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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Plants, animals, and fungi display a rich tapestry of colors. Animals, in particular, use colors

in dynamic displays performed in spatially complex environments. Although current

approaches for studying colors are objective and repeatable, they miss the temporal varia-

tion of color signals entirely. Here, we introduce hardware and software that provide ecolo-

gists and filmmakers the ability to accurately record animal-perceived colors in motion.

Specifically, our Python codes transform photos or videos into perceivable units (quantum

catches) for animals of known photoreceptor sensitivity. The plans and codes necessary for

end-users to capture animal-view videos are all open source and publicly available to

encourage continual community development. The camera system and the associated soft-

ware package will allow ecologists to investigate how animals use colors in dynamic behav-

ioral displays, the ways natural illumination alters perceived colors, and other questions that

remained unaddressed until now due to a lack of suitable tools. Finally, it provides scientists

and filmmakers with a new, empirically grounded approach for depicting the perceptual

worlds of nonhuman animals.

Introduction

How do animals see the world? This simple question has captured our imaginations and

spurred discovery since the advent of modern science [1]. Each animal possesses a unique set

of photoreceptors, with sensitivities ranging from ultraviolet through infrared, adapted to their

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002444 January 23, 2024 1 / 31

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Vasas V, Lowell MC, Villa J, Jamison QD,

Siegle AG, Katta PKR, et al. (2024) Recording

animal-view videos of the natural world using a

novel camera system and software package. PLoS

Biol 22(1): e3002444. https://doi.org/10.1371/

journal.pbio.3002444

Academic Editor: Gail L. Patricelli, University of

California Davis, UNITED STATES

Received: December 8, 2022

Accepted: November 21, 2023

Published: January 23, 2024

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All plans and codes

are freely available. Numerical data underlying plots

and quantum catch images and videos are

available at: https://doi.org/10.5281/zenodo.

10145358. STL files of the parts required to build

the camera system, along with instructions for

assembly, are available at: https://doi.org/10.5281/

zenodo.10114598. Future updates to these designs

will be available at: https://gitlab.com/

multispectrum-beamsplitter. Codes are available at:

https://doi.org/10.5281/zenodo.10127128. Future

software updates can be found here: https://github.

https://doi.org/10.1371/journal.pbio.3002444
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002444&domain=pdf&date_stamp=2024-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002444&domain=pdf&date_stamp=2024-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002444&domain=pdf&date_stamp=2024-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002444&domain=pdf&date_stamp=2024-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002444&domain=pdf&date_stamp=2024-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002444&domain=pdf&date_stamp=2024-01-23
https://doi.org/10.1371/journal.pbio.3002444
https://doi.org/10.1371/journal.pbio.3002444
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://doi.org/10.5281/zenodo.10145358
https://doi.org/10.5281/zenodo.10145358
https://doi.org/10.5281/zenodo.10114598
https://doi.org/10.5281/zenodo.10114598
https://gitlab.com/multispectrum-beamsplitter
https://gitlab.com/multispectrum-beamsplitter
https://doi.org/10.5281/zenodo.10127128
https://github.com/hanleycolorlab/video2vision


ecological needs [2]. In addition, many animals can detect polarized light [3–5]. As a result,

each animal perceives color differently [6]. As neither our eyes nor commercial cameras cap-

ture such variation in light, wide swaths of visual domains remain unexplored. This makes

false color imagery of animal vision powerful and compelling [7–9]. Unfortunately, current

techniques are unable to quantify perceived colors of organisms in motion, even though such

movement is often crucial for color appearance and signal detection [10,11]. Overcoming this

serious barrier should spur widespread advancements in the field of sensory ecology [12,13].

Here, we provide a solution to these challenges by introducing a tool for researchers or film-

makers to record videos that represent the colors that animals see.

Accurately portraying animal-perceived colors requires careful consideration of the percep-

tual abilities of the relevant receivers [14–16]. Ultimately, visual stimulation depends on the

illumination, the object’s reflectance, and the sensitivity of the receiver’s photoreceptors [17].

Traditional spectrophotometric approaches rely on using object-reflected light to estimate the

responses of an animal’s photoreceptors [18,19]. Though accurate, individually measuring

reflectance spectra for each object in a visual display is laborious and all spatial and temporal

information is lost in the process. Moreover, measurements must be taken from sufficiently

large, uniformly colored, relatively smooth and flat surfaces [20]. Unfortunately, many natural

colors pose technical challenges. For example, powders and latticed materials, or objects that

are iridescent, glossy, transparent, translucent, or luminescent, or animals that shift their col-

ors using iridophores [2,4,5,21–26] are difficult or impossible to measure with

spectrophotometry.

Multispectral photography provides the opportunity to accurately measure colored patterns

in situ [27–30]. It relies on taking a series of photos in wavelength ranges that are generally

broader than standard “human-visible” photographs. Typically, subjects are photographed

using a camera sensitive to broadband light, through a succession of narrow-bandpass filters

[8,31,32]. In this way, researchers acquire images in regions surpassing the human visual expe-

rience (e.g., the UV and infrared ranges), organize these as a stack of multiple, clearly differen-

tiated color channels [27,31,33], from which they can derive camera-independent

measurements of color [28,29,34]. These approaches have a rich tradition in the study of polli-

nator-plant relations, where the relationship between colorimetry and the visual systems of

diverse organisms has long been embraced [8,9,31,32,35]. The resultant multispectral images

trade some accuracy for tremendous improvements in spatial information, which is often a

welcomed compromise when the goal is to understand animal signals. However, by its nature

the method works only on still objects, and it alone is unsuitable for studying the temporal

aspects of signals [10].

Yet, temporal changes can be central to a biological signal [10,11]. A recently proposed

approach for studying dynamic color signals combines multispectral imaging with digital 3D

modeling [36,37]. The next step will be to animate the resulting 3D multispectral models and

further analyze them in silico, simulating a variety of receiver-specific visual models or viewing

conditions [37–40]. Such models will likely play a crucial role in our understanding of the

ways animal posture and the receivers’ viewpoints alter visual signals. It is both a strength and

limitation that the approach offers full control of the simulated environment. While it will

allow researchers to simulate colors viewed from different angles and in variable light environ-

ments, it does not aspire to collect these data under natural conditions. In such natural set-

tings, animals present and perceive signals from complex shapes that cast shadows and

generate highlights [11]. These signals vary under continuously changing illumination and

vantage points, and organisms can position themselves purposefully in these settings. Informa-

tion on this interplay among background, illumination, and dynamic signals is scarce. Yet, it
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forms a crucial aspect of the ways colors are used [12,13], and therefore, perceived by free-liv-

ing organisms in natural settings.

In this paper, we take a different approach. We present a camera system and an associated

computational framework that produces animal-view videos, with sufficient precision to be used

for scientific purposes. This new tool captures the full complexity of visual signals, as perceived

under natural contexts, where moving targets may be unevenly illuminated. The camera system

records videos in 4 channels (UV, blue, green, and red) simultaneously. Data from this, or similar,

systems can then be processed using a set of transformations that directly translates the video

recordings to estimates of perceivable units (quantum catches) for animals of known photorecep-

tor sensitivity. Using this approach, it is now possible to record moving stimuli—crucially in per-

ceptual units of animal viewers—and study the temporal components of visual signals.

Results and discussion

Our pipeline was designed with utility in mind. It combines existing methods of multispectral

photography with a newly developed hardware design and a set of transformation functions

implemented in Python to record and process videos (Fig 1). The hardware includes a beam

splitter that separates UV from visible light, and directs images from these respective wave-

bands to 2 independent consumer-level cameras. The crucial advantage of this approach is

that all color channels are recorded simultaneously, which enables video recording. Record-

ings are then linearized and transformed into animal-perceived colors [27,28,33,41,42], in the

form of photoreceptor quantum catches. The detection of custom color standards and the line-

arization and transformation processes are automated (see Materials and methods for details).

The resulting animal-view videos can be further analyzed or combined as false color imagery

Fig 1. Recording and video processing pipeline. Scenes are (1) projected to an internal beam splitter that reflects UV

light and passes visible light to 2 independent cameras. This design eliminates the need for switching filters and so

allows for the rapid collection of multispectral recordings (videos or images). Following data collection, users can use

our pipeline to (2) align the recordings automatically. The recordings are (3) linearized and normalized automatically

using the custom color card or a set of grayscales of known reflectivity. This step estimates the light captured by the

camera sensors (camera catches, CC). Finally, the camera catches are (4) transformed to animal quantum catches (AC,

in this case representing honeybee Apis mellifera vision), which can subsequently be (5) visualized as false color images

or videos (labeled as “bee”) by coloring the UV, blue, and green quantum catch images as blue, green, and red,

respectively. These are compared to the composition of the linear images or videos (labeled as “human”). In this case,

we demonstrate the pipeline using a black-eyed Susan Rudbeckia hirta. This flower has a nectar guide that aids

recruitment [43]. To our eye, the black-eyed Susan appears entirely yellow because in the human-visible range, it

reflects primarily long wavelength light. Whereas in the bee false color image, the distal petals appear magenta because

they also reflect UV, stimulating both the UV-sensitive photoreceptors (depicted as blue) and those sensitive to green

light (depicted as red). By contrast, the central portion of the petals does not reflect UV and therefore appears red. For

more information on the color key, see S7 Fig. For the purpose of this illustration, we applied a gamma correction to

the false color images (CC0.5 and AC0.3, respectively). For details on the pipeline, see Materials and methods. The

resultant images in (5) are also available in a larger format with an embedded visual color key (S7 Fig).

https://doi.org/10.1371/journal.pbio.3002444.g001
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(Fig 2) [9,29,31]. As an added benefit of our approach, we provide methods for quantifying

estimation error within each experiment. Finally, our pipeline is very flexible, allowing the

user to easily swap cameras, lenses, or to visualize color appearance for a variety of animal

viewers. As all components are open source, the tools invite continued improvements (see

Data availability).

This approach accurately produces photoreceptor quantum catches for honeybees (Apis
mellifera) or the average UV-sensitive avian viewer [45] and it can work for any organism pro-

vided users supply data on photoreceptor sensitivity and those sensitivities overlap with the

sensitivity of the camera system. We tested the accuracy of the pipeline on a collection of color

standards, by comparing the estimates of the camera system to those predicted from spectro-

photometry (see Materials and methods for details; Figs 3 and S1–S6 and S1–S6 Tables, includ-

ing for other species: S7 Table). Under ideal conditions, i.e., under stable, direct sunlight, the

coefficients of determination (R2) of the predictions are in the range of 0.962< R2 < 0.992

(S1–S3 Figs and S1–S3 Tables). Recording in the lab, under a broadband lamp whose emission

spectrum has multiple peaks, is less reliable, but still produces fits in the range of 0.928< R2 <

0.966 (S4 and S5 Figs and S4 and S5 Tables). Shaded conditions outside have subtle spatial and

temporal variation in light that are imperceptible for the human eye; on videos where the

Fig 2. Frame excerpts from false color videos. Our pipeline can produce false color videos of animals behaving in

their natural environment. (A) Here, we show 3 male orange sulphurs (Colias eurytheme). These butterflies display

strong angle-dependent UV iridescence on the dorsal side of their wings. The UV-iridescent portions appear more

orange to the human observer than the otherwise yellow wings (see human-visible inset). The avian false color

depiction (main image) is based on the coordinates of the receptor noise-limited (RNL) opponent space [17,44].

Coordinates in this space represent differences in an animal’s photoreceptor responses, and the distances between the

coordinates approximate the perceptual distances between the colors. The inset color key illustrates human-visible

colors around the perimeter of a circle colored according to RNL coordinates, where UV colors start at the epicenter

and mix with other colors. For full details, see Method A in S1 Text. In this depiction, the UV-iridescent portions

appear purple, because they most strongly reflect in the ultraviolet and the red part of the spectrum. The ventral part of

the wings, visible when the animals are in their resting position, are depicted as gray-brown, just like the leaves, as they

are close to the achromatic point. See S1 Video. (B, C) A potentially useful application of the system is the fast

digitization of museum specimens. Here, we highlight pigmentary and structural UV coloration on specimens of (B)

Phoebis philea and (C) Anteos sp. in RNL false colors. A human-visible inset appears to the top right corner of each.

The specimens are mounted on a slowly rotating stand, showcasing how the iridescent colors change depending on

viewing angle (S2 and S3 Videos). The bright magenta colors highlight the strongly UV-reflective areas, while the

purple areas reflect similar amounts of UV and long wavelength light. For the purpose of this illustration, we applied a

gamma correction to the false color video of the (A) live butterflies; the source videos are also available. For further

examples, see S4–S12 Videos.

https://doi.org/10.1371/journal.pbio.3002444.g002
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calibration and the test frames were separated by several seconds, this noise lowers the coeffi-

cients of determination to 0.928 < R2 < 0.965 (S6 Fig and S6 Table). The technique is not a

substitute for a true hyperspectral camera and relies on the fact that the reflectance of most

natural materials is sufficiently nonrandom, and the photoreceptor sensitivity of most animals

is sufficiently broadband that a statistical relationship between camera catches and animal

quantum catches holds. By exploiting this relationship, the technique reliably predicts animal

quantum catches derived from spectrophotometry, under either artificial illumination indoors

or natural sunlight outdoors, which highlights the broader applicability of our method.

Animal-view videos provide a new possibility for researchers to study spatially and tempo-

rally complex, multimodal displays, in nature where these signals are produced and perceived

(Fig 2 and S1–S3 Videos). We highlight 3 such frontiers. First, as the method does not require

switching parts (e.g., filters or lenses) between taking UV and visible images, which is common

in other applications of multispectral photography, it allows for more rapid image collection

(S2–S4 Videos). Therefore, this approach can speed up data acquisition in the pipelines of

color estimation and photogrammetry projects [37,40]. Second, signals and displays can be

studied in their natural contexts. For example, in natural settings the intensity and spectral dis-

tribution of light continuously shifts and some habitats can have very patchy illumination

(e.g., dappled light in forests). In addition, the incidence angle of directional light sources,

such as sunlight, will alter how animals perceive objects (see micaToolbox User Guide, [28]).

This effect is particularly evident on glossy or iridescent surfaces (e.g., some feathers, S4

Video), but ultimately applies to all natural surfaces. As a result, the perceived color of a leaf

fluttering in the wind or a bird walking in the undergrowth will constantly change. Our

approach provides a simple pipeline to capture and analyze colorful signals as they would be

perceived in the environment where they are produced and experienced by free-living organ-

isms [45,46]. Finally, and perhaps most importantly, it is now possible to study the temporal

variation of perceived colors using videography. By analyzing animal-view videos of the natu-

ral world, researchers can now explore a wide range of cues and signals in motion (S1–S12

Fig 3. Quantum catch recovery from animal-view video. Video recordings can produce accurate estimates of animal

quantum catches. In this case, we illustrate the accuracy by comparing animal quantum catches derived from our

pipeline (“Camera-predicted AC”) to animal quantum catches derived from reflectance spectra (“Spectrometer-

predicted AC”), for the honeybee (left) and average ultraviolet-sensitive bird (right). We present quantum catch

estimates for photoreceptors broadly sensitive to ultraviolet (violet circles; R2
honeybee = 0.982, R2

bird = 0.981), blue (blue

triangle; R2
honeybee = 0.985, R2

bird = 0.989), green (green diamonds; R2
honeybee = 0.990, R2

bird = 0.992), and red light

(red squares; for the bird alone; R2
bird = 0.988). The camera-predicted colors were within 2 just noticeable differences

from spectrometer-predicted colors (mean ± s.e. [max]: bee = 0.810 ± 0.089 [2.02] jnd; bird: 0.805 ± 0.082 [1.786] jnd).

For a detailed description of the data, see S1 Fig and S1 Table; for further tests see S2–S6 Figs and S2–S7 Tables. The

inset bee (“Hymenoptera icon” by Shyamal L.) and bird (“bird” by SVG SILH) silhouettes were released under Creative

Commons CC0 license. The data underlying this figure can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3002444.g003
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Videos). The camera system and associated software package introduced here will open many

new research avenues for sensory ecology.

Materials and methods

Camera system

The camera system is built from commercially available parts and cameras (Sony a6400) fixed in a

modular 3D printed housing (Fig 4). The housing (S8 and S9 Figs) consists of a modular cage,

mounts for the beam splitter mirror and the shortpass filter, cone baffles that minimize light leak-

age towards the cameras, and a bellows lens mount. We printed the housing with a commercially

available 3D printer (Prusa, Prusa i3 MKS+) from matte black PLA filament (Hatchbox, PLA

black) to further minimize possible light contamination (for more details, see Data availability). In

this manuscript, we used a single camera lens (80 mm f/5.6 EL-Nikkor enlarger lens); however,

we provide designs to accommodate 3 different commercially available lenses (80 mm f/5.6, 135

mm f/5.6, or 210 mm f/5.6 Nikon lenses from the EL-Nikkor Enlarging lenses series). Light that

transmits through the lens is passed to a dichroic beam splitter (DMLP425R, Thorlabs), placed at

a 45˚ angle relative to the beam path (Fig 5). This beam splitter reflects short wavelength light

(<425 nm), which, after passing through a shortpass filter (FF01-390/25, Semrock) that only

transmits short wavelength light (<390 nm), reaches a full-spectrum camera (UV camera, Fig 5).

Our full-spectrum camera was modified by Lifepixel (https://www.lifepixel.com/) by replacing the

stock internal hot-mirror (that normally blocks light outside of the visible range) with a full-spec-

trum glass filter; a range of vendors offer this service [47]. Simultaneously, visible light (approxi-

mately 425 nm to 720 nm) passes through the beam splitter, to be captured by a stock camera at

the rear of the housing (VIS camera, Fig 5). In our build, both cameras are triggered simulta-

neously using a spliced cable release; however, one could use a remote trigger or a trigger delay

(setting the start of the recording several seconds after pressing the shutter button). In the camera

system’s simplest form, the lens can be fixed directly to the housing, which results in a fixed focal

plane. However, the design allows for other options. For example, we used a Novoflex BALPRO

bellows to allow for dynamic focusing (from approximately 64 mm up to infinity; Fig 4) and pro-

vide plans for DIY bellows with a sliding rail (S9 Fig). Alternatively, if space allows, a focusing

Fig 4. Illustration of the camera system. Views of the camera system from the (A) side and a (B) ¾ perspective

illustrate the system’s 2 cameras that are sensitive to (1) UV and (2) visible light, the (3) modular cage, and the (4)

enlarging lens within a recessed (see arrow in A) custom mount. Here, we illustrate the camera system on the

commercially available (5) Novoflex BALPRO bellows system, which facilitates focusing and mounting of alternative

lenses. For plans and further details, please see Data availability.

https://doi.org/10.1371/journal.pbio.3002444.g004
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helicoid can be attached to the front lens mounting plate. The enlarger lenses are nearly apochro-

matic (i.e., having the ability to focus all wavelengths at the same point); however, the focus will

inevitably differ slightly between cameras receiving UV and visible light. To overcome this, we

designed 2 unique camera mount plates that offset each camera a specific distance from the beam

splitter (UV 32 mm; VIS 30 mm).

The system is designed to be flexible. The modular design allows users to devise new

mounting plates, typically just a single side of the cube-shaped housing, to accommodate dif-

ferent lenses, cameras, or even internal optical components (e.g., beam splitter or shortpass fil-

ter). For example, while we have built our system around capturing the UV and human-visible

portions of the light spectrum, this system could easily be adapted to capture infrared by swap-

ping out the filter, beam splitter, and (possibly) the lens. If the system is modified for recording

polarized light, care must be taken to employ a beam splitter whose reflection and transmission

properties are not sensitive to the polarization plane of the light (for details, see S10 Fig). All

3D printed parts of this build are available for download, along with detailed instructions for

printing and assembly (see Data availability).

Estimating sensor sensitivity

We used a monochromator to measure the sensitivity of the camera sensors from 280 nm to

800 nm [47–50]. Specifically, we connected a xenon light source (SLS 205, Thorlabs) to a

monochromator (Optimetrics, DMC1-03) via a 1,000 μm single fiber (58458, Edmund Optics).

The light from the monochromator was passed through a second 1,000 μm single fiber (58458,

Edmund Optics) and collimating lens (Ocean Optics, 74-ACH) to a radiometrically calibrated

spectrometer (Ocean Optics, Jaz) equipped with a cosine corrector made of Spectralon (CC-

3-DA cosine). We incrementally varied light from 280 nm to 800 nm in approximately 5 nm

Fig 5. The spectral properties of the optical components. A single camera lens (1) passes light to a dichroic beam

splitter that reflects short wavelength (<425 nm) and transmits visible (>425 nm) light. (2) The reflected short

wavelength light passes through a shortpass filter (3) before reaching a full-spectrum camera, while the transmitted

visible light is captured by a stock camera. This setup ensures that only UV and VIS light reaches the respective

cameras (4). The reflection/transmission curves are given for each leg of the optical path in relative units (they are

normalized to the range of 0–1). VIS, visible; UV, ultraviolet. For the technical details on the transmission

measurements, see Method B in S1 Text. The data underlying this figure can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3002444.g005
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steps in relatively narrow bands (mean FWHM ± s.e. = 7.3 ± 0.29 nm, S11 Fig). At each

increment, we measured the absolute irradiance at a consistent distance and orientation and

simultaneously photographed the illuminated cosine corrector in RAW (ARW) format with

our camera system. The visible camera’s ISO was set to 100 and the UV camera’s ISO was set

to 2,000. We calculated sensitivity from the photos and the absolute irradiance measurements

as

S lð Þ ¼
Pl � Pd

Plþ20

k¼l� 20
IðkÞ

; ð1Þ

where S is the sensor sensitivity, Pλ is the pixel value for each measurement area (i.e., the area

that is illuminated), Pd is the sensor value for the image from an equivalent sized dark portion

of the frame (i.e., dark signal), and I is the irradiance of the light projected on the radiometer

converted to photon flux (μmol s−1 m−2). In this case, we used the sum photon flux around the

main peak to reduce the impact of second order scattering, which was detected at wavelengths

�721 nm (second order peaks at�360.5 nm). We collected a second set of measurements on

the UV camera where we inserted a longpass filter (transmission >415 nm, MidOpt LP415/

25) within the beam path to block second order scatter. This reduced the pixel values of the

UV sensor from 39.3 ± 2.7 to 1.7 ± 0.05, confirming that our sensitivity estimates were not

influenced by second order scatter and that the UV camera was insensitive to longer wave-

length light (mean ± s.e. difference from dark pixel = 0.14 ± 0.05, in pixel values in the 0–255

range). Finally, each sensor was relativized by dividing the estimated sensitivity at each wave-

length by the total (sum) sensitivity, such that the sum of the resultant sensor sensitivity was

equal to one for each sensor (Fig 6).

Fig 6. Camera sensor sensitivity. Estimates of relative camera sensor sensitivity for the UV (solid purple lines), blue

(dashed blue lines), green (dotted green lines), and red (dash-dotted red lines) sensors from 300 nm to 700 nm; see

Materials and methods. These sensitivities closely resembled those remeasured over a broader range 280 nm to 1,100

nm (for more details, see S12 Fig, Method B in S1 Text). The data underlying this figure can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3002444.g006
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To ensure that our system was insensitive to infrared light, we remeasured the sensor sensi-

tivities from 280 nm to 1,100 nm using a similar approach (Method B in S1 Text). This showed

no measurable sensitivity to light above 800 nm and produced nearly identical sensitivity esti-

mates (S12 Fig). Note that at impractically long exposure times the UV camera is minimally

sensitive to infrared light (as is the case for multispectral photography in general); however,

this has no measurable impact on data collection (see S12 and S13 Figs). When photographing

in full sunlight, where the surface power density of infrared irradiance is 5 to 6 times higher

than that of UV, at the shutter speeds required for UV photography, the infrared contamina-

tion is statistically indistinguishable from dark noise (comparison of pixel values under no

light versus under infrared light, Z-test, UV: p = 0.743; blue: p = 0.960; green: p = 0.841; red:

p = 0.985; for more details, see S13 Fig). However, if users wish to record in a light environ-

ment with a greater relative proportion of infrared to UV irradiance, we recommend exercis-

ing caution and quantifying the possible infrared contamination (S13 Fig).

Systems built from different cameras will have different sensor sensitivities than ours, and

users will need to estimate the responses of their own systems. If the equipment we listed

above (monochromator, spectrophotometer, stable full-spectrum light source) is not available,

the camera sensitivities can be estimated using chart-based methods (also see online documen-

tation for the micaToolbox, [28,42]).

Shooting images and videos with the camera system

It is important to note that the angles of the camera, subject, and illuminant will have notable

effects on colors [51]. Because our goal is to capture colors as perceived, the camera needs to

be positioned at the vantage point of the relevant animal receiver (e.g., overhead or from

ground level, depending on the target species). Our current design requires manual focusing,

so keeping fast-moving subjects within the focus plane can be challenging. Therefore, initial

investigations should focus on subjects that reliably signal within predictable locations (see

examples on S1–S12 Videos).

Both cameras should be set to record using an S-Log3 gamma correction, which applies a

specific gamma function that reduces the likelihood of under- or overexposure, and in the

S-Gamut3 color space, which corresponds to camera native color space. As a result, the

S-Log3/S-Gamut3 format provides greater access to the camera’s full dynamic range than

other color spaces, which facilitates color grading. The RGB values recorded in this way can be

used to accurately reconstruct the camera’s RAW sensor responses from both JPG and MP4

files [52]. Sony provides a transformation function to convert S-Log3 files to native “reflec-

tance” [52], but these are also recoverable using a power function (see Linearization and nor-

malization below, [27,33]). The S-Log3 gamma correction and the S-Gamut3 color space offer

a particularly useful format because pixel values recorded this way depend only on their

respective RAW values. This is in contrast with typical gamma corrections and color spaces,

which employ additional camera-capture-to-RGB mappings, intended to suit human percep-

tion. Such mappings depend on additional color matrices that introduce co-dependence

among the color channels to transform colors, in ways which often constitute undisclosed pro-

prietary information.

Once in position, the camera’s shutter speed can be adjusted such that a set of isoluminant

grayscale (white to black) standards is properly exposed. We recommend a custom grayscale

made from mixing barium sulfate paint (Labsphere 6080) with a spectrally flat black paint

(Culture Hustle, Black 3.0), which is reliable and comparatively inexpensive. Alternatively, a

commercially available set of 8 calibrated Spectralon standards reflecting 99, 80, 60, 40, 20, 10,

5, and 2% of incident light (Labsphere, RSS-08-020) produces excellent results. In this study,
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we used both custom and Spectralon grayscales and confirmed that they work equally well.

The calibration needs to be repeated for each session as it is specific to the light conditions dur-

ing recording. When collecting images, the calibration shots should be taken at least once for a

photo session, but taking calibration shots periodically or including the standards in each

image is ideal. When recording videos, the calibration frames should be included in the video.

However, just as with other approaches [27,28], the calibration can also be completed just after

photographing or filming a behavioral display as long as the light conditions have not changed

during the session.

We provide methods to validate the accuracy of the transformation (see Transformation

and Validation tests below). These tests require colors that have substantial variation in reflec-

tance over a broad spectral range encompassing the visual sensitivity of the target organism

(e.g., 300 nm to 700 nm). As in other studies [28], we used commercially available pastels

(Blick Art Supplies, 20 Artists’ Pastels Half Sticks. 21948–1209) alongside the previously

described custom grayscale made from a barium sulfate and flat black paint (S14 Fig and S8

Table). These color and grayscale standards were held within a 3D printable holder made from

gray PLA plastic (we used Prusament silver PLA and also a darker, Overture black PLA). We

placed 4 Augmented Reality University of Cordoba (ARUCO) fiducial markers [53] in the cor-

ners of the 3D printable holder. These ARUCO markers are used for automatic linearization

and validation tests (see below). The color standards can be challenging to produce, thus we

encourage great care in preparing the reference colors. We found that applying the pastels on a

vertical surface while vacuuming helps minimize the potential for colored dust to contaminate

adjacent colors. For the grayscales, finding adequate mixtures can take some time; however,

the precise reflectance spectra do not matter as much as maximizing the coverage of the gray-

scale range. Finally, these color cards need to be remade and remeasured approximately every

3 months as they can degrade with age.

Alignment

An initial step of the pipeline involves a two-stage process of aligning the recordings of the VIS

and UV cameras. First, we apply a coarse alignment to the UV channel using a homography

warp (Method C in S1 Text). Establishing the parameters of this initial coarse alignment

requires the user to manually select suitable matching points from the UV and VIS recordings,

but the result can be reused indefinitely because the cameras’ relative position remains approx-

imately constant. Although our modular system holds both cameras securely, very slight shifts

between sessions are inevitable. In addition, the affine transforms may slightly differ depend-

ing on the target’s distance to the camera. For these reasons, as a second step we calculate a

fine-grained correction to the coarse alignment. We use the enhanced correlation coefficient

(ECC) algorithm to find this correction (see Method C in S1 Text for a description, [54]).

Since this algorithm can sometimes fail when image conditions are poor, we calculate several

candidate alignments using different image pairs. The number of pairs used is determined by

how many images can be stored in memory at a time. We then apply each candidate alignment

to a large batch of image pairs and evaluate them using the mean ECC value across each image

pair, selecting the alignment with the best average ECC. For videos, the frames also need to be

aligned temporally, i.e., the UV channel needs to be shifted so that the frames from the 2 cam-

eras correspond with each other. The temporal alignment algorithm first identifies a batch of

frames for which there is adequate motion. For this batch, we calculate the spatial alignment

for a range of temporal offsets, then select the best offset by calculating the mean ECC value

just as we do when selecting the optimal spatial alignment, only this time finding both spatial

and temporal matches simultaneously.
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Perfect temporal synchronization is not possible since the 2 cameras operate independently.

Therefore, the best temporal alignment can be up to half a frame length misaligned. The opti-

mal exposure of the UV camera, typically 1/30, limits the videos’ frame rate to 30 fps. Accord-

ingly, the best temporal alignments can range from a perfect match up to 1/60 of a second off.

Animals moving faster than this rate will produce “ghosting” in addition to the more familiar

blurring. In practice, video alignment works well for the majority of cases and we provide a

simple method for detecting alignment failures. Specifically, we present the user with a com-

posite image whose red and blue bands are taken from the visible light camera and whose

green band is taken from the aligned UV camera. If spatial or temporal alignment has failed,

this will be readily apparent as “ghosting” in the composite image, allowing for manual correc-

tion if necessary.

Linearization and normalization

Many digital cameras do not directly output RAW video recordings or these are impractical

for applications in the field. Rather, sensor responses are typically subjected to a variety of con-

versions, such as gamma correction and white balancing, to produce images optimized for a

human viewer [33]. Therefore, a necessary prerequisite for converting recordings to animal

photoreceptor quantum catches is to estimate the relative responses of the camera system’s

sensors (hereafter, camera catches), and to normalize them to a specified range [27,33].

First, the images need to be linearized. If using Sony cameras, both should be set to record

using S-Log3 and the S-Gamut3 color space (see above). This setting ensures that the recording

is made in a color space with a known relationship to the camera’s native color space, rather

than being mapped into a standard color space such as sRGB or adobeRGB. Consequently,

RGB values recorded in the S-Log3 color space closely correspond with the camera’s RAW

sensor responses for both JPG and MP4 files and the linear sensor responses can be estimated

with the transformation functions provided by Sony [52]. The specified relationship between

the JPG pixel values and the RAW pixel values is given by:

r ¼ c1c
xJPG
2 þ c3 for xJPG � c4

r ¼ c5xJPG þ c6 for xJPG < c4;
ð2Þ

where xJPG is the value of the pixel in the JPG scaled to the range [0, 1], r is the reflectance

assuming isoluminance, and c1 = 0.0047058, c2 = 8166.69, c3 = −0.01, c4 = 0.1673609, c5 =

0.1914153077, c6 = −0.014023696 are constants. In practice, we found that applying an addi-

tional scaling term to the JPG pixel values prior to applying the Sony formula improved the

error:

r ¼ c1c
sxJPG
2 þ c3 for sxJPG � c4

r ¼ c5sxJPG þ c6 for sxJPG < c4;
ð3Þ

where the scaling term for the input is s = 0.92578125. Using this formula, a “roundtrip” con-

verting from RAW to JPG and back to RAW had a similar mean absolute error to the base con-

version from JPG to RAW, implying that this formula reconstructs the original RAW with an

accuracy close to the best theoretically possible accuracy given the lossy JPG compression and

8-bit quantization (see Method D in S1 Text for details).

After linearizing, the images need to be normalized [27,28]. This step ensures that a value

that is equally reflective over the camera’s full range (e.g., an isoluminant white standard) will

register the same values across all of the camera’s sensors. The relationship is specific to the cir-

cumstances of the recording; therefore, the normalization parameters need to be estimated for
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each recording session separately and the illumination and camera settings should be main-

tained while recording images or videos.

The recorded pixel values should refer to a set of isoluminant standards with known reflec-

tance curves. In this study, we used a custom grayscale (S14 Fig and S8 Table) made from mix-

ing barium sulfate paint (Labsphere 6080) with a spectrally flat black paint (Culture Hustle,

Black 3.0) and a commercially available set of 8 calibrated Spectralon standards reflecting 99,

80, 60, 40, 20, 10, 5, and 2% of incident light (Labsphere, RSS-08-020). To reduce the time

required for manually selecting calibration and test samples within the images, we provide an

automated process that reads the 4 ARUCO fiducial markers [53] on our custom color stan-

dard and extracts the pixel values of the color patches. The ARUCO algorithm provides a fast,

highly accurate, automated method to locate relevant points on the custom color card.

We calculate the ideal linearized values by predicting the expected camera catch under ideal

light conditions for a set of isoluminant standards. Specifically, we calculate the camera catch

that would be expected under ideal (isoluminant) illumination for each channel as:

CCi ¼

Z 700

300

RSðlÞSiðlÞIðlÞdl; ð4Þ

where CCi is the camera catch of the sensor i, Rs is the spectral reflectance function of the stim-

ulus, Si is the spectral sensitivity function of the sensor, and I is the photon flux of the illumi-

nant, in this case set to 1.0 across all wavelengths, for each wavelength λ. Having established

the target values in this way, we then fit a linear regression between the original pixel values

and the target values. These regressions describe the relationships between the recorded pixel

values and the target camera catch for each sensor (S15 Fig). We use these linearization and

normalization parameters to transform all observed pixel values into relative linearized camera

responses (relativized such that an object with 100% reflectance would have a value of 1.0).

Although this method works for cameras that support the S-Log3 format (e.g., all R2 values

ffi 1.00, S15 Fig), in practice we found that we could simultaneously linearize and normalize by

fitting a power law relationship between the JPG values and the target values on the samples

using the trust region reflective algorithm [55]. The power law regression has the form:

CCi ¼ a1a
pi
2 þ a3; ð5Þ

where pi is the pixel value of the channel i and a1, a2, a3 are parameters fit to the data. We

found that there was very little difference in error between linearizing using Eq 3 and normal-

izing using linear regression versus linearizing and normalizing simultaneously using Eq 5

(S15 Fig), which implies that this method is extendable to other cameras as long as they have

conventions similar to Sony (Method D in S1 Text).

This step of linearization and normalization removes the effects of unequal illumination

from calibration images or frames, provided that the illumination is intense enough across the

entire spectrum [27]; however, all other frames will be with reference to these calibration

frames, even if there are subsequent shifts in illumination. Therefore, these steps should be

repeated whenever the illumination changes. Just like other applications of multispectral imag-

ery [27,28], we recommended placing standards in each frame, or recording standards imme-

diately before or after a photo or video session. Once this step is completed, the camera catches

from all 4 color channels are effectively linearized and normalized and ready to be transformed

to animal quantum catches.
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Transformation

Natural spectra take on a limited variety of shapes [56]. This regularity enables the mapping of

camera responses (camera catches) to photoreceptor quantum catches, which would otherwise

be impossible. Thus, we can empirically derive a transformation matrix that reliably trans-

forms from the camera catch to animal quantum catch [27,33,41,42]. This transformation

matrix is specific to the camera’s sensors, the target animal’s photoreceptor sensitivities, and to

the illumination under which the animal photoreceptor responses are to be estimated. How-

ever, it does not depend on the recording session [27].

When estimating a transformation matrix, first we calculate the camera catches (CCi, see

above) for each object from a large database of spectral reflectance data. In our case, the sensi-

tivity of the UV camera’s red, green, and blue bands was highly overlapping. To avoid overfit-

ting the transformation functions, we rely only on the UV camera’s red channel; other users

may use all 3 channels. We then calculate the expected photoreceptor quantum catch of the

target animal using the equation:

ACj ¼

Z 700

300

RSðlÞSjðlÞIðlÞdl; ð6Þ

where ACj is the quantum catch of the photoreceptor j, Rs is the spectral reflectance function

of the stimulus, Sj is the spectral sensitivity function of the receptor j, and I is the photon flux

of the illuminant, for each wavelength λ. For simplicity, we assume ideal isoluminance between

300 nm and 700 nm. This corresponds to a scenario where there is sufficient light across the

viewer animal’s full visual range (i.e., spanning the range of their photoreceptors’ sensitivity)

and where the organism possesses perfect color constancy (i.e., the ability to perform color dis-

crimination similarly despite differences in the light environment, [1]). However, it is possible

to use any target illumination (e.g., S16 Fig). In this manuscript, we focus on spectral sensitivi-

ties of 2 example animals (S17 Fig): the honeybee Apis mellifera [57] and the average UV-sensi-

tive avian viewer [45], using photoreceptor sensitivities downloaded from pavo [58]. As with

the illumination, it is possible to enter user-defined spectral sensitivities and we have provided

a small collection of spectral sensitivities from other organisms (see Data availability). From

these 2 estimates (CCi and ACj), we derive a transformation matrix, T, that maps the camera

sensor space into animal receptor space:

AC ¼ T CC; ð7Þ

where AC is the vector of animal receptor responses and CC is the vector of camera catches.

The entries of T were estimated by fitting linear models (without intercept) for each of the j
photoreceptors such that:

ACj � tj1CC1 þ tj2CC2 þ � � � þ tjiCCi: ð8Þ

In this paper, we used a large database of natural Floral Reflectance Database (FReD, con-

sisting of 2,494 spectra, [59]) to fit the transformation matrix T. We randomly split the dataset

into 2,244 spectra used for fitting T and 250 spectra used for evaluating the fit. We report the

accuracy of the transformation step for a collection of example animals (including the honey-

bee and the average UV-sensitive avian viewer), as well as for arbitrary photoreceptor sensitiv-

ity curves based on the A1 and A2 templates from Govardovskii and colleagues [60]. To

confirm that the results will generalize to other materials, we also tested the fit on a library of

natural and artificial materials (Spectral Library of the USGS, [61]).

The conversion step is highly accurate. The coefficient of determination invariably exceeds

0.90, and in most cases performs above 0.99, for all example animals (S18 Fig and S9 Table).
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The results are generalizable to a set of viewing illuminations (S10 and S11 Tables). Our alter-

native reflectance library provided similar results, with slightly higher coefficients of determi-

nation (all>0.991, S12 and S13 Tables). We found reliable results for A1 and A2 synthetic

photoreceptors with peaks between 343 nm and 700 nm (S19 Fig), for a variety of target illumi-

nations (S20 Fig) and when tested on either database (S19 Fig). In the>420 nm range that is

fully covered by the sensors of the visible camera, the conversion is very precise (R2 > 0.99).

The system loses accuracy when extrapolating beyond the camera sensors’ sensitivity, i.e.,

when predicting the responses of receptors that are sensitive in the extreme end of UV (<340

nm) and becomes inaccurate for receptors that peak below 343 nm (S19 and S20 Figs). In addi-

tion, there is a small dip in accuracy at approximately 390 nm, which corresponds with a nar-

row (33 nm) gap in the cameras’ sensitivities (Fig 6). In particular, accuracy is lower when

estimating photoreceptors with peak sensitivities of approximately 390 nm (S19 and S20 Fig)

or when measuring materials whose reflectance is restricted to this region (S21 Fig and

Method E in S1 Text). Importantly, the pipeline offers users the option to specify the spectral

sensitivities of their study organism and the desired target illumination, and evaluate the fit of

the transformation matrix on a case-by-case basis.

Evaluating the success of the system

To ground-truth our method, we compared animal photoreceptor quantum catches calculated

directly from reflectance spectra to those derived using our camera system and transformation

functions. All measurements were diffuse spectral reflectance, measured using a field-portable

spectrophotometer (Jaz, Ocean Optics) and pulsed xenon (Jaz-PX, Ocean Optics) light source.

Each spectrum was relative to a fresh 99% Spectralon white standard (WS-1-SL, Ocean Optics)

and a dark spectrum taken inside a custom black box. In this case, light was delivered through

a 600 μm bi-furcating fiber optic positioned at a coincident oblique measurement angle.

The photoreceptor quantum catches estimated using the 2 methods match well. First, we

tested our method on a selection of color standards: an ARUCO standard made from 20 pas-

tels (S14 Fig and S8 Table) and a custom grayscale made from barium sulfate paint and black

3.0 (see above for details), another set of pastels (S22 Fig and S8 Table) and a DKK Color Cali-

bration Chart. The tests were run on different images/frames than the calibrations, typically

taken a minute after the frame/image where the calibrations were conducted. We repeated the

validation tests for stills and videos, under natural, direct and indirect sunlight and in the lab

under metal halide illumination (315W, iGrowtek MH315/10K; S16 Fig), for the 2 target ani-

mals: honeybees (Apis mellifera, [57]) and the average UV-sensitive avian viewer [45]. In all

cases, we found good agreement between the reflectance-based and the camera-based estima-

tions (S1–S6 Figs and S1–S6 Tables, 0.981 < R2 < 0.992 for videos in direct sunlight;

0.928< R2 < 0.965 for videos in indirect sunlight; 0.962< R2 < 0.985 for images taken in

direct sunlight; 0.928< R2 < 0.966 for images taken in the lab). Tests on different animals

yielded comparable results (S7 Table, 0.941< R2 < 0.980). In addition, we verified that the use

of Spectralon standards and a custom-made grayscale provides similar results (S2 Table versus

S3 Table and S4 Table versus S5 Table, linearized on Spectralon 0.942< R2 < 0.985, linearized

on ARUCO 0.928 < R2 < 0.983, depending on the channel and the lighting).

Next, we assessed the correspondence between spectrometer- and camera-predicted colors

of natural objects. Specifically, we conducted the same tests as above on photos of flowers,

leaves, birds’ eggs, and feathers (S14 Table). Again, for both target animals, photography and

spectroscopy provided similar estimates of quantum catches (S23 Fig and S15 Table,

0.826< R2 < 0.940). As expected, the linear relationship between the 2 estimates was weaker

for natural objects than for color standards [62,63]. However, this mismatch represents
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meaningful variation: the perceived color of these objects is altered by their shape, fine pattern-

ing, texture, and physical color (e.g., Figs 2 and S24).

While these levels of accuracy are similar to applications of still multispectral photography

on artificial objects [28,62,64] and natural specimens of known reflectance [62,63], we expect

that our method trades some accuracy for the ability to register signals that would otherwise be

impossible to measure (S25 Fig and S5–S8 Videos). For colorimetric studies where a still multi-

spectral image is sufficient, already existing, highly accurate methods that use a single camera

are likely optimal [28]. In other cases, the ability to record perceived colors from a moving

organism is well worth a potential reduction in accuracy. Recognizing this, we designed our

pipeline to allow users to test the accuracy of their color estimations, which will enable

researchers to make informed decisions about the reliability of their datasets and the most

appropriate methods for their particular use cases.

We want to stress that the coefficient of determination, R2, reported here and in comparable

studies (e.g., [28,62–64]), must be interpreted with caution. This metric only quantifies the

strength of the linear relationship between the expected and predicted quantum catches. Strong

relationships that fall on a different slope than 1:1 may still have relatively high R2 values; there-

fore, these metrics may not be sufficient to interpret the accuracy of the predicted animal quan-

tum catch. Thus, we also report mean absolute prediction error (MAPE), root mean squared

prediction error (RMSPE), as well as the range of the inner 75% of the ordered prediction errors

(S1–S7 Tables). These 3 measures are on the same scale as the expected quantum catches and

allow for direct assessment of how well the system can predict animal quantum catch. Overall,

considering these metrics alongside the coefficient of determination are more informative and we

encourage users of multispectral photography to consistently assess and report their accuracy.

Software

The software system was designed with end-users in mind, and it uses automation and interac-

tive platforms where possible. The functionality is packaged as a Python library called video2-

vision and can be downloaded and installed from the PyPI repository or from GitHub (see

Data availability). Operations are grouped into directed acyclic graphs which we call pipelines,

essentially a flowchart of operations with no loops (implemented with NetworkX library, [65]).

Pipelines are saved as JSON files for reuse. Still images or video frames are loaded as numpy

arrays [66] and processed in batches to minimize runtime. Most image processing operations

are performed using the OpenCV library [67]. The system can be called from the command

line to process one or more images or videos, but there are a few components that require

greater interactivity, such as checking for alignment errors or specifying the spatial relation-

ship between ARUCO markers and sample points. These more interactive steps are imple-

mented in Jupyter notebooks [68]. The software system is designed to be easily extendable;

new image processing operations can be quickly added as new classes following a defined API.

Ethics statement

Abandoned eggs were collected for another project under US Fish and Wildlife Service Col-

lecting permit (MB81216C-3) and Virginia Department of Game and Inland Fisheries Scien-

tific collecting permit (070605).

List of supplementary videos

All videos have been subjected to a histogram stretch and a subsequent gamma correction for the
purposes of displaying on screen. The uncorrected videos, representing the quantum catches, are
available from https://doi.org/10.5281/zenodo.10145358.
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Supporting information

S1 Video. Three male orange sulphur butterflies (Colias eurytheme) in avian RNL false col-

ors. The dorsal side of the butterflies’ wings shows strong angle-dependent UV iridescence.

The UV iridescence is sex-linked: the males display it as an important mating cue [69]. The

UV-iridescent portions are hidden when the butterflies are in resting position, becoming visi-

ble during flight and when the butterfly is displaying. The avian false color depiction is based

on the coordinates of the receptor noise-limited (RNL) opponent space. Coordinates in this

space represent differences in an animal’s photoreceptor responses, and the distances between

the coordinates approximate the perceptual distances between the colors; for full details see

Method A in S1 Text. In this depiction, the UV-iridescent portions appear purple, because

they most strongly reflect in the ultraviolet and the red part of the spectrum. The ventral part

of the wings appears gray-brown, just like the leaves, indicating its color is closer to the achro-

matic point.

(MP4)

S2 Video. Museum specimen of a Phoebis philea butterfly in avian RNL false colors.

Another potentially useful application of the system is the fast digitization of museum speci-

mens. This butterfly possesses both pigmentary and structural UV coloration. Bright magenta

colors highlight the predominantly UV-reflective areas, while the areas appearing purple

reflect similar amounts of UV and long wavelength light. The specimen is mounted on a stand

and slowly rotated, showcasing how the iridescent colors change depending on viewing angle.

(MP4)

S3 Video. Museum specimen of an Anteos sp. butterfly in avian RNL false colors. This but-

terfly displays angle-dependent UV iridescence on its wings, which appears as purple in this

video. The specimen is mounted on a stand and slowly rotated, showcasing how the iridescent

colors change depending on viewing angle. Quantifying iridescence in museum specimens is

another potentially useful application of the system.

(MP4)

S4 Video. Iridescent peacock feather through the eyes of 4 different animals. The camera

system can measure angle-dependent structural colors such as iridescence. This is illustrated

here through a video of a highly iridescent peacock (Pavo cristatus) feather. The colors in this

video represent (A) peafowl Pavo cristatus false color, where blue, green, and red quantum

catches are depicted as blue, green, and red, respectively, and the UV is overlaid as magenta.

Although broadly similar to a standard color video, the UV-iridescence (annotated in the

video at approximately 5 s) can be seen on the blue-green barbs of the ocellus (“eyespot”). Fur-

ther UV iridescence can be seen along the perimeter of the ocellus (between the outer 2 green

stripes). Interestingly, the iridescence is more notable to the peafowl than to (B) humans (stan-

dard colors), (C) honeybees, or (D) dogs. For a description of bee false colors, please see S7

Fig. False colors for dichromatic dogs were defined so that the blue and green channels corre-

spond to the responses of the blue and green receptors, and the red channel to the average of

the 2 receptors. In this way, the colors shift from purple to yellowish green, with an achromatic

middle point where both receptors are equally excited. To demonstrate the visualization

options, we also encoded the peacock feather in the RNL opponent space (starting at 19 s).

(MP4)

S5 Video. A butterfly in Apis vision. We illustrate a zebra swallowtail butterfly Protographium
marcellus foraging on flowers. We depict this imagery in honeybee false colors where UV,

blue, and green quantum catches are shown as blue, green, and red, respectively. Assessing the
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conspicuousness of this butterfly against a background of many small inflorescences would be

challenging using spectroscopy. Also, note how scarce UV information is in such an average

natural scene.

(MP4)

S6 Video. A caterpillar’s anti-predator display in Apis vision. Conceal and reveal displays

can pose a problem for spectroscopy and standard multispectral photography. Here, we show

a video of a black swallowtail Papilio polyxenes caterpillar displaying its osmeteria. We illus-

trate this video in honeybee false colors such that UV, blue, and green quantum catches are

shown as blue, green, and red, respectively. The (human) yellow osmeteria as well as the yellow

spots along the caterpillar’s back both reflect strongly in the UV and appear magenta when the

colors are shifted into honeybee false colors (as the strong responses on the honeybee’s UV-

sensitive and green-sensitive photoreceptors are depicted as blue and red, respectively). Many

predators of caterpillars perceive UV, and accordingly, this coloration might be an effective

aposematic signal.

(MP4)

S7 Video. A rainbow through the eyes of 4 different animals. Certain scenes would be chal-

lenging to measure using traditional methods and would appear entirely distinct to different

animal viewers. As an illustration of this point, we show the same rainbow in (A) mouse, (B)

honeybee, and (C) avian false colors, alongside a (D) video with standard colors (i.e., human

colors). Specifically, for the (A) dichromatic mouse, we illustrate the UV and green-sensitive

photoreceptors responses in blue and green, respectively. The red channel is given the average

value of the UV and green quantum catches. When depicted in this way the mouse-view video

shows the uppermost “green” band as broad and not clearly differentiated from the green

background, while the lower, and very broad, UV band (depicted as blue) is visible. We illus-

trate the (B) honeybee’s UV, blue, and green photoreceptor responses in blue, green, and red,

respectively. Using these honeybee false colors, the rainbow seems similar to the typical (D)

human perceived rainbow but appears lower on the screen as their 3 photoreceptors are sensi-

tive to lower wavelengths than ours. Finally, for the (C) tetrachromatic bird we illustrate their

UV, blue, green, and red photoreceptor responses as magenta, blue, green, and red, respec-

tively. Here, the UV information is overlaid on the human-visible range. The avian-view video

is similar to the (D) standard human-view video, except the UV (depicted as magenta) appears

below the blue band. Thus, their rainbow has more colors and extends lower on the frame

than the (D) human-view rainbow. These “additional” UV color bands are visible in the lower

portions of the screen for (A–C) animal-view videos, but not for the video depiction colors as

they appear to the (D) typical human viewer.

(MP4)

S8 Video. Application of sunscreen in Apis vision. Multispectral photography has many

potential applications including examining topical effects, for example, tracking UV-absorbing

urine tracks or evaluating cosmetics. Here, we show the application of UV-blocking sunscreen

in honeybee false colors. As in other depictions, we show the honeybee’s UV, blue, and green

photoreceptor responses as blue, green, and red, respectively. Note that the light toned skin

(DH) appears similar in honeybee false colors as in human vision, because skin reflectance

increases progressively at longer wavelengths. The sunscreen appears white to our eye because

it reflects broadly over the human visible range, but it appears yellow in honeybee false colors

because it absorbs UV light. Specifically, the honeybee’s UV photoreceptor (shown as blue)

receives little light from the areas where the sunscreen has been applied, while their blue and

green sensitive photoreceptors (shown as green and red, respectively) continue to capture
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abundant light. In honeybee false colors, this results in lower blue and higher green and red

pixel values, which produces the yellow coloration.

(MP4)

S9 Video. Close-up video of a leaf-footed bug egg in Apis vision. We illustrate a video depict-

ing 2 eastern leaf-footed bug (Leptoglossus phyllopus) eggs. These eggs are approximately 2

mm in diameter and were on the base of a small leaf, which is shown blowing in the wind in

honeybee false color (photoreceptors sensitive to UV, blue, and green light are shown as blue,

green, and red, respectively). This demonstrates the capability of the system to image small

items close up.

(MP4)

S10 Video. A jumping spider in Apis vision. Here, we merge 2 videos of small (unidentified)

jumping spiders in honeybee false colors (displaying the honeybee’s UV, blue, and green pho-

toreceptor responses as blue, green, and red, respectively). These videos illustrate the ability of

the camera to focus on small objects; however, the first video highlights the limitations of

using manual focus at these close focal distances on fast-moving subjects. In that clip, the spi-

der is only in good focus in some frames and the video was not perfectly aligned. Experimental

designs with small, fast-moving organisms like these spiders could mount the camera such

that it focuses on a display site. We illustrate that in the second video, which begins at approxi-

mately 1 min 11 s.

(MP4)

S11 Video. A northern mockingbird (Mimus polyglottos) in avian vision. Here, we illustrate

2 northern mockingbirds interacting in a tree, in avian false colors. Specifically, we show blue,

green, and red quantum catches as blue, green, and red, respectively, and UV quantum catches

are overlaid as magenta. While the 80 mm lens is not designed for imaging distant subjects,

the system captures avian-view imagery well and shows the “avian white” (reflective from the

UV through the visible portions of the spectrum) patches of their feathers. It also illustrates

that the sky as predominantly UV-colored (i.e., appearing magenta), due to shorter wave-

lengths being subjected to increased Rayleigh scattering. Thus, while the sky may appear blue

to our eyes, it would appear UV-blue to many other organisms.

(MP4)

S12 Video. Bees foraging and interacting on flowers in Apis vision. The camera system is

capable to capture naturally occurring behaviors in their original context. This is illustrated

with 3 short clips that depict bees foraging (first and second clips) and fighting (third clip) in

their natural environment. The videos are shown in honeybee false colors (displaying the hon-

eybee’s UV, blue, and green photoreceptor responses as blue, green, and red, respectively).

(MP4)

S1 Table. Error estimations for videos of known standards, taken under full sunlight and

normalized to Spectralon standards. Here, we describe how well our estimated animal quan-

tum catches fit to expected animal quantum catches for the honeybee (Apis sp.) and the aver-

age UVS avian receiver (avian). To more fully assess accuracy, we present mean absolute

prediction error (MAPE), root mean squared prediction error (RMSPE) as well as the linear

association between camera-predicted and spectrometry-predicted quantum catch (R2), and

the range of the inner 75% of errors (i.e., excluding the 25% largest absolute errors; 75% error

band).

(DOCX)
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S2 Table. Error estimations for images of known standards, taken under full sunlight and

normalized to Spectralon standards. Here, we describe how well our predicted animal quan-

tum catches fit to expected animal quantum catches for the honeybee (Apis sp.) and the aver-

age UVS avian receiver (avian). To more fully assess accuracy, we present mean absolute

prediction error (MAPE), root mean squared prediction error (RMSPE) as well as the linear

association between camera-predicted and spectrometry-predicted quantum catch (R2), and

the range of the inner 75% of errors (i.e., excluding the 25% largest absolute errors; 75% error

band).

(DOCX)

S3 Table. Error estimations for images of known standards, taken under full sunlight and

normalized to ARUCO standards. Here, we describe how well our estimated animal quantum

catches fit to expected animal quantum catches for the honeybee (Apis sp.) and the average

UVS avian receiver (avian). To more fully assess accuracy, we present mean absolute prediction

error (MAPE), root mean squared prediction error (RMSPE) as well as the linear association

between camera-predicted and spectrometry-predicted quantum catch (R2), and the range of

the inner 75% of errors (i.e., excluding the 25% largest absolute errors; 75% error band).

(DOCX)

S4 Table. Error estimations for images of known standards, taken under lab light and nor-

malized to Spectralon standards. Here, we describe how well our estimated animal quantum

catches fit to expected animal quantum catches for the honeybee (Apis sp.) and the average

UVS avian receiver (avian). To more fully assess accuracy, we present mean absolute predic-

tion error (MAPE), root mean squared prediction error (RMSPE) as well as the linear associa-

tion between camera-predicted and spectrometry-predicted quantum catch (R2), and the

range of the inner 75% of errors (i.e., excluding the 25% largest absolute errors; 75% error

band).

(DOCX)

S5 Table. Error estimations for images of known standards, taken under lab light and nor-

malized to ARUCO standards. Here, we describe how well our estimated animal quantum

catches fit to expected animal quantum catches for the honeybee (Apis sp.) and the average

UVS avian receiver (avian). To more fully assess accuracy, we present mean absolute predic-

tion error (MAPE), root mean squared prediction error (RMSPE) as well as the linear associa-

tion between camera-predicted and spectrometry-predicted quantum catch (R2), and the

range of the inner 75% of errors (i.e., excluding the 25% largest absolute errors; 75% error

band).

(DOCX)

S6 Table. Error estimations for videos of known standards, taken outdoors in shade and

normalized to ARUCO standards. Here, we describe how well our estimated animal quan-

tum catches fit to expected animal quantum catches for the honeybee (Apis sp.) and the aver-

age UVS avian receiver (avian). To more fully assess accuracy, we present mean absolute

prediction error (MAPE), root mean squared prediction error (RMSPE) as well as the linear

association between camera-predicted and spectrometry-predicted quantum catch (R2), and

the range of the inner 75% of errors (i.e., excluding the 25% largest absolute errors; 75% error

band).

(DOCX)

S7 Table. Error estimations for a set of example animals. Here, we describe how well our

estimated animal quantum catches fit to expected animal quantum catches for a small set of
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example animals. The measurements were taken from videos of known standards, recorded in

full sunlight and normalized to ARUCO standards. We present the linear association between

camera-predicted and spectrometry-predicted quantum catch (R2).

(DOCX)

S8 Table. Custom color cards. Here, we provide information on the 2 custom color cards that

we used in this study. The first was the custom color card with ARUCO markers (S17 Fig),

which includes 20 pastels and 8 grayscale patches (see Materials and methods for details). The

second was a small color card, visible in a few shots (e.g., S22 Fig). We prefix each color target

with a number corresponding with its position on the card (see S17 and S22 Figs) and its posi-

tion within the reflectance spectra dataset.

(DOCX)

S9 Table. The sensor conversion errors for a set of example species. The table contains the

R2 values of the fit between the photoreceptor quantum catches calculated directly from reflec-

tances vs. estimated from camera catches with the transformation matrix. The fit was evaluated

on a reserved testing library of 250 spectra from FReD [59]. The coefficient of determination

exceeds 0.958 on all bands, for all animals.

(DOCX)

S10 Table. The sensor conversion errors for the Apis mellifera receptors. The table contains

the R2 values of the fit between the photoreceptor quantum catches calculated directly from

reflectances vs. estimated from camera catches with the transformation matrix. The fit was

evaluated on a reserved testing library of 250 spectra from FReD [59], for the illuminations

shown on S16 Fig. When making predictions for ideal illumination, the coefficient of determi-

nation of the Apis photoreceptors exceeds 0.958 on all bands. The performance is similar for

various target illuminations.

(DOCX)

S11 Table. The sensor conversion errors for the avian sp. receptors. The table contains the

R2 values of the fit between the photoreceptor quantum catches calculated directly from reflec-

tances vs. estimated from camera catches with the transformation matrix. The fit was evaluated

on a reserved testing library of 250 spectra from FReD [59], for the illuminations shown on

S16 Fig. When making predictions for ideal illumination, the coefficient of determination of

the avian photoreceptors exceeds 0.972 on all bands. The performance is worse for the UV

receptor when using nonideal illumination, with the lab illumination having the highest error.

(DOCX)

S12 Table. The sensor conversion errors for the Apis mellifera receptors when evaluated on

the USGS library. The table contains the R2 values of the fit between the photoreceptor quan-

tum catches calculated directly from reflectances vs. estimated from camera catches with the

transformation matrix. The fit was evaluated on reflectances downloaded from the USGS

Spectral Library [61], for the illuminations shown on S16 Fig. When testing using the USGS

database, the coefficient of determination of the Apis photoreceptors exceeds 0.99 on all bands,

irrespective of the target illumination.

(DOCX)

S13 Table. The sensor conversion errors for the avian receptors when evaluated on the

USGS library. The table contains the R2 values of the fit between the photoreceptor quantum

catches calculated directly from reflectances vs. estimated from camera catches with the trans-

formation matrix. The fit was evaluated on reflectances downloaded from the USGS Spectral

Library [61], for the illuminations shown on S16 Fig. When testing using the USGS database,
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the coefficient of determination of the avian photoreceptors exceeds 0.997 on all bands, irre-

spective of the target illumination.

(DOCX)

S14 Table. Natural objects tested. Here, we provide information on the natural objects we

used in this study, indicating the region and how that region was coded on spectral reflectance

measurements.

(DOCX)

S15 Table. Error estimations for prediction for images of natural objects, taken under full

sunlight and normalized to ARUCO standards. Here, we describe how well our estimated

animal quantum catches fit to spectrometry-predicted animal quantum catches for the honey-

bee (Apis sp.) and the average UVS avian receiver (avian). To more fully assess accuracy, we

present mean absolute prediction error (MAPE), root mean squared prediction error

(RMSPE) as well as the linear association between camera-predicted and spectrometer-pre-

dicted quantum catch (R2), and the range of the inner 75% of errors (i.e., excluding the 25%

largest absolute errors; 75% error band).

(DOCX)

S16 Table. RAW to JPG conversion error. The mean absolute error associated with the

reconstruction of the RAW values using Sony’s formula (JPG Conversion MAE) and the mean

absolute error associated with the losses due to quantization and the lossy compression of the

JPG algorithm.

(DOCX)

S1 Fig. Evaluating the fit for videos of known standards. In this case, the videos were taken

under full sunlight and normalized to a set of Spectralon standards. The plots show the animal

quantum catch predicted from reflectance (Spectrometer-predicted AC) against our camera-

predicted animal quantum catch (Camera-predicted AC). We plot the fit for known color

standards (our custom ARUCO standard, another set of pastels and a DKK Color Calibration

Chart), and for both the honeybee (Apis sp., top) and the average ultraviolet sensitive avian

receiver (Avian sp., bottom), for each of their 3 and 4 photoreceptors, respectively. The marker

colors indicate the human-perceived color of the sample. For data on fit, please see S1 Table.

The data underlying this figure can be found in S1 Data.

(TIF)

S2 Fig. Evaluating the fit for images of known standards. In this case, the images were taken

under full sunlight and normalized to a set of Spectralon standards. The plots show the animal

quantum catch predicted from reflectance (Spectrometer-predicted AC) against our camera-

predicted animal quantum catch (Camera-predicted AC). We plot the fit for known color

standards (our custom ARUCO standard, another set of pastels and a DKK Color Calibration

Chart), and for both the honeybee (Apis sp., top) and the average ultraviolet sensitive avian

receiver (Avian sp., bottom), for each of their 3 and 4 photoreceptors, respectively. The marker

colors indicate the human-perceived color of the sample. For data on fit, please see S2 Table.

The data underlying this figure can be found in S1 Data.

(TIF)

S3 Fig. Evaluating the fit for images of known standards when normalizing to the custom

grayscale. In this case, the images were taken under full sunlight and normalized to a set of

ARUCO standards. The plots show the animal quantum catch predicted from reflectance

(Spectrometer-predicted AC) against our camera-predicted animal quantum catch (Camera-

predicted AC). We plot the fit for known color standards (our custom ARUCO standard,
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another set of pastels and a DKK Color Calibration Chart), and for both the honeybee (Apis
sp., top) and the average ultraviolet sensitive avian receiver (Avian sp., bottom), for each of

their 3 and 4 photoreceptors, respectively. The marker colors indicate the human-perceived

color of the sample. For data on fit, please see S3 Table. The data underlying this figure can be

found in S1 Data.

(TIF)

S4 Fig. Evaluating the fit for images of known standards under lab light. In this case, the

images were taken under lab light and normalized to a set of Spectralon standards. The plots

show the animal quantum catch predicted from reflectance (Spectrometer-predicted AC)

against our camera-predicted animal quantum catch (Camera-predicted AC). We plot the fit

for known color standards (our custom ARUCO standard, another set of pastels and a DKK

Color Calibration Chart), and for both the honeybee (Apis sp., top) and the average ultraviolet

sensitive avian receiver (Avian sp., bottom), for each of their 3 and 4 photoreceptors, respec-

tively. The marker colors indicate the human-perceived color of the sample. For data on fit,

please see S4 Table. The data underlying this figure can be found in S1 Data.

(TIF)

S5 Fig. Evaluating the fit for images of known standards under lab light when normalizing

to a custom grayscale. In this case, the images were taken under lab light and normalized to a

set of ARUCO standards. The plots show the animal quantum catch predicted from reflectance

(Spectrometer-predicted AC) against our camera-predicted animal quantum catch (Camera-

predicted AC). We plot the fit for known color standards (our custom ARUCO standard,

another set of pastels and a DKK Color Calibration Chart), and for both the honeybee (Apis
sp., top) and the average ultraviolet sensitive avian receiver (Avian sp., bottom), for each of

their 3 and 4 photoreceptors, respectively. The marker colors indicate the human-perceived

color of the sample. For data on fit, please see S5 Table. The data underlying this figure can be

found in S1 Data.

(TIF)

S6 Fig. Evaluating the fit for videos of known standards, recorded in shade. In this case, the

videos were taken in shade outdoors and normalized to a set of ARUCO standards. The plots

show the animal quantum catch predicted from reflectance (Spectrometer-predicted AC)

against our camera-predicted animal quantum catch (Camera-predicted AC). We plot the fit

for known color standards (our custom ARUCO standard, another set of pastels and a DKK

Color Calibration Chart), and for both the honeybee (Apis sp., top) and the average ultraviolet

sensitive avian receiver (Avian sp., bottom), for each of their 3 and 4 photoreceptors, respec-

tively. The marker colors indicate the human-perceived color of the sample. For data on fit,

please see S6 Table. The data underlying this figure can be found in S1 Data.

(TIF)

S7 Fig. Example false color image. A black-eyed Susan (Rudbeckia hirta) depicted as a honey-

bee (Apis mellifera) false color image and the same flower in a human-vision. In honeybee

false color images, the blue, green, and red channels represent quantum catches of their UV-,

blue-, and green-sensitive photoreceptors, respectively. We provide a visual key (bottom left

corner) illustrating each of the bee’s 3 photoreceptors (vertices) and the colors used to repre-

sent the variable stimulation of these 3 photoreceptors (interior colors). This flower has a nec-

tar guide that aids recruitment [43]. To our eye, the black-eyed Susan appears entirely yellow

because it reflects primarily long-wavelength light in the human-visible range. Whereas in the

bee false color image, the distal petals appear magenta because they reflect UV in addition to

long-wavelength light, stimulating both the photoreceptors sensitive to UV (depicted as blue)
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and those sensitive to green light (depicted as red). By contrast, the central portion of the petals

does not reflect UV and therefore appears red. We applied a gamma correction to the honey-

bee false color and linear (human) image for display purposes (AC0.3 and CC0.5). These are the

same images as shown in Fig 1.

(TIF)

S8 Fig. Modular 3D printed housing. (A) Schematic showing the assembled cage, with mount-

ing points for the (i) visible light Sony camera, the (ii) full-spectrum modified camera. The com-

plete set of parts are as follows: (B) Side 2, (C) Side 1, (D) Base, (E) Bellows Cube Face, (F) Rear

Camera Face, (G) Top Camera Face, (H) Mirror Latch, (I) Mirror Mount, (J) Internal Bracket,

(K) Internal Bracket (mirrored), (L) UV Bandpass Filter Holder, (M) Internal Shroud, (N)

Camera Base Connector, (O) UV Bandpass Cone, (P) Visible Cone Baffle, and 3 options for Bel-

lows Lens Mounts, for mounting (Q) 80 mm f5.6, (R) 135mm f5.6, or (S) 210 mm f5.6 Nikon

EL-Nikkor Enlarging lenses. We printed the parts using a Prusa i3 MKS+ 3D printer, with and

without the MMU2s+, from black PLA and PETG filament (Hatchbox) with 0.15 mm QUAL-

ITY presets in PrusaSlicer. Higher quality prints are recommended for regular field use. The

STL files of all the parts required to print a system, along with a complete bill of materials and

detailed instructions for printing and assembly, are freely available from the Gitlab Repository

https://gitlab.com/multispectrum-beamsplitter. We have also included a set of 3MF files that

can be opened with the free PrusaSlicer software. These files illustrate the recommended print

orientation of each file and highlight the few parts that require supports. Future updates will be

provided via the repository as the design continues to evolve and improve.

(TIF)

S9 Fig. Modular 3D printed bellows. We recommend using commercially available bellows

such as the Novoflex BALLPRO due to their robustness, but provide plans for a DIY option as

an alternative. (A) Schematic showing the assembled DIY sliding bellow system, attached to

the housing, with a (i) lens and bag bellows attachment plate, (ii) rail to allow for focusing, and

a (iii) spacer. The complete sets of parts are as follows: (B) Base Extension, (C) Rail, (D) Rail

End Stop, (E) Cube Face, (F) Bag Bellows Cube Mount, (G) Bag Bellows Lens Mount, (H) Slid-

ing Plate. In addition, the DIY bellows require semi stiff fabric that is light tight (e.g., faux

black leather). The fabric was cut using a laser and then assembled with contact cement. We

printed the parts using a Prusa i3 MKS+ 3D printer, with and without the MMU2s+, from

black PLA (Hatchbox) with 0.15 mm QUALITY presets in PrusaSlicer. The files and informa-

tion to print the system is available from the Gitlab Repository https://gitlab.com/

multispectrum-beamsplitter.

(TIF)

S10 Fig. Capturing polarized light. Fluctuations in the pixel values from the UV (A) and the

visible camera (B) as a function of the polarization plane of the illuminating light. Photos were

taken of the exit port of an integrating sphere (StellarNet IC2), illuminated with broadband

light (full-spectrum xenon bulb, Thorlabs, SLS 202 through 1,000 μm fiber optics, Edmund

Optics, 58–458), through a polarization filter positioned at varying rotational angles. Example

photos are shown in the insets. UV light with a polarization plane of 90˚, i.e., horizontally

polarized, is less likely to be reflected by the beam splitter than vertically polarized UV light,

and up to 0.6% of horizontally polarized light may be blocked in the UV channel. On the other

hand, visible light with a polarization plane of 0˚, i.e., vertically polarized light, is less likely to

be transmitted by the beam splitter than horizontally polarized visible light, and up to 2.4, 0.8,

and 1.0% of the polarized light may be blocked in the blue, green, and red channels. The effect

is too small (approximately 1 to 2 pixel value) to interfere with the intended use of the camera;
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however, care must be taken if the system is adapted for recording polarized light. The data

underlying this figure can be found in S1 Data.

(TIF)

S11 Fig. Illumination used for estimating sensor sensitivities. We used a xenon light source

(SLS 205, Thorlabs) connected to a monochromator (Optimetrics, DMC1-03) to deliver nar-

row bands of light (colored bands, mean FWHM ± s.e. = 7.3 ± 0.29 nm) from 280 nm to 800

nm. The total power used for estimation (solid black line) was the sum photon flux (μmol s−1

m−2). To depict summed data (solid black line) and individual spectra (colorful) plots on the

same display, individual spectra were multiplied by 6.5. Second order scatter is visible from

approximately 300 nm to 350 nm as smaller orange to red peaks when illuminated with light

from 600 nm to 700 nm. These were removed (see Materials and methods) and we replicated

these camera spectral sensitivity measurements using another approach that omitted second

order scatter using longpass filters (for more details, see Method A in S1 Text). The data

underlying this figure can be found in S1 Data.

(TIF)

S12 Fig. Comparison of camera sensor sensitivity measurements using 2 methods over 2

ranges. Relative camera sensor sensitivity for the ultraviolet (purple lines), blue (blue lines),

green (green lines), and red (red lines) sensors, measured from 300 nm to 1,100 nm (solid) or

300 nm to 700 nm (dashed). Using longpass filters, we excluded second order scatter over the

extended range (for details, see Method A in S1 Text) and confirmed these effects did not

impact our readings over the reduced range (see Materials and methods). To ensure the data

were comparable, we relativized both curves over the 300 nm to 700 nm range. For the

extended range (solid) sensitivities above 700 nm were negligible for the ultraviolet, blue,

green, and red sensors. The data underlying this figure can be found in S1 Data.

(TIF)

S13 Fig. The infrared sensitivity of the camera. We photographed a set of 8 Spectralon stan-

dards under direct sunlight with abundant IR light (the total irradiance measured in μWatt/

cm2 in the infrared, 700 nm to 1,100 nm, spectrum was 5 to 6 times higher than in the ultravio-

let, 300 nm to 400 nm, spectrum). We set both cameras at the same shutter speeds (1/4,000)

and sequentially increased this a stop for each camera up to shutter speeds of 30 s. Photos were

taken under 3 conditions: as normal (“open” condition), with the camera cap on to quantify

dark noise (“capped” condition), while in the third, “filter” condition we placed a set of 2 long-

pass filters directly in front of the lens (MidOpt LP715-25 and a Semrock BLP01-532R-25) that

collectively blocked all light other than near infrared. (A) Representative photos at 4 exposure

speeds show that both the UV and the visible camera are capable of registering infrared light.

(B) The pixel values of the white Spectralon standard (99% reflective up to 2,300 nm) show

that the intended UV and VIS image saturate before the IR signal becomes detectable. At the

shutter speeds required for UV photography (indicated by arrows) the infrared contamination

is statistically indistinguishable from dark noise (comparison of pixel values from the “capped”

condition vs. from the “filter” condition by a Z-test: UV: p = 0.743; blue: p = 0.960; green:

p = 0.841; red: p = 0.985). The data underlying this figure can be found in S1 Data.

(TIF)

S14 Fig. Custom color standard. We used a custom color card (A) that featured 4 ARUCO

fiducial markers and 28 distinct colors. The color patches were made from pastels (positions

0–5 and 14–27) or a mixture of barium sulfate (white) and flat black (Black 3.0) paints (posi-

tions 6–13) that are isoluminant across the 300 nm to 700 nm wavelength range (B). The use

of the custom color standard enables fast, highly accurate, automated methods for calibration,
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normalization, and transformation. For details on how to construct these cards, see S8 Table.

The data underlying this figure can be found in S1 Data.

(TIF)

S15 Fig. The accuracy of the linearization and normalization steps. The linearization is

highly accurate, regardless of whether the grayscale standards are Spectralon standards or the

Barium-sulfate mixes on our ARUCO custom color card, and whether the exact Sony formula

or an approximate power transform is used. The data underlying this figure can be found in S1

Data.

(TIF)

S16 Fig. The example illumination functions used in the study. “Ideal” refers to the isolumi-

nant illumination, “sunlight” to the standard d65 illumination, “forest” was taken from the

PAVO package, and “lab” is the metal halide lamp in our lab. The data underlying this figure

can be found S1 Data.

(TIF)

S17 Fig. The photoreceptor sensitivities of the 2 example animals, the Western honeybee

Apis mellifera [57,58] and the average UV-sensitive bird [45,58]. The photoreceptors have

peak sensitivities in the ultraviolet (dotted black line), blue (dashed blue line), green (green

line), and red (dot-dashed red line) parts of the spectrum. The data underlying this figure can

be found in S1 Data.

(TIF)

S18 Fig. The accuracy of the transformation step in the training library. The figure shows

the relationship between the photoreceptor quantum catches calculated directly from reflec-

tances (AC from reflectance) vs. estimated from camera catches with the transformation

matrix (AC from camera catch). In this paper, we used 2,494 spectra from the FReD database

[59] to derive a transformation matrix, T that converts linear camera catches to animal catches.

Here, we illustrate the fit for those relationships. R2 values for the full library are shown (rather

than the testing library used to test accuracy). The data underlying this figure can be found in

S1 Data.

(TIF)

S19 Fig. The sensor conversion error associated with the transformation matrix. The figure

shows the R2 values of the fit between the photoreceptor quantum catches calculated directly

from reflectances vs. estimated from camera catches with the transformation matrix. The fit

was evaluated using a set of reflectances reserved for testing from the FReD (solid lines) and

on the USGS Spectral Library (dashed lines), for a synthetically generated library of photore-

ceptors with peak sensitivities between 300 nm and 700 nm, based on the A1 (A) and A2 tem-

plates (B) from [60]. The performance is reliably R2 > 0.90 (blue dotted line), in most cases

exceeding 0.99, for all wavelengths between 343 nm and 700 nm. The system only becomes

inaccurate at the extreme end of the ultraviolet, past 340 nm, for which the ultraviolet camera

has little sensitivity. This suggests that any organism with peak photoreceptor sensitivities fall-

ing in this range (the “effective range” of the camera) should produce accurate results. Note

however that the A1 and A2 templates used above are approximations, and the precise fit for a

particular organism will depend on the exact shape of its photoreceptors’ sensitivities. For

example, the sensitivity of the honeybee’s UV receptor is narrower and less sensitive to far-UV

than the template, and so its fit is better than predicted here (R2 = 0.958 when testing on

FReD, R2 = 0.991when testing on USGS, see Tables S10 and S12). The data underlying this
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figure can be found in S1 Data.

(TIF)

S20 Fig. The sensor conversion error associated with the transformation matrix, under

various viewing illuminations. The figure shows the R2 values of the fit between the photore-

ceptor quantum catches calculated directly from reflectances vs. estimated from camera

catches with the transformation matrix. The fit was evaluated using a set of reflectances

reserved for testing from the FReD, for a synthetically generated library of photoreceptors with

peak sensitivities between 300 nm and 700 nm, based on the A1 (A) and A2 templates (B)

from [60], for 4 viewing illuminations: ideal (black solid line), direct sunlight (yellowish green

dashed line), forest shade (green dotted line), and the metal halide lamp in the lab (blue dot-

dashed line). The performance between 343 nm to 700 nm is reliably R2 > 0.90 (blue dotted

line), in most cases exceeding 0.99, for all cases tested, indicating that the method is not sensi-

tive to the viewing illumination. The data underlying this figure can be found in S1 Data.

(TIF)

S21 Fig. The sensor conversion error for narrowband spectra. The absolute error of the

transformation is shown as function of the peak reflectance (x axis) and the receptor’s peak

sensitivity (y axis), for reflectance spectra with 3 different values of full-width-at-half-maxi-

mum (FWHM). In this analysis, we used simulated reflectance spectra, assumed to follow a

Gaussian distribution, and the standard photoreceptor template from [60]. The performance

remains reasonable (<0.017 absolute error) even for hypothetical materials with reflectance

spectra that have a full-width-at-half-maximum of 10 nm. Minor errors appear when estimat-

ing the response of a short wavelength sensitive receptor (peak sensitivity <400 nm) to very

narrow emissions in the far-UV (<340 nm) and around approximately 390 nm where the

camera has a sensitivity gap. The data underlying this figure can be found in S1 Data.

(TIF)

S22 Fig. Examples of honeybee false color images. Here, we illustrate a (A, B) summer snow-

flake Leucojum aestivum, (C, D) blue phlox Phlox divaricata, and a (D, E) blue violet Viola sor-
oria in honeybee false color (left) and human-visible colors (right). We also show a simple,

cheap, pastel-based color standard that we used to validate animal-perceived quantum catches

(A, B). We applied a gamma correction to the images (ACi
0.3 and CCi

0.5, respectively).

(TIF)

S23 Fig. Evaluating the fit for images of natural objects. In this case, the images were taken

under full sunlight and normalized to a set of ARUCO standards. The plots show the animal

quantum catch predicted from reflectance (Spectrometer-predicted AC) against our camera-

predicted animal quantum catch (Camera-predicted AC). We plot the fit for a collection of

flowers (diamonds), leaves (triangles), birds’ eggs (squares), and birds’ feathers (circles); see

S14 Table for sample details. The fit is shown for both the honeybee (Apis sp., top) and the

average ultraviolet-sensitive avian receiver (Avian sp., bottom), for each of their 3 and 4 photo-

receptors, respectively. The linear relationship between the 2 estimates was weaker for natural

objects than for color standards. The mismatch represents a meaningful variation: the per-

ceived color of natural objects is altered by their shape, fine patterning, texture, and physical

color. The marker colors indicate the human-perceived color of the sample. For data on fit,

please see S15 Table. The data underlying this figure can be found in S1 Data.

(TIF)

S24 Fig. Example images of natural objects. A display illustrating a subset of natural objects

we used for assessing the accuracy of our system (S23 Fig and S14 and S15 Tables). We show
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(A) a white oak Quercus alba leaf, (B) a European starling Sturnus vulgaris specimen, (C) gray

catbird Dumetella carolinensis egg, and (D) a bouquet of flowers. The correlation between

spectrometry-predicted and camera-predicted animal catches is weaker for natural objects

than for pastels (S23 Fig and S15 Table). The samples above illustrate the fact that the shape of

stimuli, such as (A) leaves, (C) eggs, interacts with the direction of illuminating light and there-

fore impacts the appearance of surface colors. In some cases, such as (B) feather iridescence

certain colors may (correctly) appear on an image but not on diffuse reflectance measure-

ments. Finally, many objects such as flowers on (D) occlude and shade themselves and other

plants. In all of these situations multispectral photography most likely provides a closer

approximation to the quantum catches of free-living organisms than spectroscopy.

(TIF)

S25 Fig. Example animal-view videos capturing colors otherwise hard to measure. Our

camera system provides a method that will allow researchers to accurately capture scenes in

relative quantum catches units, in scenarios that would be challenging for other methods. For

example, we illustrate a (A) zebra swallowtail butterfly Protographium marcellus moving

between flowers, where assessing the color contrast between the butterfly and the background

of flowers and leaves would be challenging to measure using spectroscopy. We show a (B)

black swallowtail Papilio polyxenes caterpillar revealing its otherwise concealed osmeteria. This

brief display would be impossible to measure using spectroscopy or traditional multispectral

photography. We also illustrate a (C) rainbow, as an example of an optical effect that would be

hard to accurately capture with any other method. Finally, we illustrate the (D) application of

UV-blocking sunscreen, which would be measurable using other methods but not as a contin-

uous movement. All frames are plotted in honeybee false color, where bee perceived colors are

shifted into the human-visible space (i.e., UV, blue, and green quantum catch images are

depicted as blue, green, and red in the false color image). The videos are available as S5–S8

Videos.

(TIF)

S26 Fig. The correspondence between human (top row) and RNL false colors (bottom) for

a set of example colors. Left to right: ultraviolet, ultraviolet-blue, blue, blue-green, green, dark

yellow, red, and gray.

(TIF)

S1 Text. Supplementary methods. Extended information regarding the RNL color space

(Method A), Spectroscopy (Method B), our approaches for image and video alignment

(Method C), detailed information about SONY’s S-Log3 format (Method D), and tests of our

system’s performance on narrowband reflectance (Method E).

(DOCX)

S1 Data. Supporting Data. Numerical data underlying the plots in Figs 3, 5, 6, S1–S6, S10–

S21, and S23.

(ZIP)
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