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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Power analysis currently dominates sample size determination for experiments, particularly

in grant and ethics applications. Yet, this focus could paradoxically result in suboptimal

study design because publication biases towards studies with the largest effects can lead to

the overestimation of effect sizes. In this Essay, we propose a paradigm shift towards better

study designs that focus less on statistical power. We also advocate for (pre)registration

and obligatory reporting of all results (regardless of statistical significance), better facilitation

of team science and multi-institutional collaboration that incorporates heterogenization, and

the use of prospective and living meta-analyses to generate generalizable results. Such

changes could make science more effective and, potentially, more equitable, helping to cul-

tivate better collaborations.

Introduction

Given how much scientific progress has been made and how it is accelerating, it feels paradoxi-

cal to discover that >80% of research is potentially “wasted.” Two independent estimates from

the fields of medicine and ecology confirm that this is the case [1,2]. The 2 primary sources of

such waste are suboptimal study design and selective publication and reporting (the latter we

refer to collectively as publication bias) [1–3]. Null hypothesis significance testing (NHST;

Box 1), or more precisely, the misuse of NHST, may be the main culprit behind the issue of

such publication bias because it makes the continuous nature of evidence artificially binary by

using the threshold of p-values (α = 0.05) [4,5]. NHST facilitates not only selective publication

and reporting but also p-hacking, HARKing (hypothesizing after results are known), and other

types of what are known as “questionable research practices” [6,7]. Such misuses of NHST

have been recently linked to massive failures to replicate published studies in many fields, the

so-called “replication crisis” [8–10]. Indeed, researchers have been criticizing NHST for at

least three-quarters of a century [11–13].

After decades of controversies and criticisms on NHST and p-values, it is somewhat sur-

prising that concepts of statistical power and power analysis still seem to enjoy freedom from
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similar condemnations and disapprovals [14–16]. Power analysis is often used to determine a

sufficient sample size necessary for statistical significance, thus fully endorsing NHST (see

Box 2). Yet, at the same time, power analysis—when used correctly—improves study design by

providing a sample size that gives more precise estimates (e.g., smaller standard error) [11,17].

Therefore, 2 powerful gatekeepers of academia, grant agencies, and ethics committees endorse

and (at least indirectly) recommend power analysis for sample size calculations [18]. Their

argument is that it is unethical and a waste of money to conduct underpowered or overpow-

ered studies, leading to the recommendation of the nominal 80% statistical power. This argu-

ment seems undoubtedly true, especially for human trials [19,20]. Of relevance, researchers

are often criticized for a lack of sufficient statistical power (or power analysis), not only in

grant applications but also in scientific manuscripts, despite planning or doing the best they

can within the constraints of time, finance, and other logistics.

Box 1. Glossary

Null hypothesis significance testing (NHST)

In this framework, a null hypothesis is assumed (usually zero effect) for an intervention

or phenomenon. After an experiment or observation, if the inferential statistic obtains a

p-value of less than (or equal to) 0.05, the null hypothesis is rejected and the alternative

hypothesis of nonzero effect is accepted (i.e., statistically significant or positive results).

If a p-value higher than 0.05 is obtained, the null hypothesis is retained (i.e., nonsignifi-

cant or negative results).

p-hacking

The NHST framework incentivizes p-values of less than or equal to 0.05. Therefore, arbi-

trary analytical decisions are often made to reach statistically significant results. For

example, researchers might keep fitting different predictors (independent variables) to

their statistical models until they produce a statistically significant result. p-hacking is

one of the most common questionable research practices.

HARKing

The term represents an abbreviation for hypothesizing after results are known (HARK-

ing). HARKing is a questionable research practice in which researchers generate a

hypothesis to fit their known results so that they get positive results, which are easier to

publish than negative results. A hypothesis should be created a priori.

Linear mixed modeling

It encompasses a group of statistical models with fixed effects and random effects, there-

fore often referred to as mixed-effects models. The model estimates regression coeffi-

cients for fixed effects, while it estimates variance components for random effects. The

term “linear mixed(-effects) models” often indicate models assuming the Gaussian (nor-

mal) error structure but can include models with non-Gaussian errors, such as Poisson

and binomial errors, which are often referred to as generalized linear mixed(-effects)

models (GLMMs).
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In this Essay, we challenge the premise that 80% statistical power is necessary for addressing

many basic research questions (where a realistic study will almost always be underpowered yet

worthwhile to conduct). We discuss how the misuse of power analysis contributes to research

waste and the replication crisis in a nontrivial way and argue that undue focus on statistical

power, similar to that on p-values, could counterintuitively encourage scientists to choose non-

optimal designs rather than improve study design. From the viewpoint of generalizability, we

suggest that a set of several low-powered studies could be better than one high-powered study,

even when the combined sample sizes are comparable in both scenarios [25,26]. Importantly,

we discuss a series of potential alternatives and supplements to power analysis, which research-

ers and gatekeepers can implement. Our proposed paradigm shift can potentially improve sci-

ence and its equity simultaneously by making science more collaborative.

The vicious cycle of publication bias and power analysis

As already mentioned, one of the underlying causes of the replication crisis is publication bias,

which is related to the filtering effect of NHST, causing an exaggeration of scientific evidence

in terms of published effect sizes. Indeed, a series of large replication efforts have repeatedly

shown that replication studies usually obtain much smaller effect sizes (e.g., 50% smaller [27])

Box 2. Power analysis and related concepts

Power analysis involves 4 parameters: statistical power, which is 1 minus a Type II error

rate (1−β), often set to be 0.80; a Type I error rate, also known as significance level, α,

usually fixed at 0.05; sample size, N; and standardized effect size, E½y�=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½y�

p
, where θ

is the effect size of interest and its population average (E[θ]) and variance (Var[θ]). If we

know 3 of these 4, we can calculate the fourth unknown parameter.

Power analysis usually requires some estimates of standardized effect size (note that

standardized mean difference d is an example of standardized effect size [21]). However,

it is often challenging to obtain a good estimate, and published estimates are likely to be

inflated [14,22,23]. It is interesting to note, when E½y�=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½y�

p
is examined, that there

are 2 routes to having a large standardized effect size: either via having a large estimate

of the population effect E[θ] or by having a small estimate of population variance Var[θ].

Indeed, in the vicious cycle of power analysis (see section on “The vicious cycle of publi-

cation bias and power analysis”), both are simultaneously happening, boosting the mag-

nitude of the standardized effect size.

Assuming α = 0.05, (1−β) = 0.8, and the d values are as in the main text (e.g., d = 0.125),

one can use the following formula to approximate the sample size required for 1 group

of 2 independent sample groups [24]:

N ¼ 16
Var½y�
E½y�2

¼ 16
1

d2
:

In S1 Supporting InformationAU : PleasenotethatPLOSdoesnotusethetermSupplementaryMaterials:}Hence; allinstancesof }SupplementaryMaterial}havebeenreplacedwith}SupportingInformation}throughoutthetext:, we provide an R script where we calculate the sample

sizes used in the examples provided. Note that the above formula is incorrect for the

interaction effect (e.g., sex difference in a treatment effect), as it involves 4 groups rather

than 2, so in that scenario, one needs to use 32 instead of 16.
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than the original studies they sought to replicate [28–32]. In addition, recent meta-research

studies have confirmed that inflated effect estimates in the published literature are common in

many fields, including psychology, economics, ecology, and medicine [33–39]. For example,

according to a meta-analysis of global change biology experiments that accounted for publica-

tion bias [37], a statistically significant effect reported in the literature is, on average, 2 to 3

times larger than a “true” effect. Furthermore, an average experiment in that field was severely

underpowered (<40%) [35]. Therefore, published experiments often have small sample sizes,

yet surprisingly large effects. The situation may be even worse for human randomized con-

trolled trials (RCTs). A study found the median power of 23,551 RCTs to be only

approximatelyAU : PleasenotethatasperPLOSstyle; donotusethesymbol � inprosetomeanaboutorapproximately:}Hence; allinstancesofthissymbolhavebeenreplacedwith}approximately}throughoutthetext:13% [23], probably because sample sizes were determined on the basis of

inflated effects that had been previously reported.

When deciding on a sample size for a new study, the most common method is to use a

closely related published study or studies to generate an effect size estimate on which to base

the power analysis [40]. But we know that published significant effects are inflated because of

publication bias [14,22,23]. The consequence of using an overestimated effect in the power

analysis is a sample size estimate that is far smaller than what is actually needed to “detect” a

true effect [41]. Yet, sometimes, a value of p< 0.05 can be achieved by chance in this scenario,

leading to the publication of yet another “inflated” effect, keeping this unfortunate and vicious

cycle of power analysis going (also referred to as the winner’s curse [23,42,43]; see Fig 1).

We would argue that this cycle substantially contributes to research waste and the replica-

tion crisis. Inadvertently, grant agencies and ethics committees hold a key role in perpetuating

this vicious cycle, as they endorse (and often require) power analysis. Some readers, particu-

larly statisticians, may argue that this is not the fault of power analysis (and NHST) but of

researchers who misuse it. However, given the prevalence of low statistical power in many

studies, including RCTs [23], we believe that a critical rethink of how power analysis should be

used or recommended is necessary.

Two opposing forces

The current incentive structure and requirements of academia pull researchers in 2 completely

opposite and incompatible directions: towards studies with small sample sizes (hereafter, small

studies) and towards studies with large sample sizes (large studies). The prevalence of low-

powered studies suggests that forces encouraging small studies are very strong. Research oper-

ates within the parameters of limited resources and time and a complex landscape of ethical

regulation, all creating a huge incentive to conduct less costly experiments with small sample

sizes. Such small studies will appear to have enough statistical power when designed under the

expectation of a large effect size estimate, and researchers have no trouble finding such large,

yet inflated, effect estimates in the literature. Resorting to meta-analytical estimates does not

alleviate the issue. Although often more conservative (e.g., through active retrieval of unpub-

lished estimates), such estimates are not free from publication bias and effect size inflation.

Logistics aside, grant agencies usually appreciate the “value for money” offered by small stud-

ies, and ethics committees often prefer smaller to larger studies, thereby enabling researchers

to maintain the vicious cycle together with grant and ethics boards.

By contrast, forces that encourage larger studies are present but often neglected. A study

based on 13,322,754 abstracts from PubMed demonstrated that effect sizes declined between

1990 and 2015, while the frequency of statistically significant results increased, indicating the

sample sizes of studies increased over the same period [44]. Academia pursues novelty, and

such pursuits usually lead to the testing of more complex and subtle effects because the most

obvious and large effects have usually already been discovered [14,45]. A case in point is gene–
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trait association studies where, in the early years, researchers were able to find genes with large

effects, while more recently, such a discovery is rare; indeed, in recent years, most genome-

wide association studies (GWASs) find many genes with small yet important effects [46]. It

seems that most researchers nowadays are interested in research topics where the “true” effect

is relatively small. Recent large-scale replication efforts have revealed that even effects believed

to be large and general are usually small and too subtle to be useful or are even nonexistent,

particularly in psychology [27–32]. It requires at least hundreds, if not thousands, of subjects

to conduct an experiment that finds a significant yet small effect, which may be out of reach

for many researchers.

Notably, our discussion has so far focused only on the main effect size in a study. To study

interaction effects (e.g., sex differences in the treatment effect [47]), an 8-times larger sample

size will be needed. This is the case when the interaction is the same magnitude as the main

effect. A 16-times larger sample size is needed if it is assumed that the interaction is half of the

main effect, which is more realistic [48]. Indeed, novel and important questions may often

reside in interaction effects [49], which are usually smaller than the main effect size. Therefore,

the implicit and explicit requirements of 80% power could stop researchers from exploring

0 θ0 θ1 θ2
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Published
studies

Power analysis
Studies with relatively strong effects
are more likely to get published -
power analysis based on the
largest estimates (θ2), usually far
from true effect sizes (θ0) will
therefore introduce marked bias.

Even meta-analyses will be
affected by the filtering bias
leading to estimates larger (θ1)
than the true average.
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future studies
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be required for the true value
of effect size (N2 < N1 << N0)
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they rarely become visible 
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Fig 1. The vicious cycle of power analysis and publication bias. An example of how effect size θ can be inflated via selective publication and how power

analysis, in its current use, can encourage this cycle to continue.

https://doi.org/10.1371/journal.pbio.3002423.g001
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this frontier of knowledge. Such small effects relate to the idea that researchers should use the

smallest effect size of interest for power analysis [50,51] (for an alternative, see [52]); however,

using the smallest effect of interest often requires a larger study, which consequently requires

more funding to perform (see S1 Supporting Information).

Of relevance, requirements for relatively large sample sizes (e.g., N = 100) would exclude

many vertebrate researchers, particularly conservation biologists, from conducting their stud-

ies [53]. Furthermore, although labs that can afford large studies might manage to find a small,

yet important effect, replicability and generalizability are far from guaranteed. If results are to

be generalizable, experiments should include heterogenization, for example, by including dif-

ferent strains of animals and a range of environmental conditions [26,54,55] (Box 3). Thor-

ough heterogenization necessarily increases within-subject variability, as it covers the

landscape of different effect size magnitudes and variations (see Fig 2 in Box 3). So does het-

erogenization require an increase in sample size to maintain statistical power? Imagine that a

researcher wants to heterogenize their 40 mice with regard to their strains. If they could get 20

different strains and create a complete block design by creating 20 blocks (i.e., each stain is

assigned in both control and treatment groups), then they will not need to increase the sample

Box 3. The importance of variability due to plasticity and
heterogenization

Variance observed in measured outcomes of empirical studies comes not only from

between-individual variance and sampling error but also from environmental variance

generated by the dependence of traits on external environmental variables (i.e., on the

shape of a trait’s reaction norm [56–58]). Ignoring the reaction norm and forcing empir-

ical studies (controlled experiments in particular) to eliminate all sources of environ-

mental variation deemed “irrelevant” leads to increasingly irreplicable outcomes that

simply explore different regions of a reaction norm mapping function [56,59] (Fig 2).

Individual empirical studies focus on very specific environmental conditions to reduce

unwanted variation in measured traits and amplify the expected differences (i.e., differ-

ent points on the x axis in Fig 2). However, doing so in the presence of any meaningful

relationship between the environment (x) and the measured trait (y) generates apparent

discordance in observed phenotypes generated purely by their environmental plasticity.

If too much focus is given to maximizing statistical power (or precision), this process

leads to an interesting paradox [56]. To measure traits as precisely as possible, individual

studies generate more specific, nonoverlapping outcomes that hamper the reproducibil-

ity of key results. The solution is to rely less on a specific study and more on the compre-

hensive exploration of the underlying gradient of environmental variability [26,54,60].

In fact, less precise (e.g., lower powered) studies could paradoxically improve reproduc-

ibility as they generate outcomes that are not in conflict (note the overlap of the less pre-

cise blue density with 2 more precise and disconnected red and green densities on the y
axis in Fig 2). Therefore, paying less attention to power analysis is only part of the solu-

tion. When coupled with a wider shift of the empirical paradigm (e.g., through heteroge-

nization to represent whole ranges of underlying environmental and/or genetic

variation in planned experiments [54,61,62]), we can move closer to resolving the ongo-

ing reproducibility crisis.
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size [54]. Yet, in reality, they are likely to get only 5 strains, creating replicates per control/

treatment within the 5 blocks. In such a case, they do need to increase their sample size because

mice within blocks (the same strains) are more similar to each other (i.e., not independent

[54]). Taken together, how can the vicious cycle be escaped from, without also requiring a

large sample size for many research questions? We argue that we must find and achieve a

happy medium.

Better study design with less emphasis on power

The current focus on power will not help resolve the issue of 2 different forces acting on

researchers. The best thing to do, therefore, is to shift attention to generating a better study

design without worrying too much about reaching the nominal statistical power of 80% (apart

from situations where large effects are expected, such as with pharmacological and toxicologi-

cal interventions). We suggest using the AHARP (as high as reasonably practicable) principle,

mirroring the ALARP (as low as reasonably practicable) principle, which is used in health and

safety [63]. The AHARP principle assumes that it is often impossible to achieve enough power

in a study when small effects and generalizations are considered. This principle aims to attain

the best possible power or precision for a study within the constraints of budget and resources

so that everybody (no matter their financial situation) can participate in research activities.

M
ea

su
re

d 
tra

it

Environmental variable

Reaction norm

x1

y1

y2

x2

Fig 2. Plasticity of a trait in relation to an environmental variable. Traits are expressed differently (y1 and y2) depending on environmental conditions (x1 and

x2). Therefore, excessive standardizations (of environments) will lead to unreplicable results. See Box 3 for the details of differently colored parts.

https://doi.org/10.1371/journal.pbio.3002423.g002
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Such a principle could mean that studies can have a relatively small sample size and be under-

powered (e.g., N< 100). It is already known that small studies produce imprecise results [33],

yet it is important to realize that, collectively, small studies themselves are unbiased; in other

words, averaging results from many small studies could provide an accurate estimate of a

“true” effect (see S1 Supporting Information). It is the filtering effect of the publication pro-

cess on the basis of statistical significance (Fig 1) or other related criteria that produce exagger-

ated effect sizes, thereby making science unreliable.

Importantly, when we say “less emphasis on power” or emphasize the AHARP principle,

this does not mean we think that the power (or precision) of studies should be ignored alto-

gether. We only suggest that well-conceptualized study plans should not be cast aside because

they fail to reach the expected >80% power. Thus, the AHARP principle does not equate to

“free-for-all” research, and we would remind researchers that there are other aspects of study

design to consider beyond just increasing sample size to improve study power and precision

[64]. However, covering all aspects of study design is beyond the scope of this Essay (for fur-

ther discussions, see [65,66]).

In many cases, statistical power can be improved by explicitly incorporating correlated

structures between treatment and control groups, compared to using independent subjects

alone (e.g., using sibling pairs as a complete block design; see S1 Supporting Information). By

contrast, nested or hierarchical structures (e.g., siblings within mothers or animals within

strains) could reduce power when such structures are statistically accounted for (if such struc-

tures are not accounted for, it is known as pseudoreplication [67–69]). Such correlated, nested,

or hierarchical structures can be explicitly modelled using a (generalized) linear mixed model-

ling approach [70,71]. However, such complex designs pose difficulties for estimating preci-

sion and conducting power analysis. This is because the conventional algebraic formulas

(Box 2) cannot be used to estimate the necessary sample size, so simulation must be used

instead, which can become very complex [72–74]. One of the reasons for the difficulties is the

necessity of knowing how correlated the data from a cluster is (e.g., how similar pups from the

same mother are for a given measurement; see S1 Supporting Information). Nevertheless,

researchers should be aware of the uses of correlated samples and that modelling correctly can

provide a more precise and higher-powered design.

Researchers can also try to increase the precision of their measurements. For example, it is

becoming increasingly easier to measure behavioral traits more precisely with AI-assisted

video recording analyses [75]. Although not easy and potentially time-consuming, researchers

could choose to optimize their study design, including improving their sampling strategies

and using more precise measurement techniques, rather than relying upon power analysis, the

correct implementation of which is often very difficult. Once they have their “best” sampling

design regardless of its power, researchers may want to conduct a “design analysis,” which is

defined as “a set of statistical calculations about what could happen under hypothetical replica-

tion of a study—that focuses on estimates and uncertainties rather than on statistical signifi-

cance” [14] (see also [10]). The main part of the design analysis is calculating Type S (sign)

error (the probability of getting the sign wrong when a result is statistically significant) and

Type M (magnitude) error (the degree to which an effect is overestimated when significant)

[14,22]. Type S and Type M errors are also defined in terms of statistical significance, but these

2 types of errors focus on estimates rather than significance [14].

To make our position clear, we think the concepts of statistical significance and power,

along with p-values and power analysis, are important for navigating the scientific literature

and, when used correctly, can be useful [76,77]. However, we feel that grant agencies (includ-

ing grant assessors) and ethics committees should be satisfied if researchers have done due dili-

gence when coming up with the best study design. If researchers can report their study
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design’s Type S and Type M error rates, we believe this would provide a better benchmark for

a proposed empirical project than conventional power analysis: We would even encourage

researchers to report statistical power along with Type S and Type M error rates.

From vicious cycle to virtuous cycle

We believe that grant and ethics bodies should not always expect researchers to determine

sample size via power analysis. As argued above, such usage of power analysis might influence

researchers to choose suboptimal study designs and could maintain the vicious cycle of biased

research findings and research waste (Fig 1). Instead, researchers, grant agencies, and ethics

boards could be working together to turn the vicious cycle into a virtuous cycle (Fig 3).

Registration and full reporting

Power analysis, used wrongly, could eliminate interesting research ideas that could otherwise,

in accumulation, contribute to a field. Instead, grant agencies could ask researchers to (pre)

register their funded and approved studies (note that the terms “registration” and “preregistra-

tion” are used interchangeably for the same process [78]) and publish their work regardless of

the statistical significance of the results (Fig 3). We propose that funders and journals team up

Fig 3. The virtuous cycle of research. A visualization of how our proposed paradigm shift could start a virtuous cycle that empowers researchers and better

science.

https://doi.org/10.1371/journal.pbio.3002423.g003
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to ensure that all registered studies are published, regardless of their results. According to

some estimates, more than 50% of studies remain unpublished, mainly because the results did

not reach statistical significance [2,79]. Registration, along with registered reports, can partially

mitigate this issue [80]. Relatedly, there are novel ways of disseminating research, such as

Octopus and ResearchEquals, both of which allow different components of research to be pub-

lished in a separate yet modular manner (e.g., hypothesis, method, result, code).

Unfortunately, we do not think that registration and these related innovations will be the

main solution for publishing negative results. For years, scientists have repeatedly argued, with

little effect, that a study needs to be published regardless of statistical significance, yet it seems

that much research remains unpublished [2,79]. This is not surprising because proper incen-

tives for doing so are not yet in place. Therefore, we propose that a free repository of statisti-

cally nonsignificant results (or all results) be created, preferably associated with study

registration. In this repository, one could fill in study results using a template in a short

amount of time, making the data findable, accessible, interoperable, and reusable (FAIR) [81].

Setting up such a repository, and mandating its use, is exactly what grant agencies and ethics

committees could be doing. Archiving nonstatistically significant results is essential because

results from well-designed studies are unbiased regardless of statistical power or how small a

study was. Such a repository would enable the community to access the results of all relevant

studies for later syntheses. Reporting results to registries is mandatory for some medical RCTs,

although there seem to be some issues with compliance [82,83]. Grant agencies and ethics

committees could certainly help fix such compliance issues [84].

Collaboration to improve reproducibility and equity

Pluralism and diversity make science better [85,86]. In addition to needing greater pluralism,

we need to realize that what one study can achieve is limited, however powerful, well-designed,

and expensive such a study might be [25,87,88]. Grant agencies and ethics committees there-

fore have an important role in fostering and supporting collaboration for multiple studies

(Fig 3).

If grant agencies and ethics committees allowed AHARP study designs, science could move

towards becoming more equitable, diverse, and inclusive (EDI) [86,89]. For many emerging

questions where large effects are not expected, only those with sufficient funding are able to

conduct the large experiments that power analysis would demand. However, being inclusive of

any studies, regardless of their power, would encourage more research from different institu-

tions across the globe. Of importance, a simulation study indicates that even well-funded labo-

ratories should consider conducting several low-powered studies (e.g., 30% power) rather than

a single high-powered study (80% power; note that the latter is approximately 4 times larger

than the former [25]). This is because when the effect of interest has a realistic amount of het-

erogeneity (e.g., due to meaningful temporal and locational variation), a single high-powered

study has a higher Type I error rate than an aggregation of several low-powered studies, which

can better accommodate heterogeneity [25]. Therefore, even the well-funded would do well to

collaborate with others at different institutions to make their experimental results more robust

and in line with the idea of heterogenization (Box 3). Such designs not only improve the over-

all power of estimates but also make them more biologically relevant and generalizable. Grant

agencies, along with ethics committees, could encourage and specifically fund multi-institu-

tional experiments, through which they could provide more opportunities to researchers from

traditionally marginalized groups, spreading EDI in science [86,89] (for a related example of

when and how such an experiment could be funded, see [90]). Such a multi-institutional

experiment, combined with a later synthesis, can be seen as a “prospective” meta-analysis [91].
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Indeed, this type of synthesis is exactly what big team science projects have done and are

trying to do. In recent years, CERN-style, big team science projects have emerged and spread

across many fields [92]. Examples include ManyBabies [93], the Reproducibility Project: Can-

cer Biology [30], SPI-Birds [94], and the Nutrient Network [95], (see also [96] for an example

of how citizen science can be harnessed to increase statistical power and precision). Such team

science projects form a collaborative community across several institutions to conduct a pro-

spective meta-analysis, which resolves the post hoc nature of traditional meta-analyses. Not

surprisingly, many post hoc meta-analytic estimates are also much larger than those from mul-

tilaboratory replication efforts [32] (e.g., Many Labs [97,98]). This result indicates that meta-

analytic means are often overestimated, although bias-corrections of meta-analytic mean esti-

mates are possible and can be effective [99]. Therefore, we propose a shift from traditional to

prospective meta-analyses.

Big team science projects are able to do more than just produce a prospective meta-analysis

because of the communities they create. Such communities can organize a meta-analysis to be

continuously updated (i.e., a living synthesis) [100], which has recently been described as an

“open synthesis community” [101]. Notably, team science is not without its problems; for

example, there are concerns regarding how to fairly credit each scientist involved and whether

team science could increase inequity rather than decrease it [92,102,103]). But this is where

grant agencies could intervene to introduce new criteria for recognizing scientific contribu-

tions and make sure large collaborative efforts, which they fund, address EDI fully [87].

Regardless, it will require coordination among researchers, funders, institutions, and other rel-

evant committees and organizations (e.g., learned societies) to make team scientific activities

easier and fair [104].

Conclusions

We began this article by referring to 2 major causes of “research waste”: suboptimal study

design and publication bias (selective publication and reporting). We have argued that,

although power analysis helps study design in theory, paying less attention to statistical

power may improve study design in practice, just like paying less attention to statistical sig-

nificance (threshold p-values) could alleviate the issue of publication bias. Hopefully, we

have convinced many, especially those on grant and ethics committees, that it is time for a

paradigm shift in our approach to research. We must encourage better study designs with

less focus on power; (pre)registration and full publication of all data; team science or multi-

institutional collaborations that allow realistic incorporation of heterogenization; and pro-

spective and living meta-analyses to reach generalizable results. By adopting those changes,

we can break out of the vicious cycle into the virtuous cycle (Fig 3). In such a virtuous cycle,

less emphasis on statistical power could start and maintain a more collaborative, equitable,

and diverse scientific environment, where both underestimates and overestimates are wel-

come and integrated to achieve an estimate closer to a “true” effect. To get there, we need to

find the right “power” balance.

Supporting information

S1 Supporting Information. An HTML file containing 3 sections: Section 1, a fictitious

story providing different experimental scenarios using mice; Section 2, calculating statisti-

cal power under the scenarios introduced under Section 2; and Section 3, showing how

small low-powered studies can be aggregated via a meta-analysis.

(HTML)
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38. Yang YF, Sánchez-Tójar A, O’Dea RE, Noble DWA, Koricheva J, Jennions MD, et al. Publication bias

impacts on effect size, statistical power, and magnitude (Type M) and sign (Type S) errors in ecology

and evolutionary biology. BMC Biol. 2023; 21(1). https://doi.org/10.1186/s12915-022-01485-y

WOS:000964320800004. PMID: 37013585

39. Kimmel K, Avolio ML, Ferraro PJ. Empirical evidence of widespread exaggeration bias and selective

reporting in ecology. Nat Ecol Evol. 2023. https://doi.org/10.1038/s41559-023-02144-3

WOS:001042001400003. PMID: 37537387

40. Serdar CC, Cihan M, Yucel D, Serdar MA. Sample size, power and effect size revisited: simplified and

practical approaches in pre-clinical, clinical and laboratory studies. Biochem Medica. 2021; 31(1).

https://doi.org/10.11613/Bm.2021.010502 WOS:000659914800001. PMID: 33380887

41. Wilson BM, Harris CR, Wixted JT. Science is not a signal detection problem. Proc Natl Acad Sci. 2020;

117(11):5559–5567. https://doi.org/10.1073/pnas.1914237117 PMID: 32127477

42. Forstmeier W, Schielzeth H. Cryptic multiple hypotheses testing in linear models: overestimated effect

sizes and the winner’s curse. Behav Ecol Sociobiol. 2011; 65(1):47–55. https://doi.org/10.1007/

s00265-010-1038-5 WOS:000285786000005. PMID: 21297852

43. Palmer C, Pe’er I. Statistical correction of the Winner’s Curse explains replication variability in quantita-

tive trait genome-wide association studies. PLoS Genet. 2017; 13(7). https://doi.org/10.1371/journal.

pgen.1006916 WOS:000406615300049. PMID: 28715421

44. Monsarrat P, Vergnes JN. The intriguing evolution of effect sizes in biomedical research over time:

smaller but more often statistically significant. Gigascience. 2017; 7(1). https://doi.org/10.1093/

gigascience/gix121 WOS:000425086500001. PMID: 29228281

45. Goldacre B. Bad pharma: how drug companies mislead doctors and harm patients. London: Fourth

Estate; 2012.

46. Flint J, Munafo MR. Candidate and non-candidate genes in behavior genetics. Curr Opin Neurobiol.

2013; 23(1):57–61. https://doi.org/10.1016/j.conb.2012.07.005 WOS:000314562900010. PMID:

22878161

47. Phillips B, Haschler TN, Karp NA. Statistical simulations show that scientists need not increase overall

sample size by default when including both sexes in in vivo studies. PLoS Biol. 2023; 21(6):e3002129.

https://doi.org/10.1371/journal.pbio.3002129 PMID: 37289836

48. Gelman A, Hill J, Vehtari A. Regression and other stories: Cambridge University Press; 2020.

49. Siviter H, Bailes EJ, Martin CD, Oliver TR, Koricheva J, Leadbeater E, et al. Agrochemicals interact

synergistically to increase bee mortality. Nature. 2021; 596(7872). https://doi.org/10.1038/s41586-

021-03787-7 WOS:000681278500004. PMID: 34349259

50. Lakens D. Performing high-powered studies efficiently with sequential analyses. Eur J Soc Psychol.

2014; 44(7):701–710. https://doi.org/10.1002/ejsp.2023 WOS:000346557400006.

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002423 January 8, 2024 14 / 17

https://doi.org/10.1371/journal.pbio.1002165
http://www.ncbi.nlm.nih.gov/pubmed/26057340
https://doi.org/10.1038/s41562-019-0787-z
https://doi.org/10.1038/s41562-019-0787-z
http://www.ncbi.nlm.nih.gov/pubmed/31873200
https://doi.org/10.1038/nrn3475
http://www.ncbi.nlm.nih.gov/pubmed/23571845
https://doi.org/10.1016/j.jclinepi.2018.06.014
https://doi.org/10.1016/j.jclinepi.2018.06.014
http://www.ncbi.nlm.nih.gov/pubmed/29981870
https://doi.org/10.1111/ecoj.12461
https://doi.org/10.1037/bul0000169
http://www.ncbi.nlm.nih.gov/pubmed/30321017
https://doi.org/10.1111/gcb.15972
http://www.ncbi.nlm.nih.gov/pubmed/34736291
https://doi.org/10.1186/s12915-022-01485-y
http://www.ncbi.nlm.nih.gov/pubmed/37013585
https://doi.org/10.1038/s41559-023-02144-3
http://www.ncbi.nlm.nih.gov/pubmed/37537387
https://doi.org/10.11613/Bm.2021.010502
http://www.ncbi.nlm.nih.gov/pubmed/33380887
https://doi.org/10.1073/pnas.1914237117
http://www.ncbi.nlm.nih.gov/pubmed/32127477
https://doi.org/10.1007/s00265-010-1038-5
https://doi.org/10.1007/s00265-010-1038-5
http://www.ncbi.nlm.nih.gov/pubmed/21297852
https://doi.org/10.1371/journal.pgen.1006916
https://doi.org/10.1371/journal.pgen.1006916
http://www.ncbi.nlm.nih.gov/pubmed/28715421
https://doi.org/10.1093/gigascience/gix121
https://doi.org/10.1093/gigascience/gix121
http://www.ncbi.nlm.nih.gov/pubmed/29228281
https://doi.org/10.1016/j.conb.2012.07.005
http://www.ncbi.nlm.nih.gov/pubmed/22878161
https://doi.org/10.1371/journal.pbio.3002129
http://www.ncbi.nlm.nih.gov/pubmed/37289836
https://doi.org/10.1038/s41586-021-03787-7
https://doi.org/10.1038/s41586-021-03787-7
http://www.ncbi.nlm.nih.gov/pubmed/34349259
https://doi.org/10.1002/ejsp.2023
https://doi.org/10.1371/journal.pbio.3002423


51. Lakens D. Equivalence Tests: A Practical Primer for t Tests, Correlations, and Meta-Analyses. Soc

Psychol Pers Sci. 2017; 8(4):355–362. https://doi.org/10.1177/1948550617697177

WOS:000405075500001. PMID: 28736600

52. Jones SR, Carley S, Harrison M. An introduction to power and sample size estimation. Emerg Med J.

2003; 20(5):453–458. https://doi.org/10.1136/emj.20.5.453 WOS:000185103400021. PMID:

12954688

53. Bissonette JA. Small sample size problems in wildlife ecology: a contingent analytical approach. Wild-

life Biol. 1999; 5(2):65–71. WOS:000080973800001.

54. Voelkl B, Altman NS, Forsman A, Forstmeier W, Gurevitch J, Jaric I, et al. Reproducibility of animal

research in light of biological variation. Nat Rev Neurosci. 2020; 21(7):384–393. https://doi.org/10.

1038/s41583-020-0313-3 WOS:000537344600001. PMID: 32488205

55. Usui T, Macleod MR, McCann SK, Senior AM, Nakagawa S. Meta-analysis of variation suggests that

embracing variability improves both replicability and generalizability in preclinical research. PLoS Biol.

2021; 19(5). https://doi.org/10.1371/journal.pbio.3001009 WOS:000664237300004. PMID: 34010281

56. Voelkl B, Wurbel H. Reproducibility Crisis: Are We Ignoring Reaction Norms? Trends Pharmacol Sci.

2016; 37(7):509–510. https://doi.org/10.1016/j.tips.2016.05.003 WOS:000378961500001. PMID:

27211784

57. Debat V, David P. Mapping phenotypes: canalization, plasticity and developmental stability. Trends

Ecol Evol. 2001; 16(10):555–561. https://doi.org/10.1016/S0169-5347(01)02266-2

WOS:000171174800011.

58. Karp NA. Reproducible preclinical research-Is embracing variability the answer? PLoS Biol. 2018; 16

(3). https://doi.org/10.1371/journal.pbio.2005413 WOS:000428987600022. PMID: 29505576

59. van der Staay FJ, Arndt SS, Nordquist RE. The standardization-generalization dilemma: a way out.

Genes Brain Behav. 2010; 9(8):849–855. https://doi.org/10.1111/j.1601-183X.2010.00628.x

WOS:000283726100001. PMID: 20662940

60. Wurbel H, Voelkl B, Altman NS, Forsman A, Forstmeier W, Gurevitch J, et al. Reply to ’It is time for an

empirically informed paradigm shift in animal research’. Nat Rev Neurosci. 2020; 21(11):661–662.

https://doi.org/10.1038/s41583-020-0370-7 WOS:000561521200001. PMID: 32826978

61. Richter SH, Garner JP, Auer C, Kunert J, Wurbel H. Systematic variation improves reproducibility of

animal experiments. Nat Methods. 2010; 7(3):167–168. https://doi.org/10.1038/nmeth0310-167

WOS:000275058200003. PMID: 20195246

62. Richter SH, Garner JP, Wurbel H. Environmental standardization: cure or cause of poor reproducibility

in animal experiments? Nat Methods. 2009; 6(4):257–261. https://doi.org/10.1038/nmeth.1312

WOS:000264738800012. PMID: 19333241

63. Langdalen H, Abrahamsen EB, Selvik JT. On the importance of systems thinking when using the

ALARP principle for risk management. Reliab Eng Syst Safe. 2020; 204. https://doi.org/10.1016/j.

ress.2020.107222 WOS:000583913400069.

64. Gelman A. Statistical Modeling, Causal Inference, and Social Science (https://

statmodelingstatcolumbiaedu/2023/06/22/here-are-some-ways-of-making-your-study-replicable-no-

its-not-what-you-think/) [Internet]. Available from: https://statmodeling.stat.columbia.edu/2023/06/22/

here-are-some-ways-of-making-your-study-replicable-no-its-not-what-you-think/2023. [cited 2023].

65. Ryan TP. Modern experimental design. Hoboken, N.J.: Wiley-Interscience; Chichester: John Wiley

[distributor]; 2007.

66. Herzog M. Understanding statistics and experimental design: how to not lie with statistics. New York,

NY: Springer Berlin Heidelberg; 2019. pages cm p.

67. Lazic SE, Mellor JR, Ashby MC, Munafo MR. A Bayesian predictive approach for dealing with pseudor-

eplication. Sci Rep-Uk. 2020; 10(1). https://doi.org/10.1038/s41598-020-59384-7

WOS:000562858200017. PMID: 32047274

68. Colegrave N, Ruxton GD. Using Biological Insight and Pragmatism When Thinking about Pseudorepli-

cation. Trends Ecol Evol. 2018; 33(1):28–35. https://doi.org/10.1016/j.tree.2017.10.007

WOS:000419242100004. PMID: 29122382

69. Forstmeier W, Wagenmakers EJ, Parker TH. Detecting and avoiding likely false-positive findings—a

practical guide. Biol Rev. 2017; 92(4):1941–1968. https://doi.org/10.1111/brv.12315

WOS:000412314400005. PMID: 27879038

70. Arnqvist G. Mixed Models Offer No Freedom from Degrees of Freedom. Trends Ecol Evol. 2020; 35

(4):329–335. https://doi.org/10.1016/j.tree.2019.12.004 PMID: 31982147

71. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, et al. Generalized linear

mixed models: a practical guide for ecology and evolution. Trends Ecol Evol. 2009; 24(3):127–135.

https://doi.org/10.1016/j.tree.2008.10.008 WOS:000264615200003. PMID: 19185386

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002423 January 8, 2024 15 / 17

https://doi.org/10.1177/1948550617697177
http://www.ncbi.nlm.nih.gov/pubmed/28736600
https://doi.org/10.1136/emj.20.5.453
http://www.ncbi.nlm.nih.gov/pubmed/12954688
https://doi.org/10.1038/s41583-020-0313-3
https://doi.org/10.1038/s41583-020-0313-3
http://www.ncbi.nlm.nih.gov/pubmed/32488205
https://doi.org/10.1371/journal.pbio.3001009
http://www.ncbi.nlm.nih.gov/pubmed/34010281
https://doi.org/10.1016/j.tips.2016.05.003
http://www.ncbi.nlm.nih.gov/pubmed/27211784
https://doi.org/10.1016/S0169-5347%2801%2902266-2
https://doi.org/10.1371/journal.pbio.2005413
http://www.ncbi.nlm.nih.gov/pubmed/29505576
https://doi.org/10.1111/j.1601-183X.2010.00628.x
http://www.ncbi.nlm.nih.gov/pubmed/20662940
https://doi.org/10.1038/s41583-020-0370-7
http://www.ncbi.nlm.nih.gov/pubmed/32826978
https://doi.org/10.1038/nmeth0310-167
http://www.ncbi.nlm.nih.gov/pubmed/20195246
https://doi.org/10.1038/nmeth.1312
http://www.ncbi.nlm.nih.gov/pubmed/19333241
https://doi.org/10.1016/j.ress.2020.107222
https://doi.org/10.1016/j.ress.2020.107222
https://statmodelingstatcolumbiaedu/2023/06/22/here-are-some-ways-of-making-your-study-replicable-no-its-not-what-you-think/
https://statmodelingstatcolumbiaedu/2023/06/22/here-are-some-ways-of-making-your-study-replicable-no-its-not-what-you-think/
https://statmodelingstatcolumbiaedu/2023/06/22/here-are-some-ways-of-making-your-study-replicable-no-its-not-what-you-think/
https://statmodeling.stat.columbia.edu/2023/06/22/here-are-some-ways-of-making-your-study-replicable-no-its-not-what-you-think/2023
https://statmodeling.stat.columbia.edu/2023/06/22/here-are-some-ways-of-making-your-study-replicable-no-its-not-what-you-think/2023
https://doi.org/10.1038/s41598-020-59384-7
http://www.ncbi.nlm.nih.gov/pubmed/32047274
https://doi.org/10.1016/j.tree.2017.10.007
http://www.ncbi.nlm.nih.gov/pubmed/29122382
https://doi.org/10.1111/brv.12315
http://www.ncbi.nlm.nih.gov/pubmed/27879038
https://doi.org/10.1016/j.tree.2019.12.004
http://www.ncbi.nlm.nih.gov/pubmed/31982147
https://doi.org/10.1016/j.tree.2008.10.008
http://www.ncbi.nlm.nih.gov/pubmed/19185386
https://doi.org/10.1371/journal.pbio.3002423


72. Green P, MacLeod CJ. SIMR: an R package for power analysis of generalized linear mixed models by

simulation. Methods Ecol Evol. 2016; 7(4):493–498. https://doi.org/10.1111/2041-210x.12504

WOS:000373950700012.

73. Johnson PCD, Barry SJE, Ferguson HM, Muller P. Power analysis for generalized linear mixed models

in ecology and evolution. Methods Ecol Evol. 2015; 6(2):133–142. https://doi.org/10.1111/2041-210X.

12306 WOS:000349628100002. PMID: 25893088

74. DeBruine LM, Barr DJ. Understanding Mixed-Effects Models Through Data Simulation. Adv Meth

Pract Psych. 2021; 4(1). https://doi.org/10.1177/2515245920965119 WOS:000708952600001.

75. Bateson M, Martin PR. Measuring behaviour: an introductory guide. 4th ed. 2021.

76. Begg CB. In Defense of P Values. Jnci Cancer Spect. 2020; 4(2). https://doi.org/10.1093/jncics/

pkaa012 WOS:000608017100009. PMID: 32373778

77. Murtaugh PA. In defense of P values. Ecology. 2014; 95(3):611–617. https://doi.org/10.1890/13-0590.

1 WOS:000332823100005. PMID: 24804441

78. Rice DB, Moher D. Curtailing the Use of Preregistration: A Misused Term. Perspect Psychol Sci.

2019; 14(6):1105–1108. https://doi.org/10.1177/1745691619858427 WOS:000483904100001. PMID:

31449761

79. Schmucker C, Schell LK, Portalupi S, Oeller P, Cabrera L, Bassler D, et al. Extent of Non-Publication

in Cohorts of Studies Approved by Research Ethics Committees or Included in Trial Registries. PLoS

ONE. 2014; 9(12). https://doi.org/10.1371/journal.pone.0114023 WOS:000348563300010. PMID:

25536072

80. Allen C, Mehler DMA. Open science challenges, benefits and tips in early career and beyond. PLoS

Biol. 2019; 17(5). https://doi.org/10.1371/journal.pbio.3000246 WOS:000470189800010. PMID:

31042704

81. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding

Principles for scientific data management and stewardship (vol 15, 160018, 2016). Sci Data. 2019; 6.

https://doi.org/10.1038/s41597-019-0009-6 WOS:000464192900001. PMID: 30890711

82. DeVito NJ, Bacon S, Goldacre B. Compliance with legal requirement to report clinical trial results on

ClinicalTrials.gov: a cohort study. Lancet. 2020; 395(10221):361–369. https://doi.org/10.1016/S0140-

6736(19)33220-9 WOS:000510860200036. PMID: 31958402

83. Goldacre B, DeVito NJ, Heneghan C, Irving F, Bacon S, Fleminger J, et al. Compliance with require-

ment to report results on the EU Clinical Trials Register: cohort study and web resource. Bmj-Brit Med

J. 2018; 362. https://doi.org/10.1136/bmj.k3218 WOS:000445016500001. PMID: 30209058

84. Jeffers MS, Maclellan A, Avey MT, Menon JM, Sunohara-Neilson J, Fergusson DA, et al. A call to

implement preclinical study registration in animal ethics review. PLoS Biol. 2023; 21(10). https://doi.

org/10.1371/journal.pbio.3002293 WOS:001082506500002. PMID: 37796782

85. Collins SL. Pluralism in Ecological Research. Bioscience. 2022; 72(10):927. https://doi.org/10.1093/

biosci/biac089

86. Davies SW, Putnam HM, Ainsworth T, Baum JK, Bove CB, Crosby SC, et al. Promoting inclusive met-

rics of success and impact to dismantle a discriminatory reward system in science. PLoS Biol. 2021;

19(6). WOS:000665479600001. https://doi.org/10.1371/journal.pbio.3001282 PMID: 34129646

87. Amaral OB, Neves K. Reproducibility: expect less of the scientific paper Comment. Nature. 2021; 597

(7876):329–331. https://doi.org/10.1038/d41586-021-02486-7 WOS:000696334600004. PMID:

34526702

88. Ioannidisa JPA. Meta-research: The art of getting it wrong. Res Synth Methods. 2010; 1(3–4):169–

184. https://doi.org/10.1002/jrsm.19 WOS:000209380500001. PMID: 26061464

89. Trisos CH, Auerbach J, Katti M. Decoloniality and anti-oppressive practices for a more ethical ecology.

Nat Ecol Evol. 2021; 5(9):1205–1212. WOS:000653692400001. https://doi.org/10.1038/s41559-021-

01460-w PMID: 34031567

90. Nakagawa S, Lagisz M. Next steps after airing disagreement on a scientific issue with policy implica-

tions: a meta-analysis, multi-lab replication and adversarial collaboration. BMC Biol. 2023; 21(1).

https://doi.org/10.1186/s12915-023-01567-5 WOS:000992782300001. PMID: 37217976

91. Seidler AL, Hunter KE, Cheyne S, Ghersi D, Berlin JA, Askie L. A guide to prospective meta-analysis.

Bmj-Brit Med J. 2019; 367. https://doi.org/10.1136/bmj.l5342 WOS:000490448800001. PMID:

31597627

92. Coles NA, Hamlin JK, Sullivan LL, Parker TH, Altschul D. Build up big-team science. Nature. 2022;

601(7894):505–507. Epub 2022/01/27. https://doi.org/10.1038/d41586-022-00150-2 PMID:

35079150.

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002423 January 8, 2024 16 / 17

https://doi.org/10.1111/2041-210x.12504
https://doi.org/10.1111/2041-210X.12306
https://doi.org/10.1111/2041-210X.12306
http://www.ncbi.nlm.nih.gov/pubmed/25893088
https://doi.org/10.1177/2515245920965119
https://doi.org/10.1093/jncics/pkaa012
https://doi.org/10.1093/jncics/pkaa012
http://www.ncbi.nlm.nih.gov/pubmed/32373778
https://doi.org/10.1890/13-0590.1
https://doi.org/10.1890/13-0590.1
http://www.ncbi.nlm.nih.gov/pubmed/24804441
https://doi.org/10.1177/1745691619858427
http://www.ncbi.nlm.nih.gov/pubmed/31449761
https://doi.org/10.1371/journal.pone.0114023
http://www.ncbi.nlm.nih.gov/pubmed/25536072
https://doi.org/10.1371/journal.pbio.3000246
http://www.ncbi.nlm.nih.gov/pubmed/31042704
https://doi.org/10.1038/s41597-019-0009-6
http://www.ncbi.nlm.nih.gov/pubmed/30890711
https://doi.org/10.1016/S0140-6736%2819%2933220-9
https://doi.org/10.1016/S0140-6736%2819%2933220-9
http://www.ncbi.nlm.nih.gov/pubmed/31958402
https://doi.org/10.1136/bmj.k3218
http://www.ncbi.nlm.nih.gov/pubmed/30209058
https://doi.org/10.1371/journal.pbio.3002293
https://doi.org/10.1371/journal.pbio.3002293
http://www.ncbi.nlm.nih.gov/pubmed/37796782
https://doi.org/10.1093/biosci/biac089
https://doi.org/10.1093/biosci/biac089
https://doi.org/10.1371/journal.pbio.3001282
http://www.ncbi.nlm.nih.gov/pubmed/34129646
https://doi.org/10.1038/d41586-021-02486-7
http://www.ncbi.nlm.nih.gov/pubmed/34526702
https://doi.org/10.1002/jrsm.19
http://www.ncbi.nlm.nih.gov/pubmed/26061464
https://doi.org/10.1038/s41559-021-01460-w
https://doi.org/10.1038/s41559-021-01460-w
http://www.ncbi.nlm.nih.gov/pubmed/34031567
https://doi.org/10.1186/s12915-023-01567-5
http://www.ncbi.nlm.nih.gov/pubmed/37217976
https://doi.org/10.1136/bmj.l5342
http://www.ncbi.nlm.nih.gov/pubmed/31597627
https://doi.org/10.1038/d41586-022-00150-2
http://www.ncbi.nlm.nih.gov/pubmed/35079150
https://doi.org/10.1371/journal.pbio.3002423


93. Frank MC, Alcock KJ, Arias-Trejo N, Aschersleben G, Baldwin D, Barbu S, et al. Quantifying Sources

of Variability in Infancy Research Using the Infant-Directed-Speech Preference. Adv Meth Pract

Psych. 2020; 3(1):24–52. https://doi.org/10.1177/2515245919900809 WOS:000710531200002.

94. Culina A, Adriaensen F, Bailey LD, Burgess MD, Charmantier A, Cole EF, et al. Connecting the data

landscape of long-term ecological studies: The SPI-Birds data hub. J Anim Ecol. 2021; 90(9):2147–

2160. https://doi.org/10.1111/1365-2656.13388 WOS:000595924500001. PMID: 33205462

95. Borer ET, Grace JB, Harpole WS, MacDougall AS, Seabloom EW. A decade of insights into grassland

ecosystem responses to global environmental change. Nat Ecol Evol. 2017; 1(5). https://doi.org/10.

1038/s41559-017-0118 WOS:000417173100008. PMID: 28812706

96. Wolf S, Mahecha MD, Sabatini FM, Wirth C, Bruelheide H, Kattge J, et al. Citizen science plant obser-

vations encode global trait patterns. Nat Ecol Evol. 2022; 6(12):1850–+. https://doi.org/10.1038/

s41559-022-01904-x WOS:000870685300004. PMID: 36266458

97. Ebersole CR, Atherton OE, Belanger AL, Skulborstad HM, Allen JM, Banks JB, et al. Many Labs 3:

Evaluating participant pool quality across the academic semester via replication. J Exp Soc Psychol.

2016; 67:68–82. https://doi.org/10.1016/j.jesp.2015.10.012 WOS:000384398700012.

98. Klein RA, Ratliff KA, Vianello M, Adams RB, Bahnik S, Bernstein MJ, et al. Investigating Variation in

Replicability A "Many Labs” Replication Project. Soc Psychol-Germany. 2014; 45(3):142–152. https://

doi.org/10.1027/1864-9335/a000178 WOS:000336836900002.

99. Stanley TD, Doucouliagos H. Meta-regression approximations to reduce publication selection bias.

Res Synth Methods. 2014; 5(1):60–78. https://doi.org/10.1002/jrsm.1095 WOS:000348585200005.

PMID: 26054026

100. Elliott JH, Synnot A, Turner T, Simmonds M, Akl EA, McDonald S, et al. Living systematic review: 1.

Introduction-the why, what, when, and how. J Clin Epidemiol. 2017; 91:23–30. https://doi.org/10.1016/

j.jclinepi.2017.08.010 WOS:000417550400005. PMID: 28912002

101. Nakagawa S, Dunn AG, Lagisz M, Bannach-Brown A, Grames EM, Sanchez-Tojar A, et al. A new eco-

system for evidence synthesis. Nat Ecol Evol. 2020; 4(4):498–501. WOS:000521526800005. https://

doi.org/10.1038/s41559-020-1153-2 PMID: 32203483

102. Nakagawa S, Ivimey-Cook ER, Grainger MJ, O’Dea RE, Burke S, Drobniak SM, et al. Method Report-

ing with Initials for Transparency (MeRIT) promotes more granularity and accountability for author con-

tributions. Nat Commun. 2023; 14(1). https://doi.org/10.1038/s41467-023-37039-1

WOS:001002031500015. PMID: 37012240

103. Coles NA, DeBruine LM, Azevedo F, Baumgartner HA, Frank MC. ’Big team’ science challenges us to

reconsider authorship. Nat Hum Behav. 2023; 7(5):665–667. https://doi.org/10.1038/s41562-023-

01572-2 WOS:000952874800007. PMID: 36928785

104. MunafòMR, Chambers C, Collins A, Fortunato L, Macleod M. The reproducibility debate is an opportu-

nity, not a crisis. BMC Res Notes. 2022; 15(1):43. https://doi.org/10.1186/s13104-022-05942-3 PMID:

35144667

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002423 January 8, 2024 17 / 17

https://doi.org/10.1177/2515245919900809
https://doi.org/10.1111/1365-2656.13388
http://www.ncbi.nlm.nih.gov/pubmed/33205462
https://doi.org/10.1038/s41559-017-0118
https://doi.org/10.1038/s41559-017-0118
http://www.ncbi.nlm.nih.gov/pubmed/28812706
https://doi.org/10.1038/s41559-022-01904-x
https://doi.org/10.1038/s41559-022-01904-x
http://www.ncbi.nlm.nih.gov/pubmed/36266458
https://doi.org/10.1016/j.jesp.2015.10.012
https://doi.org/10.1027/1864-9335/a000178
https://doi.org/10.1027/1864-9335/a000178
https://doi.org/10.1002/jrsm.1095
http://www.ncbi.nlm.nih.gov/pubmed/26054026
https://doi.org/10.1016/j.jclinepi.2017.08.010
https://doi.org/10.1016/j.jclinepi.2017.08.010
http://www.ncbi.nlm.nih.gov/pubmed/28912002
https://doi.org/10.1038/s41559-020-1153-2
https://doi.org/10.1038/s41559-020-1153-2
http://www.ncbi.nlm.nih.gov/pubmed/32203483
https://doi.org/10.1038/s41467-023-37039-1
http://www.ncbi.nlm.nih.gov/pubmed/37012240
https://doi.org/10.1038/s41562-023-01572-2
https://doi.org/10.1038/s41562-023-01572-2
http://www.ncbi.nlm.nih.gov/pubmed/36928785
https://doi.org/10.1186/s13104-022-05942-3
http://www.ncbi.nlm.nih.gov/pubmed/35144667
https://doi.org/10.1371/journal.pbio.3002423

