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Abstract

The emergence of successive Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) variants of concern (VOCs) during 2020 to 2022, each exhibiting increased epidemic
growth relative to earlier circulating variants, has created a need to understand the drivers of
such growth. However, both pathogen biology and changing host characteristics—such as
varying levels of immunity—can combine to influence replication and transmission of SARS-
CoV-2 within and between hosts. Disentangling the role of variant and host in individual-
level viral shedding of VOCs is essential to inform Coronavirus Disease 2019 (COVID-19)
planning and response and interpret past epidemic trends. Using data from a prospective
observational cohort study of healthy adult volunteers undergoing weekly occupational
health PCR screening, we developed a Bayesian hierarchical model to reconstruct individ-
ual-level viral kinetics and estimate how different factors shaped viral dynamics, measured
by PCR cycle threshold (Ct) values over time. Jointly accounting for both interindividual vari-
ation in Ct values and complex host characteristics—such as vaccination status, exposure
history, and age—we found that age and number of prior exposures had a strong influence
on peak viral replication. Older individuals and those who had at least 5 prior antigen expo-
sures to vaccination and/or infection typically had much lower levels of shedding. Moreover,
we found evidence of a correlation between the speed of early shedding and duration of
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considered for the 157 infection episodes,
symptom onset times and covariate data, along
with the code to re-run the analysis can be found at
this publicly available repository: https:/github.
com/thimotei/legacy_ct_modelling. We have
archived the stable release version of this
repository on Zenodo with the following DOI:
https://zenodo.org/doi/10.5281/zenodo.10223417.
Furthermore, the data required to reproduce all of
the figures, tables and supplementary figures can
be found at this Zenodo repository DOI: https:/
zenodo.org/doi/10.5281/zenodo.10223385.
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incubation period when comparing different VOCs and age groups. Our findings illustrate
the value of linking information on participant characteristics, symptom profile and infecting
variant with prospective PCR sampling, and the importance of accounting for increasingly
complex population exposure landscapes when analysing the viral kinetics of VOCs.

Trial Registration: The Legacy study is a prospective observational cohort study of
healthy adult volunteers undergoing weekly occupational health PCR screening for SARS-
CoV-2 at University College London Hospitals or at the Francis Crick Institute
(NCT04750356) (22,23). The Legacy study was approved by London Camden and Kings
Cross Health Research Authority Research and Ethics committee (IRAS number 286469).
The Legacy study was approved by London Camden and Kings Cross Health Research
Authority Research and Ethics committee (IRAS number 286469) and is sponsored by Uni-
versity College London Hospitals. Written consent was given by all participants.

Background

Successive Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of con-
cern (VOCs) have exhibited stepwise increases in relative epidemic growth rates [1-3]. The
selective advantages of successive VOCs are the result of complex epistatic relationships arising
from combinations of mutations occurring in the viral genome. Selective advantage is fre-
quently associated with mutations in the region encoding the spike protein. To increase the
growth rate of a VOC within a community, these mutations must confer improved evasion of
antibody-mediated immunity, increased intrinsic transmissibility, or a combination of both.
Understanding how interrelated factors including pathogen biology and host characteristics—
such as preexisting immunity—impact on replication and transmission of SARS-CoV-2 is
essential to inform ongoing Coronavirus Disease 2019 (COVID-19) planning and response.

Over the course of a SARS-CoV-2 infection, the viral load in the nasopharynx increases
after infection until reaching a peak and then declining. The dynamics of the viral load over
time are known as viral kinetics. Viral kinetics are quantified by performing reverse transcrip-
tion PCR (RT-PCR) on nasal swabs, this returns a cycle threshold (Ct) value that measures the
concentration of viral RNA in the nasopharynx [4]. Thus, the cycle thresholds inversely corre-
late with higher RNA viral concentrations. Such values measure viral RNA in the nasopharynx,
which correlate well with live virus as measured by plaque-forming unit (PFU)/ml in the early
stages of infection [4]. Viral kinetics will vary between individuals due to host factors such as
age, sex, or prior immunity or due to changes in the pathogen related to the emergence of new
VOCs [4-14].

Viral kinetics may change between variants and epidemic waves [11,14], necessitating
updating of recommendations as new variants become dominant. However, as population
immunity accumulates via infection and vaccination, it will become harder to generalise
descriptive insights from one population to another. Studies that can identify factors influenc-
ing viral kinetics and likely infectiousness are therefore crucial for developing up-to-date pub-
lic guidance and understanding risk of transmission for patients.

Changes in viral kinetics have implications for transmission since higher viral loads are fre-
quently associated with increased host transmissibility. There are several reasons higher trans-
missibility could be observed after the emergence of a new VOC, including higher immune
escape; faster initial replication; higher peak viral load; longer period of viral shedding; or a
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different symptom profile, and hence different host behaviour. As of 2023, individuals within
populations have a range of life course exposure histories due to their past infections and vacci-
nations. These complex life course exposure histories make it challenging to determine
whether changes in observed viral kinetics are due to host factors such as prior immunity or
changes in the pathogen itself. Studies that can separate such factors influencing viral kinetics,
and hence likely infectiousness, are therefore crucial for developing up-to-date public guidance
and understanding risk of transmission for patients.

Previous studies have sought to relate within-host viral kinetics with other measurable prop-
erties such as disease severity, mortality, VOC, and the probability of onward transmission [4-
6,8-10,15]. However, they have often had one of 2 key limitations. Either they have used serial
sampling following an initial diagnostic swab, conducted only after symptom onset, thus miss-
ing the early rates of viral replication [13]. Or, they used single sampling with Ct values that cor-
respond to a single time point per individual, meaning that variation in the viral load over the
course of an infection is not distinguishable from the variation in viral load between individuals
[16,17]. As a result, any conclusions about differences in Ct value between individuals may be
an artefact of factors such as diagnostic protocols or underlying epidemic dynamics.

Repeatedly testing many individuals throughout their infection, including in the early pre-
symptomatic period, makes it possible to separate individual Ct dynamics over time from the
between-individual variation in viral load [11,18]. In cohort studies where individuals have
been repeatedly tested to infer the viral dynamics of their infection, this between-individual
variation has previously been compared to single characteristics, including the infecting VOC
[5,11,12], age [5,7], and vaccination status [5,12]. However, there can be considerable con-
founding between different characteristics. For example, each sequential VOC has spread
against a different background of overall population vaccine coverage, including numbers of
doses received, confounding any comparisons based only on VOC. Failure to adjust for such
confounding factors risks attributing differences in viral load to different VOCs that are in fact
associated with factors that influence viral replication, such as the presence of vaccine-induced
immune effectors such as neutralising antibody levels. Accounting for both interindividual
variation in Ct values and complex host characteristics—such as vaccination status, exposure
history, and age—is therefore crucial for obtaining reliable estimates of the relationship
between VOCs and viral kinetics [19].

To address this complexity, we developed a Bayesian hierarchical modelling framework
that estimates the unobserved Ct trajectories for each individual, using data from a subset of a
prospective cohort undergoing weekly occupational health PCR screening for SARS-CoV-2.
As well as accounting for different covariates jointly, this modelling approach pools data across
individuals to identify the main drivers of variation in Ct dynamics and estimate the accompa-
nying uncertainty. Using this model, we examined the relationship between Ct dynamics and
different VOCs, including timing and peak viral loads, and quantified the impact of key indi-
vidual-level characteristics on these dynamics.

Methods

Clinical cohort composition

The Legacy study is a prospective observational cohort study of healthy adult volunteers
undergoing weekly occupational health PCR screening for SARS-CoV-2 at University College
London Hospitals or at the Francis Crick Institute (NCT04750356) [20,21]. The Legacy study
was approved by London Camden and Kings Cross Health Research Authority Research and
Ethics committee (IRAS number 286469) and is sponsored by University College London
Hospitals. Written consent was given by all participants. Participants provided baseline
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demographics including age, sex, and medical comorbidities, with data collection on subse-
quent vaccine doses and COVID-19 infections. Participants reporting either a positive test
result for SARS-CoV-2 or onset of symptoms consistent with COVID-19 were sent same-day
swabs via courier up to day 10 post positive test or symptom onset. They received further
swabs every 2 to 3 days until day 10 (Fig 1A). All participants had a face-to-face postinfection
study visit before day 30 postinfection, at which point an additional swab was collected, and a
symptom diary was completed [22]. We linked diagnostic swab data with earlier swab data
from the occupational screening pipeline at the Francis Crick Institute, enabling estimation of
the presymptomatic period between the last reported negative screening swab and onset of
SARS-CoV-2 infection.

We included all infection episodes reported by Legacy study participants between 3 June
2021 and 25 April 2022, which had at least 2 positive RT-PCR results. The total size of the
cohort up to the maximum date considered was 680 participants, of which 152 had 2 positive
results and, as such, were included in this analysis. Five individuals had 2 recorded reinfec-
tions, resulting in a total of 157 infection episodes with at least 2 positive PCR test results per
episode. For each infection episode, whole-genome sequencing or a combination of date of
infection and viral genotype was used to assign the VOC that caused the infection.

SARS CoV-2 RT-PCR and viral sequencing

Viral RNA was extracted from nasopharyngeal swabs and analysed by RT-PCR using methods
previously described in Aitken and colleagues’ article [23]. ORFlab, N, and S gene Ct values
were used for this analysis, with an in-model adjustment for gene type. We found strong corre-
lation between the Ct values at the different gene targets (Fig A in S1 Text). Therefore, includ-
ing all Ct values available increased statistical power for each individual. Viral RNA from
positive swabs was prepared for whole-genome sequencing using the ARTIC method (https://
www.protocols.io/view/ncov-2019-sequencing-protocol-v3-locost-bh42j8ye) and sequenced
on the ONT GridION platform to >30k reads/sample. The data were demultiplexed and pro-
cessed using the viralrecon pipeline (https://github.com/nf-core/viralrecon) [23].

Estimating the incubation period of SARS-CoV-2 variants

In total, 136/157 (86.6%) of infection episodes had symptoms reported, reported by their date
of symptom onset (Table 1). Participants were a subset of the wider post-vaccine infection
cohort within the Crick, where serial sampling data were available [22]. We used the difference
between the estimated time of exposure and the time of symptom onset for each individual to
fit 2 parameters of an assumed log-normal form of the incubation period for SARS-CoV-2
(Fig 1B and 1C). We specified semi-informative priors for both parameters using existing esti-
mates of the incubation period [24].

Estimating viral kinetics by variant and host characteristics

We constructed a Bayesian model that jointly infers individual-level Ct trajectories, population
(covariate)-level trajectory parameters, parameters of a log-normally distributed incubation
period, and multiplicative effect size parameters following a linear regression. We regressed
against several covariates for both the population-level Ct trajectory and incubation period
parameters. Covariates used are described in detail in the next section. The model allows for
the addition (or removal) of covariates through a formula interface.

For the individual-level Ct trajectories, we extended and modified an existing model of
individual-level Ct dynamics over the course of entire infections of any respiratory disease
measurable by RT-PCR test and applied this to our cohort of participants infected with
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Fig 1. Schematic of the study design and modelling procedure. (A) Schematic of the cohort and data collection procedure
used for the subset of the Legacy study. (B) Typical Ct value data and model fits for 2 representative individuals with
different covariates. (C) Schematic of the individual-level and covariate-level model fits. The model fits each participant’s
viral kinetics and pools the estimates in a statistically robust manner. All three of these images were drawn by the authors.

https://doi.org/10.1371/journal.phio.3002463.g001
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Table 1. Number of participants in each covariate category used in our study. Covariate categories used in the baseline model include VOC status, symptom status,
total number of exposures at time of infection, and age group. The other covariates are investigated in one of the various alternative models considered.

Demographic details of participants'

Characteristic Delta, N = 34!, n = 34% Omicron BA.1, N = 63!, n = 652 Omicron BA.2, N = 60, n = 62
Female' 18 (53%) 43 (68%) 39 (65%)
Male' 16 (47%) 20 (32%) 21 (35%)
Median age (years) [IQR] 35 [22-48] 40 [21-59] 34 [17-51]
Number of doses at time of infection™

2% 2 (3.7%) 0 (0%) 0 (0%)

2 32 (59.3%) 16 (25%) 1(1.7%)
3* 18 (33.3%) 5 (8.0%) 0 (0%)

3 2 (3.7%) 47 (75%) 59 (98.3%)
Dose 1'

AZD1222 16 (47.1%) 22 (34.9%) 17 (28.3%)
BNT162b2 18 (52.9%) 39 (61.9%) 38 (63.3%)
mRNA1272 0 (0%) 2(3.2%) 4(6.7%)
others 0 (0%) 0 (0%) 1(1.7%)
Dose 2*

AZD1222 16 (47.1%) 22 (34.9%) 16 (26.7%)
BNT162b2 18 (52.9%) 39 (61.9%) 39 (65.0%)
mRNA1272 0 (0%) 2(3.2%) 4(6.7%)
others 0 (0%) 0 (0%) 1(1.7%)
Dose 3'

BNT162b2 10 (29.4%) 47 (74.6%) 58 (96.6%)
mRNA1272 2 (5.9%) 16 (25.3%) 2 (3.4%)
N/A 22 (64.7%) 0(11.1%) 0 (0%)
Total number of exposures at time of included infection episode

3 20 (58.9%) 11 (17.4%) 1(1.7%)

4 11 (32.4%) 41 (65%) 43 (71.7%)
5+ 3(8.9%) 11 (17.4%) 16 (26.7%)

Joined study before infection episode?’

No

13 (38.2%)

33 (52.3%)

22 (36.7%)

Yes

21 (61.7%)

30 (47.6%)

38 (63.3%)

Unknown

Median days since dose prior to infection [IQR]

121 [83.5-184]

75 [34.0-108]

93 [69.0-113]

Self-reported symptom severity'

gradel 12 (35.3%) 28 (46.7%) 24 (40%)
grade IT 11 (32.4%) 22 (36.7%) 33 (55%)
grade III 0 (0%) 4(6.7%) 0 (0%)
asymptomatic 9 (26.5%) 9 (15%) 3 (5%)
Unknown 2 (5.9%) 0 (0%) 0 (0%)
Self-reported duration of symptoms [IQR] 10 [7-14] days 10 [8-14] days 11 [8-15] days
Virus sequenced 32 (94%) 56 (89%) 32 (53%)

"Number of individuals.

2n, infection episodes.

*Infection commenced within 0—14 days of dose.

(%); median [25%-75%].

https://doi.org/10.1371/journal.pbio.3002463.t001
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SARS-CoV-2 [11,12]. The individual-level dynamics are modelled with a piecewise linear
curve, on a logarithmic scale, with a single breakpoint, where the breakpoint represents the
peak of the trajectory (Fig 1B). The logarithmic scale corresponds to assuming an exponential
increase in viral load from the point of exposure until the peak, then an exponential decrease
at a different rate to the point of clearance.

Each individual trajectory was parameterised using 4 parameters with the following epide-
miological interpretations, each corresponding to events that were not directly observed: the
timing of initial exposure event, timing of the peak (lowest) Ct value, Ct value at the peak, and
the timing the trajectory hits the limit of detection (LOD, highest Ct value) (Fig 1B and 1C),
which for this assay was Ct = 40. The reported LOD is a censored value, meaning in theory, a
more sensitive machine could detect SARS-CoV-2 at higher Ct values. As such, we also esti-
mate a true (censored) LOD for each individual, both at the start and end of each infection epi-
sode. We report differences in the peak Ct value, the timing of the peak, and the timing
trajectories hit the censored LOD.

The viral kinetic model generated the expected Ct value at a given time since exposure for
each individual, which was compared to the measured Ct values using a normally distributed
observation process. The variance parameter of this term was shared across all individuals and
represents the measurement error from the RT-PCR sampling and testing process. Given that
we fit to data at 3 gene targets (ORF1ab, S, and N-gene targets), we include a term in the Bayes-
ian linear regression adjusting for differences in gene target (Fig A in S1 Text).

Given the complex nature of the exposure history of each individual (Fig 2A), we adjusted
for the time since the last exposure for each individual. We did so by calculating the time since
the last infection or vaccination (whichever was sooner) for each individual as well as estimat-
ing effect sizes for the total numbers of exposures for each individual. This adjustment was per-
formed in the Bayesian multiple linear regression component of the model, and, as such, it did
not include explicit antibody dynamics.

Covariate categories and regression reference choices

The categories of covariates used were VOC status (Delta, Omicron BA.1, or Omicron BA.2),
symptom status (symptomatic or asymptomatic), age group (20 to 34, 35 to 49, and 50+), total
number of antigenic exposures (3, 4, or 5+; calculated as the sum of infections and vaccine
doses), and time (days) since the last exposure (see Table 1 for full description of the number
of individuals in each category).

In the linear regression framework, values for VOC status, symptom status, age group, and
numbers of exposures needed to be chosen for the reference case against which the other
covariates were regressed. Symptomatic, Omicron BA.1 individuals, aged between 35 and 49
years with 4 exposures were chosen as the baseline case for both interpretability and statistical
power, as this combination produced the largest reference group of individuals.

After fitting the model, we used the covariate-level posterior distributions to simulate
10,000 Ct trajectories for each covariate included in the analysis and summarised the trajecto-
ries by calculating the median, 50%, and 95% credible intervals for each covariate. Details and
comparisons of alternative models—using either different model structures or differences in
the regression formula—can be found in the Supporting information (Figs J-M in S1 Text).

Results
Differences in peak Ct value by variant and host characteristics

There was considerable variation in both individual characteristics and Ct dynamics across the
cohorts (Fig 2B). Applying our Bayesian model to these data, we estimated that the Ct
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trajectories for participants in the reference regression group (Omicron BA.1, symptomatic, 4
exposures, and aged 35 to 49 years) peaked at 15.9 (95% credible interval [CrI]: 14.8 to 16.9)
(Fig 3A and S3 Table). In comparison, we estimated that the trajectories of the Delta- and

BA .2-infected subsets have peak Ct values of 14.8 (95% CrI: 13.5 to 16.2) and 14.9 (95% CrI:
13.9 to 16.0), respectively (Fig 3A and S3 Table), resulting in differences of 0.93 (95% Crl:
—0.41 to 2.40) and 0.89 (95% Crl: —0.17 to 2.0) Ct values from baseline individuals (respec-
tively). We estimated that asymptomatic individuals have a peak Ct value of 16.6 (95% Crl:
15.1 to 18.2)—a peak Ct value 0.75 (95% Crl: —0.91 to 2.3) higher than baseline individuals
(Fig 3B and S4 Table)—corresponding to a lower peak viral load. We find that individuals
with 3 exposures in total have a peak Ct value of 17.0 (95% Crl: 15.3 to 18.8). These individuals
and the baseline individuals have peak Ct values 1.2 (95% Crl: —0.81 to 3.2) and 2.3 (95% CrI:
-1 to 3.7) lower (respectively) than individuals with 5+ exposures (who have a peak Ct value of
18.2 (95% Crl: 16.9 to 19.6)), corresponding to substantially higher viral load for both 3- and
4-exposure individuals (Fig 3C and S5 Table). Estimates for the 20 to 34 age group are almost
identical to the estimates for baseline individuals. However, 50+ year olds have peak Ct value
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interval; Ct, cycle threshold; LOD, limit of detection; VOC, variant of concern.

https://doi.org/10.1371/journal.pbio.3002463.9003

estimates of 17.7 (95% Crl: 16.4 to 18.9), 1.8 (95% Crl: 0.5 to 3.2) Ct values higher than baseline
individuals (Fig 3D and S6 Table).

Differences in timing by variant and host characteristics

We estimated that the Ct trajectories in the baseline group (BA.1 infections in 35 to 49 years
old after 3 vaccinations) peaked at 5.9 days after exposure (95% Crl: 5.2 to 6.7) (Fig 3A and S2
Table). Delta Ct trajectories peaked at 6.6 days after exposure (95% Crl: 5.1 to 8.3), and BA.2
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trajectories peaked at 5.2 days after exposure (95% Crl: 4.3 to 6.1), 0.53 (95% Crl: —0.88 to 2.3)
days later, and 0.74 (95% Crl: —1.7 to 0.25) days sooner than the baseline participants, respec-
tively (Fig 3A and S3 Table). Trajectories of asymptomatic participants peaked 5.5 (95% Crl:
4.2 to 6.9) days after exposure, 0.39 (95% Crl: —1.8 to 1.1) days sooner than participants in the
baseline group (Fig 3B and S4 Table). We did not find a substantial difference in the timing of
the peak for differences in the total numbers of exposures (Fig 3C and S5 Table) or for 50
+ year-old individuals (Fig 3D and S6 Table). Lastly, we found that Ct trajectories for 20- to
34-year-old individuals peak sooner than the baseline group, at 4.5 (95% CrI: 3.7 to 5.4), 1.4
(95% Crl: 0.42 to 2.2) days sooner than baseline individuals (Fig 3D and S6 Table).

We then estimated the times at which Ct trajectories reached the thresholds of Ct = 37 or
Ct = 30, approximating the LODs by PCR or a rapid test that can only detect high Ct values. For
PCR positivity (PCR+), baseline trajectories crossed the PCR+ threshold at 2.6 (95% Crl: 1.7 to
3.3) days after exposure and would have remained PCR+ until 23.8 (95% CrI: 20.7 to 26.2) days
after exposure. We estimated that Delta trajectories would turn PCR+ at an almost identical
time to the baseline trajectories but would only remain PCR+ until 21.5 (95% CrI: 18.1 to 24.2)
days after exposure. We estimated that BA.2 infections would turn PCR+ 2.2 (95% CrI: 1.4 to
2.9) days after exposure and would remain PCR+ until 25.0 (95% Crl: 21.3 to 27.8) days after
exposure. Trajectories for all other covariates were estimated to turn PCR+ at very similar times
to the baseline trajectories. However, we estimated substantial variation in the duration of PCR
positivity for the other covariate categories. Trajectories would become PCR- for participants
with 3 or 5+ total antigenic exposures sooner than baseline individuals; specifically at 21.4 (95%
Crl: 17.4 to 25.1) and 19.1 (95% Crl: 16.1 to 21.4) days after exposure respectively. Lastly, we
found that trajectories for participants in age groups 20 to 34 and 50+ would become PCR
— later than baseline individuals, at 24.6 (95% CrI: 21.0 to 27.7) and 26.9 (95% CrI: 22.6 to 30.0)
days after exposure, respectively. Estimated rapid test positivity timings are reported in S1 Text.

Summary of estimated variations in Ct dynamics by variant and host
characteristics

Differences within and between all 4 covariate categories were difficult to characterise pre-
cisely, given the complex nature of the exposure history of this dataset. However, some pat-
terns emerged. To summarise, compared to reference individuals, we found lower peak Ct
values for Delta- and BA.2-infected individuals; a later peak timing for Delta-infected individ-
uals and an earlier peak timing for BA.2-infected individuals; Delta-infected individuals reach-
ing the LOD sooner than BA.1- or BA.2-infected individuals; a substantially higher peak Ct
value for individuals with 5+ exposures—compared to reference individuals and individuals
with 3 exposures—consistent with lower viral loads and higher levels of immunity for those
individuals [20]; higher peak Ct values for asymptomatic individuals, consistent with previous
estimates and consistent with lower viral loads in asymptomatic individuals throughout their
infections [7,25]; and, lastly, the timing of the peak Ct value occurred sooner for asymptomatic
individuals, consistent with previous estimates [7]. However, we estimated that peak Ct values,
timing of peak, and LOD did not follow a consistent pattern in our dataset across the different
age groups. This could be due in part to low statistical power for the highest age group and/or
the lack of explicit inclusion of complex underlying antibody dynamics in our model.

Estimating the relationship between timing of peak shedding and symptom
onset

Combining the fitted Ct trajectories with incubation period estimates, we estimated the tem-
poral dynamics of viral shedding and their relation to the timing of symptom onset for each
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covariate. To compare dynamics, we selected a Ct threshold relating to a time point corre-
sponding to comparatively high viral load (Ct = 20). We found that individuals infected with
BA.2 reach the assumed Ct threshold on their upwards trajectory earlier than those infected
with BA.1 and that BA.1 individuals reached the Ct threshold earlier than Delta-infected indi-
viduals. Similarly, using our incubation period estimates, we estimated that symptom onset
was earlier for BA.2-infected individuals than for BA.1-infected individuals, and earlier for
BA.1-infected individuals than for Delta-infected individuals (Fig 4).

Estimates stratified by VOC revealed that these 2 timescales have become shorter as variants
have emerged (Fig 4A). For example, the marginal estimates for the time at which the Ct tra-
jectories reached the assumed threshold move from 5.6 (95%: 3.8 to 7.3) days to 5.2 (95%: 4.1
to 6.2) days to 4.5 (95%: 3.3 to 5.5) for the VOCs in the order in which they evolved: Delta =
BA.1 => BA.2. Similarly, the incubation periods are 6.0 (95%: 4.2 to 7.5) days to 5.0 (95%: 4.3 to
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5.6) days to 4.5 (95%: 3.3 to 5.5) days for the same ordering (Fig 4A). As asymptomatic indi-
viduals do not have an incubation period, such estimates by symptom status were only possible
for symptomatic individuals, which were used as the baseline set of individuals and therefore
match those of the BA.1 estimates (Fig 4B). We did not find substantial deviations from the
reference group when investigating this relationship by total numbers of antigenic exposures
(Fig 4C). Lastly, when stratified by age group, we estimated the time trajectories pass the
assumed threshold moves from 5.7 (95%: 4.3 to 7.0) days to 5.2 (95%: 4.1 to 6.2) days to 4.0
(95%: 2.9 to 5.0) days, and the onset of symptoms occurs at 5.8 (95%: 4.0 to 7.2) days to 5.0
(95%: 4.3 t0 5.6) to 4.1 (95%: 3.0 to 5.0) days when age groups are reported by decreasing
order: 50+ => 35 to 49 => 20 to 34 (Fig 4D). Our estimated incubation periods, sampled using
both the inferred mean and standard deviation parameters, are included in the Supporting
information (Fig O in S1 Text).

Sensitivity analyses and robustness checks

To test the sensitivity of our model to the choice of semi-informative priors, the sample sizes,
and our choice of covariates, we performed a number of additional robustness checks, sensitiv-
ity analyses, and a model selection procedure.

First, to investigate sensitivity to the semi-informative prior choices, we widened the covari-
ate-level priors by increasing the variance parameter considerably for the 3 main process
parameters: Ct value at peak, timing of the peak, and timing the LOD is reached. We still used
normal distributions for all covariate-level priors, as they are highly recommended for high-
dimensional hierarchical models such as this one, to aid with sampling from complex geome-
tries. However, where the variance parameter was between 0.5 and 1 for all semi-informative
priors—with mean values chosen from literature—we multiplied all variance parameters by 5,
widening the priors considerably. The parameters are on logit (Ct value parameters) or log
scales (timing parameters), meaning that this increase in the variance, when measured in natu-
ral units (Ct values or time (days)), should also be interpreted on these same scales. The results
using less informative priors are in line with the semi-informative priors (Fig T in S1 Text).
The direction of all effect sizes is the same between the two, and all magnitudes are within each
other’s credible intervals. The overall uncertainty for the less informative prior case is slightly
wider but at a level hard to distinguish visually. We conclude from this that our results from
our main analysis using semi-informative priors are not overly sensitive to the choices made
and that our resulting estimates are mostly informed by our modelling framework conditioned
on our dataset.

Second, to test the ability of our model to recover known parameter values, we performed a
simulation study (described in detail in S1 Text). Figs Y-Z in S1 Text show results after fitting
our model to simulated data whereby we demonstrate the ability of our modelling framework
to recover known effect sizes varying 3 key process parameters between 2 synthetic groups
smaller than or similar in size to the smallest group of individuals in our analysis.

Third, we performed a number of model fits with different sets of covariates and prior
choices, all of which are reported in the Supporting information (Figs P-U in S1 Text). Spe-
cific results and their interpretation are described in the Supporting information. However, to
summarise, we found the results from the various additional checks were in line with the main
results (Figs 3 and 4).

Lastly, S7 Table shows the results from an approximate leave-one-out cross-validation
performed for 7 candidate models, finding similar predictive power between models with dif-
ferent design matrices, justifying the use of the specific set of covariates used in the main
analysis.
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Discussion

We estimated differences in viral shedding dynamics over the course of infections with dif-
ferent SARS-CoV-2 VOCs by combining data from a large cohort of healthy adults with a
statistical model that accounted for both individual- and group-level variation in Ct value.
Adjusting for a changing background of host characteristics over time, we identified differ-
ences in Ct kinetics that were associated specifically with VOC status and found that Delta
and BA.2 infections tended to peak at higher viral loads compared to BA.I infections. We
also found that age and number of prior exposures had a strong influence on Ct peak, with
lower shedding among older individuals and those who had at least 5 exposures to vaccina-
tion and/or infection. Moreover, we found evidence of a correlation between the speed of
early shedding and duration of incubation period when comparing different VOCs and age
groups.

The unique dataset and model developed here allow us to expand upon previous findings
from recent studies that investigated specific aspects of viral kinetics of SARS-CoV-2 infec-
tions, both in a human challenge model [4] and in the community [5,7,11-14,19,25]. First, we
collected serial swabs from participants in a large, well-defined cohort, which is broadly repre-
sentative of the working-age UK population and who were undergoing regular surveillance
RT-PCR testing. Second, we captured both asymptomatic and symptomatic infections with
high confidence, linked to the last negative test, in comparison with other studies [25] that
relied upon self-initiated symptom-based testing. This knowledge of prior negative test timings
allowed us to estimate the duration of presymptomatic infection with greater confidence and
directly compare the peak and trajectory of symptomatic and asymptomatic infections. One of
the major limitations of most studies of SARS-CoV-2 infection has been the unknown time
between infection and symptom onset. While the human challenge model approach has pro-
vided detailed information about viral kinetics following inoculation, participants were unvac-
cinated, healthy younger adults infected with a small dose of ancestral “pre-VOC” virus [4],
limiting inferences about the kinetics of emergent VOCs within the majority-vaccinated gen-
eral public. Using the last known negative test in our participants, through to their first positive
test, and then through serial tests up to 30 days afterwards, we were able to fully characterise
viral kinetics over the course of infection rather than focusing exclusively on the initial post-
onset period [11,12]. Furthermore, by linking to dates of symptom onset and conditioning on
each participant’s estimated exposure time, we jointly—alongside each individual’s viral kinet-
ics—estimated an incubation period for each covariate. Finally, we included participants with
Delta, Omicron BA.1, and Omicron BA.2 infections, enabling direct comparison between
VOC:s that have circulated since May 2021 in the United Kingdom [15].

Our analysis made it possible to evaluate several putative relationships between host charac-
teristics, disease profile, infecting variant, and viral kinetics. First, it has previously been sug-
gested that both vaccination and milder or asymptomatic infection may be associated with
lower viral loads and faster viral clearance [12,26]. Our finding of higher Ct values after 5
+ viral exposures (whether vaccine or infection) is consistent with enhanced host immune
responses due to previous exposure to spike protein. Among asymptomatic infections, there
was some—albeit weak—evidence pointing to lower and earlier peak viral load. We did not
find evidence that people with asymptomatic infections cleared the virus more quickly, with
predicted Ct remaining below 30 for 14 days after exposure. These findings are consistent with
those in the human challenge model, where viral loads remained high regardless of symptom
severity [4]. Within our cohort, effects of vaccine doses or symptom status on the value or tim-
ing of the peak Ct value were small, suggesting that the impact of isolation periods or likeli-
hood of transmission would not differ based on presence of symptoms or number of previous
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exposures. However, we did not have data from participants with no prior exposures, limiting
our ability to fully explore the role of heterogeneity in immunity.

Second, while a report on a large community-based study reported that Omicron BA.1
caused shorter symptomatic illness compared to the Delta variant [27], our estimated viral
load kinetics did not indicate faster clearing of Omicron BA.1. This is consistent with our pre-
viously reported data on symptom severity and duration, which found these to be the same
across all VOC infections considered here [22]. It has been suggested that different VOCs have
altered tropism for higher or lower portions of the respiratory tract [4,28], with BA.1 prefer-
ring upper portions and Delta those deeper. These differences in anatomical preference may
alter Ct dynamics in the nasopharynx, and, hence, the symptom constellation may also be dif-
ferent with coryzal symptoms favoured in BA.1 and BA.2 infections compared to Delta
[22,29]. We found a clear difference in time to LOD for Delta infections compared to Omicron
BA.1 infections (in 35 to 49 yeas old with 4 previous exposures), but the majority of people had
recently received their third vaccine dose at the time of infection and were more likely to be
asymptomatic, suggesting a role of faster viral clearance for the nasopharynx in the immediate
post-vaccine period [4,30]. We also found evidence of an earlier peak Ct and higher peak viral
load in BA.2 infections, consistent with a recent study of serial viral loads by [27,31] and the
observed rapid spread of BA.2 across the globe during the latter stages of the BA.1 epidemic
[32].

Third, the arrival of each new VOC in the UK typically resulted in a wave of infections con-
centrated in specific age groups, while at the same time vaccine doses have been prioritised
towards older age groups [15,33]. We found the peak Ct was lower in younger adults across all
VOC, with older adults peaking later, and having a shorter trajectory to the LOD, despite simi-
lar vaccination doses at the time of infection. Indeed, the older adults, who received vaccine
doses significantly earlier than the younger cohort, had less viral shedding. While not formally
included in the model, older adults typically have an attenuated neutralising antibody response
after COVID-19 vaccination [20,21,34]. One might expect in this scenario that viral replication
would therefore be more active and prolonged. Further study to understand why we observed
the opposite is needed.

There are some additional limitations in our analysis. Error in Ct values is known to
decrease at higher viral loads and increase at lower viral loads [11] (Fig B in S1 Text), but to
ensure model identifiability, we assumed a constant measurement error across the range of
reported Ct values. Such an approximation would be particularly important to revisit if we
were analysing timescales beyond the relatively short postinfection period considered here
and, hence, a larger range of Ct values. We also used prior exposures as a proxy to capture the
potential effects of existing immunity. With more detailed linked serological and PCR data, it
would be possible to examine this relationship in more detail, although this would require a
substantially more complex model structure. Our finding of higher Ct values after 5+ viral
exposures (whether vaccine or infection) is consistent with enhanced host immune responses
due to previous exposure to spike protein. However, the nonincreasing relationship in Ct esti-
mated between 3 and 4 exposures indicates that immunological dynamics, particularly follow-
ing initial vaccinations and infections at different points in time, may be more complex than
can be fully captured in a single exposure total.

To test the relative predictive performance of several model candidates, we performed a
leave-one-out (LOO) model selection procedure for 8 candidate models (see S7 Table for the
candidate models considered). The candidate models have either different design matrices,
specifying which set of covariates are included in each model, or different priors to the model
used in the main analysis. The predictive power of all models included in the LOO analysis
with different design matrices are within 4 standard errors of one another, which is broadly
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the rule of thumb for a model with significantly lower predictive power than another. There-
fore, we can conclude that including covariates known to influence viral kinetics is justified,
given that the models have similar predictive power with or without their inclusion. The
model with noninformative priors, which has the lowest predictive power compared to all
other candidates—relative to the model with semi-informative priors used in the main analysis
(S7 Table)—is still within the range where it is difficult to conclude an overall difference in
predictive power. As such, we also performed a complementary sensitivity analysis in which
we plot the effect sizes of the model with noninformative priors (Fig T in S1 Text). The central
effect size estimates are broadly similar in both the semi- and noninformative models (Fig 3
and Fig T in S1 Text). However, the resulting uncertainty is higher in the noninformative
prior case. Combining the interpretation from the LOO and sensitivity analysis around the
influence of semi-informative priors, we conclude that their inclusion in the results reported
in the main analysis is justified, given that the predictive power is higher with them, the central
estimates are broadly similar, and prior information is only used where reliably reported else-
where in published literature.

Previous studies inferring viral kinetics have concentrated mostly on differences between
VOC:s circulating at the time in question. As such, they did not consider the host of other pos-
sible confounding variables, making their results difficult to attribute solely to differences in
infecting VOC [5,11,30,35]. In interpreting effect sizes between viral kinetic estimates, we con-
trolled for the complex emerging picture around individual life-course exposures to SARS-
CoV-2, both as infections and vaccines. Differences in numbers of infections, the VOC causing
the infection, the numbers of vaccinations, and many other individual-level variables intro-
duce many sources of possible confounding. In particular, the timing of the sampling within
our study differs compared to other studies, and, hence, Ct dynamics by variant could vary
substantially across populations if these factors are not adjusted for.

Moreover, we find less difference in viral kinetics by age in comparison to other studies
[5,7]. Again, this is likely to be influenced by a number of factors. Given the complex relation-
ship between age, symptom severity, immunity, and exposure risk, studies that do not account
for these characteristics could attribute differences in shedding to age, rather than another fac-
tor that correlates with age. However, combining the underlying viral kinetics model with a
Bayesian hierarchical framework allowed such information to be jointly incorporated into our
analysis. Additional factors that could influence observed differences in effect size estimates
include calibration differences between PCR pipelines resulting in differences in the absolute
Ct values; differences in sampling procedure with previous studies primarily relying on symp-
tom-triggered sampling; complex exposure histories following both the vaccine rollout and the
emergence of new VOCs; and the ability of the underlying model structure to account for the
numerous covariates suspected to affect viral kinetics or the inherent individual-level heteroge-
neity in response to exposure to SARS-CoV-2. We combine data from a study designed to cap-
ture viral load across entire infections, including sampling before and after exposure, with a
model structure complex enough to adjust for all necessary covariates and individual-level var-
iation in viral kinetics and able to inform model parameters by jointly fitting to data where
possible. Therefore, the differences between our effect sizes and previously published studies
may be explained by the combined adjustment for all of these complexities.

The flexibility provided by our framework provides a methodological foundation for future
work using similar datasets. Given the ongoing antigenic turnover of SARS-CoV-2 variants of
concern since late 2020, our results show that it will be increasingly important to adjust for a
range of changing host factors when quantifying viral kinetics and considering implications
for potential infectiousness in future.
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