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Abstract

Intraspecies aggression has profound ecological and evolutionary consequences, as recipi-

ents can suffer injuries, decreases in fitness, and become outcasts from social groups.

Although animals implement diverse strategies to avoid hostile confrontations, the extent to

which social influences affect escape tactics is unclear. Here, we used computational and

machine-learning approaches to analyze complex behavioral interactions as mixed-sex

groups of mice, Mus musculus, freely interacted. Mice displayed a rich repertoire of behav-

iors marked by changes in behavioral state, aggressive encounters, and mixed-sex interac-

tions. A distinctive behavioral sequence consistently occurred after aggressive encounters,

where males in submissive states quickly approached and transiently interacted with

females immediately before the aggressor engaged with the same female. The behavioral

sequences were also associated with substantially fewer physical altercations. Further-

more, the male’s behavioral state could be predicted by distinct features of the behavioral

sequence, such as kinematics and the latency to and duration of male–female interactions.

More broadly, our work revealed an ethologically relevant escape strategy influenced by the

presence of females that may serve as a mechanism for de-escalating social conflict and

preventing consequential reductions in fitness.

Introduction

Social animals navigate complex environments by evaluating sensory cues, assessing risks,

integrating new information with existing knowledge, and executing appropriate behaviors

[1,2]. This behavioral flexibility is crucial for their physiological fitness, driving the develop-

ment of cognitive mechanisms to respond to social cues and environmental changes [3]. For

example, animals employ transitive inference to deduce social ranks by observing others’

behaviors, enabling them to adapt their actions based on hierarchical status and perceived

threats [4]. This adaptability is key to their survival and success.
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Animals respond to threats with both learned and innate escape behaviors [5,6] and envi-

ronmental features significantly influence their choice of escape strategies [7]. For example,

associating a neutral context with a noxious stimulus leads to learned freezing behaviors

[8], while predator cues or hostile interactions with conspecifics trigger natural, non-condi-

tioned responses [9]. Rodents, for example, adopt a defensive posture and scan their sur-

roundings when they detect predator odors or freeze in response to looming shadows

[10,11]. Aggressive conspecifics prompt various escape behaviors depending on the threat’s

proximity and the likelihood of evasion [12,13]. Additionally, prior experiences shape

escape strategies; animals frequently exposed to conflicts may avoid social encounters to

minimize future attacks [14,15]. Whether triggered by pain, predators, or aggression, effec-

tively executing escape strategies is crucial for survival. Failure to do so can lead to signifi-

cant fitness reductions [6]. Thus, understanding the behavioral strategies animals use to

evade danger is essential.

Quantifying and evaluating the effectiveness of naturalistic escape behaviors elicited by

hostile interactions is a formidable task. It requires unbiasedly extracting and assessing dis-

crete events within the diverse behavioral repertoires of individual animals. By addressing

these challenges, we can gain a comprehensive understanding of the dynamics of escape

behavior and the role of behavioral state in this evolutionarily conserved process. In this

study, we monitored the behavior of multiple freely interacting mice in a large arena and

employed multiple computational approaches to analyze individual behaviors. Using

behavioral state as a centralized framework, we discovered a robust phenomenon where

males subjected to agonistic encounters appear to escape and avoid conflict by exploiting

nearby females to divert the attention of the aggressor. These findings highlight sophisti-

cated social dynamics elucidated through systematic observation of naturalistic behavior,

demonstrate the influence of prior social experience and behavioral state on subsequent

behavior, and reveal a novel mechanism animals use to escape hostile encounters with

aggressive males.

Results

Quantifying dynamic social behavior

To explore group dynamics, we recorded naturalistic social interactions in mixed-sex groups

(n = 11, 2 males, 2 females per group) of adult mice for 5 h (Fig 1A and 1B). These recordings

were previously described in Sangiamo and colleagues [16]. An automated tracking program

[17] enabled unbiased quantification of movement (n = 44 animals, median total move-

ment = 1,343.7 cm, IQR = 349.3), verifying that each mouse explored the majority of the enclo-

sure (Figs 1B, 1C and S1). Tracking information served as input to a supervised machine

learning program [18] implemented to identify user-defined innate agonistic behaviors

(Fig 1D). Agonistic behaviors were defined as events where a male either fled (flee) or was

chased (chase) by another male (Table 1). Each male exhibited aggressive behavior towards a

rival, but in the majority of recordings, one of the males was significantly more aggressive

(S2A–S2D and S3 Figs and S1 Table). We observed 3,413 agonistic interactions between

males (n = 22, median = 216, IQR = 331.8), with chasing and flight occurring 2,562 and 851

times, respectively (flight median = 61, IQR = 51.3; chasing median = 174, IQR = 242.3). In

these behaviors, each mouse plays a specific, discernable role, revealing 2 distinct behavioral

states (aggressor versus aggressed).

Interactions between individuals of the opposite sex significantly shape group behavior

[19]. To identify social interactions, we developed an automated computational approach

(S2E and S3 Figs). Social interactions were defined as periods where 2 mice of the opposite sex
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spent at least 0.2 s within 3 cm of each other. We frequently observed male–female interactions

(total interactions = 37,725, median = 3,477, IQR = 742). Despite evidence that females in

many species prefer dominant males and acts of aggression serve to attract potential mates

[20], the overall aggression level of a male social partner did not influence frequency, overall

time, or duration of opposite-sex interactions (S2E–S2G Fig).

Fig 1. Machine learning-based approaches for tracking individuals and identifying behaviors. (A) Experimental

timeline. Numbers denote postnatal day. (B) Individual mice differentiated by distinct fur patterns were tracked in a large

arena (width = 76.2 cm, length = 76.2 cm, height = 61 cm) using automated software. Trajectories show 1 s of movement.

M1 = male 1, M2 = male 2, F1 = female 1, F2 = Female 2. The scale bar (cyan) represents 10 cm. Trajectory of M2 during

the 5-h recording overlaid by grids of 9 cm2, 36 cm2, and 81 cm2. (C) Cumulative probability plots quantifying the

percentage of the arena explored by the mice. (D) Chase exemplar. Aggressor males were chasing (outlined in orange),

while aggressed males were being chased (outlined in blue). (E) Flee exemplar. Aggressor males were being fled from

(outlined in orange), while aggressed males fled (outlined in blue). Numerical values for Fig 1C are available as an online

supporting file (S1 Data). Source data can be found in S1–S12 Datasets.

https://doi.org/10.1371/journal.pbio.3002496.g001
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Behavioral state directly influences male–female interactions

To explore whether a male’s behavioral state affects social engagement, we analyzed the tempo-

ral relationship between aggressive behaviors and opposite-sex interactions (Fig 2A). Across

all recordings, we observed 2,082 sequences where an opposite-sex social interaction followed

an aggressive interaction between males. Sixty-two percent of male–female interactions

involved aggressed males (Fig 2B). The median latency between aggressive behavior and social

interaction was 1.17 s (IQR = 4.77 s). However, in 463 sequences, socialization began before

the aggressive behavior ended (shortest latency = −7.13 s, median = −0.23 s, IQR = 0.6 s). The

delay between hostile male–male interactions and subsequent female interactions was signifi-

cantly shorter for aggressed males (Fig 2C). Additionally, post-aggression interactions were

shorter when the aggressed male engaged with the female compared to the aggressor (Fig 2D).

Decision tree classifiers were used to decode the behavioral state of the male social partner

(Fig 2E). Accuracies of classifiers, trained on latency to the social interaction and duration of

the social interaction, ranged from 58.6% to 72.4%, significantly exceeding chance levels of

50%. When sample-size-matching the number of interactions the aggressor and aggressed had

with females, classifiers could predict the behavioral state of the social partner. Randomizing

the times of the hostile interactions between males dropped classifier accuracies to chance lev-

els. These results indicate that distinct behavioral states influence subsequent male–female

interactions.

We conducted control analyses to determine if these findings were specific to behavioral

state. First, we analyzed male–female social interactions following nonaggressive, nonsocial

behaviors (e.g., walking, Table 1 and S4A Fig), as these sequences differed in the behavioral

state and social context. When solitary walks preceded mixed-sex interactions, both the walker

and non-walker were equally likely to interact with females (S4B Fig). No differences were

observed in the latency to interact (S4C Fig). The duration of interactions was significantly

shorter for non-walking males compared to walking males (S4D Fig). Predictive models could

differentiate the behavioral state of the male social partner in social interactions following soli-

tary walks, but accuracies dropped to chance levels when controlling for sample size and ran-

domizing behavior times (S4E Fig).

Next, we examined a nonaggressive, social behavior (investigating, Table 1 and S5A Fig),

as these sequences differed in behavioral state but not social context. Similar to walking-trig-

gered sequences, there were no differences in the number of opposite-sex interactions (S5B

Fig). The latency between investigation and social interaction was shorter when the investi-

gated male was the social partner (S5C Fig), but the median latency for investigated males was

higher than for aggressed males during aggression-triggered social interactions. The duration

Table 1. Number and definition of extracted behaviors.

Behavior

Name

Behavior Definition Number of

Examples

Chasing A male follows another male while the 2 mice are within 2 body lengths of

each other

2,562

Fleeing A male running away from the other typically stationary male 851

Walking A mouse moves around the cage, in isolation (i.e., no other mouse within 35

cm)

21,953

Investigating Two mice touching, usually including sniffing. Can include nose to body, nose

to nose, and/or anogenital investigation. This excludes other defined

behaviors.

4,661

Fighting Both males engaging in physical contact. Involves biting, wrestling, and rolling

over each other.

1,177

https://doi.org/10.1371/journal.pbio.3002496.t001
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of male–female interactions following investigation was indistinguishable by behavioral state

(S5D Fig). Predictive models failed to accurately identify the behavioral state of the male social

partner in social interactions following male–male investigations (S5E Fig). These results

strongly suggest that aggressive encounters trigger a state-dependent phenomenon, leading to

increased interactions between aggressed males and females.

We identified males as more or less aggressive based on aggregated aggression levels (S2

and S3 Figs), thus allowing us to assess whether aggressiveness influenced subsequent interac-

tions rather than behavioral state. Comparing more and less aggressive males revealed no dif-

ferences in the number (S6B Fig), latency (S6C Fig), or duration of male–female interactions

Fig 2. The behavioral state of an individual modulates subsequent interactions with females. (A) Schematic of

aggressive social sequences. Sequences consisted of aggressive male interactions followed by male–female social

interactions. (B) The number of male–female interactions following aggressive behaviors. Lines connect co-recorded

mice. Black lines and white boxes show the medians and interquartile ranges (25%–75%). Each data point represents

the median of the distribution for each individual. Wilcoxon signed rank test, W = 0, p< 0.001. (C) The latency

between aggressive encounters and social interactions. Wilcoxon signed rank test, W = 66, p< 0.001. (D) The duration

of social interactions following aggressive encounters. Wilcoxon signed rank test, W = 58, p< 0.05. (E) Performance of

decoders when predicting the behavioral state of the male social partner in post-aggression social interactions. Black

lines and white boxes show the means and standard deviations. The red line denotes chance levels (50%). Each

condition: 1-sided z-test, n = 1,000 iterations. Observed: z = 7.25, p< 0.001; size-matched: z = 3.04, p = 0.001;

randomized: z = −0.05, p = 0.48. Numerical values for Fig 2B–2D are available as an online supporting file (S1 Data).

Source data can be found in S1–S12 Datasets.

https://doi.org/10.1371/journal.pbio.3002496.g002
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(S6D Fig). Predictive models performed at chance levels when identifying the male social part-

ner (S6E Fig). These findings suggest that behavioral state, rather than cumulative levels of

aggression, underlies the sequential nature of social interactions following aggressive

encounters.

Computational controls

To ensure that sample size did not bias the finding that aggressed males were more likely to

engage with females after a hostile interaction (S7A Fig), we used a permutation test [21]. We

randomly selected 50 sequences from each recording and calculated a difference index

between subsequent aggressed and aggressor interactions with a female (Methods). For all per-

mutations, the difference index was below zero, suggesting that after hostile interactions

between males, the aggressed male consistently interacts with the female first, and the effects

are not due to sample size. We employed a similar approach for nonsocial, nonaggressive (S7B

Fig) and social, nonaggressive (S7C Fig) triggered sequences, finding that the distributions of

indices were not significantly skewed towards either male. These analyses suggest that neither

sample size nor a subset of examples underlies the results.

To further address the importance of behavioral state, we performed another permutation

analysis. First, we randomized the identity of the males during aggressive encounters that pre-

ceded social interactions. We then calculated a difference index between subsequent aggressed

and aggressor interactions with the shuffled data. This procedure was performed 1,000 times

to generate a distribution of index values. The observed difference index (−0.25) was signifi-

cantly lower than the mean of the distribution of shuffled index values (S7D Fig). Additionally,

decision tree classifiers were used to predict the type of behavioral sequences (aggressive or

control behavior—combined walking and investigating) at rates higher than chance levels

(S7E Fig). The model’s accuracy did not depend on the number of examples, maintaining high

accuracy with equal numbers of aggressive and control sequences (S7E Fig). Accuracy was low

when we attempted to decode sequence type on data where the timing of the behavior preced-

ing the social interaction was randomized (S7E Fig). Together, these analyses substantiate the

finding that a male’s behavioral state affects subsequent interactions with females after a hostile

interaction.

Behavioral controls

Differences in male trajectories following aggressive behaviors might drive the observed

behavioral patterns. To investigate how trajectory differences might influence subsequent

social interactions, we quantified the angles between the male’s heading direction and the vec-

tor pointing from the male to the female (Fig 3A and 3B). Across all sequences, we found that,

on average, the angle difference was significantly smaller for aggressed animals (Fig 3C and

3D). This trend persisted when examining the medians of individual animals (Fig 3E and 3F).

To assess whether these differences were influenced by the orientation of the females relative

to the males, we calculated the difference in male and female heading direction at the end of

the aggressive behavior (Fig 3G and 3H). There were no significant differences between

aggressor and aggressed males, indicating that the orientation of the females did not affect the

likelihood of a particular male engaging in subsequent interactions (Fig 3I–3L). These results

suggest that the heading direction of the aggressed male, but not the orientation of the female,

plays a significant role in subsequent interactions.

Despite the aggressed male’s orientation towards the female at the end of aggressive

encounters, it is possible that females initiate the subsequent social interaction. We measured

the instantaneous speeds and positions of each social partner to identify the initiator of male–
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female interactions following aggressive encounters. Males consistently initiated opposite-sex

social interactions regardless of behavioral state (Fig 4A and 4B). This phenomenon was con-

sistent across females, as males in both behavioral states engaged in post-aggression social

interactions with each female (Fig 4C and 4D). These results indicate that the onset of social

encounters following aggressive behavior is driven by the aggressed males rather than by

female social partners.

To rule out the possibility that the aggressed animal encounters the female by chance while

escaping from the aggressor, we quantified the latency to reach multiple arbitrary zones, or

spatial locations, in the behavioral arena after the aggressive behavior ended. The zones

included the North central (zone 1), East central (zone 2), South central (zone 3), West central

(zone 4), and center (zone 5) areas of the cage. When controlling for familywise error rate and

correcting for multiple comparisons using a Bonferroni correction, we found no differences in

Fig 3. State and orientation of aggressed male influence aggression-triggered social interactions, independent of

female’s orientation. (A) Example showing the angle between the aggressor male’s heading direction and the vector

pointing from the male to the female at the end of an aggressive encounter. (B) As in B, for the aggressed male. (C)

Distribution of angles between the aggressor male’s heading direction and the vector pointing from the male to the

female at the end of the aggressive encounter. Theta and radians on the polar plot represent angles in degrees and

normalized frequency. Normalization was determined by dividing the number of occurrences in each bin by the

number of post-aggression interactions between the aggressor and female. Circular variation and median shown by

triangle and line. (D) As in C, for the aggressed male. Comparing aggressive and aggressed state: Watson’s U2,

U2 = 2.12, p< 0.001. (E) Median angle between the aggressor’s heading direction and the vector pointing from the

animal to the female for individuals. (F) As in E, for the aggressed male. Comparing aggressive and aggressed state for

individuals: Watson’s U2, U2 = 0.34, p< 0.005. (G) Example showing the angle difference between the orientations of

aggressor male and female social partner. (H) As in G, for the aggressed male. (I) Distribution of angle differences at

the end of the aggressive behaviors when aggressor was the social partner. (J) As in I, for the aggressed male.

Comparing aggressive and aggressed state: Watson’s U2, U2 = 0.05, p = 0.81. (K) Median angle difference between the

orientations of aggressor male and female social partner for individuals. (L) As in K, for the aggressed male.

Comparing aggressive and aggressed state for individuals: Watson’s U2, U2 = 0.06, p = 0.57. Numerical values for Fig

3C, 3D, 3I, 3J, 3E, 3F, 3K and 3L are available as an online supporting file (S1 Data). Source data can be found in S1–

S12 Datasets.

https://doi.org/10.1371/journal.pbio.3002496.g003
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latency to reach any of the zones except for zone 3 (Fig 4E–4I), supporting our hypothesis that

this phenomenon is state dependent. Overall, these results demonstrate that the heading direc-

tion and subsequent actions of the aggressed male play a critical role in initiating post-aggres-

sion social interactions, and that this behavior is not driven by the orientation or actions of the

females.

Temporal persistence of post-aggression social interactions

Aggression-triggered social interaction sequences emerged early and persisted over time. The

initial sequence in each recording occurred at 10.26 min on average (n = 11, median = 5.82

min, IQR = 3.78 min), whereas the final event was recorded at 283.24 min on average

(median = 297.27 min, IQR = 170.20 min). Throughout the 5-h recordings, behavioral state

significantly influenced these interactions, with aggressed males engaging in a higher propor-

tion of aggression-triggered interactions during each hour (Fig 5A). Multi-class support vector

machines (mcSVMs) trained on behavioral sequence features failed to accurately predict the

Fig 4. State-dependent aggression-triggered social interactions are independent of initiator or location in cage. (A) Male–

female social interactions initiated by the aggressor or female. Lines connect co-recorded mice. The horizontal bars and boxes

below the data show the medians and interquartile ranges (25%–75%). Wilcoxon signed rank test, W = 64, p< 0.005. (B) As in

A, for interactions with the aggressed. Wilcoxon signed rank test, W = 69, p< 0.001. (C) Interactions the aggressor male had

with each female. Wilcoxon signed rank test, W = 16, p = 0.15. (D) As in C, for interactions with the aggressed. Wilcoxon signed

rank test, W = 20, p = 0.08. (E) Top: Schematic showing arbitrary zone in the cage. Bottom: Median latency of aggressor and

aggressed to reach zone 1 from the end of all aggressive behaviors. Wilcoxon signed rank test, W = 32, p = 0.98. (F) As in E, for

zone 2. Wilcoxon signed rank test, W = 47, p = 0.24. (G) As in E, for zone 3. Wilcoxon signed rank test, W = 64, p< 0.05 (α set

to 0.01—Bonferroni correction to control for familywise error rate and correct for multiple comparisons). (H) As in E, for zone

4. Wilcoxon signed rank test, W = 23, p = 0.41. (I) As in E, for zone 5. Wilcoxon signed rank test, W = 32, p = 0.30. Numerical

values for Fig 4A–4I are available as an online supporting file (S1 Data). Source data can be found in S1–S12 Datasets.

https://doi.org/10.1371/journal.pbio.3002496.g004
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specific hour of occurrence (Fig 5B). Conversely, decision tree classifiers effectively predicted

the behavioral state during each hour (Fig 5C). However, when controlling for the number of

sequences per hour, model accuracy was significantly above chance only during the first hour

(Fig 5D). Randomizing the hour of sequence occurrence resulted in model accuracies indistin-

guishable from chance (Fig 5E), indicating consistent features in aggression-triggered

sequences over time. These findings suggest that the aggressive behavioral state is a key media-

tor of subsequent social interactions throughout the experiments.

Escape mechanism for deescalating hostile confrontations

Animals employ various strategies to avoid confrontations, as injury reduces biological fitness

[6, 21]. We hypothesized that aggressed males might interact with a female to divert the atten-

tion of an aggressor. To test this possibility, we examined social interactions that followed the

interactions after aggressive encounters (Table 2). We observed that the aggressor often

engaged with the same female the aggressed male interacted with (S1 Video). Specifically, the

majority of subsequent interactions occurred between the aggressor and the same female

(Fig 6A, Sequence type 1, 53%). Other interaction sequences included the aggressed male

interacting with the same female (Sequence type 2, 21%), the aggressor with a different female

Fig 5. Aggression-triggered female social interaction sequences emerge early and persist over time. (A) The

percentage of aggression-triggered sequences binned hourly for individuals in either an aggressed or aggressive

behavioral state. The lines and shaded regions show the medians and interquartile ranges (25%–75%). Aggressor and

aggressed compared each hour with Wilcoxon signed rank test. Hour 1: W = 2, p< 0.005; hour 2: W = 2, p< 0.005;

hour 3: W = 3.5, p< 0.05; hour 4: W = 4.5, p< 0.05; hour 5: W = 1, p< 0.05. (B) Decoders’ performance when

predicting when the sequences occurred. The horizontal bars and boxes below the data show the means and standard

deviations. The red line denotes chance levels. Each condition: 1-sided z-test, n = 1,000 iterations. Observed: z = 0.30,

p = 0.38 size-matched: z = 0.30, p = 0.38 randomized: z = 0.94, p = 0.17. (C) Decoders’ performance when predicting

the behavioral state of the male interacting with the female for all observed data. Accuracy compared to chance each

hour with 1-sided z-test, n = 1,000 iterations. Hour 1: z = 4.6, p< 0.001; hour 2: z = 4.2, p< 0.001; hour 3: z = 3.1,

p = 0.001; hour 4: z = 1.8, p = 0.04; hour 5: z = 1.7, p = 0.04. (D) As in C, for size-matched controls. Accuracy compared

to chance each hour with 1-sided z-test, n = 1,000 iterations. Hour 1: z = 1.7, p = 0.04; hour 2: z = 0.9, p = 0.13; hour 3:

z = 0.1, p = 0.47; hour 4: z = −0.7, p = 0.24; hour 5: z = 0.2, p = 0.44. (E) As in C, for randomized start times of

aggressive male–male interactions. Accuracy compared to chance each hour with 1-sided z-test, n = 1,000 iterations.

Hour 1: z = 0.39, p = 0.35; hour 2: z = 0.26, p = 0.36; hour 3: z = 0.30, p = 0.38; hour 4: z = 0.34, p = 0.37; hour 5:

z = 0.63, p = 0.26. Numerical values for Fig 5A are available as an online supporting file (S1 Data). Source data can be

found in S1–S12 Datasets.

https://doi.org/10.1371/journal.pbio.3002496.g005
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(Sequence type 3, 9%), and the aggressed male with a different female (Sequence type 4, 17%).

Sequence type 1 occurred significantly more often than the other types (Fig 6B) and more fre-

quently than expected by chance (Fig 6C). When training an mcSVM to classify sequence

types based on speed and distance traveled during the aggressive encounter, we found no

Table 2. Description of sequence types.

Type Behavior One Behavior Two Behavior Three

1 Aggressive

encounter

Social interaction (aggressed and

female)

Social interaction (aggressor and same

female)

2 Aggressive

encounter

Social interaction (aggressor and

female)

Social interaction (aggressed and same

female)

3 Aggressive

encounter

Social interaction (aggressed and

female)

Social interaction (aggressor and other

female)

4 Aggressive

encounter

Social interaction (aggressor and

female)

Social interaction (aggressed and other

female)

https://doi.org/10.1371/journal.pbio.3002496.t002

Fig 6. Quantification of sequential behaviors after aggressive encounters. (A) Schematic of sequence types and frequency of

occurrence. (B) The number of each sequence type across recordings. The horizontal bars and boxes below the data show the

medians and interquartile ranges (25%–75%). Kruskal–Wallis test (H(3,40) = 19.93, p< 0.001) with Dunn–Sidak correction. Type 1

vs. 2: p< 0.001; type 1 vs. 3: p< 0.001; type 1 vs. 4: p< 0.001. (C) Difference between the percentage of sequence types and

randomized distributions of sequences. Red and blue vertical lines denote percentages significantly above or below chance. Actual

proportions compared to randomized data with 2-sided z-test, n = 1,000 iterations. Type 1: z = 20, p< 0.001; type 2: z = −7.4,

p< 0.001; type 3: z = −7.6, p< 0.001; type 4: z = −5.9, p< 0.001. Numerical values for Fig 6B are available as an online supporting

file (S1 Data). Source data can be found in S1–S12 Datasets.

https://doi.org/10.1371/journal.pbio.3002496.g006
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distinction among the sequences (Methods; mean accuracy = 27%, standard deviation = 3%,

1-sided z-test, n = 1,000 iterations, z = 0.79, p = 0.43), demonstrating that the aggressive states

initiating these sequences are similar. Together, these findings suggest that aggressed males

may use a bait-and-switch tactic to evade aggressors.

To further investigate this tactic, we analyzed the distances between the female and both

males at various time points: during the aggressive encounter, the period between the

encounter and the first social interaction, the first social interaction, and the subsequent 5 s

(Figs 7A, 7B and S8). In all sequence types, the aggressed male was significantly closer to

the aggressor one second after the social interaction began. However, in sequence type 1,

distances between both males and the female were comparable one second after the interac-

tion ended, with the aggressed male then moving farther away from the female at subse-

quent time points. This pattern was unique to type 1 sequences, indicating a specific escape

strategy. Furthermore, for sequence type 1, the distance between males increased after the

second interaction (Fig 7C and 7D), suggesting that the interaction disrupts the aggression

sequence.

We also examined whether kinematic patterns could predict sequence types. Using

mcSVMs, we found that distances at 6 key time points could decode sequence type (Fig 7E).

To control for bias due to the high number of type 1 sequences, we size-matched the sequence

types and still found better-than-chance classification (Fig 7E). Randomizing sequence type

labels did not yield significant results (Fig 7E). These results strongly support the hypothesis

that aggressed males use a bait-and-switch tactic.

Escaping aggressive conspecifics and avoiding costly encounters is advantageous to an indi-

vidual’s well-being [3]. If aggressed animals successfully use a bait-and-switch like mechanism

to escape hostile interactions and de-escalate social conflict, then fewer fights should occur

between male interactions. Alternatively, the bait-and-switch could aggravate the aggressor

and trigger an aggressive response, thus increasing the number of fights and escalating costly

social conflicts. To address these 2 possibilities, we trained a supervised machine-learning clas-

sifier to detect fights (Table 1). There were 1,177 fights detected across all recordings

(median = 88, IQR = 63.75); however, fights rarely occurred after type 1 sequences (Fig 7F).

Additionally, the proportion of fights following a bait-and-switch was significantly lower com-

pared to other sequences (Fig 7G). Our findings suggest the bait-and-switch sequence helps

animals avoid further aggression and de-escalates conflicts.

Discussion

Animals continually observe and adjust to changes in their social environment, integrating

sensory feedback, previous social experiences, and internal states to modify their behavior [3].

In this study, we used sophisticated, unbiased methods to quantify the behavior of males in

groups of freely behaving mice (Figs 1 and S1–S3), establishing aggressor-aggressed behav-

ioral states as a framework to examine natural social dynamics. We found that males employ

behavioral-state-dependent strategies after hostile interactions to evade aggressors and de-

escalate confrontations. Specifically, we observed that aggressed males were more likely to

interact with a female immediately following antagonistic encounters (Fig 2). These brief post-

aggressive interactions occurred frequently and consistently throughout the five-hour record-

ings, indicating the robustness of this behavior (Fig 5). Most subsequent male–female interac-

tions involved the female previously engaged by the aggressed male and the aggressor,

suggesting a bait-and-switch strategy (Figs 6 and 7). This strategy appears to mitigate the costs

of agonistic encounters, as fights rarely occurred following bait-and-switch sequences (Figs 6

and 7).
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Animals use a diverse repertoire of defensive actions to escape threats [6,9,22–24]. While

environmental cues are crucial for optimizing defense against predation, animals must also

assess trade-offs, as escaping can result in a loss of resources, such as territory or mating oppor-

tunities [22]. In our study, we observed that aggressed males sacrifice additional time with

Fig 7. Submissive state-dependent behavioral strategies after aggressive encounters. (A) For sequence type 1, distances between the

aggressive or aggressed males and the female social partner were calculated during aggressive behaviors (AGG), the time between AGG and

male–female social interactions, interactions, and 5 s post-interaction. The lines and shaded regions show the medians and interquartile

ranges (25%–75%). The dashed lines indicate times representing 1 s after the start of the social interaction and post-interaction times of 1, 2,

and 3 s. (B) For sequence type 1, quantification of distances 1 s after the start of the social interaction and post-interaction times of 1, 2, and 3

s. Times correspond to the colored dashed lines in A. Top: all distances. Bottom: median distances for each mouse and compared using

Wilcoxon signed rank test. start + 1 second: W = 192,814, p< 0.0001; end + 1 second: W = 71,772, p< 0.0001; end + 2 second: W = 73,311,

p< 0.0001; end + 3 second: W = 79,583, p< 0.0001. (C) As in A, but measuring distance between males. (D) As in B, but measuring distance

between males. Top: all distances. Bottom: median distances for each mouse compared using Kruskal–Wallis test (H(3,40) = 34.13,

p< 0.0001) with Dunn–Sidak correction. start of SI + 1 second vs. end of SI + 2 seconds: p< 0.001; start of SI + 1 second vs. end of SI + 3

seconds: p< 0.0001; end of SI + 1 second vs. end of SI + 3 seconds: p< 0.005. (E) Decoders’ performance predicting sequence type. The

horizontal bars and boxes below the data show the means and standard deviations. The red line denotes chance levels. Each condition:

1-sided z-test, n = 1,000 iterations. Observed: z = 25.0, p< 0.001; size-matched: z = 6.06, p = 0.001; randomized: z = 0.93, p = 0.18. (F) Fights

occurring in the presence of type 1 sequences or other sequence types. Lines connect co-recorded mice. Wilcoxon signed rank test, W = 1,

p< 0.005. (G) Percentage of sequences with fights. Lines connect co-recorded mice. Wilcoxon signed ranked test, W = 3, p< 0.01.

Numerical values for Fig 7B and 7D–7G are available as an online supporting file (S1 Data). Source data can be found in S1–S12 Datasets.

https://doi.org/10.1371/journal.pbio.3002496.g007
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females, potentially reducing their chances to copulate in favor of avoiding hostile interactions.

We found that aggressed males—not females—initiate social interactions after aggressive

encounters but then quickly move away as the aggressor approaches the female (Figs 4, 6 and

7). This movement pattern suggests that aggressed males may use a bait-and-switch strategy to

distract the aggressor with a potential mating opportunity. This tactic reflects the ability of ani-

mals to incorporate information about their surroundings and make optimal choices to avoid

threats. These findings indicate that mice may integrate information about their own behav-

ioral state and that of others to shape dynamic social interactions and implement effective

behavioral strategies.

Hierarchical rank or social status regulates interactions across many species, from wasps

and fish to humans and primates [25,26]. Once a hierarchical rank is established, the frequency

of switching between aggressor and aggressed roles decreases [27]. In such hierarchies, domi-

nant animals often act aggressively to reinforce their status [28]. These interactions follow a

predictable pattern: dominant animals initiate with threat displays, escalating to physical

attacks if necessary [29–31]. Submissive animals respond by detecting the threat, initiating an

escape response, and terminating it once safe [6,11]. Social status can influence these escape

strategies [15,32], as seen in crayfish [33], where changes in rank alter avoidance behaviors

during aggressive encounters. Furthermore, social rank impacts responses to chronic psycho-

social stress. For example, Larrieu and colleagues [34] found that dominant mice develop avoi-

dant behaviors after repeated defeats, indicating that past experiences shape behavioral

strategies. Although we are unable to directly measure hierarchical rank in these experiments,

our findings suggest that the behavioral state of an animal, rather than the overall level of

aggression, influences the bait and switch escape strategy.

Our findings indicate that males engage in specific behavioral patterns after aggressive

encounters, which are associated with a reduction in subsequent fights. We interpret this as

a potential bait-and-switch strategy used by males in a submissive state to de-escalate con-

frontations. However, our experimental design, aimed at analyzing naturalistic behavior,

limited our ability to thoroughly investigate the mechanisms underlying this phenomenon.

This study primarily describes a frequently occurring behavior in males and provides the

computational tools needed for future research to explore the mechanistic aspects of this

potential escape strategy. Our study utilized small, sex-balanced groups, which may not

accurately represent natural conditions outside the laboratory. Future research should vary

the number of animals, combinations of males and females, and environmental factors to

better understand the applicability of this strategy in more naturalistic settings. Addition-

ally, our focus on animals without a clear social hierarchy may have influenced the observed

behaviors. Social status significantly affects behavioral decisions [35–37], and animals with

established social ranks might exhibit different behavioral strategies. Here, we characterized

a behavioral sequence in which the female acts as a more potent distractor, taking prece-

dence over the aggressed male. Several questions remain, such as whether males can distract

aggressors with objects in the environment or female scent cues. Given that females also

form social hierarchies and employ strategies to evade unwanted male attention [38–40], it

is possible that female mice use similar strategies to escape aggressive interactions. Future

experiments should explore female behavior to determine if this phenomenon is also pres-

ent. Despite the limitations of our study, we identified a discrete, state-dependent behav-

ioral strategy in which animals use social information to guide their actions. This bait-and-

switch strategy provides a framework for studying flexible, socially relevant behaviors in

laboratory settings and investigating the underlying neural mechanisms using a powerful

suite of readily available computational tools.
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Methods

Experimental model and subject details

We used adult (13 to 21 weeks) male (n = 22) and female (n = 22) B6.CAST-Cdh23Ahl+/Kjn

mice (Jackson Laboratory, Bar Harbor, Maine, United States of America, stock: 002756). This

congenic mouse strain, which is less susceptible to age-related hearing loss, was selected as our

previous study aimed to investigate the relationship between ultrasonic vocalizations and

social behavior [16].

Mice were housed in a humidity-controlled, temperature-regulated colony room at the

University of Delaware on a 12-h light/dark cycle (lights off at 7:00 PM EST). At 3 weeks old,

mice were weaned and genotyped using tail samples sent to TransnetYX (Cordova, Tennessee,

USA), ensuring only Cdh23-expressing mice were used in behavioral experiments. Mice were

individually tagged with light-activated microtransponders (p-Chip, PharmaSeq) implanted

subcutaneously at the base of the tail. Post-weaning, mice were group-housed with same-sex

siblings (3 to 5 per cage), with all cages containing ALPHA-dri bedding and environmental

enrichment. Mice had ad libitum access to food and water.

Ethics statement

The University of Delaware’s Institutional Animal Care and Use Committee (IACUC), adher-

ing to National Institutes of Health standards, approved all experimental protocols (AUP

Numbers: 1275-2014-0, 1275-2017-0, 1275-2020-0).

Software and algorithms

Matlab 2013, Matlab 2014, Matlab 2016

MOuse TRacker (MOTR, https://motr.janelia.org) [17]

Janelia Automatic Animal Behavior Annotator (JAABA, https://jaaba.sourceforge.net) [18]

General experimental design

At least 2 weeks before the behavioral experiment, size-matched (male with male and female

with female) mice were housed individually to minimize the effects of group housing and hier-

archical rank on social behavior [41,42]. For identification, mice were marked with unique

back patterns using nontoxic hair dye (Clairol Nice ‘N Easy, Born Blonde Maxi) under light

anesthesia at least 2 days before recording [17]. Each mouse received a random pattern: 5 dots,

1 diagonal slash, 2 vertical lines, or 2 horizontal lines. The day after marking, mice underwent

a 10-min exposure to a mouse of the opposite sex to enhance social communication [43,44].

The opposite-sex partners were not used in behavioral recordings but were reused with multi-

ple test subjects. If copulation attempts occurred, a trained observer ended the session. Two

hours before recording, the estrous stage of female mice was assessed using noninvasive vagi-

nal lavage and cytological analysis [45,46]. Cells were collected with a saline wash, placed on a

slide, stained with crystal violet, and examined under a light microscope (VWR, 89404–890).

Photographs were taken using a camera attached to the microscope (World Precision Instru-

ments, USBCAM50 and 501381). Females were considered in estrus if their cells were predom-

inantly cornified squamous epithelial cells lacking a nucleus. Recordings proceeded only if

both females were in estrus; otherwise, estrous testing continued until both were in estrus. We

used females in estrus because this stage of the reproductive cycle induces male competition

and, consequently, a more diverse behavioral repertoire is observed [47–49].

For each recording, 2 male and 2 female mice were housed together for 5 h in a mesh-

walled cage (McMaster-Carr, 9218T25) lined with Sonex foam (VLW-35, Pinta Acoustic),
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ensuring sufficient behavioral sampling for temporal analysis. The cage was placed in a cus-

tom-built anechoic chamber. Three of the 11 recordings used a cylindrical cage (height: 91.4

cm; diameter: 68.6 cm), while the remaining 8 used a cuboid cage with an extruded aluminum

frame (8020) (width: 76.2 cm; length: 76.2 cm; height: 61.0 cm) (S1 Fig).

Video data were continuously recorded at 30 frames per second using a camera (GS3-U3-

41C6M-C, FLIR) controlled and synchronized by custom written software. Data were stored

on a PC (Z620, Hewlett-Packard). Infrared lights (IR-LT30, GANZ) were positioned above the

cage to illuminate the arena for mouse tracking. ALPHA-dri bedding was added to the cage to

a depth of approximately 0.5 inches to enhance color contrast between the cage floor and the

mice. Each mouse was recorded individually for 10 min post-experiment to facilitate auto-

mated tracking [17].

Data processing

We analyzed mouse trajectories using a data analysis pipeline on the University of Delaware’s

FARBER computer cluster (http://docs.hpc.udel.edu). The program MOTR was employed to

track the mice by fitting an ellipse around each mouse in every video frame. MOTR calculated

the x and y coordinates of the ellipse’s center, its orientation, and the lengths of the semi-major

and semi-minor axes. Additionally, the nose position, distance from other animals, and instan-

taneous speed for each mouse at every frame was determined. A trained observer visually

inspected the trajectories after tracking to ensure accuracy.

Quantifying exploration

To assess exploration (Fig 1C), we divided the arena into evenly spaced bins of 3 sizes: 9 cm2,

36 cm2, and 81 cm2. For each animal, we calculated the percentage of bins explored during the

experiment.

Automatic extraction of social behaviors

We utilized JAABA, a supervised machine-learning program, to extract behaviors (Table 3)

based on definitions from prior research [16]. We focused on behaviors with clearly identifi-

able states: (1) aggressive, social behaviors were chasing and fleeing; (2) nonaggressive, nonso-

cial behavior was walking; and (3) nonaggressive, social behavior included male–male

investigation. Behavioral states were categorized as follows: (1) aggressor (the chasing male or

the one being fled from) and aggressed (the chased male or the one fleeing) for aggressive

social behaviors; (2) walking or not walking for nonaggressive nonsocial behaviors; and (3)

investigating and being investigated for nonaggressive social behaviors. Fights were extracted

but not included in social aggressive behaviors, as our focus was specifically on assessing

behavioral roles, and assigning roles was ambiguous at best during fights. All behaviors exhib-

ited a false positive rate below 5%, as determined by manual ground truthing [16]. To gauge

differences in aggression across recordings (S2A–S2D Fig), we computed an aggression score.

This score was derived by subtracting the number of aggressive behaviors performed by male

one from those performed by male two, then dividing by the total number of aggressive behav-

iors. In each recording, we determined which male was more or less aggressive by comparing

the number of aggressive behaviors, assuming equal expression of aggression.

Quantifying social interaction

We employed a custom-written Matlab script to quantify social interaction. Mice pairs were

considered socially interacting when their separation was less than one body length (�6 cm).
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To accomplish this, we utilized the mouse’s centroid position, major axis, minor axis, and

heading direction to automatically fit a social ellipse around each animal. These ellipses

encompassed each of the 4 animals in every video frame, each extending 3 cm in front and

behind the animal. Social interaction was defined as periods when ellipses overlapped (S2E–

S2G Fig). To distinguish social interactions from brief encounters, interactions were required

to last at least 6 frames. This threshold was determined via manual inspection.

Sequences of behavior

Aggressive social behaviors. To examine the dynamics between aggressive behaviors and

male–female social interactions (Fig 2A–2D), we identified the start and end times of the

aggressive behaviors and the actors involved. We organized the behaviors temporally to iden-

tify sequences where a male–female social interaction followed an aggressive behavior, termed

aggression-triggered SIs. We quantified the number of times males in either behavioral state

participated in these SIs.

The latency between aggressive behavior and SI was calculated by subtracting the SI start

time from the aggressive behavior end time, including cases where the SI began before the

aggressive behavior ended. SI duration was determined by subtracting the end time from the

start time. For each recording, we calculated the median SI duration and latency for both

aggressors and aggressed individuals. We also analyzed the number of sequences, median

latency, and median duration using aggregate aggression levels to assess the role of hierarchical

rank (S6A–S6D Fig).

We compared the angles between the male’s heading direction and the vector from the

male to the female (Fig 3A–3F) using coordinates from MOTR. The male’s heading direction

vector (v1) was determined from the male’s body center and nose, while the vector to the

Table 3. Creating JAABA classifiers.

Behavior Name Behavior Definition Post Hoc Refinements

Male chase male A male follows another male while the 2 mice are within 2

body lengths of each other

Duration >6 frames

Trajectories of males overlapping

by at least 20%

Confidence scores >0.5

Distance between males <30 cm

Distance between chased animal

and closed female >15 cm

Male being

chased

The male that is being followed Same as male chase male

Flee A male running away from the other male Duration >10 frames

Confidence score >0.7

Closest animal <8cm

Fled from The male that the fleeing male is escaping; this male is

typically stationary

Same as flee

Walk A mouse moves around the cage, in isolation (i.e., no other

mouse within 35 cm)

Duration >20 frames

Average score >1

Male investigate

male

Two mice touching, usually including sniffing. Can include

nose to body, nose to nose, and/or anogenital investigation.

This excludes other defined behaviors.

Confidence score >0.11

Speed <0.19 and >0.015

Average distance between males

>0.04 cm

Fight Both males engaging in physical contact. Involves biting,

wrestling, and rolling over each other.

Duration >30 frames

Confidence score >1.5

Distance between males and nearest

female at start >5 cm

Average speed>7.5

https://doi.org/10.1371/journal.pbio.3002496.t003
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female (v2) was from the male’s body center to the female’s body center. The angle between

vectors was calculated using the following:

theta ¼ atan2ðnormðdetð½v2; v1�ÞÞ; dotðv1; v2ÞÞ;

where the Matlab functions atan2, norm, det, and dot represent the four-quadrant inverse tan-

gent, vector normalization, matrix determinant, and the dot product, respectively.

We also used the Matlab function angdiff to calculate the difference in ellipse angles

between social partners (aggressor/aggressed and female) (Fig 3G–3L), with statistical differ-

ences assessed via Watson’s U2 test (Matlab File Exchange). Circular median and variance

were calculated using the Matlab circular statistics toolbox.

When determining interaction initiators, we analyzed the animals’ instantaneous speeds

and their physical positions relative to each other. Instances of stationary behavior, such as

grooming, were identified when the instantaneous speed fell below 0.023 cm/second. Mice

exhibiting such speeds at the onset of social interactions were categorized as stationary. Typi-

cally, interactions were initiated by the nonstationary mouse when one mouse was stationary.

Thus, in interacting pairs with one stationary mouse, the other mouse was classified as the ini-

tiator. In cases where both mice had speeds exceeding 0.023 cm/s, we determined the initiator

by assessing when the front of their ellipses began to overlap. Nose position and ellipse orienta-

tion were utilized to determine heading direction. If both animals were heading toward each

other and their ellipses overlapped within 6 frames, the initiation was classified as mutual. To

validate the accuracy of our initiation calculations, the results were compared with those of a

trained human observer. Results indicating the initiator of social interactions are depicted in

Fig 4A–4D.

We quantified the latency for males to reach various cage zones after aggressive behavior

(Fig 4E–4I), with circles of 6 cm radius at 5 locations. Latency values were averaged and com-

pared between aggressor and aggressed.

Nonaggressive, nonsocial behaviors. We assessed the relationship between nonsocial

behaviors and SIs by repeating the aggression-triggered SI analyses using walking-triggered

SIs (S4A–S4D Fig). The number of aggressive behaviors was sample-size-matched by ran-

domly selecting a subset of walks. We calculated the number, median latency, and median

duration of SIs where the walking male or the non-walking male was the social partner.

Nonaggressive, social behaviors. To ensure effects specific to aggressive behaviors, we

analyzed investigation-triggered SIs (S5A–S5D Fig). If recordings had more investigations

than aggressive behaviors, we matched the number; if fewer, we used all investigations. We cal-

culated the number, median latency, and median duration of SIs where the investigating male

or the male being investigated was the social partner.

Random sampling procedure. To ensure that our results were not explained by large

sample sizes or a subset of examples, we employed a permutation analysis (S7A Fig). We

selected 50 sequences since the recording with the fewest aggression-triggered social interac-

tions had 64 examples. Across all 11 recordings, we calculated the number of sequences where

the aggressor and the aggressed males were the social partners within the subset. We then cre-

ated an index value by taking the difference in the number of aggressive and aggressed

sequences and dividing by the sum. This procedure was repeated 1,000 times to generate a dis-

tribution of index values and compared to a normal distribution (mean of 0, standard devia-

tion of 1). We repeated this process for nonaggressive, nonsocial, and nonaggressive, social

control analyses to ensure representative sampling (S7B and S7C Fig).

To ensure the state dependency of the results, we conducted a permutation analysis by ran-

domizing aggressor identity while maintaining behavior order and duration. We calculated a
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difference index (difference in the number of aggressive and aggressed sequences divided by

the sum) generated a distribution of index values through 1,000 permutations for each record-

ing and compared to the observed difference index (S7D Fig).

Predicting behavioral state. We used decision tree classifiers to predict the behavioral

state of the male social partner following triggering behaviors (aggressive encounters based on

state or rank, walks, or investigations) (Figs 2E and S4–S7E). These calculations were per-

formed using the Matlab fitctree function, with the duration of the social interaction and the

latency between behavior and interaction as predictor variables. The outcome variable was the

behavioral state of the male social partner. For each behavioral sequence type, we randomly

selected 75% of the data as training data and 25% as testing data. Classifier accuracy was deter-

mined by dividing correct predictions by total predictions and converting to a percentage.

This procedure was repeated 1,000 times to generate a distribution of accuracy values that was

compared to chance levels. This procedure was applied to observed, sample-size-matched, and

randomized data.

Predicting behavioral sequences. We used decision tree classifiers to predict the type of

behavioral sequence (aggressive or control) (S7D Fig), applying the same procedure to

observed, size-matched, and randomized data. Predictor variables included latency, duration,

and the behavioral state of the male social partner, with the type of sequence as the outcome

variable (chance level = 50%).

Temporal dynamics. To assess the temporal profile of behavioral sequences, we grouped

examples into 5 one-hour bins (Fig 5A). We determined the proportion of events each hour

where the aggressor or aggressed male was the social partner and assess differences using a

Wilcoxon signed rank test. mcSVMs were trained using the Matlab fitcecoc function to decode

the hour of occurrence using latency, duration, and male social partner identity as predictor

variables (chance level = 20%) (Fig 5B). Within each hour, we also predicted the identity of the

social partner using decision tree classifiers, trained on latency and duration of social interac-

tions (chance level = 50%) (Fig 5C).

Three-step behavioral sequences. We characterized three-part behavioral sequences: an

aggressive encounter, the social interaction between the aggressed male and a female, and the

subsequent social interaction. Sequences were grouped into 4 types based on the participants

in the second social interaction (Table 2). We measured the proportion (Fig 6A) and number

(Fig 6B) of each sequence type across recordings.

To assess whether the observed proportions differed from chance (Fig 6C), we used tempo-

rally randomized data, generating a distribution of proportions for each shuffled iteration that

was compared to the actual proportions.

We trained mcSVMs to decode sequence type using features of aggressive behavior (described

in results, but not plotted), including average speed and total distance traveled by both the aggres-

sor and aggressed. The outcome variable was sequence type (1–4), with chance-level accuracy at

25%. We used 75% of data for training and 25% for testing, repeating the procedure 1,000 times

to generate a distribution of accuracy values that was compared to chance levels.

We also assessed inter-individual distance between both interacting males and females dur-

ing the sequences (Figs 7A–7B and S8A–S8F). For type 1 sequences, we also measured the dis-

tance between the males (Fig 7C and 7D). Sequences were divided into 4 phases: aggressive

encounter, latency between the aggressive encounter and the social interaction with the

aggressed male, social interaction, and a five-second post-interaction period. Durations were

normalized using the longest event in the phases. Distances were interpolated to match the

normalized duration using Matlab’s interp1 function.

An mcSVM was trained to determine sequence type using inter-individual distances

between aggressor/female and aggressed/female at the following time points: the start and end
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of the aggressive behavior, the start and end of the first social interaction, and the start and end

of the second social interaction (Fig 7E). The outcome variable was sequence type (1–4), and

chance-level accuracy was 25%. This procedure was performed 1,000 times to generate a distri-

bution of accuracy values, which was compared to chance levels.

To evaluate the success of the behavioral strategy (Fig 7F and 7G), we calculated fight fre-

quency after each sequence type. We compared the number and proportion of fights following

type 1 sequences to other types (2, 3, and 4 combined because these sequences constituted 47%

of the sequences).

Statistical comparisons. We used Kolmogorov–Smirnov tests and visual inspection to

assess normality. For non-normal data, we applied nonparametric tests. Aggression levels

between co-recorded males were evaluated using a Chi-square test. Paired data comparisons

were conducted with a Wilcoxon signed rank test. To compare the results of permutation anal-

yses and predictive models, we used a z-test with an alpha level of 0.05. For data requiring mul-

tiple comparisons, we employed a Kruskal–Wallis test with Dunn–Sidak post hoc correction.

Supporting information

S1 Fig. Mouse trajectories. Behavioral trajectories for each mouse across all recordings. Note,

all mice explored the majority of the behavioral arena. Source data can be found in S1–S12

Datasets.

(DOCX)

S2 Fig. Quantifying dynamic social relationships. (A) Aggression scores show which mouse

acted as the aggressor in most aggressive encounters. Recordings sorted from smallest to larg-

est score disparities. In recordings 3–11, highlighted with a gray box, one of the males was sig-

nificantly more aggressive than the other. When comparing more and less aggressive animals,

we only included recordings with significant differences (recordings 3–11). (B) Overall time

spent in a submissive state. Black denotes the more aggressive male, while gray denotes the less

aggressive male. (C) Number of aggressive behaviors per mouse. Lines connect co-recorded

mice. The horizontal bars and boxes show the medians and interquartile ranges (25%–75%).

Each data point represents the median of the distribution for each individual. Wilcoxon signed

rank test: W = 45, p< 0.005. (D) Percentage of total aggression time co-recorded animals

spent behaving as the aggressor. Wilcoxon signed rank test: W = 44, p< 0.01. (E) Left: Sche-

matic of social interaction with females. Right: Number of social interactions (SI) between

males and females. Wilcoxon signed rank test, W = 31, p = 0.36. (F) Time spent interacting

with females. Wilcoxon signed rank test, W = 33, p = 0.25. (G) The median duration of social

interactions for the more and less aggressive animals. Top: Median duration of social interac-

tions for each animal. Bottom: Median across groups. Wilcoxon signed rank test, W = 34,

p = 0.22. Numerical values for S2A–S2G Fig are available as an online supporting file

(S1 Data). Source data can be found in S1–12 Datasets.

(DOCX)

S3 Fig. Ethograms depict a dynamic social landscape. The top and bottom rows (red vertical

lines, labeled F) show male and female interactions. Middle row denotes aggressive behaviors

between males. Top of the central row (black lines, labeled A) shows acts of aggression from

the more aggressive animals, while bottom of the central row (gray lines, labeled A) shows acts

of aggression from the less aggressive animal. Interleaved rows (labeled S) indicate submissive

states (blue patches). Steps in the submissive states indicate consecutive acts of aggression

from the other male. Source data can be found in S1–12 Datasets.

(DOCX)
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S4 Fig. Nonaggressive, nonsocial triggers do not modulate subsequent interactions with

females. (A) Schematic of nonaggressive, nonsocial sequences. Sequences consisted of a male

walking in isolation followed by male–female social interactions. (B) The number of male–

female interactions after walking or not walking. Lines connect co-recorded mice. Black lines

and white boxes show the medians and interquartile ranges (25%–75%). Wilcoxon signed

rank test, W = 47, p = 0.24. (C) The latency between walking or not walking behaviors and

social interactions. Wilcoxon signed rank test, W = 21, p = 0.54. (D) The duration of social

interactions following walking-triggered sequences. Wilcoxon signed rank test, W = 32,

p = 0.68. (E) Performance of decoders when predicting the behavioral state of the male social

partner in post-aggression social interactions. Black lines and white boxes show the means and

standard deviations. The red line denotes chance levels. Each condition: 1-sided z-test,

n = 1,000 iterations. Observed: z = 1.73, p = 0.04; size-matched: z = 1.11, p = 0.13; randomized:

z = −0.31, p = 0.38. Numerical values for S4B–S4D Fig are available as an online supporting file

(S1 Data). Source data can be found in S1–12 Datasets.

(DOCX)

S5 Fig. Nonaggressive, social triggers do not modulate subsequent interactions with

females. (A) Schematic of nonaggressive, social sequences. Sequences consisted of investiga-

tive male interactions followed by male–female social interactions. (B) The number of male–

female interactions after investigating or being investigated. Lines connect co-recorded mice.

Black lines and white boxes show the medians and interquartile ranges (25%–75%). Wilcoxon

signed rank test, W = 39, p = 0.62. (C) The latency between investigating or being investigated

and social interactions. Wilcoxon signed rank test, W = 51, p< 0.005. (D) The duration of

social interactions following investigation-triggered sequences. Wilcoxon signed rank test,

W = 54, p = 0.07. (E) Performance of decoders when predicting the behavioral state of the

male social partner in post-aggression social interactions. Black lines and white boxes show the

means and standard deviations. The red line denotes chance levels. Each condition: 1-sided z-

test, n = 1,000 iterations. Observed: z = 0.47, p = 0.39; size-matched: z = 0.44, p = 0.33; random-

ized: z = −0.37, p = 0.36. Numerical values for S5B–S5D Fig are available as an online support-

ing file (S1 Data). Source data can be found in S1–12 Datasets.

(DOCX)

S6 Fig. Aggregate aggression levels do not modulate subsequent interactions with females.

(A) Schematic of aggressive social sequences. (B) The number of male–female interactions for

the more or less aggressive male following aggressive behaviors. Lines connect co-recorded

mice. The horizontal bars and boxes below the data show the medians and interquartile ranges

(25%–75%). Wilcoxon signed rank test, W = 27, p = 0.30. (C) The latency between aggressive

encounters and social interactions. Wilcoxon signed rank test, W = 31, p = 0.36. (D) The dura-

tion of social interactions following aggressive encounters. Wilcoxon signed rank test, W = 31,

p = 0.36. (E) Decoders’ performance when predicting the aggregate aggression level of the

male social partner in post-aggression social interactions. The horizontal bars and boxes below

the data show the means and standard deviations. The red line denotes chance levels. Each

condition: 1-sided z-test, n = 1,000 iterations. Observed: z = 0.21, p = 0.83; size-matched: z =

−0.29, p = 0.77; randomized: z = 0.39, p = 0.70. Numerical values for S6B–S6D Fig are available

as an online supporting file (S1 Data). Source data can be found in S1–12 Datasets.

(DOCX)

S7 Fig. Aggressive-triggered sequences differ from walking- and investigation-triggered

sequences. (A) A subsample of aggression-triggered sequences was randomly selected from

each recording. Next, a difference index was calculated by subtracting the number of
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interactions between the aggressed male and female from the number of interactions between

the aggressor male and female. The difference was then divided by the total to create an index.

An index value below 0 reflects more interactions occurring between an aggressed male and

female than an aggressor male and female. The random sampling procedure and subsequent

index calculations were performed 1,000 times. Aggressed interactions with the female

occurred significantly more often than aggressor interactions with the female, as the distribu-

tion was shifted to the left of zero. Two-sided z-test, n = 1,000 permutations, z = 7.85,

p< 0.001. (B) As in A, for walking-triggered sequences. Indices were not significantly different

from zero. z = −1.28, p = 0.21. (C) As in A, for investigation-triggered sequences. Indices were

not significantly different from zero. z = 0.45, p = 0.65. (D) After randomly shuffling the identi-

ties of the aggressor and aggressed mice, we quantified the frequency that animals engaged in

aggression-triggered social interactions and computed an index. This procedure was repeated

1,000 times. A z-score was calculated to compare the actual index value (denoted by a blue

line) to the randomly generated distribution. Two-sided z-test, z-score = −11.05, p< 0.001.

(E) Decoders’ performance when predicting aggressive or nonaggressive triggered sequences.

The horizontal bars and boxes below the data show the means and standard deviations. The

red line denotes chance levels. Each condition: 1-sided z-test, n = 1,000 iterations. Observed:

z = 4.73, p< 0.001; size-matched: z = 4.32, p< 0.001; randomized: z = 0.05, p = 0.48. Source

data can be found in S1–12 Datasets.

(DOCX)

S8 Fig. Quantification of sequence types 2, 3, and 4. (A) For sequence type 2, distances

between the aggressive or aggressed males and the female social partner were calculated during

aggressive behaviors (AGG), the time between AGG and male-female social interactions, inter-

actions, and 5 s post interaction. The lines and shaded regions show the medians and interquar-

tile ranges (25%–75%). The dashed lines indicate times representing 1 s after the start of the

social interaction and post-interaction times of 1, 2, and 3 s. (B) For sequence type 2, quantifica-

tion of distances 1 s after the start of the social interaction and post-interaction times of 1, 2,

and 3 s. Times correspond to the colored dashed lines in A. Top: all distances. Bottom: median

distances for each mouse and compared using Wilcoxon signed rank test. start + 1 second:

W = 29,521, p< 0.0001; end + 1 second: W = 29,028, p< 0.0001; end + 2 second: W = 28,036,

p< 0.0001; end + 3 second: W = 26,450, p< 0.0001. (C) As in A, for sequence type 3. (D) As in

B, for sequence type 3. start + 1 second: W = 6,210, p< 0.0001; end + 1 second: W = 5,980,

p< 0.0001; end + 2 second: W = 5,702, p< 0.0001; end + 3 second: W = 4,995, p< 0.0001. (E)

As in A, for sequence type 4. (F) As in B, for sequence type 4. start + 1 second: W = 19,306,

p< 0.0001; end + 1 second: W = 16,730, p< 0.0001; end + 2 second: W = 5,358, p< 0.0001;

end + 3 second: W = 14,307, p< 0.0001. Numerical values for S8B, S8D, and S8F Fig are avail-

able as an online supporting file (S1 Data). Source data can be found in S1–12 Datasets.

(DOCX)

S1 Table. Comparing the number of aggressive behaviors between 2 males in a recording

using a Chi-square test. Source data can be found in S1–12 Datasets.

(DOCX)

S1 Video. Bait-and-switch sequence. Video shows a chase (aggressive, social behavior), a

social interaction between the aggressed male and a female, and a subsequent interaction

between the aggressor and the same female. The aggressor male’s fur is marked with 2 vertical

stripes, while the aggressed is marked with 2 horizontal stripes. The female social partner is

marked with a vertical slash. Video playback speed has been slowed to 15 frames per second.

(MP4)

PLOS BIOLOGY Dynamic social behavior unmasked using computational approaches

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002496 October 15, 2024 21 / 25

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002496.s008
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002496.s009
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002496.s010
https://doi.org/10.1371/journal.pbio.3002496


S1 Code. Compressed file with all the custom written Matlab scripts used to analyze the

data.

(ZIP)

S1 Data. The numerical values used for each figure.

(XLSX)

S1 Dataset. Source data.

(XLSX)

S2 Dataset. Source data.

(ZIP)

S3 Dataset. Source data.

(ZIP)

S4 Dataset. Source data.

(ZIP)

S5 Dataset. Source data.

(ZIP)

S6 Dataset. Source data.

(ZIP)

S7 Dataset. Source data.

(ZIP)

S8 Dataset. Source data.

(ZIP)

S9 Dataset. Source data.

(ZIP)

S10 Dataset. Source data.

(ZIP)

S11 Dataset. Source data.

(ZIP)

S12 Dataset. Source data.

(ZIP)
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