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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Understanding behavior and its evolutionary underpinnings is crucial for unraveling the com-

plexities of brain function. Traditional approaches strive to reduce behavioral complexity by

designing short-term, highly constrained behavioral tasks with dichotomous choices in

which animals respond to defined external perturbation. In contrast, natural behaviors

evolve over multiple time scales during which actions are selected through bidirectional

interactions with the environment and without human intervention. Recent technological

advancements have opened up new possibilities for experimental designs that more closely

mirror natural behaviors by replacing stringent experimental control with accurate multidi-

mensional behavioral analysis. However, these approaches have been tailored to fit only a

small number of species. This specificity limits the experimental opportunities offered by

species diversity. Further, it hampers comparative analyses that are essential for extracting

overarching behavioral principles and for examining behavior from an evolutionary perspec-

tive. To address this limitation, we developed ReptiLearn—a versatile, low-cost, Python-

based solution, optimized for conducting automated long-term experiments in the home

cage of reptiles, without human intervention. In addition, this system offers unique features

such as precise temperature measurement and control, live prey reward dispensers,

engagement with touch screens, and remote control through a user-friendly web interface.

Finally, ReptiLearn incorporates low-latency closed-loop feedback allowing bidirectional

interactions between animals and their environments. Thus, ReptiLearn provides a compre-

hensive solution for researchers studying behavior in ectotherms and beyond, bridging the

gap between constrained laboratory settings and natural behavior in nonconventional

model systems. We demonstrate the capabilities of ReptiLearn by automatically training the

lizard Pogona vitticeps on a complex spatial learning task requiring association learning, dis-

placed reward learning, and reversal learning.

Introduction

Nervous systems evolved to facilitate behaviors enhancing survival and reproduction [1].

Understanding these behaviors and their evolutionary origins is crucial for unraveling the
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complexities of nervous systems and the computational processes they support [2]. This

endeavor was pushed forward by several experimental approaches. One approach is to use

highly constrained behavioral tasks [3] that focus on a specific behavioral aspect (e.g., deci-

sion-making). Implementing such tasks requires reductionist experimental designs [4,5] that

simplify behavioral complexities (e.g., a two-alternative forced choice task). This approach

offers straightforward quantification, repeated trials that can be performed within laboratory

settings, reduced variability within and between animals, and increased statistical power [3].

However, these benefits come at the expense of capturing only a limited subset of an animal’s

behavioral repertoire [6] and confining analysis to a specific task-dependent time scale. Fur-

ther, this approach may introduce biases due to human handling and the use of tasks lacking

the bidirectional interaction between animals and their environment as observed in the wild.

In such bidirectional interactions, animals constantly receive information from the environ-

ment (e.g., perceive a prey) and act upon it (e.g., attack the prey), but at the same time, their

actions change the environment (e.g., their prey escapes due to their approach [7]).

Recent technological advances offer a new opportunity to study natural behaviors in the lab

or perform complex behavioral quantification in natural settings [2]. Miniaturization of cam-

eras, automation of natural stimuli and reward delivery, and powerful computational tools

now enable researchers to create autonomous environments that more closely resemble natu-

ral conditions [8–10] or home cage conditions [11–15]. In such settings, animals can be placed

in complex environments [16,17] facilitating bidirectional interaction [17] and studied across

multiple time scales [18,19]. New signal processing methods facilitate automatic annotation

and analysis of the vast amounts of behavioral data collected in each experiment, resulting in a

broad range of extracted behavioral features and improved statistical power [20]. These rich

data sets offer a window into the variability inherent in animal behavior [6]. Importantly,

many of these solutions are provided as open-source low-cost hardware and software pack-

ages, making them accessible to a wide range of research labs [21].

While the behavioral approaches above chart a promising path forward, they do not offer a

comprehensive solution for many experimental scenarios. Primarily, they have been tailored to a

limited number of species. Specifically, since the 1980s, a handful of genetically tractable model

systems began to increasingly dominate scientific studies [22–24]. Correspondingly, automated

home-cage monitoring and behavioral setups have been developed primarily for mice

[15,19,25,26], fruit flies [27], and zebrafish [16], and offer species-specific behavioral paradigms

[28]. This specificity extends to the devices used for interacting and rewarding the animals. For

example, experimental systems usually lack temperature control and their automatic food dis-

pensers are optimized for delivering dry food pellets rather than live insects. These properties

limit applicability to nonconventional animal models such as reptiles and amphibians.

Reptiles and amphibians are large and diverse animal classes with many species offering

unique perspectives on various biological and evolutionary research questions [23,29–32]. In

recent years, research on these classes has gained momentum [33–35], aided by new genetic

methodologies for probing [36] and manipulating gene expression [37–39]. In contrast to

these advancements, implementation of new methodologies for studying behavior is limited.

While progress has been achieved in automating specific elements within behavioral tasks for

ectothermic vertebrates, or in adapting paradigms designed for other vertebrates [40–42], no

complete solution exists for automated behavioral experiments in any reptile or amphibian.

Correspondingly, the cognitive capacities of these animal classes remain poorly understood

and research linking behavior with neurophysiology is scarce [43,44]. This deficiency can be

attributed in part to the challenges posed by studying ectothermic vertebrates.

Ectothermic behavior is highly dependent on environmental temperatures and heat sources

[45]. Thus, reducing unexplained behavioral variability necessitates continuous monitoring
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and control of thermal conditions during experiments. Furthermore, ectothermy favors sur-

vival strategies with low energy consumption that manifests in increased immobility [46].

Such behaviors yield sparser behavioral data and require continuous long-term experiments

with a sufficient sample size for robust statistical analysis. In contrast, most experimental

approaches are not suited for continuous experiments over weeks and lack paradigms for bidi-

rectional interactions with animals during such long periods. Another challenge for behavioral

research in ectothermic vertebrates is reinforcement using food rewards. These animals can

often go without food or drink for extended periods compared to mammals [47,48], poten-

tially reducing their motivation and engagement in behavioral tasks. Moreover, most auto-

mated systems employed in mammalian research make use of liquid rewards [13,17,19], which

are unsuitable for species requiring live prey as a reward. Conversely, reinforcers such as heat

can be utilized but are not included in automated behavioral systems. Thus, human interven-

tion is required during experiments, making it more difficult to increase sample sizes and

reduce variability.

To address these issues, we developed ReptiLearn—a new comprehensive solution for

behavioral experiments in reptiles (Fig 1A). This platform includes unique hardware compo-

nents such as a fine-grained temperature control and measurement apparatus, automated live

feed reward dispensers, a touch screen for providing visual stimulation and logging touch

choices, and modules for interacting with Arduino components (Fig 1B). ReptiLearn is ideally

suited for continuous experiments over extended time scales with the arena serving as the ani-

mal’s home cage for days to weeks. Arena components are controlled by a dedicated software

suite allowing flexible design of fully automated experiments and extraction of behavioral fea-

tures (Fig 1B). These experiments can be controlled remotely by a web-based user interface for

increased accessibility (Fig 1D). Finally, to facilitate automated bidirectional interactions of

animals with their environment, ReptiLearn incorporates low-latency components that allow

closing a loop between behavioral dynamics and arena hardware. We demonstrate Repti-

Learn’s capabilities by successfully training P. vitticeps lizards on an automated spatial learning

task.

Results

Real-time movement tracking

Locomotion and posture changes provide valuable information about the animal’s behavioral

states and strategies [49] and are linked to environmental factors such as temperature [50].

Further, animal movements are critical components of the bidirectional interactions between

animals and their environment [7]. To continuously log movements and link them in real

time to arena apparatus (e.g., delivery of food or visual stimuli), we implemented in ReptiLearn

2 video-based movement tracking algorithms (Fig 1). In the first, our aim was to optimize pro-

cessing speed in real-time experiments. To do so, we trained a light-weight neural network

(YOLOv4, [51]) that can detect the position of the animal’s head bounding box (Fig 2A).

YOLOv4 offered a good tradeoff between accuracy and computation time. The latency to posi-

tion detection was narrowly distributed (Fig 2B) with a mean of 7.92 ms (SD = 0.36 ms), which

is low enough for real-time tracking of every frame in streams of up to 125 Hz. We also

achieved good accuracy (Figs 2C and S1) with a position detection error of 0.73 cm

(SD = 0.91), a recall of 100% (no false positives), and a precision (true positive/total positive)

of 78% (Fig 2D). To estimate the latency in closed-loop experiments, we measured the time

between turning on an LED in the arena and its detection in the video stream. This delay

added 43 ms (SD = 9.34 ms) to processing time (Fig 2E), resulting in a total delay of 50.92 ms

(SD = 9.35 ms) for location based closed-loop feedback.
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While the above approach provides a fast solution for real-time feedback, it could be easily

replaced with other models if computational time constraints are loosened [20,52]. To acquire

richer position and posture information, we used a second approach in which we fed the head

bounding box calculated by YOLOv4 to an object segmentation model (Segment Anything

Model, SAM; [53]). This model provides a mask of the entire animal body (Fig 3C). The pro-

cessing time of this model is much longer, making it less practical for low-latency real-time

applications. Its advantage, however, is that it does not require additional training or manual

annotation and can provide rich data about the animal’s behavior (as later shown).

Fig 1. Features and design of the ReptiLearn behavioral system. (A) A schematic of the features supported by ReptiLearn. ReptiLearn is written in Python,

provides an API for automating experimental tasks, runs real-time processing, controls arena hardware components including live food dispensers and a heat

reward system, collects time-series data, features a web-based user interface for remote monitoring and control. (B) Diagram of hardware components in

ReptiLearn. The arena includes synchronized visual and thermal cameras, temperature sensors, live prey feeders, a grid of 12 heat lamps covering the arena,

illumination LEDs and a touchscreen. The hardware is controlled using Arduino boards and designed with generic interfaces for diverse research needs.

ReptiLearn can run with different subsets of the above components. (C) A schematic illustrating the real-time closed loop processing in ReptiLearn. ReptiLearn

allows implementing closed-loop behavioral tasks linking any of the following features in real-time: Animal and ambient temperature, animal position and

posture, animal screen touches, live prey or heat reward, and visual stimulation on the screen. (D) Screenshot of the web-based user interface. The interface

allows monitoring the cameras (top left) and the status of hardware (state panel on the right) as well as controlling the arena (top menu) and experiments

remotely (experimental design panel on the right). Experiment events and system information appear in the log (bottom).

https://doi.org/10.1371/journal.pbio.3002411.g001
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Devices for closed-loop long-term automated interactions with animals

Automating long-term experiments require integrating components for animal interactions

and providing the necessary conditions for survival. The controlled delivery of these condi-

tions can also serve as reinforcement in behavioral tasks. For that aim, we integrated modules

for closing the loop between behavior (movement) and arena apparatus such as visual stimuli,

heat delivery, and live food reward. The latter 2 being most relevant for reinforcing behavior

in reptiles and amphibians [54,55].

Fig 2. ReptiLearn exhibits high performance with low latencies. (A) Example of the fine-tuned YOLOv4 model

output. The model was trained to detect the bounding box of the lizard’s head (red). The box centroid (green) was used

to estimate the animal’s position. (B) YOLOv4 object detection latency distribution. Latencies were measured between

the time of receiving the image by the model and the output time of position calculation. (C) Distribution of Euclidean

distances between YOLOv4 bounding box center and annotated ground truth over a validation set of 400 images

sampled uniformly from video data of 4 animals. Notice small distance errors (mean = 0.73 cm, SD = 0.91). (D) A

confusion matrix showing the results of the fine-tuned YOLOv4 model over the validation set. Model was tuned to

have a zero false positive rate. (E) Distribution of latencies in closed-loop experiments. Latencies were measured from

the time of sending a command to turn on an LED to the time of detecting LED intensity change in the video stream

(this delay comprises the arena controller, video acquisition, and LED detection analysis). (F) Food dispenser latency

distribution. Latencies were measured from the time of sending a command to the worm dispenser to the detection of

the dispensed worm in the video stream after landing on the arena floor. Rewards are received within an average time

of 3.21 s (SD = 0.54 s). Individual numerical values are provided in S1 Data.

https://doi.org/10.1371/journal.pbio.3002411.g002

PLOS BIOLOGY ReptiLearn: A smart home cage for behavioral experiments in reptiles

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002411 February 29, 2024 5 / 27

https://doi.org/10.1371/journal.pbio.3002411.g002
https://doi.org/10.1371/journal.pbio.3002411


To integrate automatic delivery of live food (e.g., Tenebrio molitor larvae), we modified

inexpensive aquarium fish feeders (Methods) to achieve a narrow distribution of reward delays

with mean latency of 3.21 s (SD = 0.54 s) (Fig 2F). If shorter delay times are needed, visual

stimulation devices (single LED illumination, arena LED strip illumination, or stimulation on

a touch screen) were implemented for bridging the gap between movement detection and

reward delivery. For presenting images or videos, we integrated into ReptiLearn a web applica-

tion that can be used to display and animate custom stimuli on any number of touch screens

(Fig 1B). Animal screen touches can be registered and relayed back to the system for real-time

feedback to the displayed stimuli or to other triggerable arena components (Fig 1C). This mod-

ule can be used, for example, for displaying prey items on the screen and for logging lizard

screen strikes.

The ability to spatiotemporally control arena temperatures is also important for survival

and for reinforcing behavior in ectotherms [54]. To achieve such control, we integrated a grid

of infrared heat lamps (Fig 1B) that could be independently and automatically turned on

(Methods). The heat lamp coverage provides fine-grained control over the arena’s thermal gra-

dient (Fig 3A), thus allowing to test temperature preference and thermal regulation under flex-

ible spatial configurations. In addition, these heat lamps, in contrast to ceramic heating

elements, induce quick temperature changes with a detectable increase of 1˚C on the arena

Fig 3. ReptiLearn allows extracting complex relations between skin temperature and spatial dynamics. (A) Heat gradients of a grid of 12 heat lamps across

the arena floor. The outer, middle, and inner areas of each lamp represent temperature increases of 4˚C, 6˚C, and 8˚C above baseline, respectively. (B)

Temperature dynamics of a single heat lamp measured with a digital temperature sensor over trials (gray) and on average (black) relative to initial temperature

(0). The lamp was turned off after 30 min (red line). (C) Skin temperatures were calculated by first segmenting the animal in the regular camera image (top,

green) using the SAM algorithm, based on the output centroid of the YOLOv4 model (orange dot). Next, a linear function f is used to transform the mask and

centroid to the thermal image pixel space (right top) and the skin temperature is determined by calculating the median over the mask (right bottom). A

comparison with a SAM mask calculated directly from the thermal camera (red) is used to assess the validity of the transformed mask. (D) Movement

dynamics (travel speed, blue) and corresponding skin temperature changes (red, with ambient temperature in orange) as well as reward times (green) and

basking periods (gray) measured over a single day. Individual numerical values are provided in S1 Data.

https://doi.org/10.1371/journal.pbio.3002411.g003
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floor within 18.11 s (SD = 1.7 s) of turning on the heat source (Fig 3B), and can thus provide

an instantaneous reward without the need for manual refilling, as in the case of live insect

rewards [56]. While temperature change sensitivity in P. vitticeps is unknown, reptiles are

equipped with molecular machinery for sensing temperature changes smaller than 1˚C [57],

presumably allowing much faster heat reward detection. Taken together, ReptiLearn integrates

multiple methodologies for interacting with animals and for delivering rewards with a low-

latency feedback, which are instrumental for effective learning and conditioning paradigms

[54,58–60].

Measuring the interplay between behavior and skin temperature

Integrating temperature control with body temperature measurements can open up many pos-

sibilities for studying temperature-dependent behavioral features such as thermal regulation

[54,61]. Doing so requires continuous measurement of body temperature during long experi-

ments. While measuring core body temperature requires internal probes, skin temperature is

easily measurable using a thermal camera [62]. To measure skin temperature using an infrared

camera, we first generated a segmentation mask of the lizard’s body position using SAM

(Methods) on the regular video camera stream (as described above; Fig 3C). We then trans-

formed arena coordinates from the visual camera to the thermal camera and estimated median

skin temperature across the mask (Methods). We validated the accuracy of the transformed

body mask by showing a consistent temperature drop between the lizard’s body and it is sur-

rounding over thermal video frames (Methods; S2A and S2B Fig).

Combining measurements of animal temperature together with animal dynamics can shed

light on thermo-regulation strategies. Fig 3D (red curve) shows temperature dynamics during

a day of measurement together with travel speed (blue curve), calculated by integrating posi-

tion changes over time. Periods of basking were detected (Fig 3D, gray shade) when lizards

entered a circle of approximately 40 cm diameter under the heat lamp. This analysis shows

that the lizard spent a large fraction of its time stationary. During most of this time, the lizard

was under the heat lamp and increased its temperature. Occasionally, it was stationary in cold

spots and decreased its temperature (Fig 3D, white areas). Between these stationary periods,

the lizard exhibited short bouts of activity (Fig 3D, blue traces). This dynamic allowed the liz-

ard to maintain an average preferred temperature of 36.0˚C (SD = 2.3˚C) that is considerably

different from the ambient temperature (28.2, SD = 0.5˚C, orange curve), in general accor-

dance with previous studies [61,63]. These data reflect skin temperatures but can be converted

to core temperature using a simple calibration as previously performed for P. Vitticeps [64]

(S2C Fig) and additional lizards of similar size [63,65,66]. Interestingly, while in some

instances basking was observed following food reward (Fig 3D, green lines), this was not the

general case hinting that the decision to bask after feeding is not always prioritized.

An automated paradigm for spatial learning in Pogona Vitticeps
To demonstrate the capabilities of the system we trained lizards on a spatial task requiring

association learning, displaced reward learning and reversal learning. Lizards were placed in a

ReptiLearn arena, which served as their home cage for the duration of the experiment (lasting

2 to 3 weeks). The experiment consisted of 3 blocks. In the first block, lizards were required to

enter the feeder dish area in order to receive live food reward from the automatic feeder in the

rewarded location (Fig 4A). This block served to habituate the animal to the arena and to asso-

ciate entering the dish location with a light blink and a food reward. In addition, to prevent fre-

quent rewards without new action, animals had to exit the reward area (gray area outside the

reward circle in Fig 4A) before entering it again to receive another reward. In the second
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Fig 4. Lizards learn a spatial task in a closed-loop automated paradigm. (A) Schematics of a spatial learning task block. The lizard was conditioned to visit a

predefined area in the arena (yellow circle, not physically marked in the arena and invisible to the lizard). Following the lizard’s detection in the rewarded

location (entering the rewarded location and staying there for 2 s), an LED was turned on (blinks for 5 s), after which a live prey was delivered. After each

reward, the animal had to exit the cooldown area (gray circle), and 20 s had to pass before the lizard could return to trigger another reward. (B) The experiment

consisted of 3 blocks (as in (A)). In the first, the feeder area (green) was reinforced with food reward. In the second and third blocks, the top-right corner

(orange) and top-left corner (blue) were reinforced, respectively. (C) Raster plot of reward times for animal 1 over the full 12-day experiment. Background

colors correspond to the reinforced areas. (D) The change (between the first and the second blocks) in the lizard’s entry rate (ΔER) to different areas plotted on

the physical space of the arena. Each square is a mean over entries to a circular area (same size as the reinforced area) surrounding the square. Notice the

strongest increase for the second reinforced area but also a significant increase in the reward location. (E) Same as (D) but for the changes between the second

and the third blocks of the same animal. Notice the strong increase for the third area (blue) and strong decrease for the second area. (F) Position trajectories

over a single day (animal 1, block 3, day 3), segmented into stationary (gray dots marking mean location during stationary periods) and movement periods

(colored lines). (G) ΔER (as in (E)) for each square as a function of its distance from the second reinforced area. Linear regression analysis shows significant

(p< 0.001) correlation of C = −0.72. Areas overlapping with the feeder area (green points) were excluded from the regression. Blue and orange dots correspond

to blue and orange areas in (B). (H) Same as (G) but for the increase between the second and the third blocks as a function of distance from the third reinforced

area (p< 0.001; C = −0.77). (I) Distributions of correlation coefficients for ΔER as a function of distance (as in (G) and (H)) across areas for different animals

and blocks (orange and blue dots correspond to blocks 1!2 and blocks 2!3, respectively). Areas in the histogram are color coded as in (G). Orange and blue

arrows indicate the center of the reinforced areas of the second and the third blocks, respectively. Notice strong shifts in ΔER correlation distribution following

the change in rewarded area for all animals, except the third block in animal 2. Individual numerical values are provided in S1 Data.

https://doi.org/10.1371/journal.pbio.3002411.g004
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block, we repeated the same reward protocol but changed the reinforced area to the top right

corner (Fig 4B, orange circle) without changing the location of the reward. We note that

rewarded locations were only defined in the video analysis algorithm and were not physically

marked in the arena. This block served to examine whether lizards can associate their action

(entering a specific location), with an outcome (reward) in another location (displaced

reward). In the third block, we examined if lizards could reverse their learning by changing the

reward location to the upper left corner (Fig 4B, blue circle).

Lizards successfully entered the rewarded areas in each block and received rewards, all

without any guidance or interaction with humans throughout the entire experiment. The

reward rate was not homogenous over time (Fig 4C). Reward rate was low at the beginning of

the day and increased during the afternoon. However, these dynamics were lizard specific with

different lizards showing increased reward rates during different times (S3 Fig). To assess

whether animals learned the task, or entered the rewarded areas by chance, we posited that sig-

nificant change in the entry rate to a reinforced area implies an association between the area

and the reward. We therefore tracked the entry rate to the reinforced area and to all other

areas (uniformly distributed on a grid with centers marked by rectangles in Fig 4D) and calcu-

lated the differences in entry rate (ΔER) between consecutive blocks (Fig 4D and 4E). The first

transition in reward location (block 1!2) was accompanied by an increased ΔER to the rein-

forced area (Fig 4D, orange circle). An increase in ΔER was also observed for the reward loca-

tion (feeder area). This increase is expected since the lizard continues to receive the

mealworms in the feeder location. To quantify the changes in the lizard’s behavior, we plotted

ΔER for each area as a function of the distance from the reinforced area and conducted a

regression analysis (Fig 4G). In this analysis, we exclude the area around the feeder since the

animals had to enter this area to receive rewards (Fig 4G, green dots). We expected an increase

in ΔER to areas closer to the reinforced area. Such an increase was evident (Fig 4G, p-

value < 0.001). Repeating this experiment in additional animals showed a similar and signifi-

cant decrease in ΔER with distance (Fig 4I). This decrease evolved gradually over the training

period but fluctuated during single days (S4A Fig). These results indicate that P. Vitticeps can

learn to associate one location in the arena with an outcome in a different location.

We next examined if the lizards could perform a reversal learning task. After the lizards

learned the first location, we shifted the reward location. Following the switch, we observed an

increased ΔER in the new reinforced location (Fig 4E, blue circle). Furthermore, we observed a

decrease in the previous reward location (Fig 4E, orange circle). This result corresponded with

a significant (p-value < 0.001) spatial decay of ΔER with distance from the new reinforced

location (Fig 4H) that developed gradually over days (S4B Fig). Correspondingly, examining

all movement trajectories on the last day of training (Methods) revealed that lizards were

engaged in stereotypical movement paths between the feeder and the rewarded location (Fig

4F). Successful learning in the reversal task was significant across animals (Fig 4I) with one

animal failing to learn the reversal (see S1 Table for U values and statistical significance for all

animals and blocks). However, this animal showed a strong decrease in movement in the third

block which may explain its nonsignificant learning. Thus, using ReptiLearn we were able to

successfully train lizards on a complex spatial task without human intervention.

Discussion

In this manuscript, we introduce ReptiLearn—a versatile, low-cost, open-source experimental

arena for behavioral experiments in reptiles (Fig 1A). As far as we are aware, this is the first

comprehensive automated solution for behavioral investigations in reptiles. It effectively

addresses numerous challenges inherent to behavioral studies in reptiles, amphibians, and
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beyond. Specifically, ReptiLearn facilitates precise control and monitoring of arena and animal

temperature. It incorporates a specialized feeder for delivery of live prey over long periods. In

addition, the system is fully automated and offers a wide range of classes for controlling hard-

ware components, which can be remotely controlled and monitored through a user-friendly

web interface. Finally, ReptiLearn operates in real-time and permits the flexible coupling of

arena components to design diverse experiments (Fig 1C). The ReptiLearn code, and a user-

friendly installation procedure complemented by tutorials, is accessible at https://github.com/

EvolutionaryNeuralCodingLab/reptiLearn.

While primarily designed with reptiles in mind, ReptiLearn offers innovative solutions that

can be applied to experiments involving other animal models. The low-cost feeder, along with

its control circuit and software, can prove valuable for conditioning species reliant on live

prey, such as shrews [67] and insectivorous birds [68]. The web-based user interface (Fig 1D)

is ideal for continuous, long-term experiments as it simplifies remote monitoring of multiple

camera feeds and can be accessed easily via mobile devices like smartphones and tablets. Addi-

tionally, the highly parallelized image processing pipeline can efficiently scale with the number

of CPU cores and GPUs used, allowing for tracking animals across multiple cameras, forming

the basis for 3D tracking solutions. This can be particularly useful for combining image analy-

sis data from different devices, for example, for estimating real-time skin (or body, S2C Fig)

temperature and employing it as an input for closed-loop feedback (Fig 3). Combining SAM

with object detection models, such as YOLO, for generating animal body segmentation masks

presents a promising new approach that can save many hours of manual annotation and be

used for analyzing animal behavior dynamics.

The fine-grained control and monitoring of both the arena’s and animals’ temperatures

removes barriers when studying thermoregulation in ectotherms [62] and endotherms [69,70].

By utilizing advanced tools for identifying animals in video streams and automatically register-

ing them to images captured by thermal cameras, we were able to track animal skin tempera-

ture continuously (Fig 3). This approach offers distinct advantages over traditional methods.

Such solutions require surgical procedures for implanting temperature probes [64,66] and tele-

meters [61], the telemetry location information has a lower spatial resolution relative to video,

and there is no access to posture information. Further, the monotonic relation between skin

and core temperature (with approximately linear relation at temperatures of up to approxi-

mately 35˚C) allows estimating core temperatures from skin temperatures [63–66] (S2C Fig).

Using such estimation, our approach could be used for measuring the preferred temperature

of freely behaving animals without the need to construct specialized setups [71] by simply

averaging over the animal’s temperatures (Fig 3D). Further, our approach enables placing ther-

moregulation within a wider behavioral and neurophysiological context [2]: First, skin temper-

ature information can be measured for any task the animal performs and can be combined

with shuttling boxes when accurate linear gradients are required [71]. Second, tracking and

manipulating food rewards allows incorporating metabolic considerations into experiments.

Third, the arena is compatible with neurophysiological measurements allowing to link ther-

moregulation with brain activity [72]. Finally, the ability to dynamically alter thermal condi-

tions using real-time feedback opens new avenues of thermal regulation research and

significantly enhances the system’s flexibility.

ReptiLearn is well suited for investigating short-range spatial cognition [73]. We demon-

strated its efficacy in a complex spatial task involving P. vitticeps and encompassing association

learning, displaced reward learning and reversal learning. In addition, we demonstrate that

reptiles can use free-exploration without any guidance or human feedback to learn this task

and flexibly associate specific unmarked positions with a reward in another location. Our

results align with prior studies describing reptile spatial learning abilities [74–78]. Notably, our
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innovative approach departs from previous spatial assays that necessitated performing an

extensive number of trials, each lasting up to tens of minutes [58,77], until performance crite-

ria were met [79]. These experiments were usually conducted manually, demanding substan-

tial efforts from experimenters, such as baiting food rewards in each trial [76] or repositioning

of animals [77]. In contrast, our paradigm allows unrestricted animal movement throughout

the entire experiment eliminating possible biases introduced by human handling. Further, ani-

mals choose when to engage in the task as part of their uninterrupted behavioral routines. The

lack of defined trials prevents calculating trial statistics but provides information about animal

activity preferences (Fig 4F). This approach results in high engagement over consecutive days

during which animals successfully achieved the task tens of times per day (S3 Fig). While this

rate is hard to compare to paradigms with defined trials, the number of reward events is com-

parable and in many cases higher than in conventional trial-based experiments [75,79,80].

Finally, our automated long-term recording approach is ideally suited for ectotherms with low

metabolic rates and behaviors that likely extend over long time scales. Another added benefit

of this approach is collecting large statistical datasets. By harnessing continuous position track-

ing (Fig 4F), temperature manipulation and monitoring (Fig 3), visual stimulation (Fig 1B),

and real-time feedback (Figs 1C and 2), ReptiLearn allows expanding the range of questions

studied in reptile spatial cognition.

Despite pioneering work in the field [44,58,77,81,82], our understanding of the cognitive

abilities of reptiles, and ectotherms in general, remains limited. Progress has been constrained,

in part, by the lack of modern behavioral and neurophysiological tools suited for ectotherms.

In this study, we demonstrated how ReptiLearn enables systematic investigation of spatial cog-

nition and short-range navigation. This approach can be easily extended to explore additional

cognitive capacities. For example, by presenting different auditory or visual stimuli on the

screen and differentially linking them to rewards, we can gain insight into the sensory process-

ing capacities of reptiles [83]. Temperature manipulation and monitoring during these tasks

will allow linking cognitive performance with thermal regulation. Long-term performance

monitoring can provide insight into memory prioritization and long-term storage capacities.

We demonstrated the usefulness of ReptiLearn in one species out of the large and diverse

class of reptiles. While our approach will not fit all reptiles, many of the challenges we tackled

are not unique to P. Vitticeps. The strong dependence on temperature, weak dependence on

food and water reward, preference for eating live prey, low movement rates and engagement

in repeated trials, and slow habituation to human handling are shared across many ectother-

mic vertebrates [43,58]. Thus, studies in a wide range of species can potentially benefit from

our approach. Finally, ReptiLearn facilitates the integration of behavioral assays with neuro-

physiology to elucidate the brain regions and neuronal population patterns underpinning

these cognitive skills [72]. Recent neuronal recordings from awake reptiles are beginning to

reveal the neuronal dynamics underlying brain states [72,84,85] and visual processing [86].

Placing such studies within a behavioral context can shed light on the evolution of cognition

and provide a comparative perspective critical for generalized understanding [29,30,32–35,81].

ReptiLearn substantially enhances the toolbox available to behavioral researchers studying

ectotherms and serves as a proof of concept for an automated, minimally intrusive approach

for exploring reptile cognition.

Methods

Animals

Four P. vitticeps lizards participated in the experiment. Two adults—a male (animal 1, 186g)

and a female (animal 2, 231g), and 2 juveniles—male (animal 3, 121g), female (animal 4,
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117g). Lizards were purchased from local dealers and housed in an animal house at Tel Aviv

University’s zoological gardens. Lizards were kept in a 12–12 h light (07:00–19:00) and dark

cycle and a room temperature of 24˚C. All experiments were approved by Tel Aviv University

ethical committee (Approval number: 04-21-055).

Spatial learning task

General task conditions. Animals were moved from the animal house to the arena near

the end of the light period and remained there for the duration of the experiment (2 to 3

weeks). The arena contained a shelter, a water dish, and a basking area. Before starting the

experiment, each animal was cleaned inside an open box filled with shallow water to prevent

excessive dirt from reducing position-tracking accuracy. Subsequently, animals were placed in

the dark arena, simulating nighttime, and the experiment protocol began the following day (at

7 AM). During all experiments, lizards received a vegetable meal every 7 days. They were given

live food manually in case they did not reach a minimum of 10 worms every 3 days. The exper-

iment was fully automated by the experiment python module (see system/experiments/

loclearn2.py in the ReptiLearn repository). The LED strip and the heat lamp were automati-

cally turned on from 7 AM to 7 PM daily.

Task structure. The task consisted of 3 blocks. In the first block, lizards were rewarded

for entering the feeder area, and in the second and third blocks for entering area 1 and 2,

respectively (Fig 4B). Specifically, upon entering the rewarded location and staying there for 2

s (wait period), the cue LED started to blink and 5 s later it was turned off, and a command

was sent to dispense the reward. In pilot tests, we found that lizards positioned themselves on

the edge of rewarded areas such that slight movements resulted in repeated crossing into the

rewarded areas. To solve this, we required animals to exit the cooldown area (and wait 20 s

starting from LED blink onset) before entering the rewarded area again to receive another

reward. Rewarded locations were only defined in the video analysis algorithm and were not

physically marked in the arena. The transition between blocks occurred after 60 rewards were

received, or after 6 days, whichever occurred first.

Logging task data. Lizard position was constantly tracked throughout the task. Entrance

to the rewarded location was determined in real time by the experiment module (see software)

that received input from the YOLOv4 ImageObserver (see software) tracking the animal’s head

position from the top camera video stream. The ImageObserver output was stored in CSV files

for later analysis (see software). The event logger tracked the time of reward releases, their

resupply times, and the moments when the animal entered or exited the reinforced area.

Switching between the 3 reinforced areas was done manually using the Web UI by moving to

the next block in the session UI section (see software). Switching was always done at the begin-

ning of a day so that the same area was rewarded throughout each day. The experiment module

tracked the number of available rewards in each stacked feeder and switched between feeders

automatically when one of them was empty. This information was also relayed to the experi-

menter through the Web UI so that the feeders could be manually refilled when necessary.

Analysis

Closed-loop latency test. We estimated the latency of delivering a closed-loop stimulus

by combining the processing duration of the YOLOv4 algorithm with the processing time of

all other arena components including camera acquisition. The average duration of YOLOv4

processing was measured directly (mean = 7.92 ms, SD = 0.36 ms, Fig 2B) and the delays asso-

ciated with the rest of the arena components were measured by turning on an LED in the

arena and measuring the time until the system turned it automatically off while the entire
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arena was running. Specifically, we placed an LED on the arena floor and turned it on. We

measured the intensity of a single pixel in the LED light spot in each top-view camera frame

and sent a command to the arena controller to turn the LED off once it was on (its intensity

reached a certain threshold). We measured the latency by counting the number of frames (at

60 Hz frame rate) in which the LED was turned on. Thus, the latency measurement is quan-

tized to 17 ms bins and represents an upper bound of the real latency (Fig 2C).

Animal head position tracking. To track the lizards head and determine if it is inside the

reinforced area, we trained YOLOv4 [51]—a light-weight convolutional neural network. The

model was used to detect the animal’s head bounding box in each top-view camera frame (Fig

2A). Training was performed using a custom dataset consisting of approximately 2,000 gray-

scale images of P. vitticeps lizards from various angles, cameras, and different backgrounds, as

well as approximately 1,400 grayscale images that did not contain a lizard, which were added

to reduce the number of false-positive detections. Approximately 800 of these negative exam-

ples were images of birds and insects from the Imagenet dataset [87], and the rest were images

taken from several empty arenas. The resulting model was able to detect the lizard head in a

wide range of images with various individual lizards, camera angles, and arenas (Fig 2D). Each

top-view camera frame was resized to 416 × 416 pixels and then processed with the trained

model. The output of the model provides a confidence score for each bounding box. Non-max

suppression with a 0.6 threshold was used to remove overlapping detected bounding boxes

with lower scores [51]. Additionally, detections with scores lower than 0.8 were discarded.

When the output of the non-max suppression algorithm resulted in multiple bounding boxes,

we used the box closest to the previous detected one and ignored the others. We used the

bounding box’s center point to estimate the animal’s head position in the arena.

Validation of fine-tuned YOLOv4 model. We evaluated the model’s performance by

comparing manually annotated head bounding boxes and model-derived bounding boxes. We

used a validation set of 400 images sampled uniformly from 800 h of experimental videos from

4 lizards. Using a confidence threshold of 80%, the model achieved a recall of 100% (no false

positives) and a precision (true positive/total positive) of 78% (Fig 2D). To estimate bounding

box accuracy, we divided the intersection area of the 2 boxes by the area of their union (Inter-

section over Union, IoU). Out of the true positive detections, the average IoU between the pre-

dicted and manually annotated bounding boxes was 73% (S1 Fig) indicating a good accuracy.

Travel distance measurements. We measured the travel distance of the animal by cumu-

latively summing the distances between head position coordinates along pairs of consecutive

video frames. To bridge frames with poor YOLOv4 annotation (see above), we linearly inter-

polated the position in these frames using values in neighboring frames. Lizards can spend

long periods of time in the same location. During these times, small random fluctuations in

YOLOv4 position estimation are accumulated resulting in increased travel distance. To

remove such contributions, we used Gaussian filtering on the position coordinates (window

size = 51; SD = 17). The filter window size was chosen empirically by plotting travel distance as

a function of window size for a range of values during periods of limited movement: Travel

distance was observed to drop quickly for small window sizes and nearly saturate for windows

larger than 51. To transform the measurements from pixels to centimeters, we multiplied the

values by a constant factor, which was calculated by computing the distance between several

pixel pairs with known physical distances and averaging the resulting multiplication factors.

Segmentation into periods of movement and quiescence. We segmented each experi-

ment day into periods in which the animal moved in the arena or stayed in place based on the

position-tracking data generated by the YOLOv4 model. First, we used time-based linear inter-

polation to replace missing position values. We applied a Gaussian filter (window size = 51, see

travel distance section above) to reduce the jitter of the model output, resulting in a matrix of
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Tx2, where T is the number of video frames recorded daily. Then, we created a time-delay

embedding from this data (windows size = 50, gap size = 2) [88] and calculated the differences

between consecutive columns for each row, resulting in a matrix of Tx100 (each row contain-

ing 50 interleaved 2D velocity vectors). We conducted a principal component analysis on this

matrix and kept the first 6 principal components (explaining more than 90% of the data vari-

ance in an animal), which resulted in a Tx6 matrix. We then converted this matrix into a

binary vector of size T by calculating the L2-norm of each row and applying a threshold. A

value of 1 indicated a movement sample and 0 indicated a stationary sample. This vector was

then used as an input to Kleinberg’s burst detection algorithm [89] to segment into periods of

stationarity and movement.

Entry rate statistics. To measure whether animals significantly increased their entry rate

to the reinforced area compared to the previous block (ΔER), we defined 96 areas (including

both second and third reinforced areas) in an evenly spaced grid across the arena floor, each

with the same size and shape as the reinforced areas (S5 Fig). We used the animal’s position

data to estimate the entry rate for each area in each block, resulting in ΔER values for each area

and block transition. To calculate the entry rate for each area, we used offline simulations,

assuming each time that a different area was the reinforced one and incorporating all rules for

releasing a reward used in the actual task (as specified in the Results section). For correlation

analysis, areas were classified as either neighboring the feeder area, the first reinforced area,

the second reinforced area, or not neighboring any reinforced areas (green, orange, blue, and

gray areas in S5 Fig, respectively). This was determined based on whether areas had overlap-

ping sections with the reinforced areas; however, the classification was slightly altered to

ensure areas were only considered neighbors of a single reinforced area and maintaining an

equal number of neighbors for the second and the third reinforced areas. The simulation out-

put was the number of rewards per block. We divided this value by the number of light hours

in each block to derive reward rates.

Basking periods estimation. Animals’ basking periods were determined based on posi-

tion data (from YOLOv4). Animals were considered basking when their head bounding-

box centroid resided within a radius of 20 cm around the heat lamp center.

Camera thermal measurements. We used a thermal camera (see hardware) to estimate

ambient and animal skin temperatures during experiment sessions. We recovered temperature

data for each pixel by decoding video files and linearly scaling the decoded 8bit images to Cel-

sius values. We then calculated the ambient arena temperature for each frame by averaging

over all image pixels. This measurement exhibited the same trend as the ambient temperature

sensor on the arena wall but was 1.67˚C higher on average (SD = 0.16) due to the inclusion of

the basking area in the calculation.

Animal thermal measurements. We estimated animals’ body temperature as follows. We

found the temporally closest regular camera frame for each thermal video frame and extracted

the animal head bounding box centroid using YOLOv4. We used the centroid coordinates as

an input prompt to the SAM segmentation model [53] and produced a segmentation mask

containing all animal pixels. We then linearly transformed coordinates to shift from the visual

camera to the thermal camera arena coordinates. This transformation was based on a set of

112 manually labeled reference point pairs to align the centroid and mask with the coordinate

space of the thermal image. We used SAM again to generate a second segmentation mask of

the animal in the thermal image using the transformed centroid as input. The transformed

mask was then passed through 2 iterations of erosion and was finally used to determine the

estimated body temperatures by computing the median intensity across all mask pixels.

To analyze temperature dynamics over entire days, we extracted thermal video frames in

3-s intervals and executed the procedure described above for each frame. To make sure body
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temperature measurements are accurate, masks that were unrealistically large or small were

discarded. Specifically, only areas of 800 to 4,000 pixels for thermal image masks and 11,000 to

30,000 pixels for regular camera image masks were kept. Additionally, due to the low acquisi-

tion frequency of thermal images, pairs of regular and thermal images were occasionally spa-

tially non-overlapping, especially during fast movement bouts. To solve this issue, we

calculated the IoU between each pair of masks and removed frames in which the IoU was

below 0.3 (2% of the frames; M = 0.5; SD = 0.11). Finally, we filtered the sequence of estimated

skin temperatures extracted from valid frames using a moving average (window size = 51). To

illustrate the conversion from skin temperature (ST) to core temperature (CT), we used the

calibration in [64]. Specifically, core temperature was estimated (S2C Fig) using a second

order polynomial fit (CT(T) = p1* ST 2 + p2* ST + p3, p1 = 0.0159; p2 = 1.7066, p3 = −6.1034).

Validation of thermal body masks. We validated the generated thermal body masks by

examining the temperature gradients across mask edge points. Since lizards were warmer than

ambient temperature, these gradients are expected to sharply decrease at lizard edges. We used

a uniform sample of body masks comprising approximately 10% of the total masks generated

during the measurement day. Near the heat lamp, the ambient temperatures are high and it is

harder to evaluate gradients. We therefore removed frames in which lizards partially over-

lapped with the basking area (24% of the original sample). We proceeded by calculating the

temperature gradient along line segments originating from the animal mask center of mass,

and extending outwards such that each edge point was at the center of its respective segment

(S2A Fig). Line segments were discarded when their inner part (from animal center to edge)

was not fully contained in the mask or when their outer part (from the edge until the line end-

point) overlapped with mask points. For each segment, we calculated the intensity of each

pixel according to the thermal image. We aligned the segments according to their middle

points and averaged to produce a mean gradient for each frame. Finally, we calculated the dis-

tribution of intensities as a function of distance along the line (S2B Fig). We aligned the aver-

age mask segments in the same way, normalized their intensities to z-score units, and

calculated the median gradient across the masks (S2B Fig, red line).

ReptiLearn hardware and arena

Arena cage. The arena was shaped like a box without its top face. It consisted of a frame

built with square aluminum profiles and walls and floor made from 3 mm thick aluminum

composite panels. The floor dimensions were 70 cm by 100 cm, and its height was 45 cm. An

additional 100 cm long profile was placed 1 m above the centerline of the arena floor using

additional profiles to support the top-view and thermal cameras, as well as the grid of heat

lamps (described below). S1 Table contains the price list of arena components.

Arena computer. The arena hardware was connected to a desktop computer placed next

to the arena, on which the ReptiLearn software was running (Intel Core i7-11700K CPU,

32GB DDR4 memory, NVIDIA GEFORCE RTX 3080 Ti GPU, 500GB SAMSUNG 980 M.2

NVME SSD, and a 2TB 7200 RPM HDD). An Ubuntu 22.04 Linux operating system was used.

Video cameras. Five cameras were used to acquire video and thermal data in the arena.

They were attached to the arena using short adjustable arms (Noga Engineering & Technology,

LC6100). Three FLIR Firefly S USB3 monochrome cameras (FFY-U3-16S2M-S) with 6 mm

lens (Boowon BW60BLF) were attached to profiles at the top edges of the arena walls. A top-

down view of the arena floor was captured using a FLIR Blackfly S USB3 color camera

(BFS-U3-16S2C-CS) with a 2.8 to 10 mm varifocal lens (Computar A4Z2812CS-MPIR).

Although this is a color camera, only monochrome data was acquired. The camera was

attached to the middle of the center-top profile and was used for real-time position tracking.
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To prevent IR light emitted by heat lamps from flooding images, we covered the Firefly camera

lens with an IR cutoff filter attached using custom 3D-printed holders. Video was mainly

recorded at a frame rate of 50 Hz.

Thermal camera. We used a thermal IR camera (FLIR A70) positioned next to the Black-

fly camera above the arena to measure temperature dynamics during daily activity periods.

The camera captures images in a resolution of 640 × 480 pixels at 16 bits per pixel (bpp), repre-

senting temperatures in up to 10 mK resolution. The camera thermal resolution is advertised

as 45 mK or less; however, we linearly scaled each image to 8 bpp and encoded it into video

files to store the thermal data. We chose a temperature range between 20˚C and 45˚C and

scaled accordingly, which resulted in approximately 0.1˚C resolution. The camera supports up

to 30 frames per second; however, images were taken at a frequency of about 3 Hz due to tech-

nical issues, which FLIR developers eventually solved (but only after we finished conducting

the experiments).

Touch screen. A touch screen (ELO Touch Solutions AccuTouch 1790L 17” LCD open

frame) was attached to one of the shorter arena walls using screws. The touch screen was con-

nected to the arena computer using HDMI and USB cables. A cardboard was fitted around the

screen to prevent animals from using it to leave the arena.

Arduino microcontroller boards. Three Arduino boards (Arduino Nano Every) were

used to control the arena lighting, food dispensers, temperature sensors, and heat lamps and

send TTL signals to synchronize the video cameras (Figs 1B and S6). The boards were con-

nected to the arena computer using USB cables and placed inside a box attached to the external

side of an arena wall.

Light. The arena was lit using an LED strip (12V, 6500K white LEDs, approximately 3.4 m

long) that was attached using adhesive to profiles at the top edge of the 4 arena walls. This pro-

vided relatively uniform lighting across the arena, minimizing shadows. The strip was con-

trolled using a relay module (based on an Omron G5LE-14-DC5 5VDC SPDT relay). The

module’s EN, VDD, and GND control ports were connected to one of the Arduino boards,

and it was used to control the DC output of the LED strip 12V, 5A power supply unit

(S6A Fig).

Live prey dispenser. We used a widely available aquarium food dispenser (EVNICE

EV200GW) for rewarding animals with live prey. It was attached to the arena frame using the

included clamp and released rewards into a small dish placed on the arena floor below it. Com-

mercially available aquarium dispensers are suitable for providing live food. However, they are

slow and do not provide means for external control. To control the food dispenser and reduce

its latency, we modified its control circuit. We connected a ULN2003 stepper motor driver

board to the feeder’s 28BYJ-48 stepper motor (see S6A Fig for circuit details). An Arduino

board controls the motor driver, and Arduino code, integrated into the arena controller,

implements an alternative motor control sequence, significantly reducing its latency to 3.21 s

(SD = 0.54 s) (Fig 2F). This was measured by calculating the time difference from sending a

command to the worm dispenser until the dispensed worm was detected hitting the arena

floor in the video stream. Feeders were filled with worms each kept in a small compartment

(15 in total) with food for gut loading the worms.

To keep animals motivated, smaller worms are more suitable. We therefore used T. molitor
larvae as rewards. However, these worms may turn to pupa in experiments with low reward

rate and long durations of a few days. In such cases, using young Zophobas atratus can extend

larval stages [90]. In some experiments, a larger quantity of worms was needed between refills.

This was solved by vertically and horizontally stacking the feeders (up to 30 worms in 2 verti-

cally stacked feeders and 150 for 5 horizontally stacked feeders). We vertically aligned stacked

feeders such that the top feeder released its reward through the release hole of the feeder below
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it. The experiment module tracked the number of available rewards in each feeder and deter-

mined which device should discharge a reward accordingly. After resupplying the feeders,

researchers can notify the software remotely using the Web UI. Multiple feeders can be placed

in the arena and they require no manual intervention except loading every few days.

Heat grid. Twelve infrared halogen heat lamp bulbs (24 volts, 50 watts) were attached

above the arena, arranged in an equally spaced grid of 3 rows by 4 columns. We attached 8 flat

slotted steel bars to the center-top profile to hold the lamps. Lamp heating can vary between

different manufacturers resulting in different ground temperatures. To control heating inten-

sity, we modified lamp height by attaching 20 cm steel M6 spacer to the steel bars. The lamp

was attached to a ceramic G6.35 socket using appropriate holders and screws. Lowering the

lamps towards the arena floor, increased temperature and reduced the heating area of each

lamp. The lamps were connected to a dedicated Arduino board through a 16-channel relay

module board (S6B Fig). The relay board routed the output of a 12A, 24V DC power supply

unit to specific lamps, which we used to simultaneously operate up to 2 lamps. We selected

this high maximum current capacity to prevent potential problems caused by the high inrush

current of halogen filaments. Another relay module (based on an Omron G5LE-14-DC5

5VDC SPDT relay) controlled the power supply unit output as an additional safety measure

(S6A Fig). The grid enabled targeted heating of specific arena regions by more than 10˚C, cov-

ering nearly the entire arena floor (Fig 3A).

Temperature sensors. We used 2 plastic-covered digital DS18B20 temperature sensors to

measure temperature conditions in the arena. One sensor was attached to the back wall of the

arena and measured ambient temperatures. The second sensor was placed on the bottom of

the opposite wall under the basking area heat lamp. The sensors were connected to one of the

Arduino boards using a 1-Wire connection (S6A Fig).

ReptiLearn software

General design. The ReptiLearn software, written in Python, provides a toolkit for auto-

mating closed-loop behavioral tasks, collecting behavioral data, and extracting basic behavioral

features. It includes a customizable real-time image processing pipeline that can be used to

process and record synchronized video data from multiple cameras or other image sources.

An arena controller program provides a generic way to integrate custom hardware compo-

nents into the system without writing code by communicating with any number of Arduino

microcontroller boards (S7 Fig). Controlling and monitoring the system can be done remotely

through a web-based user interface (Web UI; Fig 1D). Users can implement new automated

experiments by writing Python scripts and linking them to experiment sessions. These scripts

can automate any part of the system based on real-time information gathered from arena

sources. Non-programmers can customize existing scripts by modifying session parameters

through the Web UI. A scheme of blocks and trials makes it possible to design complex experi-

mental sequences.

Parallelism and synchronization. To overcome limitations in Python’s concurrency

model, the software makes extensive use of separate OS processes (S7 Fig). These processes are

synchronized using a central state store, which holds the current state of all system compo-

nents in one place. The Web UI and other external applications can receive updates whenever

the state data changes by making a WebSocket connection to the system HTTP server. The

server also provides an API to control the system remotely, and the MQTT protocol is sup-

ported for communicating with external devices and software (described below).

Supported operating systems and license. The software can run on a wide range of oper-

ating systems thanks to Python’s cross-platform support. It was tested on Ubuntu 20.04,

PLOS BIOLOGY ReptiLearn: A smart home cage for behavioral experiments in reptiles

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002411 February 29, 2024 17 / 27

https://doi.org/10.1371/journal.pbio.3002411


Ubuntu 22.04, and recent versions of Microsoft Windows and macOS. The software is licensed

under the open-source GPL-3.0 license. Source code, detailed installation instructions, and

guides for running and adapting the system are available at https://github.com/

EvolutionaryNeuralCodingLab/reptiLearn.

Web-based user interface. The Web UI is implemented as a separate JavaScript applica-

tion using the React framework (code is available at /ui in the GitHub repository). After an ini-

tial build process (described in the “Getting Started” guide), the system HTTP server can be

used to access it from any device that includes a modern web browser (Figs 1D and S8). It pro-

vides live video streaming from multiple sources and communicates with all other system

components through a WebSocket connection and an HTTP API. The various features of the

interface are described below in relevant sections.

Video acquisition software and image sources. Image data from multiple sources can be

acquired using the system for real-time processing and offline analysis (S9 Fig). ImageSource

classes collect raw data from cameras or other imaging devices and make it available for further

processing. Support for FLIR cameras and potentially other GenICam cameras are provided

by the FLIRImageSource class using the Spinnaker SDK Python bindings. Allied Vision cam-

eras are also supported through the AlliedVisionImageSource class, which utilizes the Vimba

SDK. Additionally, video files can be used as sources for simulation and debugging purposes

using the VideoImageSource class. This class also supports capturing images from standard

webcams. Additional sources can be supported by writing new ImageSource classes and stor-

ing them in Python modules (inside the /system/image_sources folder).

Image observer. ImageObserver classes provide an interface for further processing image

data acquired by ImageSource classes. Each ImageObserver is attached to an ImageSource and

is notified whenever a new image is acquired. Similarly to image sources, observer classes

found inside the /system/image_observers folder are automatically recognized. The repository

includes a YOLOv4ImageObserver class that performs object detection and can generate

bounding boxes for objects or animals in the arena (the YOLO model weights are not

included; see “Getting Started” guide). Additional simple observer classes are included as

examples for implementing new processing algorithms. Multiple ImageObserver classes can

be attached to the same ImageSource, and an additional VideoWriter observer is attached by

default to each source for recording and encoding video. Both sources and observers can be

added and configured using the Web UI “Video Settings” window (S8A Fig). When adding

new sources and observers, all available classes found in their respective folders are listed, and

users can modify classes and reload them without needing to restart the software. ImageObser-

ver output can be accessed from the experiment script using a provided API.

Parallel image processing. To improve performance and utilize multiple CPU cores or

GPUs, each ImageSource and ImageObserver instance runs in a separate OS process and com-

municates with other components through shared memory buffers to avoid expensive data

copying (S9 Fig). There is no limit to the number of sources and observers that can be used

concurrently. Using this architecture, data from each image source can be simultaneously used

for encoding video, streaming video over HTTP, and real-time processing by multiple algo-

rithms with minimal latency.

Video encoding. Video is encoded by the FFmpeg library using the ImageIO python

library. Encoding profiles can be defined in the system configuration file and selected in the

“Video Settings” window. For encoding using NVIDIA GPUs, we used the NVENC encoder;

however, any encoder can be configured by setting FFmpeg parameters accordingly. Specific

FFmpeg builds can be used by pointing the ImageIO library to a particular FFmpeg executable

(see “Getting Started” guide). In addition to video files, each recording includes a CSV file con-

taining a timestamp for each frame and a JSON file containing metadata about the recording.
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Timing data is supplied by the ImageSource for each frame and, in supporting sources, repre-

sents the camera exposure start time.

Camera synchronization. Camera synchronization is accomplished by connecting the

output pin of an Arduino board to the GPIO input of supporting cameras (S6C Fig). A trigger

interface is provided by the arena controller for this purpose (see Arena controller) and does

not require programming the Arduino manually. The video system automatically identifies an

existing trigger and provides manual control through the Web UI. Additionally, the trigger is

automatically paused for 1 s before starting a recording to simplify synchronization with exter-

nal sources, such as electrophysiological data.

Arena controller. Communicating with the various arena electronic components

(described above) is done using the arena controller program (found in the /arena folder of the

repository). The program is integrated into the ReptiLearn system; however, it can also be

used standalone or even on a different computer. It maintains two-way communication

between the rest of the system and any number of Arduino boards by relaying commands

received over an MQTT connection to serial protocol over USB, as well as forwarding data

received from Arduino boards over designated MQTT topics using a simple JSON-based pro-

tocol. A single Arduino program includes all the code necessary to operate a wide range of

devices, avoiding the need to program the boards manually. The “Arena Settings” window in

the Web UI provides an interface to configure the controller, identify connected boards, and

upload the unified Arduino program to each board.

Each device connected to an Arduino board is controlled by an interface class. Several inter-

face classes are implemented, and more can be added by implementing them using C++. For

example, the LineInterface is used to control a single digital output (e.g., for switching light

sources), the FeederInterface controls the automatic feeder (described above), and the Trigger-

Interface is used for sending TTL pulses at a selected frequency to synchronize camera acquisi-

tion. Each interface provides specific configuration parameters, has a current state value (e.g.,

a measurement or whether it is turned on or off), and can respond to multiple commands (see

docs/arena_interfaces.md for more details).

Once configured, the ReptiLearn system integrates with the controller in several ways. The

arena module (at system/arena.py) is responsible for executing the controller program on

startup and provides functions for communicating with it, which can be used to control inter-

faces from experiment scripts. It also maintains a list of all current interface values in the state

store, which is updated after each interface command is sent, and by polling the interfaces at a

fixed interval (once a minute, by default). Additionally, it can be configured to store interface

values (such as temperature sensor measurements) in CSV files or a database using a data log-

ger (see data collection below). The Web UI provides an Arena menu (S8B Fig) for manual

interaction with the controller, where individual interfaces are listed with their current state. It

can also be used to control the execution of the controller program and to send commands to

interfaces, for example, to trigger a reward feeder or toggle a digital output manually. Once the

controller is configured, the same configuration file is automatically used to generate this

menu.

Touchscreen interface. A web application is included to display stimuli on screens and

receive touch input into the system (at /canvas). The application uses the Konva.js 2d canvas

JavaScript library and exposes large parts of its API over a bidirectional MQTT connection.

The canvas module (/system/canvas.py) provides all the necessary functionality to communi-

cate with the web application through the Canvas class. This architecture supports multiple

screens by communicating with multiple web app instances, possibly running on different

computers. Canvas classes can be used in experiment scripts to display various objects, such as

shapes, images, or videos, and manipulate and animate properties of these objects (e.g., their
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position or color). Scripts can be notified of various events, such as screen touches of specific

objects, video and animation progress, and other events supported by Konva.js. Example

experiment scripts that use this module are available in the repository (see /system/experi-

ments/canvas_shapes.py, for example).

Data collection. The software provides several methods for collecting and storing data for

offline analysis. When starting a new session, a session folder is created inside the session root

folder (as defined in the configuration file), in which all video, image, and data files are stored.

Data loggers, implemented by the DataLogger class (see /system/data_log.py), can be used to store

data in CSV files as well as in TimescaleDB database tables, which can also be used to provide

real-time visualization of data using third-party applications. Each data logger runs in a separate

OS process to ensure that data collection does not interfere with other parts of the system.

Several specialized data loggers are provided: (1) An event logger (see /system/event_log.

py) automatically keeps track of session events and can be further configured to log changes of

specific state store values or incoming MQTT messages with specific topics. Additionally,

experiment scripts can use the event logger to log any event relevant to the experimental para-

digm. (2) ImageObserver loggers (ObserverLogger class) can be configured to collect the out-

put of a specific observer (for example, to record animal position for each video frame). (3)

One can define custom loggers within scripts using a generic API to record data from any

source, such as screen touches or the position of objects on the screen (for example, see /sys-

tem/experiments/canvas_video.py). An offline analysis module (at /system/analysis.py) pro-

vides classes and functions for analyzing the data stored in session folders, simplifying tasks

such as finding video frames matching a specific session event or reading time-series data cre-

ated by data loggers.

Failure recovery. Ensuring the ability to quickly recover in the face of unavoidable inter-

ruptions, such as power or system failures, is crucial for the success of long-term experiments.

Consequently, data loggers were designed to instantly save all gathered data to the session

folder. The session state is periodically recorded in JSON format, triggered by significant

events like the initiation and conclusion of trials and blocks. Furthermore, sessions can be

paused and resumed at a later time without introducing any disruptions or complexities to the

analysis process.

Creating and running automated experiments. As described above, each system feature

can be automated by implementing and using experiment scripts. The experiment module (at

/system/experiment.py) includes an Experiment class that provides hooks for triggering code

at various events: when the session is loaded (setup method), when a trial or block begins or

ends (run_trial, end_trial, run_block, and end_block methods), and when the session is closed

(release method). Sessions can be created and configured to run a specific script using the

“New Session” dialog in the Web UI (S8C Fig). Any Experiment class found inside the experi-

ments folder (at /system/experiments) is automatically listed and can be used in a session.

Example scripts and scripts that were used in this study can be found in this directory of the

GitHub repository.

Scripts can define default parameters, which can then be modified using the session section

of the UI once a session is opened (S8D Fig). The session section also allows defining experi-

ment blocks, each having different parameter values. Additionally, several built-in parameters

are provided for controlling the number and duration of trials in each block, as well as block

and inter-trial interval durations ($num_trials, $trial_duration, $block_duration, and $inter_-

trial_interval, respectively). Experiment classes can also define custom actions that can be trig-

gered using the Web UI.

The system simplifies the process of developing and testing experiment scripts. Log mes-

sages generated by the code become instantly accessible within the Web UI, and updating the
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code following modifications does not necessitate a system restart. This results in a swift and

efficient code-test-debug feedback cycle. Since ReptiLearn is developed purely in Python,

scripts can access all of the system code and interface with additional Python packages as

needed.

Task scheduling. Controlling the timing of code execution is an integral part of running

automated experiments. Consequently, the system provides several ways to schedule tasks.

Scripts can utilize the schedule module (at /system/schedule.py) to set timers and trigger func-

tions to run at specific times each day or at regular intervals. The asyncio python library is also

supported and can be used for similar purposes. Additionally, task functions can be defined

inside the tasks folder (at /system/tasks) to be scheduled manually using the Schedule menu in

the Web UI.

Supporting information

S1 Fig. YOLO4 bounding box accuracy. YOLOv4 intersection-over-union (IoU) distribution

over a validation set consisting of 400 images sampled uniformly from video data of 4 animals

and indicating good overlap with animal head. Individual numerical values are provided in

S1 Data.

(PDF)

S2 Fig. Validation of animal thermal body mask and core temperature estimation. (A)

Construction of line segments. An image of a lizard taken from the thermal camera is shown

at the background. Line segments (white) were extended from the animal mask’s center of

mass (orange) outwards to the direction of each animal edge point (green). The length of each

line segment was twice the distance from the center of mass and each edge point (white dots).

(B) Density plot of the temperature at each distance along the line segments. The red line

shows the median temperature gradient across all frames. A sample of uniformly selected 346

thermal video frames measured for 1 day is analyzed. (C) Movement dynamics (travel speed,

blue) and corresponding estimated core temperatures (red, with ambient temperature in

orange) as well as reward times (green) and basking periods (gray) measured over a single day

(taken from Fig 3D). Individual numerical values are provided in S1 Data.

(PDF)

S3 Fig. Reward rate as a function of daytime for different animals. Reward times were col-

lected (as in Fig 4C), convoluted with a normalized Gaussian (std = 30 min) and averaged over

all experiment days. Individual numerical values are provided in S1 Data.

(PDF)

S4 Fig. Progression of spatial correlations in entry rate over days. (A) Correlation coeffi-

cient of ΔER decay as a function of distance from reinforced area 1 (as in Fig 4G), calculated

for each day separately (day zero marks the first day of area 2 reinforcement, gray shade marks

days before reinforcement of area 1). Black line marks the average over animals. (B) Same as

(A) but for reinforced area 2. Animal 2 did not complete the reversal to area 2 and was

excluded from this analysis. Individual numerical values are provided in S1 Data.

(PDF)

S5 Fig. Locations of 96 areas used for entry rate analysis. Each dot represents the center of

an area with the same shape and size as the reinforced areas. Green, orange, and blue circles

show the area of the feeder, the second and the third reinforced areas, respectively. Colored

rectangles represent the areas neighboring each of the reinforced areas (marked in Fig 4G–4I).

(PDF)
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S6 Fig. Circuit diagrams of arena electronic components. (A) An Arduino board connected

to 2 feeders, 2 temperature sensors, an LED strip relay module, a cue LED, and a relay module

controlling the heat grid’s power supply unit. (B) A second Arduino board connected to a

16-channel relay module that controls each of the 12 heat lamps individually. (C) A third

Arduino board was responsible for synchronizing image acquisition by sending TTL pulses to

GPIO inputs of 4 cameras in parallel.

(PDF)

S7 Fig. ReptiLearn software architecture. The software consists of an image processing and

video recording system, an Experiment class controlling the current experiment session, a

state store used for synchronizing different processes, data loggers, and an MQTT client

responsible for communicating with the arena controller, touch screen app, and other external

software. The HTTP/WebSocket server facilitates real-time monitoring and control of the soft-

ware. The arena controller handles communication with Arduino boards that control arena

hardware components.

(PDF)

S8 Fig. ReptiLearn Web UI. (A) Video settings window showing the parameters of an Image-

Source. (B) New session dialog. The session uses the spatial learning Experiment class found

in module/system/experiments/loclearn2.py. Session id determines the directory name in

which data is to be stored. (C) The arena menu listing every configured arena controller inter-

face. Feeder items can be clicked on to release a reward. Toggle interface items can be switched

on or off. Sensor interface items display their most current measurement. (D) Session UI sec-

tion displaying the current session name and the time of creation at the top. Located below is

the session control bar that allows to start and stop the experiment and to control the current

trial and block. Session and block parameters can be set using the editors in the bottom tabs.

(PDF)

S9 Fig. Video system data pipeline diagram. ImageSource objects acquire images and store

them in shared memory buffers (green) together with timestamps. Each ImageObserver object

is tied to an ImageSource and is notified when new data is written to the shared buffer (green).

It processes the data and outputs a result to another shared buffer (blue). The Experiment class

can then access these data through a simple API. ObserverLogger objects can access ImageOb-

server buffers directly and log any new results to a file or database. VideoWriter objects are

specialized ImageObservers that encode and write ImageSource buffer data to video files.

(PDF)

S1 Data. Excel sheet with individual data points presented in the figures. The excel sheet

contains different tabs, each including data for individual data points in all relevant panels of a

specific figure.

(XLSX)

S1 Table. Statistics for entry rate correlations across animals. Mann–Whitney U statistics

for the distributions of correlation coefficients of the difference in entry rate as a function of

distance from each area, for all simulated and real areas. Feeder areas were excluded from the

correlation calculation.

(DOCX)

S2 Table. Price list for arena components. All components, including the visible light cam-

eras, are relatively low cost. An exception to this is the PC which is necessary to facilitate real-

time processing. Another exception is the thermal camera that is not required if thermal

PLOS BIOLOGY ReptiLearn: A smart home cage for behavioral experiments in reptiles

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002411 February 29, 2024 22 / 27

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002411.s006
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002411.s007
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002411.s008
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002411.s009
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002411.s010
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002411.s011
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002411.s012
https://doi.org/10.1371/journal.pbio.3002411


monitoring is not a part of the experimental design.

(DOCX)

Acknowledgments

The authors are most grateful to R. Eyal for guidance during the initial phase of the project; A.

Shvartsman for technical and administrative assistance; the animal caretaker crew for lizard

care; the Shein-Idelson laboratory for their suggestions during this work; and F. Baier for com-

ments on the manuscript.

Author Contributions

Conceptualization: Mark Shein-Idelson.

Formal analysis: Tal Eisenberg.

Funding acquisition: Mark Shein-Idelson.

Investigation: Tal Eisenberg.

Methodology: Tal Eisenberg.

Software: Tal Eisenberg.

Supervision: Mark Shein-Idelson.

Visualization: Mark Shein-Idelson.

Writing – original draft: Tal Eisenberg.

Writing – review & editing: Mark Shein-Idelson.

References
1. Ghysen A. The origin and evolution of the nervous system. Int J Dev Biol. 2003 Dec 1; 47(7–8):555–62.

PMID: 14756331

2. Miller CT, Gire D, Hoke K, Huk AC, Kelley D, Leopold DA, et al. Natural behavior is the language of the

brain. Curr Biol. 2022 May 23; 32(10):R482–93. https://doi.org/10.1016/j.cub.2022.03.031 PMID:

35609550

3. Myers A, Hansen CH. Experimental psychology. Thomson Wadsworth; 2006.

4. Skinner BF. “Superstition” in the pigeon. J Exp Psychol. 1948; 38(2):168. https://doi.org/10.1037/

h0055873 PMID: 18913665

5. Maselli A, Gordon J, Eluchans M, Lancia GL, Thiery T, Moretti R, et al. Beyond simple laboratory stud-

ies: Developing sophisticated models to study rich behavior. Phys Life Rev. 2023 Sep 1; 46:220–44.

https://doi.org/10.1016/j.plrev.2023.07.006 PMID: 37499620

6. Tinbergen N. On aims and methods of Ethology. Z Für Tierpsychol. 1963; 20(4):410–433.

7. Mearns DS, Donovan JC, Fernandes AM, Semmelhack JL, Baier H. Deconstructing Hunting Behavior

Reveals a Tightly Coupled Stimulus-Response Loop. Curr Biol. 2020 Jan; 30(1):54–69.e9. https://doi.

org/10.1016/j.cub.2019.11.022 PMID: 31866365

8. Anderson DJ, Perona P. Toward a Science of Computational Ethology. Neuron. 2014 Oct 1; 84(1):18–

31. https://doi.org/10.1016/j.neuron.2014.09.005 PMID: 25277452

9. Chimento M, Alarcón-Nieto G, Aplin LM. Population turnover facilitates cultural selection for efficiency

in birds. Curr Biol. 2021 Jun 7; 31(11):2477–2483.e3. https://doi.org/10.1016/j.cub.2021.03.057 PMID:

33826905

10. Bermudez Contreras E, Sutherland RJ, Mohajerani MH, Whishaw IQ. Challenges of a small world anal-

ysis for the continuous monitoring of behavior in mice. Neurosci Biobehav Rev. 2022 May 1;

136:104621. https://doi.org/10.1016/j.neubiorev.2022.104621 PMID: 35307475

11. Remmelink E, Loos M, Koopmans B, Aarts E, van der Sluis S, Smit AB, et al. A 1-night operant learning

task without food-restriction differentiates among mouse strains in an automated home-cage

PLOS BIOLOGY ReptiLearn: A smart home cage for behavioral experiments in reptiles

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002411 February 29, 2024 23 / 27

http://www.ncbi.nlm.nih.gov/pubmed/14756331
https://doi.org/10.1016/j.cub.2022.03.031
http://www.ncbi.nlm.nih.gov/pubmed/35609550
https://doi.org/10.1037/h0055873
https://doi.org/10.1037/h0055873
http://www.ncbi.nlm.nih.gov/pubmed/18913665
https://doi.org/10.1016/j.plrev.2023.07.006
http://www.ncbi.nlm.nih.gov/pubmed/37499620
https://doi.org/10.1016/j.cub.2019.11.022
https://doi.org/10.1016/j.cub.2019.11.022
http://www.ncbi.nlm.nih.gov/pubmed/31866365
https://doi.org/10.1016/j.neuron.2014.09.005
http://www.ncbi.nlm.nih.gov/pubmed/25277452
https://doi.org/10.1016/j.cub.2021.03.057
http://www.ncbi.nlm.nih.gov/pubmed/33826905
https://doi.org/10.1016/j.neubiorev.2022.104621
http://www.ncbi.nlm.nih.gov/pubmed/35307475
https://doi.org/10.1371/journal.pbio.3002411


environment. Behav Brain Res. 2015 Apr 15; 283:53–60. https://doi.org/10.1016/j.bbr.2015.01.020

PMID: 25601577

12. Singh S, Bermudez-Contreras E, Nazari M, Sutherland RJ, Mohajerani MH. Low-cost solution for

rodent home-cage behaviour monitoring. PLoS ONE. 2019 Aug 2; 14(8):e0220751. https://doi.org/10.

1371/journal.pone.0220751 PMID: 31374097

13. Kiryk A, Janusz A, Zglinicki B, Turkes E, Knapska E, Konopka W, et al. IntelliCage as a tool for measur-

ing mouse behavior– 20 years perspective. Behav Brain Res. 2020 Jun 18; 388:112620. https://doi.org/

10.1016/j.bbr.2020.112620 PMID: 32302617

14. Voikar V, Gaburro S. Three Pillars of Automated Home-Cage Phenotyping of Mice: Novel Findings,

Refinement, and Reproducibility Based on Literature and Experience. Front Behav Neurosci. 2020 Oct

30; 14. https://doi.org/10.3389/fnbeh.2020.575434 PMID: 33192366

15. Mingrone A, Kaffman A, Kaffman A. The Promise of Automated Home-Cage Monitoring in Improving

Translational Utility of Psychiatric Research in Rodents. Front Neurosci. 2020:14.
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