’s. To this end, we employed single-cell

RNA-seq (scRNA-seq) on D. miranda testes (Fig 1C) to disentangle the regulatory mecha-

nisms of sex chromosomes during spermatogenesis and to understand how young sex chro-

mosomes evolve in response to such meiotic regulatory regimes. We find expression patterns

consistent with incomplete premeiotic dosage compensation of the neo-X followed by gradual

loss of dosage compensation of all X’s across meiotic progression. Our results suggest that

shutdown of dosage compensation is the primary source of meiotic down-regulation of the

X’s. By comparing expression patterns of the neo-X to its autosomal ortholog in D. pseudoobs-
cura using bulk tissue RNA-seq, we show that low expression of a subset of genes on the neo-X

reflects ancestrally low expression levels rather than being explained by MSCI. Curiously,

incomplete dosage compensation causes reduced neo-X expression across all tissues which is

further exacerbated in testes due to postmeiotic DC shutdown. This expression deficit appears

to be compensated by neo-Y gametologs, despite extensive degeneration and down-regulation

of the neo-Y chromosome. Moreover, previously autosomal genes with testes-biased expres-

sion are disproportionally lost from the neo-X, thus becoming exclusively Y-linked, likely to

resolve sexual antagonism. Interestingly, these now Y-exclusive genes are primarily expressed

late or after meiosis, raising the possibility that postmeiotic germline regulation may be a

major source of sexual antagonism driving the genetic architecture of sex chromosomes.

Moreover, we show that co-amplified neo-sex genes are predominantly expressed during mei-

otic stages of spermatogenesis, consistent with their amplification being driven to compete for

transmission to the next generation. In summary, our results shed light on the various molecu-

lar and selective processes operating on sex chromosomes and how they evolve.

Results

Transcriptional landscape of germline progression at single-cell resolution

We generated scRNA-seq libraries from dissociated D. miranda testes cell preparations in

duplicates. After processing and filtering, the replicated scRNA-seq experiment yielded 10,990
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cells that fall into 12 clusters (Figs 1D and S1A). We identified the cell types of 8 clusters using

testes marker genes characterized in D. melanogaster (Figs 1E and S1B). Four clusters show

low but similar expression to the spermatid clusters but lack obvious expression profiles of dis-

tinguishing marker genes, thus we removed them from our downstream analyses (S1B Fig).

This results in 8 cell types totaling 5,101 cells that span spermatogenesis, with germline pro-

gression roughly following a linear trajectory in the UMAP projection (Fig 1E and S1 Table).

Spermatogenesis in D. miranda and species in the obscura group has several unique features

that differ from D. melanogaster. First, spermatogonia undergo 5 rounds of mitotic divisions

(instead of 4), thereby producing 32-nuclei (instead of 16) spermatocytes. Second, flies from

the obscura group produce heteromorphic sperm types (the fertilizing eusperm and sterile

parasperm) [60,61]. While these physiological differences likely contribute to the different

numbers of cells and cell type clusters compared to previous studies of D. melanogaster testes

[35,62], the clustering results are largely consistent. Overall transcript abundance across all

chromosomes increases through germline progression (Figs 1F and S2) and peaks in late sper-

matocyte cell types; many genes (including cup and comet genes [63]) are up-regulated in

preparation for sperm individualization and maturation (S1B Fig). We further noticed that

the spermatocyte stages display 2 subpopulations (streaks in the UMAP projections) which

can be separated using more sensitive clustering (S3 Fig). They may represent the develop-

mental trajectories of the 2 sperm types which are produced in equal proportions in D.

miranda [64]. However, given that the genetic basis of the heteromorphic sperm types is cur-

rently unknown, we were unable to confirm or assign sperm types to these subclusters.

Comparing between expressed genes on the chromosomes (S2 Table), we find that the X

chromosome arms consistently show lower expression than the autosomes (except for Muller

F, which used to be an X chromosome [52,65]; Fig 1F). This is true even in the somatic tissue

where the X is expected to be fully dosage compensated. Lower expression from the X in male

tissues compared to female tissues has been interpreted as an adaptation of the X to female-

biased transmission (i.e., feminization of the X).

Nevertheless, across the stages, the ancestral X, Muller A, typically has the highest expres-

sion while the neo-X has the lowest expression. Because the neo-X, Muller C, has had little

time to demasculinize, the low expression is more likely due to incomplete dosage compensa-

tion of the neo-X (see below). Consistent with the neo-Y degenerating and becoming hetero-

chromatic, genes on the neo-Y are lowly expressed compared to all other chromosomes.

Expression of all chromosomes peaks at late spermatocytes (Fig 1F); however, genes from the

neo-Y have the largest fold-increase between early and late spermatocyte stages, revealing that

the neo-Y is disproportionally up-regulated in late meiosis (p< 0.00001, Wilcoxon’s rank sum

test; S2 Fig) [66].

Reduced expression of X linked genes through meiosis consistent with

shutdown of dosage compensation

D. miranda’s unique sex chromosome architecture presents an opportunity to test the status of

X chromosome regulation in the germline and to understand its evolution (Fig 2A). If meiotic

X-inactivation is an evolved trait in the male germline, the neo-X—which is at an intermediate

stage of evolving X characteristics—should show expression patterns still reminiscent of its

recent autosomal history. That is, genes on the neo-X will be expressed at a level that is inter-

mediate of autosomal (not inactivated) and X (inactivated) levels during meiosis. Alternatively,

given the presence of dosage compensation in the early germline [35], reduced meiotic expres-

sion may reflect shutdown of dosage compensation post meiosis instead of targeted inactiva-

tion. Since the neo-X is still evolving towards becoming fully dosage compensated, loss of

PLOS BIOLOGY Germline sex chromosome regulation in Drosophila testes

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002605 April 30, 2024 5 / 27

https://doi.org/10.1371/journal.pbio.3002605


Fig 2. Gradual loss of dosage compensation through meiosis. AU : AbbreviationlistshavebeencompiledforthoseusedinFigs2 � 5and7:Pleaseverifythatallentriesarecorrect:(A) Hypothetical models of MSCI vs. loss of dosage

compensation in Xs with different ages. (B) Distribution of X-to-autosome ratios across cell types. * = p< 0.001 and ** =

p< 0.000001, Wilcoxon’s rank sum test. Boxplots represent the distribution of X-linked gene expression divided by the

median expression of autosomal genes after aggregating read counts across cells of the same cell type. (C) X-to-autosome

ratios of genes based on their proximity to MSL-binding sites. Genes<2 kb or>2 kb away are classified as proximal or distal,

respectively. (D) Expression of the genes in or associated with the MSL complex across cell clusters. Size of the circle is

proportional to the fraction of cells in the cluster with expression of the gene and the intensity of the color reflects the

expression in log scale averaged across cells within the cluster. The data underlying this figure can be found in S1 Data. MSCI,

meiotic sex chromosome inactivation; MSL, male-specific lethal.

https://doi.org/10.1371/journal.pbio.3002605.g002

PLOS BIOLOGY Germline sex chromosome regulation in Drosophila testes

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002605 April 30, 2024 6 / 27

https://doi.org/10.1371/journal.pbio.3002605.g002
https://doi.org/10.1371/journal.pbio.3002605


dosage compensation predicts a distinctly different pattern from MSCI. Under this scenario,

the neo-X would show lower expression compared to the other X arms prior to meiosis and

through meiosis all 3 X chromosomes will lower to similar expression levels as dosage com-

pensation attenuates (Fig 2A).

To differentiate between these scenarios, we contrasted the expression of the 3 X’s relative

to the autosomes throughout spermatogenesis (Fig 2B). We find that prior to meiosis (in GSC,

SG, and SC), the neo-X consistently has the lowest expression, with Muller AD showing inter-

mediate expression levels between the ancestral X and neo-X (Fig 2B). This stepwise difference

in expression among X chromosomes during spermatogenesis is consistent with the gradual

acquisition of dosage compensation over evolutionary time, where the ancestral X is fully dos-

age compensated, the neo-X shows partial dosage compensation, and Muller AD is in between

(Fig 2B). After meiosis (in late SC and early ST), all 3 X chromosomes are becoming consis-

tently lower expressed than autosomes (Fig 2B). In particular, expression levels of the older X

chromosome arms begin to more closely resemble that of the neo-X across meiotic progres-

sion, equalizing at meiotic exit (late SC1). Most importantly, expression of all the X’s never

drops below half that of the autosomes. This pattern, which can also be observed when using

only testes-expressed genes (S4 Fig), supports the loss of dosage compensation as the mecha-

nism underlying reduced X expression in testis and is inconsistent with the prediction that the

neo-X is evolving X-inactivation. Altogether, our results argue that the X’s are not inactivated

or severely down-regulated through meiosis but are fully consistent with shutdown of dosage

compensation during meiosis.

Loss of dosage compensation for genes proximal to MSL-bound regions

across meiosis

To further evaluate the loss of dosage compensation across meiosis, we identified regions

bound by the dosage compensation complex using larval ChIP-seq data [2,54] targeting the

MSL3 protein (a component of the MSL complex). We identified 1513, 2762, and 2115 MSL-

bound regions for Muller A, AD, and C, respectively, and then evaluated expression differ-

ences between genes proximal (<2 kb) and distal (>2 kb) to MSL-bound sites. Consistent with

the MSL-complex inducing transcriptional up-regulation of X-linked genes, genes proximal to

MSL-bound regions show significantly higher expression on all 3 X chromosomes in the

somatic tissues and prior to meiosis (Fig 2C; Wilcoxon’s rank sum tests, p< 0.0001). However,

as meiosis progresses and dosage compensation becomes lost, the expression of the 2 sets of

genes becomes more similar and upon meiotic exit becomes statistically indistinguishable in

most comparisons (Fig 2C; Wilcoxon’s rank sum test, p> 0.1). Thus, these patterns are again

consistent with reduced expression of X-linked genes during spermatogenesis in Drosophila
resulting from a shutdown of dosage compensation. Associations of expression patterns for X-

linked genes with MSL-complex binding (although inferred from larvae) raises the possibility

that (members of) the MSL-complex also have a role for dosage compensation in testis (but see

[37]).

To specifically examine the activity of the dosage compensation complex, we looked at the

expression of components of the MSL complex and 2 accessory genes that are important for

dosage compensation (clamp and mtor, Fig 2D). With the exception of mof and roX1, which

have low expression across all cell stages (including the somatic cyst and hub cells and premei-

otic stages), transcript levels of genes important for dosage compensation are intermediate-to-

high in the premeiotic and early meiotic cell types. The long noncoding RNA, roX2, has the

highest expression in the somatic cells and GSC, and gradually diminishes across germline

progression. The others increase in expression peaking at the spermatocyte stages and decrease
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after. These expression patterns indicate that most genes involved in dosage compensation are

active during early spermatogenesis and are gradually lost through meiosis, consistent with

dosage compensation shutdown.

Distinct germline transcriptional trajectories depending on MSL proximity

Consistent with DC shutdown, the expression differences between MSL-proximal and distal

genes become smaller during later spermatogenesis (Fig 2C). Curiously, in the early germline

(SG and early SC), MSL-proximal and distal genes show the greatest expression difference,

and the distal genes are expressed drastically lower than half of autosomal expression. To bet-

ter understand these expression changes, we refined our classification of X-linked genes into

those overlapping MSL peaks, within 1 kb, 5 kb, 20 kb, and >20 kb (Figs 3A and S5A).

Regardless of the cell types, MSL-proximity is consistently associated with higher expression

(S5 Fig). Genes farthest away from MSL sites (>20 kb) present the only exception and are

almost always more highly expressed than genes between 5 and 20 kb of MSL sites—this is

consistent with male-biased genes being depleted near dosage compensation sites [67]. The

association between MSL-proximity and gene expression is greatest in the early germline

stages and reduces in the later stages consistent with the equalizing effect of DC shutdown.

However, higher expression of genes near MSL sites remains, even after DC shutdown, likely

because MSL sites are more common near highly expressed genes (see below).

Despite becoming more similar in expression on average, MSL-distal and -proximal genes

show distinct regulatory trajectories across germline progression (Fig 3A). Genes near MSL

sites are first up-regulated in early germline development followed by gradual decrease

through meiosis, consistent with DC shutdown. The early up-regulation of MSL-proximal

genes occurs extensively as the SGs progress into SCs when multiple rounds of mitosis occur.

At the highest, genes overlapping MSL peaks reach elevated X:A ratio of 1.98, 1.36, 1.63, and

for Muller-A, AD, and C, respectively (S5A Fig). This pattern of early up-regulation was also

observed in D. melanogaster and interpreted as non-canonical hyper dosage compensation

[35]. Whereas all genes within 5 kb of MSL peaks show early up-regulation on the older X

arms (Muller A and AD), up-regulation on the neo-X (Muller C) is restricted to only genes

overlapping MSL peaks. This is consistent with the suboptimal nature of recently evolved DC

on the neo-X resulting in less MSL-dependent spreading of the activating chromatin

environment.

For MSL-distal genes, we observed the opposite pattern whereby they are lowly expressed

during the early stages, followed by dramatic up-regulation through meiotic stages (Fig 3A).

This early down-regulation results in extremely low expression of the MSL-distal genes upon

meiotic entry, well-outside the bound of the absence of DC, with median X:A ratios of 0.259,

0.129, and 0.069, for Muller-A, AD, and C, respectively (S5A Fig). Upon meiosis, the MSL-dis-

tal genes begin increasing in expression with the most MSL distal showing the greatest up-reg-

ulation. Further examination revealed that this meiotic increase is driven by up-regulation of a

large subset of MSL-distal genes, while the rest remain lowly expressed, resulting in a bimodal

distribution of gene expression for all 3 X chromosome arms (S6 Fig).

Low meiotic expression of a subset of neo-X genes reflects ancestral

expression

The MSL complex has been shown to target actively expressed genes by recognizing the

H3K36me3 histone mark, which is disproportionally found on house-keeping genes [68,69].

As a consequence, cell type-specific genes such as those expressed only during and after meio-

sis—at a time when DC no longer is active—are naturally going to be far from MSL.
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Nevertheless, one could argue that low expression of MSL-distal genes upon meiotic entry is

the result of MSCI. To evaluate this possibility, we examined their autosomal orthologs in D.

pseudoobscura. If the low expression is due to MSCI, we expect these MSL-distal genes on the

neo-X to have higher expression in D. pseudoobscura, where Muller C is autosomal. In bulk

testes RNA-seq, we found that the expression of the autosomal orthologs, despite not having

DC, is similarly associated with the proximity to MSL peaks in D. miranda (Fig 3B); i.e., dis-

tance to MSL peaks in D. miranda correlates with the expression in D. pseudoobscura. The D.

miranda neo-X alleles are on average approximately 0.594-fold lower expressed than their

autosomal counter parts, a value consistent with a mixture of cells with partial DC and DC

shutdown (S7 Fig). Moreover, MSL-distal genes do not show more extensive down-regulation

in D. miranda, as would be predicted if MSCI silences MSL-distant genes on the neo-X. These

results strongly argue that low expression of MSL-distal genes is not an acquired feature of the

neo-X, but simply a product of ancestral expression patterns and DC targeting highly

expressed genes.

A limitation of the above analysis is the use of bulk testis expression data. This can be over-

come by using neo-Y gametolog expression as a proxy for ancestral expression levels of neo-X

genes on a single-cell level. If neo-X genes are silenced in specific cell types by MSCI, we would

expect neo-Y gametologs to have higher expression. Contrary to this prediction, neo-Y alleles

consistently show significantly lower expression across all cell stages, reflecting wide-spread Y

degeneration instead of X silencing (Fig 3C). Further, the neo-X gametologs’ proximity to

MSL similarly predicts the expression of the neo-Y gametologs whereby MSL-proximal and

Fig 3. MSL-distance associated with distinct germline regulation and ancestral expression patterns. (A) Genes on the X

chromosomes are subcategorized into 5 groups depending on distance to MSL peaks (for number of genes in each category, see S3

Table). The fold changes in X:A ratio between testes cell stages are depicted in log scale for the different gene categories, with greater

and less than 0 values representing increase and decrease in expression. (B) Autosomal (D. pseudoobscura) vs. X-linked (D.

miranda) Muller C expression from bulk testes RNA-seq depending on proximity of the neo-X alleles to MSL sites in D. miranda. *
= p< 0.00001 for Pearson’s correlation between MSL distance and gene expression. (C) Expression of Muller C gametologs on the

neo-X and neo-Y across relevant meiotic stages depending on the proximity of the neo-X alleles to MSL sites; * = p-value< 0.0001,

Wilcoxon’s rank sum test. The data underlying this figure can be found in S1 Data. GSC, germline stem cell; MSL, male-specific

lethal.

https://doi.org/10.1371/journal.pbio.3002605.g003
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distal genes on the neo-X also have highly and lowly expressed neo-Y gametologs, respectively.

This again suggests that low expression of MSL-distal genes on the neo-X (Muller C) reflects

low ancestral expression, similar to our analysis using D. pseudoobscura autosomal orthologs.

Furthermore, the drastically reduced X:A ratio of MSL-distal genes during early germline

stages is primarily caused by increases in the autosomal expression (Fig 1F), thus inflating the

denominator and driving down the X:A ratio. Indeed, the absolute expression levels of these

lowly expressed MSL-distal genes remain similar across the early meiotic stages (S5B Fig).

Incomplete dosage compensation of the neo-X is exacerbated in the

germline

Although our data show that all 3 X chromosomes of D. miranda are dosage compensated

early in the male germline, the neo-X is consistently expressed at a lower level relative to the

older X chromosomes, suggesting that dosage compensation on the neo-X may be incomplete.

To specifically determine the extent to which the neo-X is dosage compensated in D. miranda
males, we compared expression of orthologs between D. miranda and its sister species D. pseu-
doobscura where this chromosome (Muller C) remains autosomal (Fig 4A). We used bulk

RNA-seq data from whole testis and other sexed developmental stages and tissues including

embryonic stages, larvae, head, and carcass from the 2 species. While genes on Muller A and

Muller AD (X-linked chromosome arms in both species) show similar expression values in the

2 species (Fig 4B, top and middle), the neo-X is under-expressed in several tissues of D.

miranda males relative to Muller C in D. pseudoobscura (Fig 4B, bottom). Prior to zygotic

genome activation, the embryo contains predominantly maternally deposited mRNA. Expect-

edly, in embryonic stage 2 (prior to zygotic genome activation in Drosophila), the difference

between D. pseudoobscura and D. miranda expression of Muller C genes shows minimal bias

with a median fold difference of 1 (Fig 4B, bottom). As zygotic expression ramps up through

early embryonic development, neo-X/Muller C genes become increasingly D. pseudoobscura-

biased in expression and stabilize in adult somatic tissues where the D. miranda alleles are

expressed on average 0.769-fold less than the D. pseudoobscura alleles (Fig 4B). Therefore,

neo-X linked genes are not fully dosage compensated across somatic cell lineages. In contrast,

expression of Muller C genes in female tissues is highly similar between the 2 species, and the

largest difference is a mere 0.1-fold reduction in D. miranda early embryos (S8 Fig).

As expected from the loss of dosage compensation through spermatogenesis (Figs 2 and 3),

testes show the most striking difference between the species. Here, D. miranda orthologs are

expressed on average 0.565-fold of their D. pseudoobscura counterparts, a reduction that is sig-

nificantly greater than any other tissue (Fig 4B, bottom, Wilcoxon rank sum tests, p< 10e-8).

However, while reduced expression of neo-X-linked orthologs is most extreme in the testes,

the reduction is close to but nonetheless within 2-fold. Therefore, our results comparing the

orthologs are consistent with the loss of dosage compensation across meiosis causing neo-X

linked genes in some of the testes cell populations to have half of the expression of their auto-

somal counterparts in D. pseudoobscura.

Expression differences between orthologous genes proximal and distal to MSL-bound sites

(in D. miranda) further confirm incomplete dosage compensation of the neo-X in D. miranda
males, regardless of tissue type. Neo-X-linked genes distal to MSL-bound sites tend to be sig-

nificantly more biased towards the D. pseudoobscura ortholog across most somatic tissues

(Fig 4C; Wilcoxon’s rank sum tests, p< 0.01), consistent with reduced or a lack of dosage

compensation. However, while proximity to MSL sites reduces the D. pseudoobscura-bias con-

sistent with dosage compensation, MSL-proximal genes on the neo-X are still expressed less

than their autosomal orthologs. The disparity between MSL-proximal and distal genes is most
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drastic in the L3 larvae, likely because the MSL-chip data were collected in the same develop-

mental stage. However, even in L3 larvae, the MSL-proximal alleles are still on average

0.76-fold lower than their D. pseudoobscura orthologs. Therefore, even with wide-spread

recruitment of MSL on the neo-X, dosage compensation is incomplete.

For the bulk testis samples, the difference between the MSL-proximal and distal genes are

marginal but significant with average fold differences of 0.580 and 0.540, respectively (Wilcox-

on’s rank sum test, p< 0.01). This slight difference is consistent with the loss of dosage com-

pensation in many testis-derived cells (due to dosage compensation being abolished during

meiosis). Looking across all 3 X chromosome arms (Fig 4D–4F), we find that genes near MSL-

bound sites are enriched for highly expressed genes in both species. For the neo-X/Muller C

Fig 4. Divergence of X-linked expression. (A) Gene movement and chromosomal positions of orthologs on Muller C in D.

pseudoobscura before and after the formation of the neo-X in D. miranda. Orthologous genes are connected by lines. Genes that

migrated away (inter-chromosomal movement) from Muller C in D. miranda are in red. Number of genes from Muller C is noted

next to the chromosome. Note, Muller C of D. pseudoobscura is drawn 4× the size for clarity. (B) Log2(fold-difference) between D.

pseudoobscura and D. miranda orthologs on different X-chromosomes and across different tissues and developmental stages. Note,

the Y-axis differs on the bottom panel corresponding to Muller C. *** = p< 0.000001, Wilcoxon’s rank sum test. (C) Same as B, but

Muller C genes are categorized based on their proximity to MSL-binding sites. * = p< 0.01, ** = p< 0.0001, and *** p< 0.000001.

(D–F) Correlation of orthologs expression on different X-chromosomes between D. pseudoobscura and D. miranda. Genes proximal

to MSL-binding sites (<2 kb) are displayed as darker circles with black borders. Diagonal line demarcates the identity line. The insets

boxplots display the TPM distribution of MSL proximal and distal genes in the 2 species. * = p< 0.0000001. The data underlying this

figure can be found in S1 Data. MSL, male-specific lethal.

https://doi.org/10.1371/journal.pbio.3002605.g004
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(Fig 4F), we find that the D. miranda orthologs are consistently expressed less in the testes

compared to D. pseudoobscura, regardless of their proximity to MSL-binding sites. Therefore,

despite the presence of dosage compensation in some testes cell types, genes on the neo-X

remain heavily under-expressed.

Neo-Y gametologs mitigate neo-X dosage imbalance

Because of incomplete dosage compensation across tissues and its shutdown during spermato-

genesis, the neo-X of D. miranda appears to be expressed suboptimally. How can males main-

tain high fitness in light of this pervasive dosage imbalance? To address this question, we

examined gene expression of the neo-Y. This chromosome shows extensive degeneration of

protein-coding genes, repeat accumulation and heterochromatinization, but still harbors thou-

sands of genes (gametologs) previously found on Muller C. Note that these gametologs are

generally under reduced purifying selection and harbor an excess of deleterious amino acid

mutations, and many contain premature stop codons or frame shift mutations. We identified

gametologs on the neo-sex chromosomes and found that 1,692 genes maintain both neo-Y

and neo-X gametologs, 339 neo-X-linked genes with no neo-Y gametologs (neo-X-only), and

only 36 neo-Y-linked genes with no neo-X gametologs (neo-Y-only) (Fig 5A). As expected for

a heterogametic chromosome that is degenerating and not dosage compensated, most genes

maintained on both neo-sex chromosomes are down-regulated on the neo-Y compared to

their autosomal orthologs in D. pseudoobscura (S9 Fig) and their neo-X counterparts (Fig 5B).

However, despite overall down-regulation, many neo-Y gametologs are still highly

expressed (Fig 5B). This raises the possibility that neo-Y linked expression may mitigate dos-

age imbalance from incomplete dosage compensation, or its loss in the testes. Indeed, when

we combined the expression of the neo-X and neo-Y gametologs, expression of Muller C genes

in D. miranda testes much more closely matches autosomal expression of their orthologs in D.

pseudoobscura, resulting in a difference of only 0.92-fold (Fig 5C–5E). In fact, dosage mitiga-

tion is not specific to testes, as dosage is generally restored to autosomal levels across all

somatic tissues when expression from both the neo-X and neo-Y are combined (Fig 5D). This

suggests that expression from the neo-Y linked gametologs ensures proper transcript dosage

when dosage compensation is suboptimal or not fully evolved.

However, expression of neo-Y alleles alone may not be sufficient to restore dosage at the

protein level, since many Y-linked alleles have accumulated premature stop codons and may

not be translated into proteins. We therefore further evaluated translation of these transcripts

using ribosome profiling of larval samples (Fig 5F). Because premature stop codons lead to

rapid degradation of mRNA via the nonsense mediated decay pathway [70,71], we expect non-

functional transcripts from the Y to have low contribution to the translating mRNA. While

neo-Y gametologs with truncated CDSs have significantly reduced ribosome profiling reads

(S10A Fig), we nevertheless find many with high ribosome occupancy suggesting they are

actively translated (Fig 5F). Unsurprisingly, while amounts of translating neo-Y transcripts are

significantly lower than all other chromosomes (Figs 5F and S10B), they supplement corre-

sponding neo-X gametologs, thereby increasing the total translation rate of Muller C genes to

near autosomal levels. Thus, with incomplete dosage compensation of the neo-X, the neo-Y

provides an additional source of transcript and downstream protein production.

Neo-Y as an environment to resolve sexual conflict

Despite overall reduction in expression and gene loss, the neo-Y harbors 36 genes where the

neo-X gametologs are lost. These neo-Y-only genes represent a set of genes that have become

male-exclusive. Unlike the bulk of neo-Y linked genes that have lower expression compared to
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their neo-X-linked and autosomal (Muller C) counterparts (Figs 5B and S9), neo-Y-only

genes are expressed significantly higher than other Y-linked genes in the testes (Fig 6A; Wil-

coxon’s rank sum test, p< 0.005). Interestingly, these genes are similarly highly expressed in

D. pseudoobscura testes (where they are autosomal) and lowly expressed in females (Fig 6B),

suggesting an ancestral function in testis. In addition to the neo-Y-only genes, we further iden-

tified 115 genes where the neo-Y gametolog is significantly higher expressed than the neo-X

Fig 5. Y-linked gametologs mitigates expression and protein dosage imbalance. (A) Synteny and positions of Muller C genes before

(D. pseudoobscura) and after (D. miranda) the formation of neo-sex chromosomes. Muller C from D. pseudoobscura (middle) is

sandwiched by the neo-X (top) and neo-Y (bottom) in D. miranda. Genes where both gametologs (n = 1,692) are identified are

connected with gray lines. Genes where only neo-X (n = 843) or neo-Y (n = 36) gametologs are present are connected by orange or blue

lines, respectively. Number of genes on each chromosome/contig is noted next to the chromosome labels. (B) Testes expression

correlation between neo-X and neo-Y gametologs. Diagonal line demarcates the identity line. (C) Testes expression correlation between

D. pseudoobscura genes on Muller C and the combined expression of neo-X and neo-Y gametologs in D. miranda. (D) Log2(fold-

difference) between the sum of D. miranda neo-X and neo-Y gametologs and D. pseudoobscrua Muller C-linked genes across different

tissues and developmental stages. * = p< 0.000001, Wilcoxon’s rank sum test. (E) Sum of the neo-X and neo-Y transcript count across

testes cell types in the scRNA-seq data. (F) Correlation between the TPM from the RNA-seq data and ribosome profiling data from male

larvae. The neo-X and neo-Y linked gametologs are plotted in orange and blue, respectively. Inset boxplot displays the distribution of the

ribosome profiling reads across the chromosomes. The data underlying this figure can be found in S1 Data. scRNA-seq, single-cell RNA-

seq.

https://doi.org/10.1371/journal.pbio.3002605.g005

PLOS BIOLOGY Germline sex chromosome regulation in Drosophila testes

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002605 April 30, 2024 13 / 27

https://doi.org/10.1371/journal.pbio.3002605.g005
https://doi.org/10.1371/journal.pbio.3002605


gametolog (neo-Y-biased). Similarly, we find that these neo-Y-biased genes also show signifi-

cant testes-biased expression in D. pseudoobscura where they are still autosomal, although not

to the same extent as the neo-Y-only genes (Fig 6B). These results reveal that the X is becom-

ing demasculinized through preferential loss of testes genes that become neo-Y-specific.

To specifically understand the germline regulation of these neo-Y-only and neo-Y-biased

genes, we looked at their expression across the different testes cell clusters from the single-cell

data (Fig 6C). We find that compared to other Y-linked genes, neo-Y-only genes consistently

show the highest expression across all cell types. Strikingly, their expression disproportionally

increases through meiosis, peaking at late spermatocyte and remains high upon meiotic exit

and sperm individualization. Therefore, late and postmeiosis appear to be the primary stages

in which these neo-Y genes are most active.

After the formation of neo-sex chromosomes, the neo-Y is transmitted exclusively through

males and therefore expected to become masculinized. While genes with important male func-

tion may be preferentially retained on the Y, it is unclear why they are lost or down-regulated

on the X. Genes with male-limited function could be lost on the X by random drift. Alterna-

tively, these genes could represent sexually antagonistic alleles that are male beneficial and

female detrimental and the neo-X linked copies are lost to eliminate deleterious effects in

females. The formation of the neo-Y chromosome provides an opportune environment to

resolve this conflict by allowing such genes to become male exclusive, alleviating deleterious

effects in females.

Previous studies have revealed an excess of genes with testis-expression migrating off the X

chromosome in Drosophila [72], and MSCI was invoked to explain this exodus. To determine

whether a similar migration of X-linked testes genes to autosomes occurred on the neo-X of D.

miranda, we identified orthologs between D. miranda and its sister species D. pseudoobscura
where Muller C remains autosomal. We do not find an excess of Muller C genes to have

moved to autosomes, albeit the number of gene movements is small (Fig 5A). Instead, we find

that Muller A appears to be the most frequent destination for genes previously on the Muller

C. Although small number size precludes meaningful statistical comparison (p = 0.4018, Fish-

er’s exact test), prima facie, this is inconsistent with the need to escape X inactivation. The

unique opportunity to resolve sexual antagonism provided by the neo-Y offers an alternative

Fig 6. Y-biased and exclusive genes are enriched for testes-biased genes resolving sexual antagonism. (A) Testes expression of neo-Y genes

that show expression bias (neo-Y-biased) or have no neo-X gametologs (neo-Y-only). * = p< 0.0001. (B) Expression correlation of Muller C-

linked genes between testes and ovaries in D. pseudoobscura. Genes where the neo-Y gametolog is more highly expressed than the neo-X

gametolog in D. miranda testes (neo-Y-biased) or has only Y-linked gametologs (neo-Y-only) are labeled by light blue circles and dark blue

diamonds, respectively. Inlet displays boxplots of the log2(fold-difference) between D. pseudoobscura testes and ovaries for the different gene

categories. * = p< 0.001, ** = p< 0.00001, Wilcoxon’s Rank Sum Test. (C) Expression of Y-linked genes across testes and spermatogenesis cell

types showing elevated and lasting postmeiotic expression. The data underlying this figure can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3002605.g006
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path for genes with testes function to escape the X: After an autosome becomes sex-linked by

forming neo-sex chromosomes, male-beneficial female-deleterious genes are lost on the X to

become Y-exclusive. However, this Y-linkage is only a temporary solution as gene erosion and

regulatory interference and epigenetic conflict from transposable elements will eventually

drive these genes to either migrate off the Y or be lost entirely.

Co-amplified neo-sex genes are predominantly expressed during meiotic

stages of spermatogenesis

While Y evolution is characterized by massive gene loss and degeneration of the Y chromo-

some, we recently found that a subset of genes became highly amplified on both the neo-X and

neo-Y chromosome of D. miranda after they became sex-linked [73]. Genes that co-amplified

on the neo-sex chromosomes were highly enriched for functions associated with chromosome

segregation, chromatin organization, and RNAi, suggesting that their amplification was driven

by X versus Y antagonism for increased transmission. Consistent with the hypothesis that co-

amplified genes functioning to interfere with mendelian segregation, we find that expression

of both co-amplified X and Y genes drastically increases as they enter meiosis (peaking in late

SC 1; Fig 7A and 7B). Co-amplified genes continue to be expressed postmeiosis when sperm

chromatin is being remodeled, another process that has been found to be repeatedly targeted

by meiotic drivers [25,74–76].

Expression patterns at co-amplified X/Y genes fall into 4 distinct clusters. Some genes are

highly expressed from the neo-Y throughout spermatogenesis and peak during meiosis (Clus-

ter 1); they typically have very high copy number on the Y (up to 39 copies), and only few cop-

ies on the neo-X. These genes may have amplified on the neo-Y because of important testis-

specific functions they perform during meiosis. The second cluster consists of genes that are

highly expressed from both the neo-X and neo-Y chromosome. Their expression peaks during

Fig 7. Expression of ampliconic genes on the neo-sex chromosome across germline progression. For each ampliconic gene family (columns), the copy

number (A), expression across testes stages (B), and smRNA abundance (C) are displayed in heat maps in log scale. For scRNA-seq expression and smRNA,

expression level is summed across X- or Y-linked copies. smRNA abundance is summed across all fragment sizes. For abundance across the entire fragment

size range, see S12 Fig. The data underlying this figure can be found in S1 Data. scRNA-seq, single-cell RNA-seq; smRNA, small RNA.

https://doi.org/10.1371/journal.pbio.3002605.g007
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and after meiosis (in late spermatocytes and early spermatids), and their copy numbers are

more similar on the neo-X and neo-Y. We speculate that these genes are most likely to be

involved in an ongoing, gene dosage-dependent conflict over segregation, where both X and Y

copies are expressed during or after meiosis in a battle over transmission to the next genera-

tion. The third cluster consists of co-amplified genes predominately expressed from the neo-X

copies; this could be “winning” X-linked drivers pushing the population sex ratio towards

females, as observed in wild D. miranda populations [73]. The last cluster contains co-ampli-

fied genes that show little expression from either chromosome. It is possible that these genes

are now defunct relics of previous meiotic drive systems that are now effectively silenced.

Since the siRNAs pathway has been shown to suppress sex-linked meiotic drivers [77–79],

we analyzed small RNA (smRNA) profiles from bulk testes [73]. Interestingly, X-linked and Y-

linked multicopy genes with high copy number and expression produce an abundance of both

sense and antisense smRNAs (Figs 7 and S11). Further subdividing the smRNA reads based

on their size, we find that the smRNAs are predominately distributed around 21 bp indicative

of siRNAs (and not simply RNA degradation products; S12 Fig). These results are consistent

with the scenario that these sex-linked multicopy genes are reciprocally down-regulating each

other by producing siRNAs to bias their transmission into the next generation.

Discussion

Dosage compensation shutdown through meiosis explains meiotic and

germline down-regulation in flies

The status of meiotic sex chromosome regulation in Drosophila has been debated for decades.

The first evidence for MSCI in flies, albeit indirect, was based on observations of reciprocal

translocations between the X and autosome. Autosome-to-X translocations cause male sterility

but not X-to-autosome translocations, suggesting that germline-essential genes translocated

onto the X are down-regulated [80]. In conjunction with claims of increased X-condensation

in early spermatocytes, this led to the suggestion of MSCI in flies [80], but the cytological data

were subsequently refuted [81]. More recent, direct evidence of MSCI includes reduced

expression of transgenes inserted onto the X versus autosomes [28,34], and reduced expression

of X-linked genes in carefully dissected testes tissues as assayed by qPCR and microarrays

[29,30]. In conjunction with the observation that genes with testes-biased expression are

underrepresented on the X in flies, it has been proposed that MSCI drives the exodus of testes-

biased genes off the X chromosome onto autosomes [29,33]. However, others have argued that

the X is not globally inactivated [31], or that the reduced expression is not exclusive to meiotic

stages but occurs even in premeiotic cells [30,34]. Discrepancies have been attributed to limita-

tions in methodologies including limited number of genes quantified and tissue contamina-

tion in manual dissections, issues that scRNA-seq holds the promise of resolving. When

analyzing the meiotic cell types in adult Drosophila testes scRNA-seq, Witt and colleagues

were unable to establish the presence of MSCI, reporting spermatocyte expression levels that

are “expected from incomplete or absent dosage compensation” [35]. However, Mahadevaraju

and colleagues reported the presence of MSCI after analyzing scRNA-seq generated from

developing testis discs in male larva [36], although the reported down-regulation does not

exceed half of autosomal expression (and thus is also consistent with absence of DC in testes).

Therefore, even with scRNA-seq relieving concerns of cell-type contamination the status of

MSCI in Drosophila remains debated.

We took advantage of D. miranda’s unique sex chromosome architecture to evaluate the

presence of MSCI in conjunction with scRNA-seq. D. miranda’s 3 X chromosome arms of dif-

ferent ages allowed us to determine whether and how the X chromosome is down-regulated
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during spermatogenesis, and how it evolves. Inconsistent with the X being inactivated during

meiosis, expression of X-linked genes increases through meiosis, although to a lesser extent

compared to the autosomes (Fig 1F). Furthermore, overall expression of the X’s never drops

below half that of the autosomes. Contrasting expression trajectories of the different X chro-

mosomes is particularly diagnostic as to what process influences X expression during sper-

matogenesis, since DC shutdown and MSCI make different predictions for X arms with

different ages (Fig 2A). If the X is silenced by MSCI, the neo-X is expected to be the least

down-regulated due to its most recent autosomal heritage, while under DC shutoff expression

of all 3 X’s is expected to simply equalize (but not drop below half of autosomal expression lev-

els). Prior to meiosis, the neo-X consistently has the lowest expression of all 3 X’s, indicating

incomplete dosage compensation. However, we find that the neo-X loses expression the quick-

est and through meiosis, expression of older X’s simply drops to comparable levels. Expression

levels of all 3 X arms equalize after meiotic exit at roughly 58.5% of autosomal expression

(Fig 2B). These results collectively argue that the X’s are losing dosage compensation during

spermatogenesis, resulting in relatively lower expression compared to autosomes. One critical

benefit of examining the neo-X in D. miranda is the possibility of inferring the ancestral

expression prior to sex linkage by analyzing autosomal orthologs in D. pseudoobscura and

neo-Y linked gametologs. Both comparisons revealed that low expression of a subset of neo-X

genes most likely reflects ancestrally low expression, instead of acquired repression after X-

linkage (Fig 3B and 3C).

This model of relative X down-regulation through DC loss reconciles discrepancies in sev-

eral studies. It is fully consistent with both the scRNA-seq findings in Witt and colleagues [35]

and Mahadevaraju and colleagues [36]. In the latter study, cytological data showing reduced

active RNA-Polymerase-II (Pol-II) staining in meiotic nuclei was argued as critical support for

MSCI-driven down-regulation. In light of our results, we suspect that reduced Pol-II activity

reflects the attenuation or removal of DC. MSL-associated hyper-transcription in somatic cells

is achieved via elevated levels of Pol-II recruitment to promoters [82] and enhanced elongation

[83,84]. The cytological results in Mahadevaraju and colleagues [36] show that active Pol-II

signals on the X, estimated as the ratio between active and total Pol-II signals, appear to be

around half of the ratio for autosomes, suggesting that half of the Pol-II occupying the X are

no longer active. While this was interpreted as MSCI, it could also represent reduction of Pol-

II activity on the hyper-transcribed X without clearing Pol-II occupancy, and therefore is fully

consistent with DC shutdown. Moreover, their volumetric estimates suggest that the X is less

compacted and occupies more nuclear space than autosomes; this is inconsistent with the

compaction of the X as expected of and observed in animals with MSCI. Interestingly, a recent

study by Anderson and colleagues [85] profiled active Pol-II in spermatocytes of meiotic arrest

mutants and reported that genome-wide active Pol-II profiles across the X and autosomes are

fully consistent with a lack of dosage compensation by this stage of spermatogenesis [85]. They

also found no evidence of silencing chromatin enrichment on the X in spermatocytes and sim-

ilarly concluded the lack of DC as the cause of X down-regulation. Our results are also in par-

tial agreement with the reports in Meiklejohn and colleagues and Landeen and colleagues that

down-regulation of the X occurs across the testes and is not specific to meiosis [30,34], as the

X:A expression ratios in somatic (Cyst and Hub) and early germline clusters (GSC and SG) are

all<1 and thus lower than expected under full dosage compensation (Fig 2B).

Germline dosage compensation is less robust on the neo-X

Our analyses comparing X-linked genes proximal and distal to the MSL complex clearly shows

DC up-regulating the former in many of the testis clusters until late meiotic cell types (late
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spermatocytes) (Fig 1F). While this is consistent with previous reports in D. melanogaster tes-

tes scRNA-seq dataset [35,36], the germline is thought to lack MSL-dependent dosage com-

pensation in flies. This is primarily based on the cytological observation that many of the MSL

components are absent in the germline, the male germline appears to lack X-chromosome-

specific H4K16ac [37] and MSL-1 and MSL-2 are dispensable for spermatogenesis in pole cell

transplants [86]. However, we find that only roX1 and mof are absent or lowly expressed in the

germline tissues of D. miranda. Rox1 and rox2 have essential but redundant function in dosage

compensation and mof, the histone acetyltransferase, appears to be lowly expressed even in

other scRNA-seq datasets for somatic tissues that are expected to be dosage compensated

[87,88], so low expression of mof may not necessarily reflect absence of activity. Thus, our data

are consistent with MSL-dependent DC in the testis of D. miranda, but alternative means of

achieving X up-regulation in the GSC and spermatocytes without hyper-acetylation are possi-

ble. Three-strand DNA-RNA-hybrid structure (R-loops) were shown to be associated with

hyper-transcription on the X in the absence of H4K16Ac [89]. Further, a recent comparison of

the nuclear topology of germline stages reported that in spermatogonia and spermatocytes,

active chromatin regions on the X have more intra-chromosomal contacts than the autosomes,

potentially suggesting that active regions on the X are gathering at transcription-rich nuclear

territories allowing for higher expression [38]. These studies both suggest alternative mecha-

nisms of up-regulating the X in the absence of the full MSL complex.

Curiously, the (perhaps, non-canonical) dosage compensation in the germline appears to

differentially up-regulate the X arms. The neo-X shows incomplete dosage compensation

across all tissues, even somatic ones (Fig 4B). However, incomplete dosage compensation

becomes much more pronounced in the early germline (Fig 2B and 2C), where the extent of

dosage compensation tracks the age of the X’s. This suggests that germline DC is either less

robust or being lost more quickly on the younger neo-X.

While dosage compensation of the neo-X appears most incomplete in testis, we also found

that expression of the neo-Y alleles can increase overall expression from the neo-sex chromo-

somes (Fig 5D). By examining the expression of gametologs on the neo-sex chromosomes in

the scRNA-seq and comparing their expression to the ancestral autosomal expression in bulk

RNA-seq data, we found that the neo-Y chromosome can mitigate suboptimal dosage com-

pensation on the neo-X, regardless of the tissue type. Importantly, since neo-Y alleles are more

highly expressed in testis compared to most autosomal tissues (S13 Fig), this means that over-

all expression from the neo-sex chromosomes in testis resembles that of the older X chromo-

somes more closely—i.e., only a moderate deficiency of Muller C linked expression relative to

autosomes in testis, similar to that of the older X chromosomes.

Gene content and gene expression evolution resolves sexual and meiotic

conflict of sex chromosomes

Gene content of sex chromosomes is non-random, and gene expression evolution and gene

movement can contribute to sex chromosome-specific expression patterns. We find that the

neo-Y is becoming masculinized. Ancestrally testes-biased genes (inferred from expression

patterns in D. pseudoobscura) have become either neo-Y biased in expression or neo-Y exclu-

sive, indicating either down-regulation or complete loss of the neo-X gametologs, respectively.

Demasculinization of the X chromosome occurs, in part, due to the fact that the X chromo-

some spends twice as much time in females than males, and previous studies in Drosophila
have revealed an excess of gene movement of testis-expressed genes off the X chromosome

onto autosomes [6,42]. Here, we show that the neo-Y presents an intermediary for this move-

ment as male-biased genes first transition to neo-Y biased or specific expression, thereby
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alleviating the potential for these genes to be female-detrimental and resolving sexual conflict.

However, as degeneration continues, these genes will inevitably be lost, further driving their

movement onto autosomes. Interestingly, the formation of the neo-X in D. miranda is not

associated with an excess of gene movements from Muller C to other autosomes (Figs 3A and

4A); in fact, gene movement is small and Muller A appears to be the most frequent destination.

Thus, autosomal migration likely occurs only after further degeneration of the neo-Y which

provides a temporary but unstable solution to sexual conflict.

Sex chromosomes are also vulnerable to be involved in conflicts during meiosis. Meiotic

drivers that try to cheat fair mendelian segregation are prone to originate on sex chromo-

somes. Sex chromosome drive will skew the population sex ratio and select for suppressors on

the other sex chromosome that are resistant to the distorter. If the distorter and suppressor are

dosage sensitive, they would undergo iterated cycles of expansion, resulting in rapid co-ampli-

fication of driver and suppressor on the X and Y chromosome. We recently showed that meio-

sis and RNAi-related genes co-amplified on both the neo-X and neo-Y chromosome of D.

miranda. Consistent with co-amplification of X/Y genes being driven to interfere with mende-

lian segregation, we show that these genes are predominantly expressed during meiotic stages

of spermatogenesis and postmeiotic stages, the cell types in which meiotic drivers are most

likely to operate. Thus, sexual and meiotic conflicts may drive unique gene content and expres-

sion evolution on sex chromosomes.

Materials and methods

Testes disruption and single-cell preparation

For each of the 2 replicates, 5 pairs of testes were dissected from D. miranda MSH22 in drops

of cold PBS. Testes were transferred to a low retention Eppendorf tube containing a drop of

lysis buffer (Trypsin L + 2 mg/ml collagenase) followed by 30 min of room temperature incu-

bation with mild agitation. Then, the samples were first passed through a 50 μm nylon mesh

filter (Genesee Cat #: 57–106) with centrifugation at 1,200 rpm for 7 min, and then twice

through a 30 μm nylon mesh (Genesee Cat #: 57–105). The resulting cell pellet was washed

with 200 μl of cold HBSS and pelleted again by centrifuging at 1,200 rpm for 7 min. After

removing the supernatant, the cells were resuspended in 20 μl of HBSS. Approximately 5 μl of

the cell suspension were used for cell counting, and 5 μl were transferred to a slide for imaging

with a Zeiss upright light microscope. Approximately 10,000 cells were submitted for library

preparation with the 10X Chromium platform at the Berkeley Vincent J. Coates Genomics

Sequencing Lab followed by 100-bp pair-end sequencing on Illumina NextSeq 2000.

Single-cell RNA-seq data processing

We used salmon (v1.5.2) [90] package to align the raw reads. We generated the index using a

fasta file containing both D. miranda genic and transposable element transcripts. We then

mapped the reads using the alevin program in salmon forcing 10,000 cells with—forceCells.

Resulting files were then imported into R (v4.2.1) in Rstudio. We used Seurat (v4.0.5) [91] to

process the read counts, cluster the UMIs, assign cell identities, generate UMAP projections,

and aggregate cells within cell types. While there were initially 10,990 UMIs, after clustering

and cell type assignment using marker genes [35,36,62,63,92], we were unable to assign cell

identity for 4 clusters that have low read counts (S1 Fig). Cells (5101) in these clusters were

removed, resulting in a final cell count of 5,889. To remove non-testes-related genes, we

removed genes with fewer than 5 total reads across any cell types. All subsequent analyses were

done in Rstudio.
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Cluster-specific expression and X:A ratio

We used the function AggregateExpression() in Seurat to sum counts across cells of the same

cluster to acquire cluster-specific expression of every gene. To calculate the X:A ratio, each X-

linked gene is divided by the median expression of genes on Muller B and E, generating

expression distributions that are autosome-normalized. The cell-type and chromosome-spe-

cific medians were used to infer the DC status chromosome-wide or for specific gene sets.

MSL3-binding site and dosage compensation identification

The MSL-3 ChIP-seq is from ref [2] which were generated by pulling down a GFP-tagged ver-

sion of MSL-3 in D. miranda. We used bwa mem on default settings [93] (v 0.7.15) to align the

chip and input reads. We then used macs2 [94] (v2.2.6) to call the enrichment peaks. We then

used bedtools [95] (v2.26.0) closest -d to identified the gene closest to MSL3 peaks and vice

versa and their distance from each other, allowing us the categorize genes according to their

proximity to MSL peaks.

Identifying orthologs and gametologs using reciprocal best hits

We downloaded the D. pseudoobscura (r3.2) CDS sequence from Flybase. For D. miranda, we

generated 2 sets of CDS files, one without neo-X genes and one without neo-Y genes. For each

gene, the longest CDS is selected if there are alternative splice forms. We then used blastn

(v2.6.0+) -task blastn to reciprocally blast the D. pseudoobscura CDS sequences with either sets

of D. miranda CDS sequences. Best blast hit was defined as either having the highest e-value or

longest blast alignment. Genes were identified as orthologs if they are reciprocal best hits of

each other. The neo-Y gametologs are the Y-linked reciprocal best hits in the D. miranda CDS

without the neo-X genes. The neo-X gametologs are the Muller C-linked reciprocal best hits in

the D. miranda CDS without the neo-Y genes. Genes were further blasted to the D. lowei
genome [96] to determine the ancestral chromosome location. Ampliconic genes were

removed for orthology calls.

Ribo-seq library preparation

We collected male third instar larvae and extracted total RNA using the RNAeasy Mini kit

(Qiagen Catalog No. 74004). We digested the total RNA by micrococcal nuclease (Roche) with

3U/μg of total RNA. To collect the monosomes, we prepared 10% to 50% sucrose gradients in

polysome gradient buffer (250 mM NaCl, 15 mM MgCl2, 20 U/ml Superase ln, 20 μg/ml Eme-

tine) with a GradientMaster (Biocomp Instruments). Monosome fractions were then collected

after resolving and fractionating the gradient. We then extracted the RNA from the mono-

somes with a standard phenol/chloroform protocol and dephosphorylated the RNA by T4

polynucleotide kinase (New England Biolabs). We specifically excised RNAs spanning 28 to 34

nt from the gel, and then performed 2 rounds of subtractive hybridization to remove ribosome

RNAs as described. Small RNA libraries were then prepared following the standard Illumina

protocol with TruSeq small RNA kit (Illumina Catalog No. RS-200). The ribo-seq libraries

were sequenced at the Vincent J. Coates Genomics Sequencing Laboratory at University of

California, Berkeley at HiSeq 2000 50 bp SE.

RNA-seq and ribo-seq data and processing

Embryonic and tissue-specific RNA-seq were from refs [97,98]. Reads were aligned using

STAR [99] (v2.7.10a) to their respective species genomes. The D. miranda genome is from ref

[57] and the D. pseudoobscura genome (r3.2) is from Flybase. We then filtered the mapped
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reads for either the primary alignments or the unique alignments using samtools view–F 260

or–q 255, respectively. We then used featureCounts [100] (v2.0.3) in the Subread package to

count reads over CDSs with featureCounts -p -M -t CDS. Because the X and Y can have large

differential contribution to male and female transcriptomes, for normalization we used a mod-

ified version of Transcript Per Million with number of reads mapped to autosomal genes as

the numerator: ((No. of reads mapped to a gene / CDS length*10e-6)) / (Sum of (No. of reads

mapped to autosomal gene / CDS length) * 1000) * 10e-6).

SmRNA data processing: Testes smRNA were from [73]. Reads were trimmed with trim_-

galore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). They were mapped

using bowtie allowing only 1 mismatch. Mapped reads were then fractionated into different

fragment sizes using awk. We then used featureCounts–p–t CDS–s to count reads mapping to

CDSs in a strand aware manner.

Dryad DOI

doi.org/10.6078/D1DH7T [101].
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