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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Stuttering occurs in early childhood during a dynamic phase of brain and behavioral devel-

opment. The latest studies examining children at ages close to this critical developmental

period have identified early brain alterations that are most likely linked to stuttering, while

spontaneous recovery appears related to increased inter-area connectivity. By contrast,

therapy-driven improvement in adults is associated with a functional reorganization within

and beyond the speech network. The etiology of stuttering, however, remains enigmatic.

This Unsolved Mystery highlights critical questions and points to neuroimaging findings that

could inspire future research to uncover how genetics, interacting neural hierarchies, social

context, and reward circuitry contribute to the many facets of stuttering.

Introduction

You are at your favorite bakery, craving a pain au chocolat. As you attempt to order, your jaw,

lips, and tongue will not move and no air flows through your voice box—you struggle to get

the speech sound out, but however much you try, you are frozen in place and there is no

sound. You cannot answer the clerk’s friendly greeting, and to your dismay you can now see

that she looks uncomfortable, unsure of how to react. Looking to escape the awkward situa-

tion, you end up ordering something you do not want at all, only because it has a name that

you can say without trouble. Such avoidance strategies might help for the moment, but for the

person who recounted this experience, such situations have been familiar since childhood,

recur continuously, and their speech impediment worsens in crucial social contexts such as

during flirting, job interviews, or meetings.

Among communication disorders, stuttering is one of the most frequently occurring, far

exceeding laryngeal dystonia, aphasia, and speech issues resulting from Parkinson’s disease,

combined [1–6]. It is a speech disorder in which speakers know exactly what they want to say

and can coordinate and move their vocal organs, but intermittent loss of control occurs, where

articulator movements freeze or fall into an idle loop during instances of stuttering. The overt

primary symptoms are speech blocks, sound and syllable repetitions, and sound prolongations

that disrupt the usual fluid, automatic process of speech production. Concomitant physical

behaviors such as eye-blinking, grimacing, or extraneous limb and body movements can

accompany stuttering. The covert consequences range from shame and frustration to social
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anxiety. Stuttering can severely limit the scope of interpersonal verbal communication and set

up barriers that impact education and employment outcomes [7].

Stuttering onset occurs either abruptly or gradually during early childhood between the

ages of 2 and 5 [5,6,8]. Up to 8% of preschool-age children begin to stutter and about a fifth

retain lifelong stuttering [5]. Around the same developmental period of stuttering onset, chil-

dren strengthen their articulatory system [9], expand their active vocabulary [10], learn to

combine words into longer and more complex phrases [11], and progress in acquiring their

language’s typical rhythm and prosody patterns [12]. Besides speech and language develop-

ment, at that age, children also acquire cognitive, social, and emotional skills to navigate

through day-to-day communicative contexts. Thus, in many cases, stuttering emerges while

the brain features a remarkable capacity for plasticity. Children’s brain structure and function

development is intricately influenced by their experiences, reactions, and interactions. This

complexity poses a significant challenge in disentangling the contributions of both genetic pre-

disposition (nature) and environmental influences (nurture) to the occurrence and remission

of stuttering.

Clarification of the neurobiological basis of stuttering is made even more difficult by the

fluctuation, variability, and heterogeneity of the symptoms. Specifically, stuttering is character-

ized by intermittency within stuttering persons and variability across the stuttering population.

Within-person intermittency is reflected in the variability of symptom severity across days,

weeks, and months [13,14]. Moreover, visible and audible features, and thus, overt severity of

symptoms, varies with personality, social context, communicative goals, and affective state

[15,16]. In addition to overt speech behaviors, persons who stutter can develop a rich spectrum

of strategies to hide their stuttering, for example, by avoiding sounds or words, rephrasing

utterances, or inserting interjections and starter or filler words. Like overt stuttering, the

degree of covertness varies across individuals and situations. How the severity of one’s own

stuttering, whether overt or covert, is perceived and experienced also varies from person to

person [17]. It must therefore be noted that the intermittency of stuttering, the great heteroge-

neity of stuttering behavior, and the individual internal experience of stuttering pose chal-

lenges for its operationalization. However, the majority of neuroimaging studies conducted

thus far have primarily centered on overt stuttering as a key behavioral feature for examining

brain correlates [18]. Against this background it becomes clear that our current knowledge

about the neurobiological underpinnings of stuttering must be incomplete.

Considering the relative high incidence and significant psychosocial impacts, we still know

relatively little about the etiology of stuttering. From a neuroscientific perspective, it is an idio-

pathic condition with multiple compelling characteristics—breakdown in speech motor control

at its core [19,20], with severity of symptoms influenced, but not caused by, higher-order lan-

guage [21], cognitive [22], or emotional processes [23]. Fundamental questions related to the

nature of stuttering remain unanswered. In this Unsolved Mystery, we highlight many such

questions, organized under major themes, and research advances relevant to the neurobiology

of stuttering that have contributed to our understanding of this complex speech condition.

Is stuttering genetic?

Genetic research on people who stutter has the potential to not only provide windows into key

molecular–biological conditions of the disorder, but also to enhance our knowledge about the

neurobiological mechanisms enabling humans to acquire and produce fluent speech. As in

most cases of developmental speech and language impairments, stuttering is a rich phenotype

and likely involves a complex genetic architecture that results from the inheritance of multiple

risk factors with small individual influences [24,25].
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The first clues for a genetic contribution were drawn from twin-based heritability studies

showing that the probability for both twins to stutter is substantially higher in monozygotic

than in dizygotic twins [26]. Heritability was further demonstrated by the high positive rate of

family history. Approximately 50% of individuals who stutter report at least 1 additional rela-

tive who stutters, as estimated across clinically ascertained cohorts [7]. However, because the

heritability is substantially less than 100%, environmental risk factors must also contribute.

The sex bias gives a further hint of a genetic contribution. Stuttering persists in 1% of the

adult population, predominantly in males with a male-to-female ratio of 1:4. By contrast, at

stuttering onset in early childhood, the male-to-female ratio is 1:2 [5]. As epidemiological data

indicate that affected females recover more often from stuttering than affected males, it can be

assumed that sex-related neurobiological factors influence the brain’s capacity to recover from

stuttering; however, the underlying neurodevelopmental mechanisms are unknown.

Advances in genetic sequencing enabled linkage studies in large consanguineous families with

multiple affected members. In such families, stuttering has been repeatedly linked to rare variants

of lysosomal targeting pathway genes (GNPTAB, GNPTG, NAGPA, AP4E1) [27,28] and further

novel chromosomal loci [29,30]. These promising discoveries gave reason for more recent neuro-

imaging studies to explore a link between risk genes and brain structures [29,31–33]. However,

although identifying variants of functional significance in co-segregation patterns of large families

helps detect causality, only variation of the same risk loci in multiple unrelated individuals who

stutter would establish truly functional links. A first genome-wide association study of develop-

mental stuttering was not able to replicate previously identified loci, controverting the relevance

of previously identified genes to the general population with stuttering [34]. The limited success

can be explained largely by the small sample size that is insufficient for detecting single-nucleotide

polymorphisms with anticipated small effects against a high background of incidental variation of

individual genomes [35]. Robust associations may require tens of thousands of genotyped and

phenotyped participants [25]. To overcome this significant lack of statistical power, it would be

beneficial to extend clinical routines by collecting DNA samples for sequencing and including

standardized cloud-based test batteries for documenting the variance in phenotypes of stuttering.

At present, new high-throughput and massively parallel DNA sequencing technologies are

requiring substantially reduced costs and time than previous technologies to sequence an

entire human genome. Such whole-genome sequencing has already begun to link molecular

pathways that regulate gene expression during early brain development to speech and language

impairments [36]. Population-level biological and clinical data may help identify clinical–

molecular–biochemical subtypes of stuttering in the future.

What are the neural markers of persistent stuttering?

When using current imaging technologies to examine the brain of an individual who stutters,

it is unlikely that we will detect apparent morphological or functional anomalies. Both gray

and white matter structures will appear well-formed and in their proper places in persons who

stutter, and initial observations of brain waves will not appear atypical. Stuttering does not

exhibit overt signs like a visible fracture in an X-ray or the clear disorganized electrical activity

seen in an electrocardiogram for cardiac arrhythmia. However, the perspective shifts when

comparing data from different groups of individuals. Through the lens of statistical analysis, it

becomes possible to identify subtle neural deviations. More than 2 decades of brain research

studies have accumulated evidence for structural and functional neural correlates of stuttering.

Both children and adults who stutter show atypical brain structure and functional patterns

that can be localized and form part of a number of major neural networks. Implicated are cor-

tical areas of the speech motor planning and control networks (Box 1), including frontal lobe
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Box 1. The vocal motor system.

Comparative studies between vocalizing vertebrates, including teleost fish, songbirds,

and mammals, suggest that hierarchically organized motor pathways contribute to vocal

behavior [60–64]. Together with clinical case studies, neuroimaging, and direct electrical

stimulation in humans, respective findings mainly shape our current understanding of

the neuroanatomy of speech. Transcallosal and cortico–cortical connections between

speech motor, auditory, and somatosensory areas, cortico–thalamo–cortical loops via

the basal ganglia, and cerebello–thalamo–basal ganglia pathways are believed to have a

crucial role in supporting speech learning and automatization [60,65–68], particularly

within a critical sensorimotor learning period. The automatization of chunked speech

motor sequence output might engage synapses between the premotor and motor cortex

[60,65]. Ultimately, within the mature vocal speech system, a set of left ventrolateral and

dorsomedial frontal brain areas are key to the volitional initiation of speech [61,69,70],

propagating their output towards orofacial and respiratory motor neurons in the brain-

stem to drive our speech organs (Fig 1).Fig 1Box 1—The vocal motor system.

Besides a volitional articulatory motor network (Fig 1), marked with purple colors in the

image, a primary vocal motor network (Fig 1), marked with deep magenta colors in the

image, runs from the anterior cingulate cortex via the periaqueductal gray into the retic-

ular formation of pons and medulla oblongata, and from there to the orofacial and laryn-

geal motoneurons [61,68,71]. The anterior cingulate cortex and the periaqueductal gray

receive input from limbic brain structures including the amygdala, bed nucleus of the

striata terminalis, and lateral hypothalamus [71,72]. The periaqueductal gray seems to

control the readiness to vocalize in nonhuman primates and to gate social and playful-

ness vocalization in rodents [73,74]. The anterior cingulate cortex is well positioned to

integrate cognition, emotion, and action. Its electrical stimulation in humans elicits

facial displays, interoceptive sensations, autonomic responses, and laughter and smiling

display, indicating that it may orchestrate social emotional behavior [75].

Human speech is based on a considerably broader array of brain regions, and the intri-

cate network of connections within the human connectome is notably more extensive.

Depicted brain regions and circuits (Fig 1) constitute core actors in the machinery of

vocal speech production, and while all depicted components of the volitional articulatory

motor network have been associated with stuttering, components of the primary vocal

motor network also seem to be involved, including the anterior cingulate cortex, amyg-

dala, and orbitofrontal cortex.

Abbreviations: Ac, nucleus accumbens; ACC, anterior cingulate cortex; Amy, amygdala;

BNST, bed nucleus of the stria terminalis; Cau, caudate nucleus; Cb, cerebellum; DN,

dentate nucleus; Gpe, globus pallidus external segment; Gpi, globus pallidus internal seg-

ment; Hip, hippocampus; IFG, inferior frontal gyrus; lat Hypoth, lateral hypothalamus;

MN, vocal tract motor neurons; pIFS, posterior inferior frontal sulcus; PMC, premotor

cortex; MC, primary motor cortex; OFC, orbitofrontal cortex; PAG, periaqueductal

gray; PN, pontine nuclei; RF, reticular formation, specifically the lateral reticular forma-

tion and the nucleus retroambiguus; SC, primary somatosensory cortex; SMA, supple-

mentary motor area; SMG, supramarginal gyrus; STG, superior temporal gyrus; Thal,

Thalamus; vPMC, ventral premotor cortex.
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regions such as the motor cortex, premotor cortex, inferior frontal gyrus, frontal operculum,

insular cortex, and presupplementary and supplementary motor areas [37–39]. Also impli-

cated are parietal and temporal perisylvian regions, such as the supramarginal gyrus, and

higher order auditory regions, which might be related to differences in sensorimotor integra-

tion and feedback control [37,38,40]. Furthermore, subcortical structures such as the basal

ganglia, thalamus, and cerebellum are implicated, which may relate to differences in learning,

initiation, timing, sequencing, and error monitoring functions [37,38,41–45]. Morphological

differences in limbic brain regions involved in reward processing and emotion regulation,

such as the nucleus accumbens and amygdala are associated with persistent stuttering [46–48].

Fig 1. Box 1—The vocal motor system.

https://doi.org/10.1371/journal.pbio.3002492.g001
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Along with dysfunctional gray matter regions, alterations have also been reported for white

matter structures, including the arcuate fasciculus, superior longitudinal fasciculus, frontal

aslant tract, corticobulbar tracts, and cerebellar penduncles, which are responsible for trans-

mitting information between brain regions involved in speech production and motor control

[49–52]. Comprehensive reviews of both state and trait markers of stuttering have been con-

ducted and are available in the existing literature [53–59].

Furthermore, in children with persistent stuttering, MRI techniques have shown morpho-

logical differences in cortical and subcortical motor structures, including decreases in cortical

thickness in the left premotor and motor regions [76], and decreases in gray matter volume in

the left ventral premotor cortex and subcortical areas, including the basal ganglia [77]. White

matter structure differences have also been observed, affecting areas involved in auditory–

motor integration, motor initiation, monitoring, and interhemispheric coordination [77–80].

These structural differences are correlated with stuttering severity [77], suggesting their rele-

vance to speech fluency.

During spontaneous speech production, children with persistent stuttering exhibit

decreased brain activity in the left premotor cortex and basal ganglia compared to children

who do not stutter [81]. Additionally, studies indicate initial evidence of large-scale neural net-

work connectivity differences in children with persistent stuttering, particularly involving

interactions between speech motor networks and other cognitive control networks [82].

What are the most striking differences between brain abnormalities in adults and children

who stutter? In contrast to children, adults frequently exhibit heightened speech-related activ-

ity and connectivity within the right hemisphere cortical structures, encompassing frontal and

parietal regions, rolandic operculum, and insula [37,38,83]. This pronounced activation in the

right hemisphere exceeds that of the corresponding speech-related areas in the left hemisphere

[56,84,85], leading to long-standing discussions regarding its potential role as a compensatory

mechanism [39,84]. The absence of a similar rightward shift in children [81] supports this pro-

posed compensatory hypothesis. However, task-related MRI data in children are scarce, and

recent studies present a more diverse perspective, suggesting that the alterations observed in

the right hemisphere may represent a combination of both compensatory efforts and direct

manifestations of stuttering [51,80,85].

In contrast to adults, a recent report showed that children who would go on to have persis-

tent stuttering exhibit significantly reduced volume of the putamen early in development [77].

However, this discrepancy diminishes with age, and an intriguing paradox emerges during

adulthood, where adults who stutter exhibit increased neural activity within the basal ganglia,

including the putamen [86] and caudate nucleus [41]. One plausible hypothesis is that an

early-occurring structural variance in the basal ganglia may initially contribute to the observed

group difference, but this distinction normalizes over time due to developmental cascades

influencing interconnected brain structures. For example, the structural variance in the basal

ganglia early in development and its connection to the supplementary motor area may poten-

tially exert an effect on distinct developmental trajectories in regions such as the thalamus and

cerebellum. Further investigations are warranted to elucidate the precise mechanisms underly-

ing these developmental dynamics in individuals who stutter.

Altogether, imaging findings suggest that stuttering, like other complex disorders, can be

attributed to network-level disruptions [82,87–89]. Implicated networks include core hubs of

speech motor skill acquisition and automatization, sensorimotor integration, feedback and

error monitoring, cognition and goal-directed behavior, and limbic structures coordinating

affect and social context. These networks integrate common processes implicated in verbal

communication, involving multiple time scales from milliseconds for voicing features to sec-

onds for prosodic features. Thus, fluent speech requires the neural organization of hierarchical
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motor sequence representations that are stable enough to be automatically executed and at the

same time flexible enough to adapt to affective, social, and goal-directed demands.

Despite the research advances reviewed in this section, answers to the following questions

remain elusive. How does the critical period of speech acquisition shape interactions between

speech motor learning circuits and speech motor production circuits in typically developing

and stuttering children? How and when does the developing system switch between states of

learning, states of automatization, and states that require monitoring via the central executive

or sensory feedback control systems? What are the underlying neural circuits responsible for

transitioning between pure habitual execution of speech movements and states that necessitate

implementing prosodic modulations based on social context (e.g., speaking to a pet, friend, or

an authority figure) and affective state (e.g., feeling pleased or angry)? How does the brain

encode hierarchical speech motor sequence representations? And how is the initiation of

speech motor sequences influenced by hierarchical structures or different cognitive and affec-

tive states?

What facilitates spontaneous recovery in children who stutter?

Spontaneous recovery from stuttering is common in children, reported to be 80% or more [5],

and neural recovery patterns may give us insights into the neural basis of fluent speech produc-

tion and its pathologies. Unlike therapy-induced speech fluency learned during adulthood,

spontaneous recovery during childhood results in complete alleviation of symptoms, with no

effort or internal struggle to produce fluent speech. Though there are no definitive objective

markers, several behavioral and demographic factors are associated with childhood recovery

from stuttering. These factors include female sex, no family history of stuttering, younger age

at stuttering onset, higher scores on speech sound accuracy, higher expressive and receptive

language scores, and lower stuttering frequency [90,91]. Other factors, such as performance on

a nonword repetition task [92] and time since stuttering onset [90,93], have also been

reported.

The development of fluent speech involves learning to produce long motor sequences [65],

which leads to the specialization of neural circuits that enable the effortless and fluid execution

of fast and precise sequential movements [94]. Neuroimaging data, although scarce, has shown

that initially, recovering children share neuroanatomical deficits with children with persistent

stuttering, but these tend to normalize over time, with growth rates of white matter micro-

structure sometimes exceeding those observed in children who do not stutter [77,79]. Sponta-

neous recovery is primarily linked to age-related growth in white matter structures [77,79] that

enable fast and accurate sequential speech movements. These white matter structures, includ-

ing the corticospinal tract, superior longitudinal fasciculus, arcuate fasciculus, the somatomo-

tor part of the corpus callosum, and cerebellar peduncles [77] (Fig 2, left panel), interconnect

gray matter regions that showed significant reductions in volume in children with persistent

stuttering, including the left ventral motor cortex and the left dorsal premotor cortex [76].

Recovery might require a better interareal connectivity within the speech network, a level of

brain development that children with stuttering persistence do not achieve.

In addition to neuroplasticity in subcortical white matter structures, spontaneous recovery

was linked with left ventral premotor cortex volume measures that were intermediate between

those of children who do not stutter (controls) and children who stutter persistently [77], and

with less gyrification in premotor medial areas with age, including in the presupplementary

motor area and the supplementary motor area [76]. Animal studies suggest that synapses

between the premotor and motor cortex in particular might support the learning of automa-

tized chunked motor sequence output [60,104]. Spontaneous recovery could be based on a
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higher capacity of the ventral premotor cortex, which appears to be a crucial hub for the acqui-

sition of speech motor skills [105,106]. The presupplementary motor area and the supplemen-

tary motor area process the metrical structure of the speech motor plan and its initiation [107],

and less gyrification may indicate greater long-range connectivity of these regions during

recovery, since sequential encoding, especially of long sequences, is not uniquely processed in

the supplementary motor area, but is rather widespread throughout the cortical motor hierar-

chy [94].

Motor cortical dynamics are heavily modulated by the basal ganglia, a central subcortical

hub where multiple motor pathways converge [108]. And in particular the putamen, an input

zone to the motor arms of the basal ganglia [109], was characterized by a gray matter growth

deficit in individuals with persistent stuttering at 3 to 5 years of age [77]. This deficit subsided

with age, whereas older children (aged 6 to 12 years) with persistent stuttering began to show a

gray matter deficit in the thalamus [77]. During motor skill learning and execution, motor cor-

tical and thalamic inputs to the putamen have different functions. Animal studies suggest that

corticostriatal projections are critical for motor skill learning while thalamostriatal projections

are critical for the execution of learned skills [110]. It is tempting to speculate that the early

Fig 2. Brain regions exhibiting neuroplasticity and reorganization associated with spontaneous recovery from

stuttering and therapy-induced improvements. Colored areas display key cortical brain structures and arrows illustrate

fiber connections involved in stuttering and its remission. Notably, spontaneous recovery in children shows a subcortical-

to-cortical structural neuroplasticity gradient [76,77,79], whereas therapy-driven improvement in adults reveals functional

reorganization within and beyond the speech network [40,45,48,95–103]. Yellow areas indicate greater reorganization

potential, while green areas indicate medium potential, and purple areas indicate lesser potential. The purple areas in the

panel for children indicate brain structures where the volume reduction was negatively correlated with the severity of

stuttering in children with persistent stuttering, while the growth rate did not change or even reversed in children with

spontaneous recovery [77]. Noticeably, this is a simplified illustration; reorganization potential dependents on various

factors and evidence levels vary for the individual brain regions. Abbreviations: Ac, nucleus accumbens; AF, arcuate

fasciculus; aSTG, anterior superior temporal gyrus; Ca, caudate nucleus; Cb, cerebellum; CC, corpus callosum; dMC,

dorsal primary motor cortex; dPMC, dorsal premotor cortex; FAT, frontal aslant tract, FO, frontal operculum; Gp, globus

pallidus; IFG, inferior frontal gyrus; ILF, inferior longitudinal fasciculus; IFGorb, inferior frontal gyrus pars orbitalis; MT,

motor tracts; pSTG, posterior superior temporal gyrus; PO, parietal operculum; Pu, putamen; SLF, superior longitudinal

fasciculus; SMA, supplementary motor area, SMG, supramarginal gyrus; Th, thalamus; vMC, ventral primary motor

cortex; vPMC, ventral premotor cortex.

https://doi.org/10.1371/journal.pbio.3002492.g002
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gray matter deficit in the putamen is related to a deficit in learning to pronounce long speech

motor sequences, while the later gray matter deficit in the thalamus relates to insufficient mat-

uration of the subcortical motor circuits that support automated execution of such long

sequences. This reasoning finds support in the observation that the cases with spontaneous

recovery showed typical gray matter signal in the putamen as well as the thalamus [77].

The summarized results above align with a neurocomputational model of speech sequence

learning [111], suggesting ventral premotor cortex-to-ventral motor cortex connections, first,

to establish speech motor sequences via basal ganglia loops, and, second, to crystalize chunked

sequences via subcortical loops through the cerebellum and corticocortical connections with

the presupplementary/supplementary motor area [65]. The model suggests that early in devel-

opment (prior to 2 to 3 years, typically before stuttering onset), initiation of phonemes requires

a relatively high-level cortical input from the presupplementary motor area to sequentially

activate the proper initiation map nodes. The basal ganglia motor loop is proposed to take

over the load of sequencing through the individual phonemes in the word after a period of

repeated practice, thus making production more “automatic” and freeing up higher-level corti-

cal areas such as the presupplementary motor area [65]. According to this view, stuttering can

be interpreted as an impairment of the cortico–basal ganglia loop’s role in initiation and

sequencing of learned speech sequences. It is interesting that in the context of this model, the

earliest occurring neural structural difference for persistent stuttering in children was in the

striatum and white matter, associated with tracts that interconnect it with multiple cortical

areas including premotor regions [77]. Persistent stuttering was also associated with later

occurring differences in the thalamus and cerebellum. Recovery was linked to normalization

of these white matter areas and greater involvement of the cerebellum. Notably, dedicated

speech motor learning and automatization circuits, in particular, are implicated in stuttering

recovery and persistency.

To date, longitudinal studies that have collected neuroimaging data from children who stut-

ter are rare, and even less common are those that have examined children who recover, from

the time that they are stuttering to when they eventually recover from stuttering. The limited

data reported to date nevertheless facilitate emerging questions. Why does stuttering resolve in

some children but not in others? What cellular and molecular mechanisms enhance or restrict

the brain’s ability to develop and automate speech motor skills? Are there factors that can

extend critical periods for speech motor learning? And what circumstances trigger chunking

and automatization of sequences?

Can stuttering therapy in adulthood elicit neural reorganization?

Stuttering therapy in adults can help speakers control stuttering, gain fluency, and facilitate

quality of life, but a complete cure is rare to impossible, and relapse after a period of fluency is

common. Interventional studies, although few, and often small in number, sample size and sta-

tistical power, have revealed patterns of potential functional reorganization within and beyond

the speech network (Fig 2, right panel) that may inform future treatment strategies. Here, we

differentiate 4 potential ways in which the brain may reorganize in response to behavioral

intervention.

First, brain structures that are implicated in stuttering can be mobilized, indicating a neural

response to the intervention. For example, fluency training increases cerebellar activity linked

to learning new speech patterns [45]. Metronome-paced speech, coupled with transcranial

electrical stimulation, can enhance activity in multiple brain areas that are associated with flu-

ent speech, including the inferior frontal cortex (pars opercularis and orbitalis), anterior

insula, anterior superior temporal gyrus, anterior cingulate cortex, and supplementary motor
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area. Subcortically, activation increases in the caudate nuclei and putamen bilaterally, and in

the right globus pallidus and thalamus [95]. Brain areas (cortical and subcortical motor and

auditory regions) that are less active during solo speech in stutterers were more active after

8-week practice of metronome-timed speech [96]. Finally, treatment with risperidone, a dopa-

mine receptor 2/serotonin receptor 2 antagonist, enhanced crucial brain connections for plan-

ning speech movements, namely the left putamen, caudate nucleus, and left inferior frontal

cortex [97]. These treatments target the brain structures essential for smoother speech in stut-

tering. In this sense, the fluency-inducing interventions can “mobilize” brain activity towards

fluency in speech.

Second, brain activity and connections can be normalized. Fluency-shaping, involving slow

speech, gentle vocalizations, and lighter movements, can even out brain activity differences

between people who stutter and those who do not. For example, excess activity in the right

frontal and parietal brain areas decreased, while reduced activity in others increased to match

non-stutterers [98–100]. Additionally, connections between speech-related brain regions can

become more balanced [40]. This research highlights how therapy can lead to more typical

brain functioning during speech.

Third, functionally maladaptive structures can become uncoupled, suggesting the adult

brain’s ability to discard ineffective pathways. Specifically, after training, a hyperactive region

of the midline cerebellum showed decreased connections during rest, pointing to the brain’s

adaptive mechanisms in therapy-driven stuttering improvement [101].

Finally, intact speech motor learning related structures can become more strongly inte-

grated, underscoring the adult brain’s capacity to utilize functional connections. In other

words, functional speech areas that support fluent speech that may already have established

connections before therapy can become more efficient in communicating among its compo-

nent structures following therapy. After fluency-shaping treatment, this stronger interaction

was noticed between the left inferior frontal gyrus and the left dorsal laryngeal motor cortex,

as well as between the left inferior frontal gyrus and the posterior superior temporal gyrus

[102]. Essentially, practicing novel speech patterns strengthened pathways that support the

integration of spectro-temporal features of speech (inferior frontal gyrus to posterior superior

temporal gyrus) together with pathways that support learning to implement unfamiliar

patternsAU : Pleasenotethatthewordpattenshasbeenchangedtopatterns:Pleasecheck:of prosody production and voicing (inferior frontal gyrus to dorsal laryngeal motor

cortex).

As with children’s brain development, imaging is rarely used to accompany behavioral,

pharmaceutical, or noninvasive brain stimulation therapies in adults who stutter. The current

data, though limited, still raise pressing questions. For example, none of the studies with adults

reported morphological brain changes associated with stuttering therapy, either in gray or in

white matter structures. However, while neuroplasticity patterns in children mainly relate to

morphological changes (activity changes have not been studied yet), neuroplasticity patterns

in adults are limited to changes in brain activity. This leads us to wonder, can stuttering ther-

apy boost neuroplasticity in critical structures to promote recovery in children? Moreover,

could therapy techniques that have been used for adults (e.g., brain stimulation) be refined and

elegantly combined to facilitate neuroplasticity that supports automatic, effortless fluent

speech that is characteristic of spontaneous recovery?

What are major unsolved mysteries?

We ended each of the above sections with emerging questions. Here, we further highlight out-

standing questions around 3 mysteries. Why does stuttering happen when talking but not

when singing? Why does stuttering occur during communicative contexts, but not in non-
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communicative speech? And why do girls more often recover from stuttering than boys?

Investigating the brain’s biology behind these phenomena could uncover fundamental charac-

teristics of stuttering and reveal reasons why it persists in some individuals.

The singing advantage

Singing dramatically eliminates instances of stuttering, even in the severest cases [112,113].

During singing, relative to speaking, the temporal structure and the coordination of laryngeal

and oral movements are altered (i.e., the proportion of short phonation intervals is reduced,

vowel durations are lengthened [114,115], articulation rate is slowed [115,116], and articula-

tory voicing is stabilized [116] in individuals who stutter). Clues to why singing enhances flu-

ency may come from an updated understanding of the neural control of the larynx. Motor

control circuits for speaking and singing largely overlap [117–119], but ventral and dorsal pre-

motor cortex/motor cortex circuits appear to be partially involved in different laryngeal func-

tions [120]. Only the dorsal laryngeal motor cortex (LMC) is selectively engaged in the

regulation of pitch (i.e., tone and melody of song and speech [121,122]; see Box 2), while both

the dorsal and ventral LMCs encode articulatory voicing (for example, the laryngeal contribu-

tion to the production of voiced and voiceless consonants [121,123]). Accordingly, different

computational demands of singing and speaking might tax the LMC networks’ abilities in dif-

ferent ways and to different degrees (Box 2), so that the underlying neural dynamics could

most likely also differ.

Box 2. Voice in song and speech

Both song and speech have characteristic melodies. Melodies are formed by modulating

the pitch. Unlike melody in song, which is rather fixed (otherwise we would not recog-

nize the melody), speech melody varies depending on the communicative context. Con-

sider for example the words “Amazing grace, how sweet the sound.” When sung, the

melody will always follow the same melodic pattern, but when spoken, very different

pitch patterns can be employed to indicate, for example, excitement and pleasure by

using a rising tone or irony by using a falling tone. It is not only the melody that is more

fixed in singing compared to speech. Rhythm and volume dynamics also have a fixed

temporal frame. Specifically, the temporal template in singing (i.e., the alignment of

pitch, duration, and intensity) is precisely determined to correspond to a certain melody

and rhythm, whereas in speaking, such temporal constraints are less definite or can be

planned and executed more freely.

What do such contextual differences imply in terms of neural control? Despite the fact

that there is considerable overlap between brain areas activated by song production and

those activated by speech production [118,119], producing the melody of a song may

more heavily involve auditory memory and feedback control mechanisms than speaking

[117] to achieve the target auditory goal. By contrast, producing the melody in speech

involve more degrees of freedom in feedforward control and a higher degree of automa-

tion than in singing [117]. Given the varying demands on the underlying neural net-

work, it is plausible that the associated neurophysiological activity varies for singing

versus speech production [117,119].

There are several muscle actions involved in raising pitch, lowering pitch, and articula-

tory voicing. Neural control coordinates the simultaneous adjustment of these muscles
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The dorsal LMC supported treatment-related improvement in speech fluency in adults who

stutter who participated in a fluency-shaping program [102]. The key aspect of laryngeal con-

trol in this therapy approach is that participants learn to speak with different pitch modulation

[48], voicing, volume, and timing patterns [130]. At the same time, training increases the func-

tional coupling between the left dorsal LMC and the left inferior frontal gyrus within the sen-

sorimotor network. Since the connectivity of the functional sensorimotor network before

treatment was comparable in non-stutterers and stutterers, it can be assumed that dorsal LMC

function is not altered and that the enhanced dorsal LMC connectivity after treatment indi-

cates a compensatory role [102]. This assumption is further supported by the observation that

the structural network connectivity of the dorsal LMC is intact in the same cohort of individu-

als who stutter [103], including rich connections with the parietal cortices allowing for intri-

cate sensorimotor coordination and modulation of voice during speech production [131].

Against this background, the phenomenon that individuals who stutter can sing without invol-

untary interruptions and achieve better fluency when they control phonation during fluency

shaping suggests a dedicated function of the dorsal LMC in achieving fluency. Remarkably,

children who recover from stuttering exhibit an increased gray matter growth rate in the dorsal

premotor cortex, a region in close proximity to the dorsal LMC [76], which is involved in audi-

tory error signal processing to maintain fluency [129] (Box 2).

In stark contrast, individuals who stutter have weakened structural connectivity of the ven-

tral LMC [103]; a finding reminiscent of a long-standing and robust structural abnormality in

stuttering [53,132,133]. Remarkably, connectivity of the ventral LMC correlates with stuttering

to bring about the desired changes in the air pressure, state of the vocal folds, the height

of the larynx, and consequently, the resultant fundamental frequency [124]. Neuroimag-

ing and neurophysiological studies have identified 2 spatially separated regions in the

orofacial motor cortex with activity correlated with laryngeal movements [121,123,125–

127]. Direct electrical stimulation of regions in the dorsal LMC resulted in pitch modula-

tion during word pronunciations [122], whereas articulatory voicing was mapped to sep-

arate regions in both dorsal and ventral LMCs by direct stimulation and imaging studies

[121,125].

The pitch-controlling dorsal LMC is also implied in ongoing auditory feedback control

during singing, as shown by studies that compare the brain activities of amateur versus

professional singers when auditory feedback was perturbed by noise-masking [128] or

pitch-shifting [118]. While speaking might demand less feedback control, sentence read-

ing under delayed auditory feedback also engages the dorsal precentral gyrus (including

the dorsal LMC), but not the ventral precentral gyrus [129]. In general, the dorsal LMC

is involved in pitch regulation and auditory error signal processing in singing and speak-

ing, while no such role has been found for the ventral LMC.

In sum, pitch control in song and speech differs in its demands of feedback and feedfor-

ward control mechanisms. The dorsal LMC contains neural populations that are dedi-

cated to encoding pitch. Its activity is enhanced under heightened demands on auditory

feedback control mechanisms in speech and amateur singing, while its role diminishes

with automation. Song and speech differ in their degree of automation, utilization of

cognitive control, reliance on auditory memory retrieval, and the extent of affective state

influence. As a consequence, song and speech will induce different activation and cou-

pling within the brain networks involving the dorsal and ventral LMCs.
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severity, particularly for the somatosensory cortices, inferior parietal regions, putamen, cau-

date nucleus, and left inferior frontal gyrus pars opercularis [103], and longitudinal data from

children who continue to stutter shows reduced cortical thickness in the ventral motor cortex

where the ventral LMC is located [76]. Despite ongoing research, there is persisting uncer-

tainty regarding the specific functional contributions of the 2 laryngeal motor representations

during voice production [125], and the distinct roles of dorsal and ventral LMCs in stuttering

persistency and recovery remains to be verified experimentally.

Both LMCs are tightly interlinked with cortico–thalamo–cortical loops and corticocortical

circuits [103,131]. Extended chains of such loops supposedly support communication across

hierarchically organized cerebral networks [134,135]. This high degree of interconnectedness

not only enables flexible dynamic adjustments in the temporal structure and coordination of

laryngeal and oral movements during singing and speaking, but also enables differing

demands on the complex interplay between sensory-guided, memory-guided, and automatic

motor sequence execution. Against this background, it is promising to question how hierar-

chically organized circuits that align metric structures over short (speech sound voicing),

medium (word accent), and long (phrasal prosody) time scales interact. Specifically, what cir-

cumstances stabilize or destabilize these hierarchies, or lead them to break down? And how do

these evolving processing cascades interact with the initiation, execution, and termination of

speech motor sequences?

Social context drives stuttering

Besides the preserved ability to sing, a well-known phenomenon of interest is that stutterers

are fluent when speech production occurs in a nonsocial context. Overt self-talk is free from

stuttering [136]. By contrast, when speech is directed to a person or audience, or serves a com-

municative goal, stuttering is present. The severity of symptoms varies with the communica-

tive context and time pressure. It might be worth exploring the idea that certain social contexts

increase arousal, which leads to global changes in brain activity [137], affecting motor cortical

activity and vocalization [138] and causing breakdowns of the already vulnerable speech

motor system of persons who stutter. And indeed, studies with songbirds suggest that subtle

aspects of acoustic structures of songs that have a crucial role in social communication are

influenced by the combined effects of neuromodulator systems. Involved neuromodulator sys-

tems include cholinergic, dopaminergic, serotonergic, and noradrenergic signaling [138], sys-

tems that are influenced by changes in internal state and that are part of the ascending arousal

system [139]. The ascending arousal system consists of connected brainstem nuclei known as

the reticular formation. Those nuclei are tightly interlinked with the innate vocalization sys-

tem. This limbic vocal system includes the periaqueductal gray, lateral reticular formation, and

nucleus ambiguus, structures that support and convey emotional laughing, moaning, and cry-

ing. This system is assumed to engage in shaping the emotional tone of speech prosody [62]

(Box 1). In contrast to innate vocalizations that are evoked by emotional states, human speech

is learned and volitional. Still, central mechanisms for the interaction between limbic and cog-

nitively controlled vocalization pathways remain largely unknown, as are their potential inter-

actions with stuttering. Possible open questions are: how do affect, social context, and goal-

directed communication shape network formations or hierarchies of speech production cir-

cuits; is there competition between the volitional articulation motor network and the innate

vocal motor network; and if so, what drives such a competition, which brain structures are

involved, and to what extent might this influence stuttering? Following this line of research

might facilitate the rationale for cognitive behavioral therapy approaches to help control feel-

ings such as insecurity, anxiety, self-doubt, shame, or anger.
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Beyond arousal, the social context offers significant potential to shape speech. Communica-

tion is inherently human and relies on active listening and response. This mutual exchange

makes communication rewarding, driving speech motor learning through reinforcement. Suc-

cessful communication and listener feedback fuel the refinement of speech skills, blending

physical vocal coordination with psychological rewards. The nucleus accumbens is a striatal

structure that tightly interlinks motor and limbic circuits and that is involved in the coordina-

tion of cognition, emotion and action [140], and social motivation [141], but also in active and

inhibitory avoidance and reward seeking [142,143]. Notably, this region in the ventral striatum

is altered in children and adults who stutter. That is, children have decreased gray matter vol-

ume in the ventral striatum that scales with stuttering severity [77], while adults have enlarged

substrate in the right hemisphere [46,144]. Given these contradictory findings, it holds poten-

tial promise to inquire how reward-related brain structures and speech motor coordination

structures interact in varying social contexts, and how these develop with age: for example, are

there critical biological or social periods throughout the lifetime where the dynamics of sup-

posed interactions change? Future research might disentangle whether and how limbic struc-

tures, and in particular, the nucleus accumbens, are involved in the chronic manifestation of

stuttering. On the other hand, one might ask whether relevant neural circuits shape the estab-

lishment of avoidance behavior that might be related to proactive action inhibition (avoidance

of certain communicative situations, words, or sounds) or reactive action inhibition (the mod-

ification of stuttering events right when they occur)? In other words, are these to be under-

stood as part of the core deficits of stuttering, or do they reflect the mere impact of

experiencing this communication disorder (i.e., related feelings when communication fails or

is expected to fail, including fear, frustration, and depression)?

Sex differences

Whether a child is a boy or a girl has significant impacts on the chances of stuttering recovery:

while the male-to-female ratio is approximately 1:2 at stuttering onset in early childhood, only

1 out of 5 adults with persistent stuttering is a woman [5]. Sex effects are commonly associated

with neurodevelopmental disorders, with male sex being a risk factor for childhood speech

and language disorders [6,8]. It is likely that sexual dimorphisms are driven by genetic, cellular,

and molecular mechanisms, and sex hormones might be a pivotal starting point to approach

hypotheses. Thus, for example, prepubertal girls already have higher estradiol levels then boys,

while the serum-level of this sex hormone increases with age and pubertal stage in girls and

boys [145], and heavily fluctuates in girls with the menstrual cycle that starts with puberty.

Changes in sex hormones might influence functional connectivity, neurotransmission, and

brain structure [146]. For example, estrogen, with estradiol as its primary form during repro-

ductive years, exhibits neurotrophic and neuroprotective properties that act on the striatum,

cerebral cortex, and hippocampus [147]. Estrogen receptors colocalize with neurotransmitter

pathways including the glutamatergic, dopaminergic, GABA-ergic, and serotonergic systems,

and seem implicated in neurite outgrowth, synaptogenesis, dendritic branching, myelination,

and other neuroplasticity mechanisms [146].

Distinct actions of estrogen on neural vocal learning and vocalization pathways have been

outlined in songbirds. In certain songbird species, sexual dimorphism displays with limited to

no female vocal learning. Estradiol treatment in female zebra finches revealed that the sexual

dimorphism in song learning ability was established by the interaction between sex hormone

signaling and sex chromosome gene expression in the song system anatomy during develop-

ment [148]. Of course, one might critically ask, whether such sex-related interactions translate

to human speech motor learning. Initial indications come from a pilot study with infants, 4
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and 8 weeks old. At 8 weeks, their cry melody properties were correlated with serum concen-

trations of estradiol that varied with sex [149]. Cry melodies were analyzed with respect to fre-

quency modulation skills, and the complexity of those melodies increased with increasing

serum estradiol. This association indicates that sex hormones might influence the speech

motor learning system well before puberty. Against this background, it might be reasonable to

ask whether estrogen levels shape the neuroplasticity potential within the speech motor system

thereby pushing girls more often towards sustained fluency.

Conclusions

Stuttering is complex and multifaceted, with numerous open questions relevant to its neurobi-

ological bases. This Unsolved Mystery aimed to provide an overview of the evolving science of

stuttering, highlighting key unanswered questions to help stimulate discussions toward further

research. Though multiple topics were discussed, we note that not all promising topics relevant

to neurobiology of stuttering could be covered in this limited space. For example, examining

neurophysiological aspects of stuttering using electrophysiological methods have the potential

to reveal temporal dynamics of the reported cortico–basal ganglia loop function in stuttering

through examining neural oscillations and synchrony of selected frequency band oscillations.

Moreover, neurophysiological measures can provide insights into what happens neurologically

at the time when speech fluency is interrupted. Additional topic areas that warrant further

investigation include, but are not limited to: how we can address variability within the stutter-

ing population; speech motor skill acquisition versus automatization; the role of action inhibi-

tion and the right hemisphere homologues in stuttering; hyperdirect connectivity of opercular

speech network to the subthalamic nucleus [150]; and inter-hemispheric integration and cor-

pus callosum development as they relate to stuttering persistence and recovery.

Highly relevant to the topic of singing, is the role of intrinsic timing and rhythm as they

influence stuttering severity and recovery, and how they relate to the rhythm deficit hypothesis

[151], which have implications for possible common, core deficits that present transdiagnosti-

cally across disparate neurodevelopmental disorders affecting speech and language function.

Neural network analyses leveraging multimodal imaging data and neurocomputational model-

ing, as well as new discoveries of stuttering gene loci [152] could help identify the presence of

neural subtypes within the stuttering population; this could lead to better targeting of interven-

tions that are based on each individual’s subtype designation. Systemic investigations into

these and other questions may bring us to the cusp of breakthroughs, not only in elucidating

the nature of stuttering, but also in enhanced clinical management of its core symptoms in the

future.
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108. Mizes KGC, Lindsey J, Escola GS, Ölveczky BP. Dissociating the contributions of sensorimotor stria-

tum to automatic and visually guided motor sequences. Nat Neurosci. 2023; 26:1791–1804. https://

doi.org/10.1038/s41593-023-01431-3 PMID: 37667040

109. Choi EY, Yeo BTT, Buckner RL. The organization of the human striatum estimated by intrinsic func-

tional connectivity. J Neurophysiol. 2012; 108:2242–2263. https://doi.org/10.1152/jn.00270.2012

PMID: 22832566
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