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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Successful goal-directed behavior requires the maintenance and implementation of abstract

task goals on concrete stimulus information in working memory. Previous working memory

research has revealed distributed neural representations of task information across cortex.

However, how the distributed task representations emerge and communicate with stimulus-

specific information to implement flexible goal-directed computations is still unclear. Here,

leveraging electroencephalography (EEG) and functional magnetic resonance imaging

(fMRI) in human participants along with state space analyses, we provided converging evi-

dence in support of a low-dimensional neural geometry of goal information congruent with a

designed task space, which first emerged in frontal cortex during goal maintenance and

then transferred to posterior cortex through frontomedial-to-posterior theta coherence for

implementation on stimulus-specific representations. Importantly, the fidelity of the goal

geometry was associated with memory performance. Collectively, our findings suggest that

abstract goals in working memory are represented in an organized, task-congruent neural

geometry for communications from frontal to posterior cortex to enable computations neces-

sary for goal-directed behaviors.

Introduction

In shifting environments, humans are capable of flexible cognition that relies on working

memory, the ability to temporarily store and manipulate various kinds of information in mind

[1]. These are not limited to basic sensory modalities but arguably more often involve abstract

task information such as contingencies and contexts that guide goal-directed behaviors. When

cooking without a recipe, one not only has to remember all the necessary ingredients (e.g.,

onions, celeries, and tomato, etc., for making a pasta), but the desirable state of each item (veg-

etables chopped, tomato crushed, and pasta cooked) and the action plans to achieve them

(washing—chopping on a board—combining in a pan). All need to happen in a coordinated

fashion. Yet within working memory research, the mechanisms of how neural codes of abstract

task information and specific stimulus contents collectively support goal-directed behavior

remains an open question.
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The coding schemes of low-level sensory information in working memory have been rela-

tively well understood. Using multivariate decoding techniques or encoding models, stimulus-

specific neural representations during memory delay has been found to be strongest in sensory

cortices responsible for the initial processing of corresponding sensory features [2–9]. These

results highlight sensory cortex as a crucial site for stimulus maintenance in working memory

[10]. In parallel, mounting evidence has suggested a prominent role of frontal cortex in repre-

senting task information, with aggregated BOLD activity that reflects different levels of

abstraction during cognitive control [11,12]. Neural activity in frontal cortex has also been

found to preferentially encode higher-order, abstract representations of task contingencies

[13], contexts [14], rules, or goals [15–17], providing top-down control signals that target stim-

ulus representations in downstream brain regions [10,18]. Despite the general dichotomy,

abstract task representations are not constrained to frontal cortex, but are also observed in pos-

terior sensory cortex [16,17,19]. These distributed task representations are enhanced during

goal implementation compared to pure goal maintenance, which are accompanied by

increased long-range functional connectivity [20] and may reflect a spreading of task informa-

tion from frontal cortex during the active execution of control processes. Nevertheless, how

task representations emerge in distributed cortical areas and how they communicate with spe-

cific sensory information are still unclear.

Previous research has demonstrated how frontal and posterior cortex interact to implement

task-based, top-down control. In particular, oscillatory coherence has been considered a

potential neural mechanism for long-range information communication between brain areas

[21,22]. For example, a body of work has demonstrated inter-areal, low-frequency oscillatory

coherence as a mechanism for working memory maintenance of stimulus information [23–

25]. It has remained less clear, however, whether task representations are also communicated

in a similar vein. In parallel, it has been proposed that, to ensure stability in neuronal readouts

and to enable task generalization and learning, population-level representations of task infor-

mation may be compressed into a structured, low-dimensional neural subspace [26,27]. Differ-

ent cortical areas can interact through a selective low-dimensional communication subspace,

which may potentially serve as a population-level neural mechanism for information relay

between cortical regions [28,29]. Moreover, there is also evidence that low-dimensional con-

trol representations can guide the flow of information across brain areas without directing

high-dimensional, detailed information [30,31], possibly through low-frequency, theta-band

oscillations for long-range communications [20,32]. The findings summarized above suggest a

potential mechanism by which abstract task information is organized in a structured, low-

dimensional representational format and relayed across cortical areas through subspace com-

munication, possibly between frontal cortex and downstream sensory areas through oscillatory

mechanisms to support goal implementation.

In the present study, we set out to directly test this hypothesis by tracking the emergence of

abstract task representations in different cortical regions and investigating how they interacted

with specific stimulus contents during human working memory. In particular, we focused on

goal information, a well-established form of abstract task information. We developed a princi-

pled approach to construct goal and stimulus representations in a structured manner, by

designing a goal and a stimulus space, each defined by 2 orthogonal dimensions that formed a

theoretical space. This design allowed for a direct examination of the congruency between the

neural representational geometries and the theoretical task structure, similar to how stimulus-

specific representational subspaces were uncovered [33–36]. In 2 separate studies using

electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), healthy

participants performed a novel delayed-recall task that required the maintenance of both a

goal and a specific stimulus and at a later stage the manipulation of the stimulus features based
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on the goal. Combining EEG with state space analyses, we found that task representations con-

sistent with the task-congruent, low-dimensional goal space first appeared in frontal activity

patterns before emerging posteriorly. Simultaneously the stimulus-related neural representa-

tions were present in posterior activity. The strength of the task-congruent goal geometry was

associated with memory performance. Moreover, the transfer of goal representations from

frontal to posterior regions and the interactions between goal and stimulus information were

modulated by frontomedial theta-to-posterior coherence. Finally, using fMRI, the frontal task-

congruent goal geometry was localized to subregions in lateral prefrontal (LPFC) and orbital-

medial prefrontal cortex (OMPFC), and the posterior goal geometry, along with the corre-

sponding stimulus geometry, was localized to posterior visual-related regions. Together, these

2 studies provided converging evidence that task-congruent representational geometry of goal

information emerges in frontal cortex and transfers to posterior cortex for implementation,

giving rise to successful goal-directed behavior.

Results

EEG behavioral results

Participants (n = 22) performed a working memory manipulation task alongside with EEG

recording. The task required participants to mentally maintain a memory goal and a visual

stimulus and then manipulate the stimulus according to the specific goal. Memory stimuli var-

ied along 2 orthogonal feature dimensions (Fig 1B, right), size (from small to big) and color

(from green to red). Similarly, memory goals (Fig 1B, left) also varied along 2 orthogonal goal

dimensions, size (adjusting smaller to adjusting bigger) and color (adjusting greener to adjust-

ing redder) goals. In other words, memory stimuli formed a two-dimensional (2D) stimulus

space, and memory goals formed a 2D goal space. Prior to the main task, participants first

learned the degree of required adjustment for all possible stimuli in the working memory task,

such that for any given stimulus in the 2D stimulus space, the correct degree of adjustment fol-

lowing a specific goal was pre-learned (Fig 1C). This design allowed for the dissociation

between goal and stimulus information, which means that for different stimuli, the same goal

would lead to different correct responses. On each trial, participants were first cued with one

of 4 possible goals (Goal cue: bigger and redder, bigger and greener, smaller and redder,

smaller and greener; Fig 1A) and maintained the goal over the first delay period (Delay 1).

After that they were presented with a to-be-memorized stimulus of a specific size and color

(Sample), and maintained both the goal and stimulus over a second delay for goal implementa-

tion (Delay 2), before starting to make adjustments during the response period (Response; Fig

1E). A delay period was included in both stages to better dissociate memory-related activity

from sample- or response-driven activity.

Memory errors were calculated by subtracting correct answers from responses. Mean size

error (Fig 1F) was −0.2% of starting size (SD = 4%) and was not significantly different from 0

(t(21) = 0.22, p = 0.82). Mean color error was 1.77 color steps (SD = 0.68) and was larger than

0 (t(21) = 12.17, p< 0.001). These suggested participants were able to perform the task accord-

ing to the instructions and memorize the stimulus attributes, as there was no bias in size

response and a small bias in color response towards redness, compared to the entire available

color range (120 steps). We also showed the individual distributions of errors (S1 Fig). Impor-

tantly, we used the absolute values of the response error in all subsequent behavioral correla-

tion analyses, as the raw values were signed and only the magnitude itself measured

performance. Mean absolute size error was 13.3% of starting size (SD = 2.6%), while mean

absolute color error was 10.1 steps (SD = 1.81).
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Task-congruent, two-dimensional goal representational geometry transfers

from frontal to posterior channels

Having established behaviorally that participants could well maintain the remembered goals

and stimuli, and manipulate the stimuli according to the remembered goal in the designed 2D

spaces, we next sought to explore the structures of goal and stimulus representations in the

neural state space and their alignment with the designed 2D task spaces. Recent work has suc-

cessfully utilized dimension reduction techniques to reveal neural subspaces and representa-

tional geometries for stimulus information in working memory, including on human

neuroimaging data [34–37]. This approach transcends the mere confirmation of whether

information is encoded without specifying its representational format (e.g., via multivariate

Fig 1. Task schematics and behavioral results. AU : AbbreviationlistshavebeencompiledforthoseusedinFigs1to7andTable1:Pleaseverifythatallentriesarecorrect:(A) Associations between shape cues and task goals. For EEG experiment, cues

were used instead of text prompts for indicating task goals. Pairings did not change across participants. (B) Theoretical 2D goal and

stimulus spaces. To directly examine the neural geometries of working memory representations, both goal and stimulus were

constructed from 2 orthogonal axes. The task goal space consisted of adjusting size and color while the stimulus space consisted of

continuous stimulus size and color (red-greenness). Stimulus size and color were grouped into three bins each for subsequent

analyses. (C) Example sample stimulus (center) and the corresponding correct answers (4 quadrants) according to the task goals.

The distances between any given sample and correct answers in terms of feature values were fixed and pre-learned by participants in

a separate behavioral session. (D) Illustration for all starting values in sample stimulus color. (E) Schematics of EEG and fMRI

paradigms. The abstract working memory task required the memorization of task goal and stimulus features, and at response phase,

the manipulation of stimulus based on the cued goal. At the beginning of response, the appearance of a stimulus on screen marked

the response onset; however, the size and color of this initial item were set with random values to prevent motor planning. (F, G)

Size and color errors for EEG and fMRI experiments, respectively. The response errors were calculated by subtracting correct values

from response. Mean signed error (blue) showed the degree of bias in participants’ responses, whereas mean absolute error (orange)

showed the degree of precision. Individual point represents mean error of each participant. Error bars denote 1.5 IQR. Data and

code that support these findings are available at: https://doi.org/10.57760/sciencedb.16868. EEG, electroencephalography; fMRI,

functional magnetic resonance imaging; IQR, inter quantile range.

https://doi.org/10.1371/journal.pbio.3002461.g001
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decoding methods) and can provide richer descriptions of the coding principles adopted by

neuronal populations in retaining and utilizing relevant information [38]. The experiment

design featuring 2 orthogonal dimensions of task goals allows us to effectively characterize

task-congruent, 2D representational geometry of goal information at the neural level. To this

end, for each individual’s neural data, we used principal component analysis (PCA) to identify

the 2 principal components (PCs) that explained the most variance in terms of task goals. We

then examined whether the 2D structural information in goals could be reflected in the 2D

neural subspaces as revealed by the PCAs. To quantify the degree of which the resulting repre-

sentational geometry matched the theoretical square-like 2D structure, we computed a mea-

sure called circularity index (C), defined as the ratio between a geometric shape’s area and the

square of the total length of perimeter. A larger circularity index would indicate higher similar-

ity between the 2 structures. Time-resolved individual circularity indices (smoothed with a

non-overlapping 80-ms sliding window) were calculated over the course of the trial. Signifi-

cance of the time courses was evaluated using cluster-based permutation tests (details in Meth-

ods). For visualization purposes only, separate PCAs based on group-concatenated data were

performed and projected coordinates corresponding to unique goals were connected in the

same order as in the designed goal space.

To examine representations of goal and stimulus, we primarily focused our subsequent

analyses on 2 sets of EEG channels, frontal and posterior channels (Fig 2A). The result showed

that the hypothesized 2D goal geometry was present in both groups of channels albeit at differ-

ent time periods over the course of a trial: frontal channel activities exhibited a neural geomet-

ric structure that followed the theoretical 2D task space (i.e., adjusting size and color) during

cue presentation (Goal cue; 0–320 ms; Fig 2B, top panel) and goal maintenance (Delay 1; 960–

1,440 ms). By contrast, in posterior channels (Fig 2B, bottom panel), activity patterns did not

exhibit the representational structure predicted by the task space, until towards the end of goal

implementation (Delay 2; 3,580–4,300 ms), extending to the response phase (Response). Visu-

alization of group-level results confirmed the 2D goal geometry in corresponding task epochs

in the neural subspaces defined by PCA (Fig 2C). These results naturally bear the question of

whether the 2 neural geometries were related or independently formed. To provide insight

into this, we included the rest of the channels that sit between frontal and posterior channels

(i.e., central channels) in order to compare the temporal orders of the emergence of 2D goal

geometries among these channel groups. We found that central channels exhibited significant

2D goal geometry as early as the middle of stimulus presentation (Sample; 2,140–4,060 ms; Fig

2B, middle panel), which followed the frontal geometry but preceded posterior activities.

Therefore, this suggests the 2D goal geometry was first formed in frontal channels and

emerged over time to posterior channels, possibly by traveling backwardly through central

channels.

To ensure the validity of the individual circularity index, we compared it with outcomes

derived from another more traditional metric, namely representational similarity analysis

(RSA). Using the task-congruent 2D goal model (S2A Fig, left), only during Delay 1 in frontal

channels, and late Delay 2 onwards for posterior channels, time-resolved RSA correlations

were significant (S2B Fig), in line with the 2D goal geometry revealed by our geometry analy-

sis. Thus, we confirmed that the results above were robust and commensurable with the alter-

native analytic approach of RSA. It should be noted that there are conceptual differences

between these 2 approaches: while circularity index measures how similar the geometry cap-

tured in the first 2 PCs is to a 2D square-like structure, RSA measures the overall pairwise dis-

tances across all data dimensions. Moreover, given that the 4 available button-feature

adjustment mappings remained the same across trials and participants, and that motor

response and task goals were indeed related according to a post hoc analysis (χ2 = 588.2,
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p< 0.001), to rule out the possibility that motor preparations caused the observed 2D repre-

sentations, we calculated the time-resolved motor-specific circularity index as a control analy-

sis. There was no time period during which frontal or posterior activities exhibited significant

2D motor geometry (S3A Fig).

To examine whether other representational formats of goal information coexisted, we

specified an additional theoretical model, i.e., a conjunctive model which assumes task goals

are equidistant from each other (S2A Fig, right), and calculated its similarities to neural

data. In addition, we estimated both the 2D and conjunctive models jointly in a competitive

manner to further decoupled the results due to their correlated nature (see Methods). It was

observed that the conjunctive model was instead most prominent in posterior channels dur-

ing Goal cue and Delay 1 (S2C and S2E Fig), likely related to sensory-driven signals from

the visual cue.

Fig 2. Two-dimensional representational geometries of task goals. (A) Demonstration of frontal, central, and

posterior channel locations. (B) Time courses of individual circularity index in frontal (top), central (middle), and

posterior (bottom) channels, using data averaged over a non-overlapping 80-ms sliding window. Error bars denote

standard error of the mean (SEM) using the number of participants as the degree of freedom. Red horizontal lines

denote time points when 2D goal geometry was significant using a cluster-based permutation test (α = 0.05). (C)

Group-level visualization of goal-specific neural space. Task goal conditions were projected onto the 2D neural

subspace identified by group-level PCA from averaged Delay 1 epoch for frontal channels (top) and posterior channels

for Delay 1 and late Delay 2 (bottom), guided by significant time points in the time course results. Coordinates were

connected in the order according to the conceptual task space. C denotes the circularity index. Data and code that

support these findings are available at: https://doi.org/10.57760/sciencedb.16868. 2D, two-dimensional; PCA, principal

component analysis; SEM, standard error of the mean.

https://doi.org/10.1371/journal.pbio.3002461.g002
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Strength of task-congruent goal geometry was associated with memory

performance

Having established the existence of the 2D goal-specific representations in both frontal and

posterior channel activities, we tested whether the strength of such task-congruent neural

geometry was related to behavior. Firstly, correlational analyses were performed between indi-

vidual circularity indices and memory performance as measured by the sum of standardized

absolute color and size errors. We hypothesized that a stronger 2D goal geometry would lead

to a better separation of conditions for downstream populations and more robust spatial trans-

mission of information, hence better performance should be observed. Given that significant

2D geometry existed during Goal cue and part of Delay 1 in frontal channels and during part

of Delay 2 and Response in posterior channels, electrophysiological activities were averaged

within each epoch and channel groups respectively to compute individual circularity indices

and correlated with behavioral performance. All subsequent correlation results were corrected

using the FDR method, unless specified. 2D goal geometry in frontal channels showed a trend-

ing negative correlation with response error during Delay 1 (Spearman’s correlation; r =
−0.40, p = 0.064; Fig 3A), but not in Goal cue (r = 0.18, p = 0.79). Conversely, we did not find

any relationship for posterior activities during both Delay 2 (r = 0.24, p = 0.86) or Response

(r = 0.001, p = 0.86).

Next, we performed within-subject comparisons which afford more sensitivity than

between-subject methods, as they are less subject to individual differences beyond the scope of

current considerations but still may affect task performance. For goal geometry, we took the

Fig 3. Behavioral relevance of goal and stimulus geometry. (A) Significant correlation (Spearman’s r) between frontal 2D goal geometry in Delay 1 and

the averaged response error. (B) Time-resolved difference in frontal 2D goal geometry between trials in the upper and lower quartiles based on response

errors. Red horizontal lines denote significance time points at α = 0.05. (C) Same as (B) but for posterior goal geometry. (D) Difference in posterior 2D

stimulus geometry using a median-split. Data and code that support these findings are available at: https://doi.org/10.57760/sciencedb.16868. 2D, two-

dimensional.

https://doi.org/10.1371/journal.pbio.3002461.g003
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bottom and top quartiles of each participant’s trial-wise data based on the magnitude of com-

bined response error to compute difference in individual circularity indices corresponding to

the good and bad trials. Statistical significance was assessed by comparing the true values to a

null distribution of circularity index differences generated via permutation (see Methods). In

line with the correlation result, trials with smaller errors were associated with stronger 2D goal

geometry than trials with larger errors. In frontal channels, this was true for Goal cue and

Delay 1 (Fig 3B). For posterior activities, although we did not find a correlation with behavior,

there was a significant difference in 2D goal geometry for part of Delay 2, temporally overlap-

ping with the period of significant posterior 2D geometry (Fig 3C). We further demonstrated

that worse circularity results for incorrect trials cannot be attributed to participants remember-

ing the wrong goals (S3B Fig). Overall, these behavioral analyses support the functional rele-

vance of the 2D goal geometry in working memory, suggesting that the degree to which

individuals formed frontal task-congruent goal representations related to task performance.

Interestingly, the timings during which the geometries manifested behavioral correlation

diverged, coinciding with when frontal and posterior channels exhibited such representational

structure, respectively.

Posterior activities also exhibit 2D stimulus-specific geometry

In addition to the representations for task goals, what is the geometric structure for stimuli

which themselves were drawn from a feature space consisting of 2 independent dimensions?

Based on previous work using simple visual features that demonstrated low dimensionalities

[34–37], it is expected that similar to goal representations, a task-congruent 2D subspace can

well capture the stimulus-dependent variances in neural activity. When applying PCA to iden-

tify such subspaces specific to stimulus color and size, we observed the 2D stimulus geometry

in posterior channels. The structure followed theoretical geometry (borders connecting neigh-

boring coordinates did not cross each other) during sample presentation (Fig 4A and 4B), but

not at other periods. In contrast, in frontal channels 2D stimulus structure was not observed

throughout the trial, suggesting that stimulus-specific processing and maintenance were exe-

cuted mainly by regions monitored by posterior channels. Of note, stimulus size and color

were grouped into 3 bins each, resulting in 9 unique stimulus-specific conditions. In the cur-

rent result, we used 6 of them in order to construct a close-formed geometric shape to calculate

the circularity index (i.e., the middle row in Fig 1B, right was discarded).

Given that a 2D stimulus geometry was identified in posterior activities, it stands to exam-

ine whether such representations were related to behavior. No behavioral relevance was identi-

fied related to the strength of 2D stimulus representation during significant 2D representation

(Sample) when we repeated the correlation (r = 0.23, p = 0.29) or split-trial analyses (Fig 3D).

Furthermore, to successfully adjust the sample features to the correct degree, participants

might have preemptively manipulated the remembered stimulus in mind in preparation for

the responses from Delay 2 onwards. To test this hypothesis, we performed the same PCA pro-

cedure but binned the trials based on the responded feature values and found that 2D response

geometry was formed in posterior channels shortly after the onset of Delay 2, and similarly in

frontal channels slightly later (Fig 4C and 4D). This possibly suggested that integration of goal

and stimulus information indeed took place during goal implementation, leading to the for-

mation of transformed stimulus (i.e., response) representation. It is notable that response

representation exhibited poorer dissociation of size and color axes in group-level visualization

(e.g., no linear planes that separate various sizes or colors can be found). One possible explana-

tion is that response geometry is qualitatively worse as participants mentally generated the

representation instead of viewing it physically [39]. Alternatively, this may suggest that the
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Fig 4. 2D representational geometry of stimulus and response. (A) Time courses of frontal (upper) and posterior

(lower) individual circularity index using data averaged over a non-overlapping 80-ms sliding window. Error bars

denote SEM. Red horizontal lines denote time points when 2D geometry was significant using a cluster-based

permutation test (α = 0.05). (B) Visualization of group-level stimulus-specific 2D geometries for the Sample epoch.

Stimulus feature values were aggregated into 3 bins and the middle color bin were discarded in order to calculate

circularity index, resulting in 6 unique stimulus conditions. C denotes the circularity index. (C) Similar to (A) but for

responded stimuli, which was calculated using the feature values after participant have finished adjusting (i.e., their

answers). (D) Same as (B) but for response geometry. Data and code that support these findings are available at:

https://doi.org/10.57760/sciencedb.16868. 2D, two-dimensional; SEM, standard error of the mean.

https://doi.org/10.1371/journal.pbio.3002461.g004
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response code across individuals might be variable so that no consistent axes could be detected

by group-level PCA.

Long-range theta connectivity mediates the backward transmission of 2D

goal geometry and integration with stimulus information

So far, we have observed a distributed network for goal representations in which goal geometry

transferred front to back in a task-congruent 2D format, and on top of that, task-congruent

stimulus representations in posterior channels. However, what mechanisms mediate the back-

ward transfer of 2D goal geometry and does this process relate to the integration of goal and

stimulus information in working memory? Inspired by previous work demonstrating a promi-

nent role of oscillatory coherence in long-range communication between brain regions

[21,23–25], we targeted frontomedial theta (FMT) to posterior coherence as a measure of

time-resolved long-range connectivity [40] and examined whether FMT was associated with

the strength of neural geometries for task goals, stimulus, and responses. Firstly, 2 significant

frontomedial-to-posterior coherence clusters (see Methods) were identified that covered the

delta and theta frequencies (Fig 5A), one spanning from 0–1,276 ms (Goal Cue and Delay 1),

the other from 1,728–3,268 ms (Sample and Delay 2). As the next step, we used the theta range

(4 to 7 Hz) of these 2 group-level clusters as masks to extract individual FMT strength and

examined its relationship with task representations and behaviors.

Fig 5. FMT to posterior coherence and correlations with representational geometries. (A) Time-resolved frontomedial (channel Fz)-to-posterior

coherence between 1 and 12 Hz. Solid black line encircles the significant time-frequency clusters. For behavioral correlations, only subclusters falling within

the 4 to 7 Hz (theta band) were used as masks to extract individual coherence strength. (B) Correlation results (Spearman’s r) between the first FMT

coherence cluster and representational geometries (i.e., circularity index) of task goals (upper), sample stimulus (middle), and response (lower) at Delay 2.

Each dot represents an individual. Note that the spatial locations of significant correlations varied across the types of representation. (C) Same as (B) but

using the second FMT coherence cluster. Correlation patterns were consistent between the 2 clusters, suggesting similar function of the FMT coherence at

both times. (D) Difference in behavioral performance between individuals with low and high FMT coherence strengths in the second cluster. Data and code

that support these findings are available at: https://doi.org/10.57760/sciencedb.16868. FMT, frontomedial theta.

https://doi.org/10.1371/journal.pbio.3002461.g005
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The first FMT cluster (Fig 5B, first row) was correlated with posterior 2D goal geometry at

Sample and Delay 2; there was no significant result for such a relationship during Goal cue or

Delay 1 (Spearman’s rank correlation, one-tailed; Table 1). This suggested FMT to posterior

connectivity could underlie the transfer of 2D goal representations to posterior sites which ini-

tially emerged frontally and provided a tentative explanation for the temporal cascading rela-

tionship observed earlier across frontal, central, and posterior channels. Moreover, the same

effect was also found for the second FMT cluster (Fig 5C, first row), which could indicate both

FMT clusters share the function of relaying the 2D goal information backwards.

We next wondered whether FMT was also related to the neural geometries of sample and

response stimulus representations, as one potential function of long-range fronto-to-posterior

connectivity is the transfer of task-related control signal to modulate stimulus processing.

Based on this and our finding that FMT is involved in goal information relay, we hypothesized

that FMT was related to the integration of goal and sample information, and therefore, the for-

mation of response representations as the product. Specifically, FMT should be negatively cor-

related with sample, and positively correlated with response geometries, given that stronger

goal representations should be associated with the rise of response representation and the

decay of sample representations (due to transformation of original stimulus information).

Aligned with the predictions, the second FMT cluster was negatively correlated with the 2D

sample structure posteriorly at Delay 2 (Fig 5C, second row), although its correlation with pos-

terior response structure was not significant. Nevertheless, recall that we observed evidence for

response representations in both frontal and posterior channels, we thus examined the rela-

tionship between the second FMT cluster and response structure in frontal channels, and

found the 2 were marginally positively correlated (Fig 5C, third row) at Delay 2. As a separate

note, although significant delta coherence was also observed, it did not correlate with either

neural or behavioral results, in contrast to theta-band activity (S1 Table).

Table 1. Correlations of theta coherence with goal- and stimulus-specific 2D geometries.

2D geometry Task epoch Delay 1 theta coherence cluster Delay 2 theta coherence cluster

r p r p
Posterior goal Goal cue −0.094 0.661 −0.321 0.925

Delay 1 −0.008 0.661 −0.118 0.925

Sample 0.514 0.028* 0.449 0.049*
Delay 2 0.439 0.040* 0.418 0.049*

Posterior stimulus Goal cue 0.075 0.665 −0.054 0.538

Delay 1 0.097 0.665 0.045 0.580

Sample −0.008 0.665 −0.139 0.538

Delay 2 −0.303 0.348 −0.545 0.016*
Frontal response Goal cue −0.222 0.840 −0.151 0.745

Delay 1 −0.098 0.664 0.062 0.745

Sample −0.151 0.840 −0.132 0.745

Delay 2 0.311 0.320 0.430 0.088

Posterior response Goal cue 0.377 0.114 0.146 0.455

Delay 1 0.226 0.206 0.073 0.455

Sample 0.345 0.114 0.300 0.348

Delay 2 0.179 0.212 0.025 0.455

* Denotes p< 0.05, FDR-corrected.

2D, two-dimensional.

https://doi.org/10.1371/journal.pbio.3002461.t001
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Given the importance of transferring goal representations to influence stimulus processing

in the present task, we investigated the relation between FMT connectivity and behavioral per-

formance. Participants were median-split based on the FMT coherence strength and between-

group difference in response error was tested. Those with stronger connectivity during Sample

and Delay 2 (i.e., the second cluster) performed better overall, t(20) = 2.17, p = 0.02 (Fig 5D).

On the contrary, there was no difference if participants were divided based on the first FMT

cluster, t(20) = 0.79, p = 0.22. This distinction could be a result of the timing of the second

FMT cluster being closer to the arrival of stimulus information and the implementation of task

goals, hence, more linked with the underlying computations than the first one. Collectively,

these findings illustrate that long-range connectivity is involved in the relay of goal informa-

tion in a task-congruent format, which is in turn critical to the integration with the veridical

stimulus to produce final responses.

FMRI behavioral results

To further localize brain regions with the designed goal and stimulus geometries, we con-

ducted an fMRI experiment using the same task (n = 21), with event timing adjusted to com-

pensate for the sluggishness of BOLD signals. We first assessed participants’ behavioral

performance in the fMRI experiment following the behavioral measures in the EEG experi-

ment. Overall, results from the fMRI experiment were comparable to those from the EEG

experiment: mean size error was 4% of starting sample size (SD = 5%) and significantly differ-

ent from 0 (t (20) = 3.20, p = 0.004). Mean color error was 1.76 steps (SD = 1.45) and larger

than 0 (t (20) = 5.59, p< 0.001). Mean absolute size error was 14.9% of starting size

(SD = 3.3%), while mean absolute color error was 22.7 steps (SD = 2.03).

Whole-brain searchlight for task-congruent goal and stimulus geometries

In the EEG study, frontal and posterior channels displayed differential sensitivity to goal and

stimulus representations. These signals likely arose from more anterior and posterior cortices,

respectively. To have a finer understanding of the spatial localization of the 2D representa-

tional geometry associated with goal and stimulus space, we conducted individual searchlight

analysis combined with circularity index to examine the 2D representational structures of

goals and stimuli across the whole brain, using trial-wise beta coefficients estimated for each

delay period from general linear models (GLMs).

We found comparable evidence for the 2D goal structure in frontal regions during Delay 1

and in posterior regions during Delay 2, confirming the results from our EEG experiment.

Searchlight identified regions of interest (ROIs) mainly in the frontal cortex during Delay 1,

including bilateral orbitofrontal cortex (OFC), inferior precentral sulcus (iPCS), right inferior

frontal sulcus (IFS) (overlapping with traditional dorsolateral PFC) and gyrus (IFG), and left

medial PFC (mPFC), in which neural activities showed the 2D structure predicted by the goal

space (Fig 6A, left and Table 2). During Delay 2, while some frontal clusters remained, more

were found to exhibit such goal-related geometry in posterior visual-related areas, including

left middle temporal gyrus (MTG), early visual cortex (EVC), and lateral occipital area (LO),

among other surrounding cortical regions in temporal and parietal lobes (Fig 6A, right and

Table 2). These patterns were replicated using an alternative GLM method that can theoreti-

cally better separate delay activity from stimulus- and response-related activity (S4 Fig). Over-

all, during Delay 1, 2D goal geometry was mainly constrained to frontal regions, in line with

our EEG finding; in contrast, there was a more distributed network during goal implementa-

tion where task goals were represented in a 2D format. Nevertheless, we demonstrated that

more brain regions appeared in the posterior cortex by using the center MNI y coordinates
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(posterior to anterior axis) of all goal-specific clusters to conduct a two-sample rank-sum test

for difference between the 2 delay periods. In line with the EEG experiment, the Delay 2 clus-

ters lay more posterior to the Delay 1 clusters (MDelay1 = 26.7, MDelay2 = −30.0, U = 86.0,

p = 0.016; S5 Fig). Furthermore, similar to the EEG study, we conducted RSA analyses using a

whole-brain searchlight procedure and confirmed that the clusters with significant 2D geome-

try were largely replicated by the corresponding RSA model (S6C Fig).

On the other hand, 2D stimulus-specific geometry, as predicted by sample color and size,

was identified most prominently in a visual cluster spanning left parietal-occipital sulcus

(POS) and in higher-level visual processing area in inferior temporal gyrus (ITG; Fig 6B and

S2 Table). This is comparable with evidence from posterior channels in EEG and in general

consensus with previous findings that stimulus-related information was stored in correspond-

ing sensory areas. For the frontal clusters in left middle frontal gyrus (MFG) and right precen-

tral gyrus (PCG), they both exhibited poorer group-level results (Figs 6B and S7 for all ROIs).

Fig 6. FMRI whole-brain searchlight for goal, stimulus, and response geometries. (A) Upper panel: Significant ROIs

showing 2D goal geometry in Delay 1 (yellow) and 2 (blue). Lower panel: group-level visualization of the 3 largest clusters.

(B) Significant ROIs showing 2D sample stimulus geometry in Delay 2 and group-level visualization of 2 example visual

ROIs. (C) Same as (B) but for response stimulus geometry and group-level visualizations in Delay 2. An additional threshold

of 50 voxels was applied to all statistical maps for display purposes. iPCS = inferior precentral sulcus; left OFC = left

orbitofrontal cortex; IFS = inferior frontal sulcus; MTG = middle temporal gyrus; olPFC = orbital lateral prefrontal cortex;

mPFC = medial prefrontal cortex; POS = parietal-occipital sulcus; ITG = inferior temporal gyrus; V4 = visual area 4. Data and

code that support these findings are available at: https://doi.org/10.57760/sciencedb.16868. 2D, two-dimensional; fMRI,

functional magnetic resonance imaging; ROI, region of interest.

https://doi.org/10.1371/journal.pbio.3002461.g006
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This observation was accompanied by small circularity values, in sharp contrast to the other

visual-related regions with robust 2D geometry. One possibility is that group-level PCA

required a consistent neural code across individuals in order to establish 2 principal axes that

corresponded to the conceptual dimensions. In theory, this is more achievable in dedicated

sensory areas where neurons are organized according to visual features, whereas in domain-

general regions, the neural codes are likely to be non-sensory in nature (i.e., abstract code) and

more variable across participants.

Lastly, given that the EEG experiment found 2D response representations in both frontal

and posterior channels, which was modulated by FMT coherence marginally, we also sought

to clarify this with a dedicated searchlight analysis. 2D response-specific geometry was found

in visual areas including bilateral EVC, V4 and right visual area 3AB (V3AB), right superior

temporal gyrus (STG) and right inferior temporal sulcus (ITS) as well as around central sulcus

(CS; Fig 6C). Again, we note the same difference in group-level patterns between domain-spe-

cific versus domain-general regions (S7D Fig), in line with the proposition of the sensory and

abstract coding divergence.

Taken together, data from the 2 experiments demonstrate the spatial and temporal charac-

teristics of the 2D geometries are in fact robust and can be uncovered by different recording

modalities.

Functional connectivity between LPFC and posterior regions mediates 2D

goal geometry and relates to task performance

Having identified regions exhibiting the 2D geometry related to task goals and sample stimuli,

we evaluated whether long-range connectivity between these particular regions mediated the

transfer of goal representations from Delay 1 to Delay 2, similar to what was observed in the

Table 2. Result summary of whole-brain searchlight for goal 2D geometry in Delay 1 and Delay 2.

Delay Anatomical locations Abbreviation Cluster center MNI coordinates

x y z

Delay 1 Inferior precentral sulcus (left) iPCS −65 7 15

Orbitofrontal cortex (left) left OFC −15 19 −27

Inferior frontal sulcus (right) IFS 36 40 3

Inferior frontal gyrus (right) IFG 60 17 9

Orbitofrontal cortex (right) right OFC 11 12 −21

Medial prefrontal cortex (left) mPFC −12 55 −1

Delay 2 Orbital lateral frontal cortex (left) olPFC −40 48 2

Medial prefrontal cortex (right) mPFC 6 61 −4

Middle temporal gyrus (left) MTG −62 −56 3

Early visual cortex (bilateral) EVC −1 −92 17

SupraMarginal gyrus (right) SMG 65 −33 34

Lateral occipital (right) LO 30 −88 20

Superior parietal lobule (right) SPL 17 −50 72

Inferior parietal lobule (left) IPL −23 −55 65

Angular gyrus (left) AG −36 −68 40

Superior precentral sulcus (left) sPCS −32 −7 55

Ventral superior temporal sulcus (left) vSTS −60 −32 −5

Orbitofrontal cortex (right) right OFC 15 48 −22

Posterior superior temporal sulcus (right) pSTS 44 −58 15

Anterior superior temporal sulcus(left) aSTS −56 −7 −12

https://doi.org/10.1371/journal.pbio.3002461.t002

PLOS BIOLOGY Task-congruent goal geometry in working memory

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002461 December 19, 2024 14 / 33

https://doi.org/10.1371/journal.pbio.3002461.t002
https://doi.org/10.1371/journal.pbio.3002461


EEG experiment. We used trial-wise beta estimates of delay-period activities to compute func-

tional connectivity among pairs of regions derived from the previous searchlight analyses.

Given the large number of clusters, we opted for a data-driven approach of choosing the 3 larg-

est clusters that showed significant 2D goal representation during each delay period. For stim-

ulus- and response-specific regions, considering the potential distinction in coding schemes

between the anterior domain-general (e.g., MFG and CS in S7 Fig) and posterior visual ROIs,

only the largest clusters in visual-related regions were included. This additionally led to 2 pos-

terior ROIs per searchlight being added into the functional connectivity analyses, bringing the

total to 10 seed regions.

In light of the EEG connectivity result that long-range connectivity mediated the relay of

goal information, a similar approach in the fMRI domain was employed. The advantage of

fMRI allowed us to further limit this test to ROIs specifically holding the 2D goal or stimulus/

response geometry: for Delay 1, 3 clusters iPCS, left OFC, and IFS were chosen (yellow nodes

in Fig 7A); for Delay 2, the top 3 clusters in size were MTG, olPFC, and mPFC (blue nodes in

Fig 7A). Lastly, 2 posterior seed regions (green nodes in Fig 7A) with 2D stimulus-specific

geometry in POS and ITG, and 2 seeds (red nodes) with 2D response-specific geometry in left

and right V4 were included.

Firstly, we assessed whether functional connectivity between Delay 1 and Delay 2 goal-

related seed regions was associated with the strength of 2D goal geometry in Delay 2 clusters.

The connection between iPCS and MTG at Delay 2 was positively correlated with 2D goal-

geometry in the latter (Fig 7C; Spearman correlation; r = 0.53, p = 0.041, BF10 = 11.48). Addi-

tionally, another Delay 1 region IFS also showed a similar relation with the same Delay 2 seed

Fig 7. Functional connectivity among selected ROIs and correlations with neural and behavioral measures. (A) Illustration of seed region locations. Yellow

and blue nodes represent ROIs showing 2D goal geometry in Delay 1 and 2, respectively. Green and red nodes represent ROIs showing 2D stimulus and

response geometry, respectively. (B) Matrices showing strength of pairwise connections among seed regions. (C) The connection strength between iPCS-MTG

and IFS-MTG in Delay 2 was associated with goal circularities within MTG. (D) Higher connection strength between iPCS (Delay 1 goal) and POS (stimulus)

in Delay 1 was associated with lower 2D stimulus geometry in Delay 2. (E) Higher connection strength between mPFC (Delay 2 goal) and left V4 (response) in

Delay 2 marginally correlated with higher 2D response geometry in Delay 2. (F) Stronger functional connectivity between iPCS (Delay 1 goal) and ITG

(stimulus) in both delays was correlated with higher performance. iPCS = inferior precentral sulcus; left OFC = left orbitofrontal cortex; IFS = inferior frontal

sulcus; MTG = middle temporal gyrus; olPFC = orbital lateral prefrontal cortex; mPFC = medial prefrontal cortex; POS = parietal-occipital sulcus;

ITG = inferior temporal gyrus; V4 = visual area 4. Data and code that support these findings are available at: https://doi.org/10.57760/sciencedb.16868. 2D,

two-dimensional; ROI, region of interest.

https://doi.org/10.1371/journal.pbio.3002461.g007
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(r = 0.51, p = 0.041, BF10 = 7.21). These findings pointed to the MTG as a key target region for

potentially receiving 2D goal information from lateral frontal cortex. It is also noteworthy that

although the searchlight identified frontal ROIs in Delay 2, seemingly contradictory to the

EEG result, goal geometry within these clusters (i.e., olPFC and mPFC) was not mediated by

connections with Delay 1 regions (S3 Table), suggesting they may be separate from the process

of relaying goal information.

Moreover, we also tested the relations between functional connection and the original and

response stimulus circularity. Specifically, all pairs between goal-specific and stimulus- or

response-specific regions were included in these analyses. We found a trend suggesting similar

patterns with EEG: the Delay 1 iPCS seed marginally modulated stimulus geometry in POS,

with stronger connections accompanied by weaker 2D stimulus representation (r = −0.54,

p = 0.005, uncorrected; or p = 0.065, FDR-corrected; BF10 = 11.28; Fig 7D). The opposite

trend was identified for a Delay 2 goal-related seed (mPFC) and a response-related seed (left

V4), indicating stronger 2D response representation in V4 with stronger connections between

the 2 (r = 0.48, p = 0.013, uncorrected or p = 0.160, FDR-corrected; BF10 = 5.33; Fig 7E).

Finally, we sought to examine whether any functional connectivity could relate to behav-

ioral performance. Interestingly, all pairwise connections that showed a significant relation-

ship with response error before multiple comparison correction were between Delay 1 goal-

specific and stimulus-specific regions (S4 Table), demonstrating an extremely consistent pat-

tern. Among them, iPCS (Delay 1 goal-specific seed) and ITG (stimulus-specific seed) in both

delays remained significant after FDR correction (r = −0.66, p = 0.012, BF10 = 74.14; r = −0.66,

p = 0.012, BF10 = 76.11; Fig 7F).

In short, the fMRI connectivity analyses replicated the findings of the EEG experiment:

long-range connectivity between frontal and posterior cortices was associated with the back-

ward transmission of 2D goal geometry and the transformation of stimulus information,

which subsequently influenced behavior.

Discussion

In the present study, we investigated the distributed goal representations in working memory,

using a newly developed behavioral paradigm that required retention of both task goals and

stimulus contents in designed 2D goal and stimulus spaces. Leveraging recently advanced state

space analyses, our first EEG experiment revealed that the representational geometry of goals

followed the theoretical 2D structure. This 2D goal geometry first emerged in frontal channels

during goal maintenance and then transferred to posterior channels for goal implementation.

Notably, the fidelity of the goal geometry was associated with individual memory performance.

Meanwhile, a 2D stimulus geometry was observed in posterior channels in accordance with

the theoretical stimulus structure. The frontal goal geometry transferred to posterior sites and

interacted with the posterior stimulus geometries through FMT coherence. A second fMRI

experiment further indicated that both LPFC and OMPFC exhibited the desired 2D goal

geometry. However, only LPFC demonstrated significant functional coupling with posterior

visual-related regions that related to the transfer of goal structure and behavior. Collectively,

our findings suggest a potential neural mechanism for how frontal and posterior cortices are

orchestrated through communications of task-congruent geometry to implement computa-

tions necessary for goal-directed behavior.

Task-congruent representations for transferring task information

Frontal cortex has long been considered as a core region for processing abstract task informa-

tion, with aggregated BOLD activity that tracks levels of abstraction during cognitive control
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[11,12], and successful decoding of a variety of abstract task information [16,17,41,42]. Beyond

the focus of frontal areas, many studies have also reported successful decoding of task sets in

targeted sensory cortex [16,19]. We directly addressed the roles of the distributed representa-

tions of abstract task information, and how they support goal-directed behavior in working

memory by tracking the representational geometries of structured task information in the

brain. In particular, we designed a structured 2D task goal space, incorporated with a working

memory manipulation task in a 2D stimulus space, to systematically investigate the corre-

sponding task representations. Compared with previous work, this design enabled the charac-

terization of the representational geometry of multiple task variables (goal, stimulus, and

response), their coding dynamics, and their interactions within a single paradigm. During the

first delay when goals were encoded but not yet implemented, task goals awaiting to be inte-

grated with specific contents in working memory were indeed maintained in a compressed

format of representations that reflected the designed dimensions. Importantly, this task-con-

gruent goal geometry was associated with subsequent memory performance and cannot be

accounted for by preparative motor planning signals. These together suggest that at the popu-

lation level, frontal cortex represents abstract goal information in a manner similar to how sen-

sory cortex encodes feature information [33,34,37], despite neurons in the 2 cortices possess

distinct tuning properties (i.e., mixed versus simple selectivity). In other words, frontal cortex

organizes goals into an abstract relational space based on their underlying structure, which can

be maintained in working memory for later control of stimulus adjustments [43]. This is remi-

niscent of studies on PFC demonstrating relational structures of task knowledge, such as

inferred latent state [44,45], schema [46] and indirectly observed associations between stimuli

[47,48].

When moving onto the second delay period during which participants needed to imple-

ment the maintained goal on specific memory contents, frontal cortex no longer retained the

task-congruent goal geometry, at least not in an active format, perhaps due to that frontal 2D

goal geometry was primarily involved in goal maintenance rather than goal implementation.

Conversely, the 2D goal geometry gradually developed in central cortex and later in posterior

cortex, indicating that the task-congruent geometric information was communicated to sen-

sory cortex for goal implementation. Because population-level neural geometry can remain

stable when underlying single-neuron activities change [38], one benefit of forming task-con-

gruent, low-dimensional geometry of task information could be that the stable geometry facili-

tates information relay between cortical regions through communication subspaces [28,29].

This shift in locations was accompanied by a correlation of behavioral performance with poste-

rior goal representations, reminiscent of previous findings showing a relationship between

decoding accuracies in visual areas and reaction times using a different task design [16]. Over-

all, our results are comparable with a growing body of evidence that supports a distributed net-

work for abstract task information during active implementation [19,20], and further extend

the idea by proposing that the task information originates from communications between

frontal and posterior regions in a task-congruent format.

In parallel, a similar 2D stimulus geometry in which color (red-greenness) and size were

represented as dissociable dimensions was only found in posterior activities during sample

presentation and the ensuing delay. This result lends more credence to our PCA-based

approach and aligns with the sensory recruitment account of working memory, which pro-

poses that the storage of sensory stimuli relies on the same visual regions that initially encode

the information [2,3,10]. Besides stimulus-related processing, dedicated sensory regions is also

likely to be the locus of goal and stimulus integration, as implementation of task goal and its

functional relevance also primarily involved posterior activities. Notably, the fact that we

observed task-congruent stimulus representation in posterior cortex does not necessarily
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imply that representation in this region is always low-dimensional. In fact, the dimensionality

of sensory representation could well depend on the nature of the stimuli, such as the number

of relevant features. For example, when naturalistic objects or pictures were used, the neural

responses in the visual cortex can be high-dimensional [49]. By contrast, when structured sti-

muli were used (such as orientations or colors spanning a circular space), the representational

geometry in the visual cortex can exhibit circular patterns and hence low-dimensional, mean-

ing that only 2 primary dimensions are needed to explain sufficient variance in the neural data

[33,37]. Given that our study artificially defined 2 stimulus axes and participants repeatedly

learned about this space, it is possible that the stimulus representations reflected the color and

size dimensions, with all the other irrelevant dimensions (e.g., stimulus category, texture)

being compressed. We did not test the stimulus dimensionality in posterior cortex prior to

task learning. Therefore, whether stimulus dimensionality in our study was reduced after

learning remains to be tested in future research.

While the task-congruent, 2D goal representations were present and contributed to mem-

ory performance, we acknowledge that other formats can coexist. Whereas low-dimensional

task representations reflecting constituent dimensions support stability in neuronal readouts,

knowledge generalization and efficient learning [26,27], high-dimensional task representations

endow high separability between representations and facilitate cognitive flexibility [50]. In

fact, using a model that assumes all goals are equidistant without forming any structure, we

indeed observed such a conjunctive representational format at different times and/or in differ-

ent brain regions compared to the 2D representations. For example, significant conjunctive

representation was predominantly observed in the posterior channels of EEG from the presen-

tation of goal cue onward, suggesting that it likely reflected cue-driven, sensory signals. This

pattern, however, was less evident in the fMRI study, possibly because the cue was presented in

a textual format (S6D Fig). Moreover, we note that the 2D geometry is highly tied to the exper-

imental design in the current study. Future studies that include a task with a goal structure of

different dimensionality as well as investigate the functions of alternative coding formats will

add to a more comprehensive view of the representational geometry of abstract task variables

[27,50–52].

It is noteworthy that applying state-space methods to EEG/fMRI data has inherent limita-

tions. The application is based on the assumption that, while each voxel/electrode represents

aggregated activity from many neurons, the collective preference of these neurons may mani-

fest at the single-voxel/electrode level, giving rise to significant geometry patterns at the popu-

lation level. However, it is also plausible that brain regions without significant goal or stimulus

geometries according to our analyses may in fact maintains such geometries, but at a resolu-

tion undetectable by EEG or fMRI. This remains an issue for most (if not all) EEG/fMRI stud-

ies, and future work with finer spatial resolution may provide deeper insights into this issue.

Interaction between goal and stimulus representations in the form of task-

congruent geometry

What mechanisms mediate the transfer of task goals and support the necessary integration of

goal and stimulus information? We proposed FMT-to-posterior coherence as a candidate

through which higher-order task information is transferred to the locus of specific content

storage. More importantly, the transmission retains the geometrical property of the represen-

tations, manifested by the relationship between the strength of the connectivity and goal circu-

larity. Although FMT has long been linked to top-down processes during working memory

[40,53,54], its functional interpretations are not straightforward [55], ranging from coordinat-

ing reactivation of working memory items [24,40], gating of working memory encoding and
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maintenance [56], to prioritizing internal representation [57]. The evidence provided here

points to a more specific role in mediating the communication between frontal and posterior

areas for goal representations and the subsequent integration with stimulus representations,

while embedded within the general notion that frontal theta oscillation exerts cognitive control

signals by synchronizing activity of task-relevant information [58,59]. Furthermore, functional

coupling-dependent transmission of goal representations was corroborated by the fMRI con-

nectivity results, involving regions specifically maintained task goals with the matching geo-

metric format. While functional connectomes measured by EEG phase-based metrics and

fMRI overlap only to a moderate degree (approximately 0.4) [60], caution is warranted when

attributing the cross-modal results to the same underlying neural generator. We nonetheless

provide converging support for a fronto-posterior connectivity related to the transmission of

2D goal representations. Notably, the relationship between FMT and goal geometry was only

correlational in the current study and how this interaction takes place at the mechanistic level

remains unclear. Recent theoretical work proposes a mechanism by which oscillatory signals

can interact with neuronal spike timing within one brain region to encode stimulus-specific

information in a phase-dependent manner [21]. Its potential relationship with the current

result remains to be further tested.

The 2 experiments also uncovered an interesting dynamic between the representations of

remembered and transformed stimuli. In the EEG study, transformed stimulus representations

(i.e., participant’s responses) were formed during Delay 2 and were accompanied by a decrease

in the strength of original stimulus representations in the posterior channels. The simulta-

neous rise of response representation and fall of sample representation, both modulated by

fronto-to-posterior coherence, allude to the possibility that stimulus transformation depends

on the integration of task goals, and participants might have reduced or even discarded the

original copy of remembered items to mitigate interference [39]. In line with this finding, in

the fMRI study, representations of both original and transformed stimuli were observed in

visual-related regions during Delay 2, albeit in different subregions. Moreover, 2D stimulus

and response representations were also observed in more anterior cortex, but in a manner dis-

tinct from visual-related regions as demonstrated by the group-level visualization results. Spe-

cifically, we argue that the visual-related regions might recruit a more aligned neural code

across participants for representing stimulus information, while the way in which brain

regions beyond visual regions represent stimulus information can be more variable and sen-

sory independent. This would be consistent with previous studies demonstrating an orthogo-

nal common “template” subspace in PFC ready for response, in contrast to choice-invariant

stimulus representations in visual cortex [35]. The 2D response representation in the anterior

cortex might have reflected a similar neural subspace dedicated to guiding behavior. In addi-

tion, since our study specifically tested for the task-congruent format which was shown to be

functionally relevant to behavior, it is entirely possible that original and transformed stimuli

were encoded with lower precision or in a different format [61,62] within specific modalities

or ROIs that were not detectable using current methods.

Differential functions of LPFC and OMPFC

The limited spatial resolution of EEG has precluded precise localization of the 2D goal geome-

try in frontal cortex. With the follow-up fMRI experiment, we further localized the 2D goal

geometry to subregions within LPFC and OMPFC. Specifically, 2 LPFC clusters, the IFS and

iPCS, demonstrated significant 2D goal geometry, of which the functional connectivity with

posterior regions related to the strength of goal geometry in posterior ROIs as well as memory

performance. In contrast, the relationships were largely absent in MPFC and OFC clusters.
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This functional distinction between LPFC and OMPFC aligns with recent theoretical work on

the differential roles of task representations in LPFC and OMPFC, purporting that the LPFC

uses task representations to build rules for action selection, whereas the OMPFC abstracted

task knowledge in a relational map [43]. In line with this notion, only LPFC is actively involved

in the coordination between frontal and posterior cortex which likely supports the transmis-

sion of goal geometry for implementation. Our newly designed paradigm offers a useful tool

for investigating the functional distinction between the 2 networks. Future work with a more

comprehensive examination on the neural geometries in subregions of the 2 networks is

needed to further address this question.

Conclusions

In summary, across 2 experiments, we provided converging evidence for how distributed task

representations emerge and transfer in working memory to support goal-directed behaviors.

In particular, frontal cortex maintains task-congruent neural geometries of goal representa-

tions in preparation for subsequent goal implementation in posterior visual-related cortex.

Our findings highlight working memory as a multicomponent and collaborative cognitive sys-

tem that relies on coordinated neural interactions across multiple brain regions.

Materials and methods

Participants

Twenty-three participants were recruited for the EEG experiment (mean age = 24.3 years; age

range = 19 to 30 years; 14 females), one was excluded due to excessive noise (over 20% of total

trials). Twenty-one MRI-eligible participants were recruited for the fMRI experiment (mean

age = 24.2 years; age range = 21 to 30 years; 16 females). There is no overlap in participants

between studies. All participants were recruited from the Shanghai Institutes for Biological Sci-

ences community, reported neurologically and psychologically healthy, had normal or cor-

rected-to-normal vision, provided written informed consent, and were monetarily

compensated for their participation. The study was approved by the Ethics Committee of the

Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sci-

ences (CEBSIT-2020028) and conducted according to the principles expressed in the Declara-

tion of Helsinki.

Experimental design and procedure

Overview. We designed an experimental task that required the maintenance of both a

goal and a specific stimulus in working memory and at later stage the manipulation of the

stimulus features based on the goal. Specifically, each remembered stimulus varied along 2

orthogonal stimulus dimensions, size (small to big) and color (green to red). Correspondingly,

there were totally 4 types of goals composited by 2 orthogonal dimensions of size and color

manipulations: adjusting the remembered stimulus to be (1) bigger and redder; (2) bigger and

greener; (3) smaller and redder; and (4) smaller and greener. The 2D stimulus space, as well as

the extent of required adjustment in size and color were predefined and learned in a behavioral

session preceding the main task.

Definition and manipulation of stimulus features

Color (green-redness) were adjusted by first converting the images into grayscale to remove all

original hues while preserving the opacities of pixels using the Image module from Python

package PIL. Then, the resulting files were converted to RGBA mode again and the green-
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redness values were manipulated by adding/subtracting the same value in the Red and Green

channels, whereas the Blue channel was set to zero. This made so that the stimulus transitioned

from extremely green to extremely red in a smooth fashion (for illustration, see Fig 1D). The

acceptable RGB value range for PsychoPy was 0 to 1, each button press moved the R and G

value of all image pixels to opposite directions by 0.01. The values in R and G channels were

rescaled to 0.25 to 0.75 with a mean of 0.5. Therefore, for each stimulus there existed 150 varia-

tions of color-manipulated images (until all pixels had a value of 0 or 1). However, since all

pixels appearing uniformly green or red would render the stimulus unidentifiable (because

there is no contrast), the 30 images with most extreme R/G values were discarded, resulting in

120 steps for the range of color adjustment. Both starting size and colors were drawn from 3

predetermined bins, resulting in 9 unique conditions, which were used for subsequent analy-

ses. For size the bins were 0.17 ± 0.01, 0.22 ± 0.01, or 0.27 ± 0.01 of screen height; for color

they were 34 ± 2, 58 ± 2, and 82 ± 2, indexing from the 120 color steps. Stimulus size was

directly controlled in PsychoPy program using the size attribute and the allowed range was set

to 0.01 to 0.45 screen height. The distance between each particular sample stimulus and its tar-

get answer for size was ±24% of the original size (unit: screen height) and ±26 (unit: color

steps) for color. Participants learned the required distance during a behavioral learning

session.

Behavioral learning

In the behavioral session, which was held 1 or 2 days before the main task session, participants

learned the degree of required adjustment by first viewing all pairs of starting and target values

in size and color shown side-by-side, respectively (162 trials per stimulus feature), before

receiving a Two-Alternative-Forced-Choice (2-AFC) test whereby they were given a starting

stimulus and asked to choose the correct target stimulus from 2 options (80 test trials per stim-

ulus feature). Next, both features were combined together in the same stimulus in another

round of 2-AFC test to familiarize them for simultaneous adjustment of both size and color

based one of the 4 goals, in preparation for the main working memory task (100 trials). Finally,

participants completed 180 trials for the main task in order to apply the learned degree of

adjustment on stimulus features. In the EEG experiment, the 4 goals were associated respec-

tively with different shape cues, which the participants also learned and practiced the associa-

tion between shape cues (circle, square, triangle, and pentagon; Fig 1A) and goals in these 180

trials. In the behavioral session only, trial-wise feedback of response error was given so that

participants could keep improving their performance.

EEG main task

The main task consisted of 2 memory delays and a response period. The first delay required

the maintenance of the goal only, and the second delay required both the maintenance of the

goal and the stimulus. At the beginning of a trial, there was a 300-ms fixation period followed

by one of the shape cues for 400 ms appearing centrally (Goal cue), signaling the direction of

manipulation in the current trial. This was followed by a 1,300-ms delay (Delay 1), during

which participants should keep maintaining the manipulation goal. Following the first delay, a

stimulus was presented for 600 ms (Sample). The stimuli were randomly chosen from the

exemplars belonging to three different conceptual categories with similar shapes: bowling

pins, plants, and microphones, provided and detailed in [63]. Participants were instructed to

maintain the sample’s size and color during a second delay period for 1,500 ms (Delay 2). To

prevent participants from using physical changes on the retinal image as memory aids, the

stimulus was presented in a random location of an invisible circle around the center of the
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screen with a radius of 0.08 screen height, making it a 2˚ visual angle difference from the cen-

ter. During the response period (Response), the same stimulus reappeared with a randomly

chosen but different size and color from the remembered values to prevent response prepara-

tion. Participants were given a maximum of 6,000 ms to adjust the features of stimulus on

screen to the correct degree using button presses. The correct response depended on both the

starting values and the cued goal, as learned in the behavioral session. Thereafter, a variable

intertrial interval was incurred (800 to 1,200 ms, drawn from a uniformed distribution). Over-

all, participants completed 648 trials divided into 12 blocks lasting for approximately 2 h, with

task variables of goal types and stimulus features counterbalanced, resulting in 18 trials in each

of the possible combinations. Of note, during the EEG recording participants only received

averaged feedback on their performance after a block, to avoid further improvement on the

extent of change per se as a result of trial-wise feedback.

fMRI main task

Behavioral paradigm and experimental procedure in the fMRI experiment generally remained

consistent with the EEG study unless otherwise stated. In-scanner task shared the same com-

ponents as in EEG but with adjusted length to accommodate the delay in hemodynamic

response function (Fig 1E, bottom). The durations of epochs were as follows: Goal cue = 500

ms; Delay 1 = 5,500 ms; Sample = 600 ms; Delay 2 = 8,400 ms; Response = 5,000 ms. Intertrial

intervals were randomly chosen from 4,000, 5,500, and 7,000 ms with equal likelihood. Of

note, goal cue was presented as texts instead of associated shapes in the fMRI task; therefore,

participants were no longer required to learn the pairings. In total participants completed 12

functional blocks, each containing 18 trials and lasting 466.5 s.

EEG apparatus

Stimulus presentation was implemented using PsychoPy (version 2021.2.3) [64] on a 48 × 27

cm HIKVISION LCD screen with a 60 Hz refresh rate and a 1,920 × 1,080 resolution. Stimuli

were shown in white font on a gray background (RGB = 128, 128, 128) at a distance of 62 cm.

During the task, head position was stabilized by a chin rest. Responses were given with the

right hand on the 4 arrow keys on a keyboard. EEG data were recorded using a Brain Products

ActiCHamp recording system and BrainVision Recorder Software (Brain Products GmbH,

Gilching, Germany). Scalp voltage was obtained from a broad set of 59 channels at 1,000 Hz

according to the extended 10 to 20 positioning system (FCz as reference). Channel impedance

was kept below 20 kO.

EEG preprocessing

EEG data were preprocessed in MNE-Python [65], which firstly involved down-sampling to

250 Hz and bandpass filtering using a high-pass filter of 0.1 Hz and a low-pass filter of 40 Hz.

The continuous raw data were then segmented into epochs, corresponding to 500 ms before

the onset of the goal cue (200 ms before the fixation onset) until 600 ms after the onset of the

response period. EEG channels with excessive noise were identified through visual inspection

and replaced via interpolation using a weighted average of the surrounding channels. Each

epoch was inspected visually for artifacts such as excessive muscle movements and amplifier

saturation, and contaminated trials were discarded. Stereotyped artifacts such as ocular move-

ments were subsequently removed from the data via independent component analysis. The

data were baseline corrected for the subsequent analyses using signals from the time window

of −200 to 0 ms before fixation onset. There were on average 621 trials per person remained

after epoch rejection (SD = 26 trials).
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fMRI data acquisition

MRI scanning was performed at the Functional Brain Imaging Platform (FBIP), Center for

Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences (CEB-

SIT, CAS), on a Siemens 3T Tim Trio MRI scanner with a 32-channel head coil. High-resolu-

tion T1-weighted anatomical images were acquired using a magnetization-prepared rapid

gradient-echo (MPRAGE) sequence (2,300 ms time of repetition (TR), 3 ms time of echo (TE),

9˚ flip angle (FA), 256 × 256 matrix, 192 sequential sagittal slices, 1 mm3 isotropic voxel size).

Whole-brain functional images were acquired using a multiband 2D gradient-echo echo-pla-

nar (MB2D GE-EPI) sequence with a multiband acceleration factor of 2, 1,500 ms TR, 30 ms

TE, 60˚ FA within a 74 × 74 matrix (46 axial slices, 3 mm3 isotropic voxel size). After 4 experi-

mental runs we also acquired whole-brain Fieldmap phase and magnitude images for correc-

tion of EPI distortions. Stimuli were presented on a 1,280 × 1,024 resolution MRI-compatible

screen at the back of the scanner, and participants viewed the screen through a mirror attached

to the head coil with a viewing distance of 90.5 cm. They used 2 two-button response boxes,

one in each hand to adjust the stimuli.

fMRI preprocessing

Preprocessing of MRI data was performed using fMRIPrep 21.0.2 [66], which is based on

Nipype 1.6.1 [67]. For each experimental run, the single-band reference data were taken as the

reference volume. A B0 nonuniformity fieldmap was estimated and aligned to the reference

volume. The reference volume was corrected for distortions using the fieldmap and was co-

registered to the anatomical scan. Both the anatomical and functional scans were then normal-

ized to the MNI152 template.

Quantification and statistical analyses

EEG: Neural geometries of task representations. To uncover the geometry of neural rep-

resentations associated with goals, sample stimuli, and responses, and to describe their similar-

ities to goal or stimulus space, we conducted PCA to identify task-congruent subspaces in

which the relevant task variables were encoded. Specifically, each participant’s voltage data was

collapsed over trials from the same conditions (goals, stimulus, or response bins), with each

column standardized independently before applying PCA, resulting in a matrix of shape

n_conditions × n_channels. Note that we used the same standard to divide sample stimuli and

responses into bins, as the latter are essentially manipulated stimuli that share the same feature

value ranges as the former. We repeated this procedure for different sets of channels (frontal,

central, or posterior channels) separately. Frontal channels include: Fp1, Fz, F3, F7, F4, F8,

Fp2, AF7, AF3, AFz, F1, F5, F6, AF8, AF4, F2; posterior channels include: Pz, P3, P7, O1, Oz,

O2, P4, P8, P1, P5, PO7, PO3, POz, PO4, PO8, P6, P2; central channels include: FC5, FC1, C3,

T7, CP5, CP1, CP6, CP2, Cz, C4, T8, FC6, FC2, FT7, FC3, C1, C5, TP7, CP3, CPz, CP4, TP8,

C6, C2, FC4, FT8.

Unless stated otherwise, the PCA-related analyses and ensuing behavioral correlations were

based on PCA performed on these individual data matrices. For the group-based visualization

of the subspace, the individual averaged activity patterns were subsequently concatenated hori-

zontally, resulting in a matrix of shape n_conditions × (n_channels × n_participants). All

remaining steps followed the aforementioned procedure for individual data. Depending on

the specific analysis, the procedure was either applied to individual time points or within each

temporal epoch of a trial (i.e., Goal cue: 0 to 400 ms; Delay 1: 400 to 1,700 ms; Sample: 1,700 to

2,300 ms; Delay 2: 2,300 to 3,800 ms; and Response (3,800 to 4,300 ms) during which the data

was averaged.
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EEG: Circularity index. To quantitively assess the structure of representations in the

space reconstructed by PCA in spite of differences between task variables, individuals or prin-

cipal planes, we used a simple metric, namely circularity index to capture the spatial properties

of the neural geometry. Briefly put, circularity [68] of a shape was defined as the ratio between

its area and the square of the total length of perimeter:

Circularity ¼ 4p�
Area

Perimeter2

A circle would always have a circularity of 1. If goal representations abided the relational

structure formed in the hypothetical goal space consisting of 2 orthogonal dimensions (goal

size and goal color) with equal distance between goals, the circularity would be that of a square,

which is approximately 0.78. Since there were only 4 points to define the structure, this value

was also the maximum as any quadrilateral would have a smaller circularity. However, in real

data the magnitude of the circularity values could depend on several factors, including the

number of conditions and number of participants being averaged (in the individual circularity

analysis). To calculate circularity in the neural space, borders were drawn between the pro-

jected coordinates of each unique conditions, in the same order as in the hypothetical space

(Fig 1B). For example, for goal representations, the points were connected in order of 1 (bigger

and redder)– 2 (bigger and greener)– 4 (smaller and greener)– 3 (smaller and redder). Area

and perimeter were then calculated using Python package Shaply.

The calculation of circularity index for sample stimuli and responses was similar to that of

the goal space except for there were 9 conditions/points to consider (3 bins per stimulus fea-

ture). For the sake of constructing a close-formed geometric shape within the neural subspace

for which circularity index could be calculated, the medium color value was not used, leading

to 6 effective coordinates in the stimulus feature space.

EEG: Time course of individual circularity index. To calculate the time-resolved indi-

vidual circularity index, data was averaged within an 80-ms sliding window which were non-

overlapping, resulting in 60 points per trial. Trial-wise data at each time point was first aver-

aged within condition before PCA. The individual data matrix was then projected onto the

first 2 PCs to acquire their coordinates in the 2D neural space and to calculate their circularity

index. In order to increase the robustness of the estimation of circularity, trials were resampled

in a stratified manner for 10 times and the above procedure was repeated. The resulting time

series were averaged to derive the final individual circularity values.

EEG: Cluster-based permutation test for circularity index time course. To test the sig-

nificance of time-resolved circularity index values, trial labels were shuffled within participants

before repeating the PCA and circularity calculation 5,000 times. Within each iteration, the tri-

als were also resampled 10 times to remain consistent with the calculation of individual circu-

larity. The individual shuffled time courses were averaged to generate a group-level null

distribution. The true group circularity mean at each time point was compared to the resulting

null distribution to derive p-values, with the cluster-forming threshold set at α = 0.05. Next, we

repeated the previous step for the shuffled time courses, and each time the size of the largest

cluster (defined as continuous supra-threshold time points) was taken to form the null distri-

bution of cluster-level statistic, of which the 95th percentile was used as the cluster-level

threshold.

EEG: Behavioral relevance analysis based on trial splitting. For goal geometry, the bot-

tom and top quartiles (i.e., 25%) of each participant’s trial-wise data were selected based on the

magnitude of combined response error to compute individual circularity indices correspond-

ing to good and bad trials, respectively. The 2 sets of data were projected to the subspace iden-

tified by a PCA trained on the whole data set for a fair comparison of trials from both
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quartiles. The difference in circularity indices between good and bad trials was then calculated.

For stimulus-specific geometry, we instead used a median-split of the trials, as the quartile

approach could not cover all unique conditions needed for the calculation. Statistical signifi-

cance of the time course of individual circularity difference was assessed by cluster-based per-

mutation in a similar fashion as described above, except that the null distribution was

generated by randomly swapping the good and bad trial labels and calculating the circularity

difference.

EEG control analysis: Time-resolved representational similarity analysis (RSA). To

validate the goal representations in the 2D space revealed by PCA, we additionally performed

an RSA analysis [69] on the individual level. For each participant, we tested whether a 2D and

a conjunctive RSA models of task goals would explain the data. The 2D RSA model assumed

that the pairwise representational distances between goals should resemble the 2D geometry as

revealed by PCA. Specifically, the model representational dissimilarity matrix (RDM) for 2D

goals (S2A Fig) was constructed by counting the number of same values across the 2 goal

dimensions (i.e., the hamming distance: 0 for same goals, 0.5 for matching on only 1 dimen-

sion, and 1 for 2 goals with non-overlapping values). The conjunctive model assumed all goals

are equidistant, resulting in a distance of 1 between- and of 0 within-condition. We included

both task goals and stimulus features to define unique conditions in order to enrich the num-

ber of condition pairs, as with only the binary goal dimensions, number of valid pairs would

be too low to allow stable estimates of model-neural correlations. For data RDM, cross-vali-

dated (4 folds) correlation distance was computed from the standardized data, averaged within

an 80-ms non-overlapping sliding window. Comparison between the neural and model RDMs

was performed using MNE-Python’s function mne_rsa.rsa. Given the correlated nature of the

2 RSA models, we estimated the model-neural similarities both separately for each model

(using Spearman’s rank correlation as metric), as well as jointly in a competitive manner

(using partial-Spearman as metric) to provide a comprehensive view of the results. Signifi-

cance of RSA time courses from all individuals were tested against 0 using MNE-Python func-

tion permutation_cluster_1samp_test, except for the partial correlation result where

significance was tested at each time point independently without cluster-based corrections.

EEG control analysis: Motor-related neural geometry. To ensure that the 2D goal geom-

etry was not caused by signals related to motor preparation, a series of control analyses were

conducted. The motor-specific conditions were defined by subtracting the initial values of the

response object (which were randomly drawn for a uniform distribution) from the values of

the final response. The signs of the resulting feature differences indicated the directions of

adjustment the participants performed on that trial (e.g., to make the object bigger and redder

from the initial status, one needed to press the buttons corresponding to “bigger” and “red-

der”), which were taken as the trial label specific to motor preparations. The following steps to

calculate individual circularity index time course (for significance testing) were all identical to

the procedures stated above. Chi-square tests for independence between possible motor prepa-

ration signals and task goals were performed using the Scipy library.

EEG control analysis: Neural geometry of incorrect memory. To examine whether the

observed difference between good and bad trials was due to participants’ incorrect memory of

the goals (i.e., holding the wrong goal in mind on bad trials), we conducted a circularity analy-

sis using only trials in which adjustment direction was incorrect. Specifically, we labeled the

goal type based on participants’ responses: if the direction of the response (redder, greener,

bigger, or smaller) differed from the cued goal, we characterized these trials as wrong adjust-

ment trials and used the actual direction of adjustment to relabel the condition. All subsequent

steps followed the procedure in the main analysis for calculating the circularity index.
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EEG: Coherence analysis. To understand how frontal control signals modulated goal-

related representations, we calculated a coherence measure to investigate time-resolved con-

nectivity between frontal and posterior channels. In particular, frontomedial theta oscillation

(FMT) has been considered to be the medium through which executive control mechanisms

orchestrate working memory contents [55,70]. To this end, coherence values were computed

across all time points with the MNE-Python spectral_connectivity_epochs function, which

involved calculating the cross-spectral densities, and estimating pairwise coherence in the

range of 4 to 7 Hz between the seed frontal channel (Fz) and every posterior channel before

being averaged. We chose the metric of weighted phase lag index (wPLI) as it is more robust

against artifacts dues to volume conduction and noise [71]. Significant clusters in the baseline-

corrected coherence values were determined using the MNE-Python function permutation_-
cluster_1samp_test (one-tailed). To test whether significant FMT clusters during delay were

functionally related to strength of representational geometries, the significant group clusters

were taken as frequency and temporal masks to select coherence values from every individual’s

result, which were correlated with the circularity indices at each epoch of the trials, respec-

tively. As a control analysis, we also repeated the above analysis on delta band (1 to 3 Hz).

FMRI: General linear models (GLMs). We fit a single-trial-level univariate GLM to

extract neural response estimates for each delay period. For each functional run, the design

matrix included task regressors representing separate periods of a trial and trial-wise regres-

sors associated with the period of interest. For example, for modeling beta series of the first

delay, the task regressors would consist of Goal cue (500 ms), Sample (600 ms), Delay 2 (8,400

ms), Response (5,000 ms), and trial-wise regressors for Delay 1 (i.e., Delay1_trial1[5500 ms],

Delay1_trial2). The procedure was repeated for other time periods of interest. Thus, each trial

was separated out into its own condition within the design matrix [72]. Additionally, the

model included 6 head-motion regressors, 3 global signals from CSF, white matter and whole-

brain, and 3 trend predictors from a polynomial drift model. Task regressors were convolved

with the SPM canonical hemodynamic response function (HRF) and its time derivative. Func-

tional data were standardized, high-pass filtered at 0.01 Hz and spatially smoothed with a

6-mm FWHM kernel. The resulting trial-wise beta series were brought forward to subsequent

analyses.

To improve the separability of delay activity from stimulus- and probe-driven activity at the

expense of sacrificing amplitude estimation [73], we performed an alternative GLM approach

where we modeled the delay period as a single impulse response function. Specifically, a short

regressor of 100 ms was placed at the middle of each delay period and convolved with HRF

and its time derivative. All other steps remained the same as the previous whole-delay GLM.

Of note, the impulse was only used to model the event for which trial-wise beta was extracted,

while other irrelevant events were still modeled as boxcar to prioritize accurate magnitude

estimation.

FMRI: Circularity index with a searchlight procedure. Consistent with the EEG analy-

ses, for each participant, we computed individual circularity index by conducting PCAs on

averaged single-trial beta coefficients within each unique condition (goals or stimulus bins).

This was further combined with a searchlight procedure [74], allowing us to identify signifi-

cant 2D task-related geometries across the whole brain. Using the SearchLight class in Nilearn,

a spherical patch of 9-mm radius centered on each voxel was constructed within the whole-

brain gray matter mask. Results from the whole-brain searchlight were visualized with SUMA

in AFNI.

FMRI: Cluster-based multiple comparison correction. We carried out group-level clus-

ter-based multiple comparison correction for the whole-brain circularity index. We first gen-

erated a null distribution of the group mean by running the above searchlight procedure with

PLOS BIOLOGY Task-congruent goal geometry in working memory

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002461 December 19, 2024 26 / 33

https://doi.org/10.1371/journal.pbio.3002461


shuffled trial labels 100 times for each participant. Then, the permuted maps were boot-

strapped from each participant 10,000 times to create a null distribution of group-level mean

[75]. Thirdly, the true group-level statistics (averaged across individual maps) were compared

to the null distribution to compute the voxel-wise p-values. All voxels that passed the signifi-

cant threshold (α = 0.01) and formed clusters, defined as neighboring by face, were identified.

Finally, we determined cluster-level threshold by iteratively drawing group-level shuffled maps

from the null distribution to obtain the largest continuous cluster size using the same criteria

in Step 3. This was repeated 10,000 times to generate a null distribution of cluster statistics,

from which the 95th percentile value was used as the cluster threshold.

FMRI: Test of cluster robustness using bootstrapping. Moreover, to enhance the

robustness of the searchlight results (which was ran once per participant due to the computa-

tional load), we additionally repeated the circularity analysis in each cluster, similar to the EEG

analysis. Specifically, we adopted trial bootstrapping using all voxels within an ROI and repeat-

edly calculated the circularity for 20 times. The averaged cluster circularity indices were statis-

tically assessed by comparing to a null distribution generated in a similar fashion as the true

data. In the main text, only ROIs that have been revealed by the whole-brain searchlight and

passed the test of robustness were shown and included in further examination. The original

whole-brain searchlight results were shown in S8 Fig.

FMRI: Beta series functional connectivity (FC). Following the result of the searchlight

analyses, we investigated interregional connectivity between the 3 largest significant clusters

from the Delay 1 and 2 goal circularity and the Delay 2 stimulus circularity maps. Beta values

estimated from the trial-wise GLM procedure described above were entered into a correlation

estimation using the ConnectivityMeasure class in Nilearn. Specifically, parameter estimates

were averaged within each cluster and correlation coefficients were calculated between every

pairwise regions. The number of FC tested in subsequent correlation analyses varied based on

our specific hypotheses: for correlation between FC and goal circularity, all connections

between Delay 1 and Delay 2 goal-related clusters were included (3 × 3 = 9 connections), since

we specifically were interested whether FC is related to the relay of goal information. For stim-

ulus and response circularity, connections between Delay 1 and 2 goal-related and stimulus-

or response-related clusters were included (6 × 2 = 12 connections each). All pairs included

above were used in a correlation analysis with behavioral measure to assess the relationship

between FC and memory performance. We also reported Bayes factor (BF10) in this section,

as it provides an alternative perspective to evaluating the evidence for one hypothesis against

another. BF10 was calculated using the python package Pingouin [76].

FMRI control analysis: RSA. Similar to the EEG RSA analysis, an RSA was conducted on

the trial-wise delay-period beta estimates using a whole-brain searchlight procedure. Defini-

tion of the model RDMs was the same as used in the EEG analyses; for neural data RDM, cor-

relation distance was computed from the standardized beta values using a customized leave-

three-run-out cross-validation (due to a single run not covering all conditions). Comparison

between the neural and model RDMs was performed using MNE-Python’s function mne_rsa.

rsa using both Spearman and partial Spearman rank correlation as metrics. Significance of cor-

relations were tested in the same cluster-based multiple comparison correction procedure

described above.

Supporting information

S1 Fig. Absolute error distributions for each participant. (A) Individual absolute error dis-

tributions for color (left) and size (right) responses in EEG data. Each dot represents average

absolute error from individual participant. Error bar represents 95% confidence interval. (B).
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Same conventions as (A) but with results from fMRI data. Data and code that support these

findings are available at: https://doi.org/10.57760/sciencedb.16868.

(TIF)

S2 Fig. Representational similarity analysis results for EEG. (A) Illustrations of representa-

tional distance matrices (RDMs) for 2D and conjunctive models. (B, C) Time-resolved cross-

validated RSA correlations with individual data using the 2D and conjunctive goal models,

estimated separately. Data was averaged temporally within a non-overlapping 80-ms sliding

window. Red horizontal lines denote significant time points (α = 0.05) corrected using a clus-

ter-based permutation test. Error bars represent 95% confidence interval. (D, E) Same as

above but data-model similarities were estimated jointly in a competitive manner using partial

Spearman’s rank correlation. Red horizontal lines denote significant time points without clus-

ter-based correction. Data and code that support these findings are available at: https://doi.

org/10.57760/sciencedb.16868.

(TIF)

S3 Fig. Circularity index for motor responses and incorrect goals in the EEG experiment.

(A) Individual circularity time courses of motor response signals for frontal (upper) and poste-

rior (lower) channels. (B) Individual circularity time courses for frontal and posterior channels

using incorrect trials and condition labels, defined as those in which participants adjusted the

sample stimuli to a different direction from the task goals. Error bar denotes SEM. No signifi-

cant time points were found using a cluster-based permutation test. Data and code that sup-

port these findings are available at: https://doi.org/10.57760/sciencedb.16868.

(TIF)

S4 Fig. Whole-brain fMRI searchlight results using delay activity estimated with an

impulse response function. Significant ROIs showing 2D goal geometry in Delay 1 (yellow)

and 2 (blue). Results were obtained by estimating delay activity using an impulse response

function. Cluster-forming threshold was set to α = 0.01 and cluster-level threshold to α = 0.05

(same as the main result). Data and code that support these findings are available at: https://

doi.org/10.57760/sciencedb.16868.

(TIF)

S5 Fig. MNI y coordinates of fMRI searchlight cluster centers. Distribution of MNI y coor-

dinates (posterior to anterior axis) of all goal-specific clusters in the fMRI searchlight analysis.

Each circle represents the center of a cluster and the diamond-shaped point represents the

averaged value for each delay period. Data and code that support these findings are available

at: https://doi.org/10.57760/sciencedb.16868.

(TIF)

S6 Fig. RSA whole-brain searchlight results for fMRI. (A, B) 2D and conjunctive representa-

tions, estimated separately for each model and subjected to cluster-based correction (cluster-

forming threshold = 0.05 and cluster-level threshold = 0.05). A threshold of 50 voxels was

applied to all statistical maps for visualization. (C, D) Same as above but data-model similari-

ties were estimated jointly in a competitive manner. Data and code that support these findings

are available at: https://doi.org/10.57760/sciencedb.16868.

(TIF)

S7 Fig. Group-level 2D neural geometries in all searchlight ROIs in the fMRI experiment.

(A) Representational structures in the identified task goal subspace for Delay 1 activities. Each

individual’s condition-averaged data matrix was horizontally concatenated before applying

PCA. Each colored dot represented a unique condition and were connected in the same order
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as in the corresponding conceptual space. C denotes circularity index. (B) Same as (A) but for

Delay 2. (C) Same as (A) but for sample stimulus geometry (using 6 conditions). (D) Same as

(C) but for response stimulus geometry using participants’ answers as feature values. Data and

code that support these findings are available at: https://doi.org/10.57760/sciencedb.16868.

(TIF)

S8 Fig. Results for circularity robustness test for all searchlight-identified regions in the

fMRI experiment. Individual circularity was repetitively calculated and averaged using trial

bootstrapping within each ROI. Orange and cyan color denotes ROIs that were identified by

the circularity searchlight but did not pass significance threshold in robustness test in Delay 1

and 2, respectively; yellow and blue denotes those that were significant in both searchlight

analysis and robustness test (α = 0.05). Data and code that support these findings are available

at: https://doi.org/10.57760/sciencedb.16868.

(TIF)

S1 Table. Correlation of delta band coherence with 2D geometries. All p-values were FDR-

corrected.

(DOCX)

S2 Table. Result summary of whole-brain searchlight for stimulus- and response-specific

2D geometry.

(DOCX)

S3 Table. Statistics of pairwise correlation between functional connectivity and goal circu-

larity (within Delay 2 ROI).

(DOCX)

S4 Table. Uncorrected statistics for correlation of functional connectivity with response

error.

(DOCX)
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