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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Corrective feedback received on perceptual decisions is crucial for adjusting decision-mak-

ing strategies to improve future choices. However, its complex interaction with other deci-

sion components, such as previous stimuli and choices, challenges a principled account of

how it shapes subsequent decisions. One popular approach, based on animal behavior and

extended to human perceptual decision-making, employs “reinforcementAU : PleasenotethatquotationmarkshavebeenchangedtoAmericanstyleði:e:; doublequotationmarksÞthroughoutthetext; asperPLOSpreference:learning,” a princi-

ple proven successful in reward-based decision-making. The core idea behind this

approach is that decision-makers, although engaged in a perceptual task, treat corrective

feedback as rewards from which they learn choice values. Here, we explore an alternative

idea, which is that humans consider corrective feedback on perceptual decisions as evi-

dence of the actual state of the world rather than as rewards for their choices. By implement-

ing these “feedback-as-reward” and “feedback-as-evidence” hypotheses on a shared

learning platform, we show that the latter outperforms the former in explaining how correc-

tive feedback adjusts the decision-making strategy along with past stimuli and choices. Our

work suggests that humans learn about what has happened in their environment rather than

the values of their own choices through corrective feedback during perceptual decision-

making.

Introduction

Perceptual decision-making (PDM) means committing to a proposition about an objective

world state (e.g., “The temperature today is low.”). Decision-makers adjust future commit-

ments based on what they experienced from past commitments, including what they per-

ceived, what they chose, and what the environment gave them in return. Among these history

factors, trial-to-trial corrective feedback—feedback about the correctness of a decision-maker’s

choices on a trial-to-trial basis—is widely used by experimenters to train participantsAU : PleasenotethatasperPLOSstyle; donotusethewordsubjectsforhumans:Hence; }subjects}hasbeenchangedto}participants}throughoutthetext:on PDM

tasks. Despite this clear utility of feedback and a pile of evidence for its impact on subsequent

PDM behavior across species and sensory modalities [1–11], much remains elusive about how

corrective feedback, in conjunction with other history factors, exerts its trial-to-trial influence

on subsequent decisions.
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Unlike PDM, value-based decision-making (VDM) involves making choices based on deci-

sion-makers’ subjective preferences (e.g., “choosing between two drinks based on their tastes”).

Reinforcement learning (RL) algorithms have proven effective in explaining how past rewards

affect future VDM based on error-driven incremental mechanisms [12–18]. Intriguingly,

there have been attempts to explain the impact of past feedback on subsequent PDM by graft-

ing an RL algorithm onto the PDM processes [3,4,8–10]. This grafting premises that decision-

makers treat corrective feedback in PDM similarly to reward feedback in VDM. On this prem-

ise, this RL-grafting account proposes that decision-makers update the value of their choice to

minimize the difference between the expected reward and the actual reward received, called

“reward prediction error” (red dashed arrows in Fig 1A). Importantly, the amount of reward

prediction error is inversely related to the strength of sensory evidence—i.e., the extent to

which a given sensory measurement of the stimulus supports the choice—because the expected

Fig 1. Two possible scenarios for what humans learn from feedback for PDM and their distinct predictions of

feedback effects. (A) Decision-making platform for perceptual binary classification. The gray arrows depict how a

sensory measurement m and feedback F are generated from a stimulus S, which is sampled from the world, and a

choice C. The black arrows depict the computational process, where, for a given choice option, a decision-maker

computes its expected value Qoption by multiplying the probability that the choice is correct poption given m and the class

boundary B with the value of that choice Voption and make a choice C based on Qoption. In principle, the decision-maker

may update either Voption (red dashed arrows; value-updating) or world (green dashed arrows; world-updating) from

m, C, and F. (B) Distinct sensory evidence–dependent feedback effects predicted by the value-updating and world-

updating scenarios. According to the value-updating scenario (left), as sensory evidence becomes stronger, poption
increases, and accordingly, so does Qoption. As a result, reward prediction errors become smaller but remain in the

direction congruent with feedback, which predicts that feedback effects on subsequent trials diminish asymptotically as

a function of the strength of sensory evidence. According to the world-updating scenario (right), as sensory evidence

becomes stronger, the stimulus distribution, and accordingly B too, becomes shifted farther towards the stimulus in the

direction counteracting the influence of feedback. As a result, the direction of feedback effects is the same as that

predicted by the value-updating scenario for weak sensory evidence but eventually reverses to the direction

incongruent with feedback as sensory evidence becomes stronger.

https://doi.org/10.1371/journal.pbio.3002373.g001
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value becomes low as the sensory evidence becomes weak. For example, suppose a decision-

maker committed to a proposition, “The temperature today is low.” Then, correct feedback to

that commitment increases the value of the “low” choice since the positive reward for the

“low” choice leads to the positive reward prediction error, which indicates the need to heighten

the value of the “low” choice. Importantly, the amount of value-updating is greater when the

experienced temperature is moderately cold (e.g., −2˚C, weak sensory evidence for the “low”

choice) compared to when it is very cold (e.g., −15˚C, strong sensory evidence for the “low”

choice) because the expected reward is smaller in the former, which leads to a greater level of

reward prediction error compared to the latter (as illustrated in the left panel of Fig 1B). A

recent study [9] referred to this sensory evidence–dependent impact of feedback as “confi-

dence-guided choice updating” based on the tight linkage between decision confidence and

sensory evidence. This RL-grafting account, referred to as the value-updating scenario herein-

after, appears natural given that corrective feedback is typically provided as physical rewards

such as juice or water in animal PDM experiments [4,5,8–10,19–21]. The value-updating sce-

nario seems plausible from the perspective that PDM and VDM might share common mecha-

nisms [22], as suggested by some empirical studies [23,24].

Nevertheless, value-updating might not be the only route through which feedback effects

transpire in PDM, especially for humans receiving corrective feedback without any physical

rewards. Alternatively, decision-makers may treat feedback not as rewards but as a logical indi-

cator of whether the proposition they committed to is true or false in the world. In this sce-

nario, decision-makers update their belief about world statistics (i.e., stimulus distribution) by

combining the information about the trueness of their choice, which is informed by feedback,

and the information about the stimulus, which is informed by a sensory measurement (dashed

arrow from m in Fig 1A). Suppose you have recently arrived in Canada for the first time in the

winter and felt the chilly air. You remarked, “The temperature today is low.” Your friend, who

has lived for long in Canada, may agree or disagree with you, and this will provide you with

information on the typical temperature distribution during the Canadian winter. The incorrect
feedback from your friend (e.g., “Actually, it’s not low at all today.”) indicates that the tempera-

ture experienced today falls on the higher side of the actual distribution, making you adjust

your belief about the distribution to the lower side. On the contrary, the correct feedback (e.g.,

“Yes, it’s low today.”) will lead you to adjust your belief about the distribution to the higher

side. It is important to note that, besides the feedback from your friend, the temperature felt by

yourself also informs you of the statistical distribution of temperature since it is a sample from

that distribution. For example, if the temperature felt moderately cold (e.g., −2˚C), your belief

about the temperature distribution will only slightly shift towards the lower side. However, if it

felt very cold (e.g., −15˚C), your belief will shift towards the same lower side, but with a much

greater amount, which can counteract the impact of the correct feedback on your belief (i.e.,

adjusting your belief to the higher side).

Therefore, according to this alternative scenario, referred to as the word-updating scenario
hereinafter, correct feedback to “The temperature today is low.” will increase the tendency to

classify the next day’s temperature as “low,” just like the value-updating scenario. However,

unlike the value-updating scenario, the world-updating scenario implies that when sensory

evidence is too strong, such a tendency can be reversed, leading to a counterintuitive increase

in the tendency to classify the next day’s temperature as “high,” (as illustrated in the right

panel of Fig 1B). The world-updating scenario is conceptually parsimonious because it does

not require any component outside the PDM processes, such as the RL algorithms developed

in the VDM. Especially in Bayesian Decision Theory (BDT) [25,26], which has been providing

compelling accounts for PDM behavior, world statistics is a crucial knowledge that is required

to infer a world state in PDM [27–30].
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Here, we tested which of the 2 scenarios better explains the effects of corrective feedback—

without any physical reward—on humans’ PDM. To do so, we implemented the value-updat-

ing and world-updating scenarios into a variant of RL model [9] and a Bayesian model, respec-

tively, and directly compared the 2 models’ accountability for the feedback effects on humans’

PDM behavior. As a PDM task, we opted for a binary classification task, one most widely used

PDM task in which decision-makers sort items into 2 discrete classes by setting a boundary

since the 2 scenarios make distinct predictions about the stimulus-dependent feedback effects

in this task. As was described intuitively above and will be explained rigorously later, the

value-updating scenario predicts that feedback, which acts like rewards, “unidirectionally” fos-

ters and suppresses the rewarded (correct) and unrewarded (incorrect) choices, respectively, in

subsequent trials while diminishing its impact asymptotically as sensory evidence becomes

stronger, due to the reduction in reward prediction error (the red curve in Fig 1B). By contrast,

the world-updating scenario predicts that the feedback effects not just diminish but eventually

become reversed to the opposite side as sensory evidence becomes stronger, as the shift of the

class boundary towards the previous stimulus counteracts the boundary shift due to feedback

(the green curve in Fig 1B).

We found the world-updating model superior to the value-updating model in explaining

human history effects of corrective feedback on PDM. Critically, the value-updating model

fails to account for the observed stimulus-dependent feedback effects. Our findings suggest

that humans are likely to treat corrective feedback in PDM as logical indicators of the trueness

of the proposition to which they committed, rather than as rewards, and update their knowl-

edge of world statistics, rather than the values of their choices, based on feedback in conjunc-

tion with the other history factors—previous stimuli and choices.

Results

Quantifying the retrospective and prospective history effects of feedback

on binary classification

To study the stimulus-dependent feedback effects in PDM, we acquired long sequences (170

trials/sequence) of binary choices (C2{small, large}) many times (30 sequences/participant)

from each of 30 human participants while varying the ring size (S2{−2, −1,0,1,2}) and provid-

ing corrective feedback (F2{correct, incorrect}) (Fig 2A). On each trial, participants viewed a

ring, judged whether its size is small or large as accurately as possible while receiving feedback,

which indicated by color whether the choice was correct or incorrect (Fig 2B). We ensured the

ring size varied sufficiently—including the ones very easy and difficult for classification—so

that the 2 scenarios’ distinct predictions on the stimulus-dependent feedback effects could be

readily compared. Also, we used stochastic feedback, where correct and incorrect feedback was

occasionally given to incorrect and correct choices, respectively, to cover the entire 3D space

of decision-making episodes defined orthogonally over “stimulus,” “choice,” and “feedback”

(5×2×2 = 20 episodes; Fig 2C; Materials and methods).

To rigorously evaluate the correspondence between model prediction and human behavior,

we quantified the history effects in both retrospective and prospective directions of time, as fol-

lows (Fig 2D). First, we localized the trials in which a PDM episode of interest occurred (trial

of interest, toi) and stacked the trials that preceded (the retrospective block of trials, toi−1) and

those that followed (the prospective block of trials, toi+1) the toi. Second, we derived the 2 psy-

chometric curves from the retrospective and prospective blocks of trials, respectively, and fit

the cumulative normal distribution function to these curves to estimate the point of subjective

equality (PSE) measures, which have previously been used [19–21] and known to reliably esti-

mate the history-dependent choice biases in PDM [31]. Thus, the PSEs of the retrospective

PLOS BIOLOGY Corrective feedback on perceptual decisions
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Fig 2. Experimental design and definition of retrospective and prospective history effects. (A) A chain of PDM

episodes over a single sequence of trials. Each trial sequence consists of 170 column vectors of PDM episode [stimulus;

choice; feedback]. In this example, the trial of interest (toi) is characterized by an episode vector [0; large; correct] and

demarcated by thick outlines. The trials that precede and follow toi can be labeled as toi−1 and toi+1, respectively. (B)

Trial structure. Participants viewed a randomly sampled ring with their eyes fixed, classified its size, and then received

PLOS BIOLOGY Corrective feedback on perceptual decisions
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and prospective trials quantify the choice biases that exist before and after the PDM episode of

interest occurs, respectively, with negative and positive values signifying that choices are biased

to large and small, respectively.

Decision-making processes for binary classification

As a first step of evaluating the value-updating and world-updating scenarios, we constructed a

common platform of decision-making for binary classification where both scenarios play out.

This platform consists of 3 processing stages (Fig 3A). At the stage of “perception,” the decision-

maker infers the class probabilities, i.e., the probabilities that the ring size (S) is larger and smaller,

respectively, than the class boundary (B) given a noisy sensory measurement (m), as follows:

pðCL ¼ largeÞ ¼ pðS > BjmÞ ¼
Z 1

B
pðSjmÞdS;

pðCL ¼ smallÞ ¼ 1 � pðCL ¼ largeÞ;

where CL stands for the class variable with the 2 (small and large) states.

At the stage of “valuation,” the decision-maker forms the expected values for the 2 choices

(Qlarge and Qsmall) by multiplying the class probabilities by the learned values of the corre-

sponding choices (Vlarge and Vsmall) as follows:

Qlarge ¼ pðCL ¼ largeÞ � Vlarge;

Qsmall ¼ pðCL ¼ smallÞ � Vsmall:

Lastly, at the stage of “decision,” the decision-maker commits to the choice whose expected

value is greater than the other. In this platform, choice bias may originate from the perception

or valuation stage. Suppose the decision-maker’s belief about size distribution at the percep-

tion stage is not fixed but changes depending on previous PDM episodes (Fig 3B, top). Such

changes lead to the changes in PSE of the psychometric curve because the class probabilities

change as the class boundary changes (Fig 3B, bottom). Alternatively, suppose the decision-

maker’s learned values of the choices are not fixed but change similarly (Fig 3C, top). These

changes also lead to the changes in PSE of the psychometric curve because the expected values

change as the choice values change (Fig 3C, bottom).

The belief-based RL model

To implement the value-updating scenario, we adapted the belief-based RL model [9] to the

current experimental setup. Here, feedback acts like a reward by positively or negatively rein-

forcing the value of choice (Vlarge(small)) with the deviation of the reward outcome (r) from the

expected value of that choice (Qlarge(small)), as follows:

VlargeðsmallÞ  VlargeðsmallÞ þ ad;

feedback indicating whether the classification was correct or incorrect by the color around the fixation. (C) The 3D

state space of the PDM episodes in the experiment. The example episode of toi in (A) is marked by the black cube. (D)

Definition of retrospective and prospective history effects. As illustrated in (A) and (C), for any given episode of toi, all

the trials labeled with toi−1 and toi+1 are stacked and used to derive the psychometric curves, respectively. The PSEs

estimated for the toi−1 and toi+1 psychometric curves quantify the retrospective and prospective history effects,

respectively. In this example, the black and gray curves were defined for toi = [0; large; correct] and toi = [0; small;
correct], respectively, with circles and bars representing the mean and SEM across 30 participants, respectively. The

data underlying this figure (D) can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3002373.g002
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d ¼ r � QlargeðsmallÞ ¼ r � pðCL ¼ largeðsmallÞÞ � VlargeðsmallÞ;

where α, δ, and r are the learning rate, the reward prediction error, and the reward, respec-

tively. The state of feedback determines the value of r: r = 1 for correct; r = 0 for incorrect. Note

that δ has the statistical decision confidence at the perception stage, i.e., p(CL = large(small)),
as one of its 3 arguments. As stressed by the authors who developed this algorithm [9], this fea-

ture makes the strength of sensory evidence—i.e., statistical decision confidence—modulate

Fig 3. Implementation of the value-updating and world-updating scenarios into computational models in a common PDM

platform. (A) Computational elements along the 3 stages of PDM for binary classification. At the “perception” stage, the

probabilities that the class variable takes its binary states small and large—p(CL = large) and p(CL = small)—are computed by

comparing the belief on the stimulus size p(S|m) against the belief on the class boundary B—the mean of the belief on stimulus

distribution in the world p(S). At the “valuation” stage, the outcomes of the perception stage are multiplied by the learned values

Vs to produce the expected values Qs. At the “decision” stage, the choice with the greater expected value is selected. (B, C)

Illustration of 2 potential origins of choice biases, one at the “perception” stage (B) and the other at the “valuation” stage (C).

The color indicates the direction of choice bias (yellow for bias to large; black for no bias; blue for bias to small). (D, E)

Illustration of the architectures (left panels) and predictions on the stimulus-dependent feedback effects (right panels) of BMBU

(D) and the belief-based RL model (E). In the left panels, the dashed arrows represent the ways the history factors (feedback and

stimulus) exert their contribution to choice bias. In the right panels, PSEtoi+1, which quantifies the choice bias in the trials

following a certain PDM episode at toi = [0; large; correct], is plotted as a function of the stimulus size at toi. The color indicates

the direction of choice bias, as in (B) and (C).

https://doi.org/10.1371/journal.pbio.3002373.g003

PLOS BIOLOGY Corrective feedback on perceptual decisions

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002373 November 8, 2023 7 / 32

https://doi.org/10.1371/journal.pbio.3002373.g003
https://doi.org/10.1371/journal.pbio.3002373


the degree to which the decision-maker updates the chosen value based on feedback (Fig 3E,

left). Hence, this belief (confidence)-based modulation of value-updating underlies the stimu-

lus-dependent feedback effects: The amount of feedback effects decreases as sensory evidence

becomes stronger since the reward prediction error decreases as a function of p(CL = large
(small)), which is proportional to sensory evidence (Fig 3E, right).

The Bayesian model of boundary-updating (BMBU)

To implement the world-updating scenario, we developed BMBU, which updates the class

boundary based on the previous PDM episode in the framework of BDT. Specifically, given “a

state of the class variable that is indicated jointly by feedback and choice,” CL, and “a noisy

memory recall of the sensory measurement (which will be referred to as ‘mnemonic measure-

ment’ hereinafter),” m0, BMBU infers the mean of the size distribution (i.e., class boundary), B,

by updating its prior belief about B, p(B), with the likelihood of B, p(m0, CL|B), by inverting its

learned generative model of how m0 and CL are generated (Fig 3D, left; Eqs 3–6 in Materials

and methods for the detailed formalisms for the learned generative model), as follows:

pðBjm0;CLÞ / pðm0;CLjBÞpðBÞ � pðm0;C; FjBÞpðBÞ:

This inference uses multiple pieces of information from the PDM episode just experienced,

including the mnemonic measurement, choice, and feedback, to update the belief about the

location of the class boundary (refer to Eqs 8–14 in Materials and methods for more detailed

formalisms for the inference). In what follows, we will explain why and how this inference

leads to the specific stimulus-dependent feedback effects predicted by the world-updating sce-

nario (Fig 3D, right), where world knowledge is continuously updated.

Suppose a decision-maker currently believes that the size distribution is centered around 0.

Let us first consider a case where the decision-maker experiences a PDM episode with an

ambiguous stimulus: The ring with size 0 is presented and produces a sensory measurement m
that is only slightly greater than 0 (through the stochastic process where m is generated from S;

Eq 5), which leads to the large choice since the inferred S from such m is greater than the center

of the size distribution (Eqs 4 and 7), and then followed by correct feedback. BMBU predicts

that after this PDM episode, the decision-maker will update the belief about the size distribu-

tion by shifting it towards the smaller side. Hence, the choice in the next trial will be biased

towards the larger option, resulting in a negatively biased PSE for the psychometric curve

defined by the trials following the episode of interest. This is because the impact of the mne-

monic measurement on boundary-updating is minimal, whereas that of the informed class

variable is substantial. After the above episode, the decision-maker’s noisy mnemonic mea-

surement m0 is also likely to be slightly larger than 0 since m0 is an unbiased random sample of

the sensory measurement m (Eq 6). Thus, the impact of m0 on boundary updating is minimal

because m0 is close to 0 and thus only slightly attracts the class boundary. On the contrary, the

impact of the informed state of the class variable CL on boundary updating is relatively sub-

stantial, pushing the class boundary towards the regime consistent with the informed state of

CL (Eqs 9–12), which is the smaller side. As a result, the class boundary is negatively (towards-

small-side) biased, which leads to the negative bias in the PSE of the psychometric curve

defined from the trials following the episode of interest (as depicted by the left (yellow) regime

in the plot of Fig 3D).

Next, to appreciate the stimulus-dependent nature of feedback effects in the world-updating

scenario, let us consider another case where the decision-maker experiences a PDM episode

with an unambiguous stimulus: The ring with size 2 is presented and produces a sensory mea-

surement m that falls around 2, which leads to the large choice and then followed by correct
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PLOS Biology | https://doi.org/10.1371/journal.pbio.3002373 November 8, 2023 8 / 32

https://doi.org/10.1371/journal.pbio.3002373


feedback. After this episode, as in the previous case with an ambiguous stimulus, the informed

state of the class variable (CL = large) shifts the class boundary to the smaller side. However,

unlike the previous case, the impact of the mnemonic measurement m0 on boundary-updating,

which is likely to be around 2, is substantial, resulting in a shift of the boundary towards the far

larger side. Consequently, the class boundary becomes positively (towards-large-side) biased.

Here, the mnemonic measurement and the informed state of the class variable exert conflict-

ing influences on boundary updating. Since the mnemonic measurement increases as the stim-

ulus size grows (e.g., S = 0!1!2), the relative impact of the mnemonic measurement on

boundary-updating is increasingly greater as the stimulus size grows, eventually overcoming

the counteracting influence of the informed state of the class variable (S1 Fig). As a result, the

bias in the class boundary is initially negative but is progressively reversed to be positive as the

stimulus size grows, which leads to the bias reversal in the PSE of the psychometric curve

defined from the trials following the episode of interest (as depicted by the right (blue) regime

in the plot of Fig 3D).

We stress that this “stimulus-dependent bias reversal” is a hallmark of the world-updating

scenario’s prediction of the history effects in PDM. Specifically, the direction of bias reversal is

always from small to large as long as the feedback in conjunction with the choice indicates CL
= small (e.g., fS ¼ 0! � 1! � 2;C ¼ small; F ¼ correctg or fS ¼ 0! � 1! � 2; C ¼
large; F ¼ incorrectg) and always from large to small as long as the feedback in conjunction

with the choice indicates CL = large (e.g., fS ¼ 0! 1! 2;C ¼ large; F ¼ correctg or
fS ¼ 0! 1! 2;C ¼ small; F ¼ incorrectg). Critically, the value-updating scenario does not

predict the bias reversal (Fig 3E, right). It predicts that the feedback effects only asymptotically

decrease as a function of sensory evidence but never switch to the other direction. This is

because the decision confidence, p(CL = large(small)), only modulates the amount of value-

updating but never changes the direction of value-updating.

Ex ante simulation of the feedback effects under the 2 scenarios

Above, we have conceptually explained why and how the 2 scenarios imply the distinct pat-

terns of stimulus-dependent feedback effects. Though this implication seems intuitively appar-

ent, it must be confirmed under the experimental setting of the current study. Moreover, there

are good reasons to expect any history effect to exhibit complex dynamics over trials. First,

sensory and mnemonic measurements are subject to stochastic noises, which propagates

through decision-making and value/boundary-updating processes to subsequent trials (e.g., a

sensory measurement that happens to fall on a relatively small side is likely to lead to a small
choice, which affects the subsequent value/boundary-updating process, and so on). Second,

provided that any deterministic value/boundary-updating processes are presumed to be at

work, the PDM episode on a given trial must, in principle, be probabilistically conditioned on

the episodes in past trials (e.g., the current small choice on the ring of S = 0 is likely to have fol-

lowed the previous episodes leading to “boundary-updating in the large direction” or “positive

value-updating of the small choice”). Third, 2 steps of deterministic value/boundary-updating

occur between what can be observed at toi−1 and at toi+1 (as indicated by the psychometric

curves in Fig 4A), once following the episode at toi−1 (Utoi−1 in Fig 4A) and next following the

episode at toi (Utoi in Fig 4A). Thus, the differences between the retrospective and prospective

history effects should be construed as reflecting not only Utoi but also Utoi−1. The nuanced

impacts of this hidden updating on the history effects must be complicated and thus be

inspected with realistic simulations. Further, considering that these multiple stochastic and

deterministic events interplay to create diverse temporal contexts, history effects are supposed

to reveal themselves in multiplexed dynamics.
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Hence, we simulated ex ante the 2 models over a reasonable range of parameters by making

the model agents perform the binary classification task on the sequences of stimuli that will be

used in the actual experiment (Table A in S1 Appendix, S4 Fig, and Materials and methods).

The simulation results confirmed our intuition, as summarized in Fig 4, which shows the ret-

rospective and prospective history effects for the PDM episodes with correct feedback. Notably,

the retrospective history effects indicate that both value-updating and world-updating agents

were already slightly biased to the choice they are about to make in the—following—toi (Fig

4B and 4E). One readily intuits that such retrospective biases are more pronounced when

Fig 4. Ex ante simulation results for the PDM episodes with correct feedback. (A) Illustration of how the retrospective (left) and prospective

(right) history effects relate to the value updates and boundary updates (bottom) occurring over the trials overarching the trial of interest.

While the updating occurs latently at every trial (as indicated by Utoi−1, Utoi, Utoi+1), its behavioral consequences are observable only at the pre-

updating phase at toi−1 and toi+1. (B-D) The observable retrospective (B) and prospective (D) history effects and latent value-updating

processes (C) for the value-updating model agent. (C) Since correct feedback is treated as a positive reward, the chosen value is updated

positively while the amount of value-updating varies depending on the strength of sensory evidence, as indicated by the length of the vertical

arrows in different colors (weak sensory evidence, pale blue; strong sensory evidence, dark blue). The short horizontal bars and arrow heads of

the colored arrows indicate the chosen values before and after Utoi, respectively. (E-G) The observable retrospective (E) and prospective (G)

history effects and latent boundary-updating processes (F) for the world-updating model agent. (F) Since correct feedback is treated as a logical

indicator of the true state of the class variable (i.e., the true inequality between the class boundary and the stimulus), the class boundary shifts

as a joint function of feedback and sensory evidence, where the boundary shift due to sensory evidence (solid black arrows) counteracts that

due to feedback (dotted black arrows), as indicated by the arrows in different colors (weak sensory evidence, pale blue; strong sensory

evidence, dark blue). The short vertical bars and arrow heads of the colored arrows at the top indicate the class boundary before and after Utoi,

respectively. (H) Juxtaposition of the differences between the retrospective and prospective history effects displayed by the 2 model agents. (C,

F) The contributions of both sensory and feedback evidence are indicated by S-evidence and F-evidence, respectively. (B, D, E, G) Data points

are the means and SEMs across the parameter sets used in ex ante simulations (see Materials and methods). The data underlying this figure (B,

D, E, G, H) can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3002373.g004
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conditioned on the toi with weak sensory evidence because the stochastic bias consistent with

the choice that would be made in the toi is required more in those trials. This testifies to the

presence of the complex dynamics of history effects discussed above and is also consistent with

what has been previously observed (e.g., see Fig 2 of the previous study [9]). Importantly, in

line with our conceptual conjecture (Fig 3D and 3E), the 2 agents evidently disagree on the

prospective history effects. While the value-updating agent always exhibits the feedback-con-

gruent bias but never reverses the direction of bias, the world-updating agent shows the feed-

back-congruent bias after viewing the ambiguous stimulus but progressively reversed the

direction of bias as the stimulus evidence supporting the decision becomes stronger (Fig 4C,

4D and 4F–4H).

Next, Fig 5 summarizes the history effects for the PDM episodes with incorrect feedback.

The retrospective history effects show that both agents exhibit the choice bias consistent with

the choice they will make next trial, as in the case for correct feedback, but the amounts of bias

are much greater compared to those in the correct-feedback condition (Fig 5B and 5E). These

pronounced retrospective effects conditioned on the incorrect-feedback episodes are intuitively

understood as follows: The value-updating agent’s value ratio or the world-updating agent’s

class boundary was likely to be somehow “unusually and strongly” biased before the toi, given

that they make an incorrect—thus “unusual”—choice in the toi. Supporting this intuition, the

Fig 5. Ex ante simulation results for the PDM episodes with incorrect feedback. The format is identical to that in Fig 4. The data underlying

this figure (B, D, E, G, H) can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3002373.g005
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retrospective bias increases as sensory evidence increases, since the prior value ratio or class

boundary must be strongly biased to result in that particular incorrect choice despite such

strong sensory evidence. Importantly, despite these large retrospective biases, the prospective

history effects indicate that both agents adjust their value and class boundary, respectively, in

their own manners identical to those for the correct-feedback episodes (Fig 5C, 5D, 5F and

5G). Thus, as in the case of the correct-feedback episodes, the direction reversal is displayed

only by the world-updating agent, but not by the value-updating agent (Fig 5H).

In sum, the ex ante simulation confirmed that the bias reversal of the stimulus-dependent

feedback effects occurs only under the world-updating scenario but not under the value-

updating scenario, regardless of the (correct or incorrect) states of feedback. The simulation

results also confirmed that, with the current experimental setting, we can empirically deter-

mine which of the 2 scenarios provides a better account of feedback effects.

Evaluating the 2 scenarios for the goodness of fit to human decision-

making data

Having confirmed the distinct predictions of the 2 scenarios via ex ante simulation, we evalu-

ated their goodness of fit to human data. As points of reference for evaluation in the model

space (Fig 6A), we created 3 reference models. The “Base” model sets the class boundary at the

Fig 6. Model goodness of fit to human choice behavior. (A) Specification of the models constituting the model space.

The color labels also apply to the rest of the panels in (B-D). (B, C) Model comparisons in goodness of fit in terms of

log likelihood (B) and AICc (C). The height of bars represents the across-participant average differences from the

goodness of fit measures of the Base model (N = 30, mean ± SEM). Both difference measures indicate a better fit for

higher values. Dashed lines in purple (Hybrid model) and gray (Fixed model) provide the reference points for

evaluating the value-updating and world-updating models’ accountability of the trial-to-trial choice variability (see

main text for their exact meanings). Pairwise model comparisons were performed using paired one-tailed t tests

(asterisks indicate significance: *, P< 0.05; **, P< 0.005; ***, P< 10−8) (D) Model comparisons in the hierarchical

Bayesian model selection measures. Height of bars, expected posterior probabilities; error bars, standard deviation of

posterior probabilities. Dots marked with short dashes, protected exceedance probability. Dashed lines, chance level

(p = 0.2), indicating the probability that a model is favored over others in describing the data by random chance.

Bayesian omnibus risk (BOR), the estimated probability that observed differences in model frequencies may be due to

chance, is reported (BOR = 1.7636 × 10−10). The data underlying this figure (B, C, D) can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3002373.g006
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unbiased value (B = 0) and does not update any choice values, thus incorporating neither arbi-

trary choice preference nor adaptive updating. The “Fixed” model is identical to the Base

model except that it incorporates arbitrary choice preference by fitting the constant class

boundary to the data. The “Hybrid” model incorporated both value-updating and world-

updating algorithms. We quantified the models’ ability to predict human classification choices

using log likelihood (Fig 6B) and compared their abilities using the Akaike information crite-

rion corrected for sample size (AICc [32]; Fig 6C)).

The Fixed model’s performance relative to the Base model’s (gray dashed lines in Fig 6B

and 6C) reflects the fraction of choice variability that is attributed to arbitrary choice prefer-

ence. On the other hand, the Hybrid model’s performance relative to the Base model’s (purple

dashed lines in Fig 6B and 6C) reflects the maximum fraction of choice variability that can be

potentially explained by either the value-updating model, the world-updating model, or both.

Thus, the difference in performance between the Hybrid and Fixed models (the space spanned

between the gray and purple dashed lines in Fig 6B and 6C) quantifies the meaningful fraction

of choice variability that the 2 competing models of interest are expected to capture. Prior to

model evaluation, we confirmed that the 2 competing models (the value-updating and world-

updating models) and 2 reference models (the Base and Hybrid models) are empirically distin-

guishable by carrying out a model recovery test (S3 Fig).

With this target fraction of choice variability to be explained, we evaluated the 2 competing

models by comparing them against the Fixed and Hybrid models’ performances while taking

into account model complexity with AICc. The value-updating model was moderately better

than the Fixed model (paired one-tailed t test, t(29) = −2.8540, P = 0.0039) and substantially

worse than the Hybrid model (paired one-tailed t test, t(29) = 7.6996, P = 8.6170 × 10−9) and

the world-updating model (paired one-tailed t test, t(29) = 8.3201, P = 1.7943 × 10−9). By con-

trast, the world-updating model was substantially better than the Fixed model (paired one-

tailed t test, t(29) = −10.3069, P = 1.6547 × 10−11) but not significantly better than the Hybrid

model (paired one-tailed t test, t(29) = −1.0742, P = 0.1458). These results indicate (i) that the

world-updating model is better than the value-updating model in accounting for the choice

variability and (ii) that adding the value-updating algorithm to the world-updating algorithm

does not improve the accountability of the choice variability.

To complement the above pairwise comparisons, we took the hierarchical Bayesian model

selection approach [33–35] using AICc model evidence, to assess how probable it is that each

of the 5 models prevails in the population (expected posterior probability; vertical bars in Fig

6D) and how likely it is that any given model is more frequent than the other models (pro-

tected exceedance probability; dots with horizontal bars in Fig 6D). Both measures corrobo-

rated the outcomes of the pairwise comparisons: The world-updating model predominated in

expected posterior probability (0.5992) and protected exceedance probability (0.8938).

In sum, the world-updating scenario was superior to the value-updating scenario in pre-

dicting the choice behavior of human participants performing the binary classification task.

Ex post simulation of the feedback effects under the 2 scenarios

The goodness of fit results summarized above simply indicate that the world-updating model

is better than the value-updating model in predicting the trial-to-trial variability in choice

behavior while taking into account model complexity. Our study aims to examine whether

these 2 competing models of interest can account for the stimulus-dependent feedback effects

observed in human decision-makers. To do so, we carried out ex post simulations based on

the goodness of fit results [36] by testing whether the value-updating and world-updating

models can reproduce the observed stimulus-dependent feedback effects.
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The ex post simulation was identical to the ex ante simulation except that each decision-

maker’s best-fit model parameters were used (Table B in S1 Appendix; Materials and meth-

ods). We assessed how well the models reproduce the human history effects of feedback in 2

different ways. First, we compared the models and the humans similarly to the ex ante simula-

tion (Fig 7A–7C). We included the PDM episodes with nonveridical feedback (symbols with

dotted lines in Fig 7A–7C), though those episodes infrequently occurred (12.09 ± 0.02%

(mean ± SEM) out of total toi episode trials; bars with dotted outlines in Fig 7D). As a result,

we inspected the retrospective and prospective history effects, and their differences, for all the

possible combinations of “stimulus,” “choice,” and “feedback” (20 PDM episodes in total),

which resulted in a total of 60 PSE pairs to compare. The PSEs simulated by the world-update

model closely matched the human PSEs, in both pattern and magnitude (Fig 7A and 7C),

whereas those by the value-update model substantively deviated from the human PSEs (Fig 7A

and 7B). The statistical comparison (paired two-tailed t tests with Bonferroni correction)

Fig 7. Ex post simulation results. (A-C) Retrospective (left columns), prospective (middle columns), and subtractive (right columns) history

effects in PSE for the human (A), value-updating (B), and world-updating (C) decision-makers. Top and bottom rows in each panel show the

PSEs associated with the toi episodes involving correct and incorrect feedback. Symbols with error bars, mean ± SEM across 30 decision-

makers. See S5 Fig for the results from the Hybrid model decision-makers. (D) Frequency of PDM episodes in the human data (mean and SD

across participants). (E, F) Maps of significant deviations of the value-updating (E) and world-updating (F) model agents from the human

decision-makers in the retrospective (left) and prospective (right) history effects. Gray and black cells of the maps mark the insignificant and

significant deviations (paired two-tailed t tests with the Bonferroni correction for multiple comparisons). Empty cells are data points with NaN

values due to insufficient trials. The data underlying this figure (A, B, C, D, E, F) can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3002373.g007
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indicates that the value-updating model’s PSEs significantly deviated from the corresponding

human PSEs for almost half of the entire pairs (29 out of 60 pairs), whereas none of the world-

updating model’s PSEs significantly differed from the human PSEs (0 out of 60 pairs). Notably,

most mismatches occurred because the value-updating model does not reverse the direction of

feedback effects as sensory evidence becomes stronger while humans do so (compare the third

columns of Fig 7A and 7B).

Second, we compared the models and the humans in the probability distribution of retro-

spective and prospective episodes conditioned on each episode of toi (Fig 7D–7F). This com-

parison allows us to assess the models’ reproducibility not just for feedback effects but also for

the history effects in general and to explore the origin of the value-based model’s failure. By

collapsing all the preceding and following trials onto each of the 20 toi episodes (the columns

of Fig 7E and 7F) and computing their probability distributions across—again—the 20 types of

toi−1 and 20 types of toi+1 episodes (the rows of Fig 7E and 7F), respectively, we could create

400 joint-probability cells.

We carried out repeated t tests with Bonferroni correction to see where the model-human

mismatches occur (data were missing for a few cells—mostly those including nonveridical-

feedback episodes, as indicated by the empty cells in Fig 7E and 7F, because those episodes

were too rare (Fig 7D) to occur for all participants). For the remaining cells, the world-updat-

ing model showed a remarkable level of correspondence with the humans, deviating from the

humans at only 2 cells (out of 790 cells, 0.25%; Fig 7F). By contrast, the value-updating model

failed to match the humans for 94 cells (out of 792 cells, 11.87%; Fig 7E). Here, the mismatches

occurred systematically: They were frequent when the preceding episode defining any given

cell (i.e., episodes at toi−1 for the retrospective cells or episodes at toi for the prospective cells)

was featured with strong sensory evidence (as indicated by the arrows in Fig 7E). This system-

atic deviation precisely reflects the incapability of the value-updating model to reverse the

direction of feedback effects as sensory evidence strengthens.

In sum, the stimulus-dependent history effects of feedback observed in humans could be

reproduced by the world-updating scenario but not by the value-based scenario.

Discussion

Here, we explored the 2 possible scenarios for what humans learn from corrective feedback in

a PDM task. We implemented the value-updating scenario with the belief-based RL model

[9,10], originally developed to account for the stimulus-dependent effects of reward feedback

on animals’ PDM. As an alternative, we implemented the world-updating scenario with

BMBU, where decision-makers continuously update their internal knowledge about stimulus

distribution based on sensory measurements and corrective feedback. The latter excels over

the former in predicting the choice behavior and reproducing the stimulus-dependent feed-

back effects in human PDM, suggesting that humans update their knowledge about world sta-

tistics upon corrective feedback for PDM.

Given RL models’ success in VDM and the presence of physical rewards, it is not surprising

for the belief-based RL model to be considered as an account of the feedback effects in animals’

PDM. The original work [9] supported this model using 6 datasets, including 1 human dataset

[37]. However, the current work indicates that the way humans learn from corrective feedback

—without any physical or monetary reward—in PDM deviates from the value-updating sce-

nario. The critical deviation occurred for the PDM episodes with strong sensory evidence: Past

correct feedback should, albeit weakly, reinforce the choice made in the past according to the

value-updating scenario, whereas humans made the opposite choice more frequently. In fact,

the human dataset previously analyzed in the study [9] exhibits the same deviations (see their
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Fig 8C and 8D). When this dataset was analyzed in our way, it displayed the patterns almost

identical to those of our dataset (S7A Fig). For that matter, another published human dataset

[31] substantially deviated from the value-updating scenario (S7B Fig). We remain cautious

about the possibility that even animals may demonstrate such deviations as well. However, this

possibility seems worth exploring though, given that the main dataset from the 16 rats engaged

in an olfactory PDM task also exhibited patterns similar to those found in humans when cor-

rected for the bias present in previous trials (see Fig 2i in the study [9]). Notably, in these stud-

ies [9,31,37], the class boundary existed either implicitly (e.g., a perfectly balanced odor

mixture [9]) or explicitly (e.g., a reference stimulus presented in another interval [37]). This

suggests the possibility that the bias reversal of feedback effects may be a general phenomenon

that can be observed in diverse types of binary classification tasks. However, further empirical

tests are required to confirm this possibility. The bias reversal of feedback effects should not be

treated lightly as a nuisance because any variant of the RL algorithm cannot reverse the direc-

tion of reinforcement in principle, as demonstrated in our work and in the modeling results of

the same study [9] (shown in their Fig 3). By contrast, BMBU provides a principled account of

these effects by treating correct and incorrect feedback as what they supposedly mean, a teach-

ing signal indicating the true state of the class variable.

To be sure, the idea of shifting the decision or class boundary toward past stimuli per se is

not new and has been previously hypothesized [38,39] or implemented into various models

[40–44]. However, BMBU goes beyond these efforts by offering a normative formalism of

incorporating correct and incorrect feedback as evidence for the class boundary such that it has

an equal footing as sensory evidence in PDM tasks. This integration of feedback and sensory

evidence within the framework of BDT advances the current computational account of the his-

tory effects because it addresses the history factors in the complete dimensions of PDM (“stim-

ulus,” “choice,” and “feedback”), which is important given the multiplexed nature of history

effects emphasized by prior studies [8–11,31,45]. Our modeling work joins recent computa-

tional and empirical efforts of incorporating feedback in the normative evidence accumulation

model [6,46], a framework commonly employed in various classic PDM tasks, such as a ran-

dom-dot motion task. Furthermore, a study on rats’ binary classification behavior has shown

that rats can use information about the correct class state (referred to as “second-order prior”

by the authors) by integrating their own choices with feedback (reward outcome) and that the

population neural activity in the orbitofrontal cortex represents this information [11].

Together with these studies, our work supports a general view that decision-makers use correc-

tive feedback as evidence for updating their world knowledge pertinent to the PDM task

engaging them. Having mentioned the general view on the role of feedback in human PDM,

future efforts are needed to further verify the stimulus-dependent feedback effects under vari-

ous sensory modalities and PDM tasks.

Previously, the so-called “Anna Karenina” account was presented to describe the seemingly

idiosyncratic incorrect feedback effects [9]. The Anna Karenina account leaves the crucial

aspect of feedback effects—the different consequences of correct versus incorrect feedback—

unexplained. Since the belief-based RL model predicts the specific pattern of feedback effects

for incorrect trials, as shown via ex ante simulation, endorsing the Anna Karenina account

admits that the belief-based RL model fails to account for the effects of incorrect feedback

observed in animals. For that matter, past studies on the history effects in PDM paid little

attention to incorrect trials because they are, owing to their infrequency, considered too noisy

and unreliable to be properly analyzed. By contrast, BMBU accounts for the effects of feedback

in a principled way, regardless of whether the feedback is correct or incorrect. Furthermore,

BMBU explains why the feedback effects appear different between the correct and incorrect

trials on the surface (compare the prospective history effects between Figs 4 and 5): The correct
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and incorrect trials share the same deterministic boundary-updating process but had different

histories of their own stochastic events, which led to correct versus incorrect choices,

respectively.

As mentioned earlier, the history effects are dynamic and multiplexed in nature. This calls

for an effort to establish a rigorous framework to probe behavioral data for the history effects.

Several recent studies made such efforts by taking various approaches, yet all emphasizing the

presence of distinct sources of biases. One study [47] assumed 2 sources with differing time

scales and took a regression-based approach to separate their influences on choice bias by

incorporating them as independent regressors to predict choices. Another group of researchers

[6,9] also noted the presence of slow fluctuations and raised a concern about the conventional

practice of inspecting only the prospective history effects because nonsystematic slow fluctua-

tions in the decision-making strategy may cause the observed effects. This group dealt with

this concern by subtracting the retrospective history effects from the prospective ones. A more

recent study [48] shared this concern but disagreed about its remedy by showing that the sub-

traction method cannot fairly recover diverse systematic updating strategies. Alternatively,

they took a model-based approach to separate any given updating strategy from random drifts

in decision criteria. We acknowledge the importance of the efforts by these studies and share

the same concern. But, we emphasize that BMBU successfully reproduced human history

effects in both directions of time without incorporating any nonsystematic components arising

from random drifts. BMBU’s concurrent reproduction of the retrospective and prospective

history effects was confirmed not just for the summary statistics (the PSEs in Fig 7C) but also

for the individual data points spanning almost the entire space of PDM episode pairs (Fig 7F).

This suggests that it is an empirical matter of whether the decision criterion slowly drifts or

not, raising another concern that systematic history effects might be explained away as non-

existing slow drifts. In this sense, we propose that researchers should treat the retrospective

history effects not as a baseline or control condition but as what must be explained, the phe-

nomenon equally important as the prospective history effects, before resorting to any nonsys-

tematic sources. We believe that such a treatment is the way historians treat historical events

[49] and that our approach showcases its one rigorous example.

Materials and methods

Ethics statement

The study protocol was approved by the Seoul National University Institutional Review Board

(No. 1310/001-020). All the experiments were conducted in accordance with the principles

expressed in the Declaration of Helsinki. All participants gave prior written informed consent

to participate in the experiments.

Participants

All participants (13 females and 17 males, aged 18 to 30 years) were recruited from the Seoul

National University (SNU) community and were compensated approximately $10/h.

Procedure

Stimuli. The stimulus was a thin (.07 degreeAU : PleasenotethatdeghasbeenchangedtodegreeatfirstmentioninthesentenceThestimuluswasathinð:07degreeinvisual:::Pleaseconfirmthatthisiscorrect:in visual angle (DVA)), Gaussian-noise fil-

tered, black-and-white ring flickering at 20 Hz on a gray luminance background. On each

trial, a fixation first appeared for 0.5 s on average (fixation duration uniformly jittered from

0.3 s to 0.7 s on a trial-to-trial basis) before the onset of a ring stimulus. Five different ring sizes
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(radii of 3.84, 3.92, 4.00, 4.08, 4.16 DVA, denoted by −2, −1, 0, 1, 2, respectively, in the main

text) were randomized within every block of 5 trials.

Task. Participants performed a binary classification task on ring size with trial-to-trial

corrective feedback. Each individual participated in 5 daily sessions, each consisting of 6 runs,

each consisting of 170 trials, ended up performing a total of 5,100 trials. In any given trial, par-

ticipants viewed one of the 5 rings and indicated its class (small or large) within 1.2 s after stim-

ulus onset by pressing one of the 2 keys using their index and middle fingers. The assignment

of computer keys for small and large choices alternated between successive sessions to prevent

any unwanted choice bias possibly associated with finger preference. The response period was

followed by a feedback period of 0.5 s, during which the color of the fixation mark informed

the participants of whether their response was correct (green) or not (red). In case no response

had been made within the response period, the fixation mark turned yellow, reminding partic-

ipants that a response must be made in time. These late-response trials comprised 0.5418% of

the entire trials across participants and were included in data analysis. Meanwhile, the trials on

which a response was not made at all comprised 0.0948% of the entire trials. These trials were

excluded from analysis and model fitting. As a result, the number of valid trials per participant

ranged from 5,073 to 5,100 with an average of 5,095.2 trials. Before each run, we showed par-

ticipants the ring stimulus of the median size (4.00 DVA in radius) on the screen for 15 s while

instructing them to use that ring as a reference for future trials, i.e., to judge whether a test ring

is smaller or larger than this reference ring. This procedure was introduced for the purpose of

minimizing any possible carryovers from the belief they formed about the class boundary in

the previous session. Participants were encouraged to maximize the fraction of correct trials.

Feedback manipulation. We provided participants with stochastic feedback using a “vir-

tual” criterion sampled from a normal distribution N(μTrue, σTrue). σTrue was always fixed at

1.28 throughout the entire runs. In each run, μTrue was initially (up to 40 to 50 trials) set to 0

and then to one of the 3 values (μTrue = {−0.4,0,0.4}) with the equal proportion (10 runs for

each value) for the rest of trials. The stochastic feedback was introduced this particular way to

create PDM episodes with (occasional) nonveridical feedback while mimicking a real-world

situation where references are slightly noisy and biased in an unnoticeable manner.

Data analysis

For any given PDM episode at a toi, we quantified the retrospective and prospective history

effects by probing the psychometric curves at the trials before and after toi, respectively. The

psychometric function (ψ(x)) was estimated by fitting the cumulative Gaussian distribution

(F) to the curves using Psignifit package [50–52] (https://github.com/wichmann-lab/psignifit),

as follows:

cðx; m; sÞ ¼ Fðx; m; sÞ;

where μ and σ are the mean and standard deviation of F. By finding the best-fitting value of μ,

we defined the PSE (the stimulus level with equal probability for a small or large choice),

which was used as the summary statistics that quantifies the history effects associated with a

given PDM episode. To ensure reliable PSE estimates, we acquired bootstrap samples

(N = 5,000) of psychometric curves based on the binomial random process and took their aver-

age as the final estimate for each PDM episode. In our main data analysis, the results of which

are displayed in Fig 7, we chose not to include the parameters for guess or lapse rates in esti-

mating PSEs. This was done to prevent unfair overfitting problems from occurring in infre-

quent episode types with small numbers of trials available for fitting. On the other hand, to

preclude any potential confounding problem related to the task difficulty associated with PDM
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episode types, we also repeated the above PSE estimation procedure with guess (γ) and lapse

(λ) rates included as free parameters: cðx; m; s; g; lÞ ¼ gþ ð1 � g � lÞFðx; m;sÞ. The results

did not differ between the original estimation procedure without the lapse and guess rates and

the procedure with the lapse and guess rates (Bonferroni-corrected P = 0.2023 ~ 1.000; paired

two-tailed t tests; see S2 Data for detailed statistical information).

Value-updating model

As a model of the value-updating scenario, we used the belief-based RL model proposed in the

previous work [9,10]. This model incorporates RL algorithm into the conventional Bayesian

formalism of decision confidence—also known as statistical decision confidence using a par-

tially observable Markov decision process (Fig 3E). In this model, the decision-maker, given

sensory measurement m, computes the probability that the stimulus belongs to “large” (pL) or

“small” (pS = 1−pL) class (hereinafter the p-computation), where pL ¼
R1
m0
pðSjmÞdS. This prob-

ability will be referred to as a “belief-state,” as in the original work [9,10]. Here, the probability

distribution p(S|m) is defined as a normal distribution with mean m and standard deviation

σm. Whereas μ0 was assumed to be zero in the original work, we set μ0 free as a constant

parameter to allow the belief-based RL model to deal with any potential individuals’ idiosyn-

cratic choice bias, as we will allow the world-updating model (BMBU) to do so (see below).

Next, the expected values of the 2 choices QS and QL can be obtained by pS and pL multiplied

with the learned values of the options of small and large, VS and VL, respectively. Accordingly,

the expected value QC is also defined separately for the choice made between small and large:
QS and QL.

In the original work, the argmax rule was applied to determine the choice (i.e., the higher Q
determines the choice C). Instead, here, we applied the softmax rule, which selects large with

probability
expðbQLÞ

expðbQSÞþexpðbQLÞ
(the higher Q preferentially selects C) where β is an inverse tempera-

ture. This feature did not exist in the original model but was introduced here to allow the

belief-based RL model to deal with stochastic noise at the decision stage, as we allow the

world-updating model (BMBU) to do so.

The initial values of small and large choices were set identically as a free parameter Vinit.

Upon receiving feedback on the decision, the decision-maker updates the value of the selected

choice VC by the reward prediction error δ with learning rate α:

VC  VC þ ad: ð1Þ

No temporal discounting is assumed for simplicity. Since the decision-maker treats correc-

tive feedback as rewards (correct: r = +1, incorrect: r = 0), the reward prediction error δ is com-

puted as the deviation of the reward from the expected value:

d ¼ r � QC ¼ r � pCVC: ð2Þ

Note that the belief state pC (i.e., statistical decision confidence) modulates δ such that δ
increases as pC decreases, which is the crucial relationship constraining the belief-based RL

model’s key prediction on the stimulus-dependent feedback effects. Specifically, upon correct
feedback, δ will take a positive value and reinforce the choice value. However, as pC increases,

the magnitude of such reinforcement will decrease. Critically, despite the decrease of rein-

forcement as a function of pC, the sign of reinforcement will never be reversed until the

expected value Q reaches the maximum reward value (r = 1). Based on the same ground, the

sign of reinforcement will never be reversed either in the case of incorrect feedback. The free

parameters of the value-updating model are θ = {μ0, σm, α, β, Vinit}.
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World-updating model

As a model of the world-updating scenario, we developed the BMBU. BMBU shares the same

platform for PDM with the belief-based RL model (as depicted in Figs 1A and 3A) but, as a

BDT model, makes decisions using its “learned” generative model while continually updating

its belief about the class boundary B, the key latent variable of that internal model (as depicted

in the left panel of Fig 3D).

“Learned” generative model. In BDT, the learned generative model refers to the deci-

sion-maker’s subjective internal model that relates task-relevant variables (m, m0, and B in the

left panel of Fig 3D) to external stimuli and behavioral choices (S and CL, respectively, in the

left panel of Fig 3D). As previously known [53,54], the decision-maker’s internal model is

likely to deviate from the “actual” generative model that accurately reflects how the experi-

menter generated external stimuli due to one’s limitations in the sensory and memory appara-

tus. In the current experimental setup, we assumed that the internal model of the decision-

maker deviates from that of the experimenter in the following aspect: Due to the noise in the

sensory and memory encoding processes, the decision-maker is likely to believe that many

rings of different sizes are presented, although the experimenter used only 5 discrete-size

rings. The post-experiment interviews supported this: None of the participants reported per-

ceiving discrete stimuli during the experiment. A deviation like this is known to occur com-

monly in psychophysical experiments where a discrete number of stimuli were used

[40,54,55].

We incorporated the above deviation into the decision-maker’s internal model by assuming

that the stimulus at any given trial is randomly sampled from a Gaussian distribution with

mean B and variance s2
S (as depicted by B!S in Fig 3D):

pðSjBÞ ¼ NðS;B; s2

SÞ; ð3Þ

which defines the probability distribution of stimuli conditioned on the class boundary, where

s2
S corresponds to the extent to which a given decision-maker assumes that stimuli are distrib-

uted. Next, the inequality between the class boundary and the stimulus determines the state of

the class CL (as depicted by the converging causal relations involving the class variable,

B!CL S, in Fig 3D):

CL ¼ largeðsmallÞ if S > ð<ÞB; ð4Þ

which defines the correct answer of the perceptual task. On the other hand, the sensory mea-

surement m at any given trial is randomly sampled from a Gaussian distribution with mean S
and variance s2

m (as depicted by S!m in Fig 3D):

pðmjSÞ ¼ Nðm; S; s2

mÞ; ð5Þ

which defines the probability distribution of sensory measurements conditioned on the stimu-

lus, where s2
m corresponds to the extent to which the decision-maker’s sensory system is noisy.

Lastly, the mnemonic measurement m0 at any given trial is randomly sampled from a Gaussian

distribution with mean m and variance s2
m0 (as depicted by m!m0 in Fig 3D):

pðm0jmÞ ¼ Nðm0;m; s2

m0 Þ; ð6Þ

which defines the probability distribution of mnemonic measurements conditioned on the

sensory measurement, where s2
m0 corresponds to the extent to which the decision-maker’s

working memory system is noisy. This generative process (m!m0) is required because the sen-

sory evidence of the stimulus is no longer available in the sensory system—due to a brief (0.3 s;
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Fig 2B) stimulus duration—at the moment of updating the state of the class boundary (as will

be shown below in the subsection titled “Boundary-updating”) and instead must be retrieved

from the working memory system. The mnemonic recall of the stimulus is known to be noisy,

becoming quickly deteriorated right away after stimulus offset, especially for continuous visual

evidence such as color and orientation [56,57]. The generative process relating m to m0 has

been adopted for the same reason by recent studies [58,59], including our group [55], and is

consistent with the nonzero levels of memory noise in the model-fit results (s2
m0 = [1.567,

5.606]). The substantial across-individual variability of the fitted levels of s2
m0 is also consistent

with the previous studies [55,58,59].

With the learned generative model defined above, the decision-maker commits to a deci-

sion by inferring the current state of the class variable CL from the current sensory measure-

ment m and then updates the current state of the boundary variable from both the current

mnemonic measurement m0 and the current feedback F.

Decision-making. As for decision-making, BMBU, unlike the belief-based RL model,

does not consider the choice values but completely relies on the p-computation by selecting

the large class if pL>0.5 and the small class if pL<0.5. The p-computation is carried out by

propagating the sensory measurement m within its learned generative model:

pL ¼
Z 1

B̂
pðSjmÞdS; ð7Þ

where the finite limit of the integral is defined by the inferred state of the boundary B̂, which is

continually updated on a trial-to-trial basis (as will be described below). This means that the

behavioral choice can vary depending on B̂ even for the same value of m (as depicted in the

“perception” stage of Fig 3A and 3B).

Boundary-updating. After having experienced a PDM episode in any given trial t, BMBU

(i) computes the likelihood of the class boundary by concurrently propagating the mnemonic

measurement m0t and the “informed” state of the class variable CLt, which can be informed by

feedback Ft and choice Ct in the current PDM episode, within its learned generative model

(pðm0t;CLtjBtÞ) and then (ii) forms a posterior distribution of the class boundary

(pðBtjm0t;CLtÞ) by combining that likelihood with its prior belief about the class boundary at

the moment (p(Bt)), which is inherited from the posterior distribution formed in the previous

trial t � 1ðpðBt� 1jm0t� 1
;CLt� 1Þ). Intuitively put, as BMBU undergoes successive trials, its poste-

rior belief in the previous trial becomes the prior in the current trial, being used as the class

boundary for decision-making and then being combined with the likelihood to be updated as

the posterior belief in the current trial. Below, we will first describe the computations for (i)

and then those for (ii). As explained above (Eq 6), we stress that the likelihood computation

must be based not on the sensory measurement mt but on the mnemonic measurement m0t
because mt is no longer available at the moment of boundary-updating.

As for the boundary likelihood computation (i), BMBU posits that the decision-maker

infers how likely the current PDM episode—i.e., the combination of the mnemonic measure-

ment m0t, the choice Ct, and the corrective feedback Ft—is generated by hypothetical values of

the class boundary (pðm0t;Ct; FtjBtÞ). Since the “true” state of the class variable CLt is deduced

from any given pair of Ct and Ft states in binary classification as follows,

CLt ¼ large if Ct ¼ large and Ft ¼ correct or if Ct ¼ small and Ft ¼ incorrect;

CLt ¼ small otherwise;

the likelihood can be defined using only m0t and CLt : pðm0t;Ct; FtjBtÞ � pðm0t;CLtjBtÞ. Hence,
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the likelihood of the class boundary is computed by propagating m0t and CLt inversely over the

learned generative model (as defined by Eqs 3–6):

pðm0t;CLtjBtÞ ¼

Z

pðm0t;CLt; StjBtÞdSt ¼
Z

pðm0tjSÞpðCLtjSt;BtÞpðStjBtÞdSt; ð8Þ

which entails the marginalization over every possible state of St, a variable unknown to the

decision-maker. Here, since the binary states of CLt (CLt2{small, large}) indicates the inequal-

ity between St and Bt (Eq 4), Bt is used as the finite limit of the integrals to decompose the origi-

nal integral into the one marginalized over the range of St satisfying CLt = small and the other

marginalized over the range of St satisfying CLt = large:

Z

pðm0tjSÞpðCLtjSt;BtÞpðStjBtÞdSt ¼

¼

Z Bt

� 1

pðm0tjStÞpðCLtjSt;BtÞpðStjBtÞdSt þ
Z þ1

Bt

pðm0tjStÞpðCLtjSt;BtÞpðStjBtÞdSt: ð9Þ

Note that the boundary likelihood function is computed based on CLt informed by feed-

back. The right-hand side of Eq 9 can further be simplified for the informed state CLt by

replacing the infinite limits with finite values (Equation S5 in Text in S1 Appendix). For the

case of CLt = large, p(CLt|St, Bt) in the left and right integral terms on the right-hand side of Eq

9 becomes 0 and 1, respectively, while becoming 1 and 0 for the case of CLt = small in the

ranges of St of the corresponding integrals (Equation S3-S6 in Text in S1 Appendix). Hence,

we find the likelihood of the class boundary in a reduced form, separately for CLt = large and

CLt = small, as follows:

pðm0t;CLt ¼ smalljBtÞ ¼

Z Bt

� 1

pðm0tjStÞpðStjBtÞdSt;

pðm0t;CLt ¼ largejBtÞ ¼

Z þ1

Bt

pðm0tjStÞpðStjBtÞdSt ð10Þ

where pðm0tjStÞ ¼ Nðm0t; St; s
2
m0 þ s

2
mÞ, according to the “chain” relations defined in the learned

generative model (S!m!m0 in the left panel of Fig 3D; Eqs 5 and 6; see Equation S2 for deri-

vations in Text in S1 Appendix). Eq 10 indicates that BMBU calculates how likely hypothetical

boundary states bring about the mnemonic measurement (B!S!m!m0) while taking into

account the informed state of the class variable (B!CL S), by constraining the possible

range of the stimulus states. To help readers intuitively appreciate these respective contribu-

tions of the mnemonic measurement and the informed state of the class variable (feedback) to

the boundary likelihood, we further elaborated on how Eq 9 is reduced to Eq 10 depending on

the informed state of CLt (see Text in SI Appendix and S1 Fig).

Lastly, we evaluate the integral for CLt = small in Eq 10 by substituting pðStjBtÞ ¼

NðSt;Bt; s
2
SÞ and pðm0tjStÞ ¼ Nðm0t; St; s

2
m0 þ s

2
mÞ, from the defined statistical knowledge in the
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learned generative model (Eq 3 and Eqs 5 and 6, respectively) and find:

p m0t;CLt ¼ smalljBt

� �

¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p
s2
Ms

2
S

ðs2
Mþs

2
SÞ

� �r

Z Bt

� 1

e

�

St �
Bts2

Mþm
0
ts

2
S

s2
Mþs

2
S

� �2

2
s2
Ms2

S
ðs2
Mþs

2
S
Þ dSt �

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðs2

M þ s
2
SÞ

p e
�
ðBt � m0t Þ

2

2ðs2
Mþs

2
S
Þ: ð11Þ

where s2
M ¼ s

2
m0 þ s

2
m. For the other state in feedback, we evaluate the integral in the same

manner and find:

p m0t;CLt ¼ largejBt

� �

¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p
s2
Ms

2
S

ðs2
Mþs

2
SÞ

� �r

Z 1

Bt

e

�

St �
Bts2

Mþm
0
ts

2
S

s2
Mþs

2
S

� �2

2
s2
Ms2

S
ðs2
Mþs

2
S
Þ dSt �

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðs2

M þ s
2
SÞ

p e
�
ðBt � m0t Þ

2

2ðs2
Mþs

2
S
Þ: ð12Þ

Having calculated the likelihood of Bt, we turn to describe (ii) how BMBU combines that

likelihood with a prior distribution on trial t, which forms a posterior distribution of Bt accord-

ing to Bayes rule:

pðBtjm
0

t;CLtÞ / pðm0t;CLtjBtÞpðBtÞ: ð13Þ

We assumed that, at the beginning of the current trial t, the decision-maker recalls the pos-

terior belief pðBt� 1jm0t� 1
;CLt� 1Þ formed (Eq 13) from the previous trial—to use it as the prior

of Bt—into the current working memory space, and it is thus subject both to decay λ and diffu-

sive noise σdiffusion during the recall process. As a result, the prior p(Bt) is basically the recalled

posterior, defined as the normal distribution NðB̂t; sB
2
t Þ as follows:

B̂t ¼ lB̂
post
t� 1 þ ð1 � lÞm0;

sB
2

t ¼ ls
2post
t� 1
þ s2

diffusion; ð14Þ

where B̂post
t� 1 and s2post

t� 1
denote mean and variance of the previous trial’s posterior distribution.

Note that the decay parameter l ¼
s2

0

s2
0
þs2post

t� 1

influences the width and location of the belief

distribution and that the diffusive noise of σdiffusion>0 helps to keep the width of the distribu-

tion over multiple trials, thus avoiding sharpening and stopping the updating process [60]. In

this way, λ and σdiffusion allow BMBU to address the idiosyncratic choice bias and noise, as we

equip the belief-based RL model to do so with μ0 and the sofmax rule.

In sum, BMBU posits that human individuals carry out a sequence of binary classification

trials with their learned generative model while continually updating their belief about the

location of the class boundary in that generative model. BMBU describes these decision-mak-

ing and boundary-updating processes using a total of 6 parameters (θ = {μ0, σm, σs, σ0, σm0, σdif-
fusion}), which are set free to account for individual differences.
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Reference models

As the references for evaluating the belief-based RL model and BMBU in predicting the vari-

ability of human choices, we created 3 reference models. The “Base” model captures the choice

variability that can be explained by the p-computation with the class boundary fixed at 0 unan-

imously for all participants and without any value-updating process. Thus, it has only a single

free parameter representing the variability of the sensory measurement (θ = {σm}). The “Fixed”

model captures the choice variability that can be explained by the p-computation with the class

boundary set free to a fixed constant μ0 for each participant and without any value-updating

process. Thus, it has 2 free parameters (θ = {μ0, σm}). The “Hybrid” model captures the choice

variability that can be explained both by the p-computation with the inferred class boundary

by BMBU and by the value-updating process implemented by the belief-based RL model.

Thus, it has 9 free parameters (θ = {μ0, σm, σs, σ0, σm0, σdiffusion, α, β, Vinit}). In Fig 6B–6D, the

differential goodness of fit measures on the y-axis indicate the subtractions of the performance

of the “Base” model from those of the remaining models.

Model fitting

For each participant, we fitted the models to human choices over N valid trials (N� 170) of M

(= 10) experimental runs under K (= 3) conditions, where invalid trials were the trials in

which the participants did not make any response. For any given model, we denote the log

likelihood of a set of parameters θ given the data as follows:

LLðy;modelÞ ¼ log pðdatajy;modelÞ ¼
XKcond

k¼1

XMruns

j¼1

XNtrials

i¼1

log pðCi;j;kjy;modelÞ;

where Ci,j,k denotes the participant’s choice (large or small) on the i-th trial of the j-th run

under the j-th condition. Computation of this LL is analytically intractable given the stochastic

nature of choice determination. So, we used inverse binomial sampling (IBS; [61]), an efficient

way of generating unbiased estimates via numerical simulations. The maximum-likelihood

estimate of the model parameters was obtained with Bayesian Adaptive Direct Search (BADS)

[62], a hybrid Bayesian optimization to find the parameter vector θ* that maximizes the log

likelihood, which works well with stochastic target functions. To reduce the risk of being stuck

at local optima, we repeated 20 independent fittings by setting the starting positions randomly

using Latin hypercube sampling (lhsdesign_modifed.m by Nassim Khlaled; https://www.

mathworks.com/matlabcentral/fileexchange/45793-latin-hypercube) and then picked the fit-

ting with the highest log likelihood. To avoid infinite loops from using IBS, we did not impose

individual lapse rates in an arbitrary manner. Instead, we calculated the average of the lapse

rate and guess rate from the cumulative Gaussian fit to a given individual’s grand mean (based

on the entire trials) psychometric curve. With these individual lapse probabilities (mean rate

of 0.05, which ranged [0.0051, 0.1714]), trials were randomly designated as lapse trials, in

which the choice was randomly determined to be either small or large.

Model comparison in goodness of fit

We compared the goodness of fit of the models using AICc based on maximum-likelihood

estimation fitting, as follows:

AICc ¼ � 2 � LL y∗ð Þ þ 2pþ
2pðpþ 1Þ

ðNxMxKÞ � p � 1
;

where p is the number of parameters of the model and the total number of trials in the dataset is
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N×M×K. Log model evidence was obtained for each participant by multiplying AICc by −1/2

[35]. Furthermore, we took a hierarchical Bayesian model selection approach that infers the

posterior over model frequencies in the population based on log model evidence values in each

participant. To conclude whether a given model is the most likely model above and beyond

chance, we also reported protected exceedance probabilities for each model (see Fig 6E and 6F).

The random effects model selection at the group level relied on the function VBA_groupBMC.m
of the Variational Bayesian Analysis toolbox (https://mbb-team.github.io/VBA-toolbox/) [63].

Model recovery analysis

We performed a model recovery analysis to further validate our model fitting pipeline. In the

analysis, we considered the 2 competing models of interest (the world-updating and value-

updating models) and the 2 reference models (the Base and Hybrid models). Using the same

parameter set, we generated synthetic data for each participant’s true stimulus sequences. For

the realistic synthetic data, the parameter values were chosen based on the best-fitting parame-

ter estimates from each individual. We generated 30 sets of synthetic data for each model, with

153,000 trials in each set. We then fit all 4 models to each synthetic dataset, resulting in 480 fit-

ting problems. We assessed the models using the AICc-based log model evidence and com-

puted exceedance probabilities. Our analysis showed that all models were distinguishable,

which confirms the validity of our model fitting pipeline (S3 Fig).

Ex ante and ex post model simulations

We conducted ex ante model simulations to confirm and preview the value-updating and world-

updating models’ distinct predictions on the stimulus-dependent feedback effects under the cur-

rent experimental setting. Model simulations were conducted using trial sequences (i.e., stimulus

order and correct answers) identical to those administered to human participants. The model

parameters used in the ex ante simulation are summarized in the Table A in S1 Appendix. Note

that the 25 levels (uniformly spaced [0.15, 3.27]) of σm, the only parameter common to the 2 mod-

els, were used. As for the other parameters specific to each model, we selected the values that gen-

erated human-level task performances (see S4 Fig for details and statistical results). Simulations

were repeated 100 times, resulting in the 100×N×M×K = 507,300 ~ 510,000 trials per participant.

For simplicity, we assumed neither lapse trials nor any arbitrary choice bias.

The procedure of ex post model simulations was identical to that of ex ante model simula-

tions except that the best-fitting model parameters and lapse trials were used.

Statistical tests

Unless otherwise mentioned, the statistical comparisons were performed using paired t tests

(two-tailed, N = 30). To test the reversed feedback effects under conditions of strong sensory

evidence, we applied one-sample t tests (one-tailed, N = 27 for S7A Fig, N = 8 for S7B Fig).

Repeated t tests on PSEs between data and model (Figs 7B, 7C and S5) were performed (two-

tailed, N = 30). In Table D in S1 Appendix, we reported the number of test conditions of signif-

icant deviation from the data (Bonferroni-corrected threshold; *: P< 0.00083, **:
P< 0.000167, ***: P< 0.0000167). Additionally, Wilcoxon signed-rank tests were performed

with the same threshold applied (Table D in S1 Appendix). Repeated t tests on each cell of epi-

sode frequency maps between the data and the models (Figs 7E, 7F and S6) were performed,

and P values were subjected to Bonferroni correction (two-tailed, N = 30; value-updating,

P< 0.0000631; world-updating, P< 0.0000633). Task performances between human agents

(N = 30) and model agents with different sets of parameters (N = 25) were compared based on

unpaired t tests (two-tailed, S4 Fig).
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Supporting information

S1 Fig. Schematic illustration of BMBU’s account of how the joint contribution of the sen-

sory and feedback evidence to boundary updating leads to the reversal of choice bias as a

function of sensory evidence strength. (A) Reversal of subsequent choice bias—expressed in

PSE—as a function of sensory evidence strength and boundary inference—expressed in likeli-

hood computation—based on a PDM episode. Left panel: The circles with different colors

(indicated by (b-d), which points to the corresponding panels below (B-D)) represent the

PSEs associated with the boundary updating for 3 example PDM episodes, where the stimulus

(St) varies from 0 to 2 while the choice (Ct) and feedback (Ft) are large and correct, respectively.

Right panel: At the core of boundary inference is the computation of the likelihood of the class

boundary based on the mnemonic measurement (m0t) and the informed state of the class vari-

able (CLt), where CLt is jointly determined by Ft and Ct (see Materials and methods for the

full computation of boundary inference in BMBU). (B-D) The likelihoods of the class bound-

ary given the 3 example PDM episodes defined in (A), where sensory evidence varies from the

low (B), to the intermediate (C), and to the high (D) level. To help understand why and how,

given the same feedback evidence, the direction of boundary updating reverses as the sensory

evidence strengthens, we visualize the boundary likelihoods as a product of 2 functions (Eq

12), indicated by subpanels marked as (1) and (2). Top row: As indicated by (1), we plot each

boundary likelihood when only the mnemonic measurement is considered, assuming that no

feedback is provided. Note that these likelihood functions are centered around the values of

m0t, by attracting the class boundary toward themselves, driving a shift towards the large side

(i.e., positive side on the boundary axis). Middle-Bottom rows: When the feedback evidence is

given—i.e., when the informed state of CLt is revealed as large—in addition to the mnemonic

measurement, an additional piece of information about the class boundary arises. As indicated

by (1) × (2), we plot each boundary likelihood (defined in (A)). As indicated by (2), we plot

each function (Middle row), as the result of (Bottom row) divided by (Top row). The comple-

mentary cumulative distribution functions shown here are also centered around m0t because

the large state of CLt means that the class boundary is located somewhere smaller than m0t.
Note that these skewed distributions push the inferred class boundary away from the state of

CLt informed by feedback, driving a shift towards the small side (i.e., negative side on the

boundary axis). Consequently, the influences from the sensory evidence and the feedback evi-

dence counteract each other (Bottom row). Note that the likelihood functions are centered in

the small side when the sensory evidence is weak (B), in the neutral side when intermediate

(C), and in the large side when strong (D). These systematic shifts of the class-boundary likeli-

hood as a function of the strength of sensory evidence predict that the PSE of the psychometric

curve for the subsequent trial (t+1) reverses its sign from negative to positive as a function of

the stimulus size, as shown in (A).

(TIF)

S2 Fig. Example trial courses of estimated class boundary. (A) An example trial history to

show how a temporal trajectory of the class boundary inferred by BMBU. For example, at trial

#1 (x-axis), a physical stimulus (symbol x) was 0, a sensory measurement (symbol o) was a pos-

itive value when the boundary belief (solid black bar; y-axis) was centered at 0. BMBU’s choice

was large (symbol square on the top of y-axis), and correct feedback (same square filled with

green color) was provided, which indicates that the class variable at trial #1 CL1 was large
(arrow’s direction indicates the effect of the trial class variable on the subsequent boundary-

updating). BMBU updates one’s belief based on evidence from stimulus (colored symbol o)

and feedback (CL1), available at the time of boundary-updating. To illustrate cases where the

bias reversal we defined in Fig 3D in the main text happen and do not happen, same examples
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were intentionally used as those we used in S1 Fig where we further detailed on the model’s

mechanisms. Depending on colors, sensory evidence is weak (yellow symbol o) or strong (pur-

ple symbol o), which leads to whether or not the reversal happens. Trial cases featured in a red

box indicates that the “Reinforcement” principle is held (predicting subsequent choices to

repeat large choice) while those featured in a green box indicates that the “Reversal” happens

(predicting subsequent choices to reverse the previously made large choice). (B) Temporal tra-

jectories of the class boundary when the same 6-trial sequence of physical stimuli in (A) was

simulated for 100 times. This means different m and m0 were realized. The data underlying

this figure (A, B) can be found in S1 Data.

(TIF)

S3 Fig. Model recovery analysis. Each square represents exceedance probability pexc from

model recovery procedure. The “ground-truth” model to simulate synthetic behavior was cor-

rectly recovered with pexc >0.9 for all 4 models considered in the study. The light shade of the

diagonal squares indicates that the ground-truth model was the best-fitting model, leading to a

successful model recovery. Numerical values can also be found in S1 Data.

(TIF)

S4 Fig. Histograms of classification accuracies of the human participants and their model

partners in the ex ante simulations. (A, B) Across-individual distributions of the classifica-

tion accuracy of the belief-based RL model (A) and BMBU (B) overlaid on those of the human

participants. The models’ choices were generated via ex ante simulations with a specific set of

model parameters (Table A in S1 Appendix), the results of which are depicted in Figs 4 and 5.

The classification accuracy is measured by calculating the percentage of the trials in which the

choice matched the feedback used in the actual experiment. The empty bars correspond to the

histogram of human performances, the range of which is demarcated by the dashed vertical

lines ([min, max] = [60.65%, 73.94%]). The average human classification accuracy was 67.85%.

(A) Comparison of classification accuracy between the belief-based RL model’s simulation

(red color) and the human choices. The model’s ex ante simulation accuracy was not different

from the human accuracy (t(53) = 1.4429, P = 0.1549; Null hypothesis: model’s performance

vector and humans’ performance vector come from populations with equal means, unpaired

two-tailed t test). (B) Comparison of classification accuracy between BMBU’s simulation

(green color) and the human choices. The model’s ex ante simulation accuracy was not differ-

ent from the human accuracy (t(53) = 0.9707, P = 0.3361, unpaired two-tailed t test). There

was no significant difference in classification accuracy between the value-updating model and

BMBU (t(48) = 0.5733, P = 0.5691, unpaired two-tailed t test). The data underlying this figure

(A, B) can be found in S1 Data.

(TIF)

S5 Fig. Retrospective (left columns), prospective (middle columns), and subtractive (right

columns) history effects in PSE for the “Hybrid” model’s ex post model simulations. Top

and bottom rows in each panel show the PSEs associated with the toi episodes involving correct
and incorrect feedback at toi. Symbols with error bars, mean ± SEM across the 30 model

agents, which correspond to their 30 human partners. The colors of the symbols and lines label

choices (blue: small and yellow: large). The data underlying this figure can be found in S1

Data.

(TIF)

S6 Fig. Maps of frequency deviations of the value-updating (A) and world-updating (B)

model agents’ classifications in the ex post simulations from the human decision-makers

in the retrospective (left) and prospective (right) history effects. Each cell represents a pair
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of PDM episodes, as specified by the column and row labels. At each cell, the color represents

how much the episode frequency observed in the model agents deviates from that observed in

the corresponding human decision-makers. The results of statistical tests on these deviations

are summarized in Fig 7E and 7F. The data underlying this figure (A, B) can be found in S1

Data.

(TIF)

S7 Fig. Retrospective (left columns), prospective (middle columns), and subtractive (right

columns) history effects in PSE for the human classification performances of Urai and col-

leaguesAU : Pleasenotethatallinstancesof }etal:}inthetexthavebeenchangedto}andcolleagues; }asperPLOSstyle:’ work [37] (A) and Hachen and colleagues’ work [31] (B). (A, B) We downloaded

both publicly available datasets, analyzed them in the same way that we analyzed human

observers in our work, and plotted the results in the same format used for Fig 7A. Top and bot-

tom rows in each panel show the PSEs associated with the toi episodes involving correct and

incorrect feedback. Symbols with error bars, mean ± SEM across human observers. The colors

of the symbols and lines label choices (blue: small and yellow: large). The overall patterns of

the PSEs plotted here appear similar to those plotted in Fig 7A, displaying the reversals in

direction of stimulus-dependent feedback effects. When the same statistical tests used in our

work were carried out, some of the data points at the stimuli with strong sensory evidence at

toi significantly deviated from zero in the direction opposite to the feedback effect predicted

by the value-updating scenario, as indicated by the asterisks. (A) Sequential features of human

observers (N = 27) analyzed in our way from human dataset that once had been published

[37], which is openly available (http://dx.doi.org/10.6084/m9.figshare.4300043), then analyzed

in the previous study [9]. In this study, the participants performed a binary classification task

on the difference in motion coherence by sorting the pairs of random-dot-kinematogram sti-

muli shown in 2 intervals (s1 and s2) into one of the 2 classes (“s1<s2” vs. “s1>s2”) over con-

secutive trials. The presented stimuli were taken from 3 sets of difficulty levels (the difference

between motion coherence of the test and the reference stimulus; easy: [2.5, 5, 10, 20, 30],

medium: [1.25, 2.5, 5, 10, 30], hard: [0.625, 1.25, 2.5, 5, 20]). As done in the original study [9],

we binned the trials into 8 levels by merging the trials of 2 neighboring coherence levels (e.g.,

the coherence levels of [0.625, 1.25]) into a single bin. Note that the coherence bins of [20, 35,

45, 48.75, 51.25, 55, 65, 80] (%s1) on the x-axis (50% represents the equal coherence between

s1 and s2) are matched to the x-axis in Fig 8 of the previous study in which the same dataset

had been used. Asterisks mark the significance of one-sample t tests (uncorrected P< 0.05,

one-tailed in the direction of feedback effects) on the panel toi+1 (stimulus 80%: t(26) =

2.0138, P = 0.0272) and on the panel subtracted (stimulus 20%: t(26) = −3.1900, P = 0.0018,

stimulus 80%: t(26) = 3.8810, P = 0.0003). (B) Sequential features of human observers (N = 8)

published in another previous study [31]. We used the human dataset openly available as part

of the repository (https://osf.io/hux4n). In this study, the participants performed a binary clas-

sification task on the speed of vibrotactile stimuli by classifying the speed of the presented

vibration as “low-speed (weak)” or “high-speed (strong).” Note that the 9-level stimuli of [−4,

−3,−2,−1,0,1,2,3,4] on the x-axis followed how data were encoded by the original study [31].

Asterisks mark the significance of one-sample t tests (uncorrected P< 0.05, one-tailed in the

direction of feedback effects) on the panel toi+1 (stimulus −4: t(7) = −3.6757, P = 0.004, stimu-

lus −3: t(7) = −3.5252, P = 0.0048, and stimulus −2: t(7) = −2.0325, P = 0.04) and on the panel

subtracted (stimulus −4: t(7) = −1.9848, P = 0.044). The data underlying this figure (A, B) can

be found in S1 Data.

(TIF)

S1 Appendix. Supporting details. Supplemental details (Text) on additional model specifica-

tions of BMBU are provided. Supplementary tables (A-D Tables) to support the Results section
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are provided. Table A. Parameters used for ex ante simulations. Table B. Parameters recovered

from fitting the main models, world-updating and value-updating models, to human choices

(N = 30). Table C. Parameters recovered from fitting the rest of the models to human choices

(N = 30). Table D. Statistical results on model behavior versus human behavior in terms of

PSE measures.

(DOCX)

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying numerical data

for Figs 2D, 4B, 4D, 4E, 4G, 4H, 5B, 5D, 5E, 5G, 5H, 6B, 6C, 6D, 7A, 7B, 7C, 7D, 7E, 7F,

S2A, S2B, S3, S4A, S4B, S5, S6A, S6B, S7A and S7B.

(XLSX)

S2 Data. Excel spreadsheet containing detailed statistical information comparing alterna-

tive PSE estimation methods.

(XLSX)

Acknowledgments

The authors are grateful to Daeyeol Lee for his insightful comments and inspiring conversa-

tions concerning the prior version of the manuscript.

Author Contributions

Conceptualization: Hyang-Jung Lee, Heeseung Lee, Sang-Hun Lee.

Data curation: Issac Rhim.

Formal analysis: Hyang-Jung Lee.

Funding acquisition: Sang-Hun Lee.

Investigation: Hyang-Jung Lee.

Methodology: Hyang-Jung Lee, Chae Young Lim, Sang-Hun Lee.

Resources: Sang-Hun Lee.

Software: Hyang-Jung Lee.

Supervision: Sang-Hun Lee.

Validation: Hyang-Jung Lee, Chae Young Lim, Sang-Hun Lee.

Visualization: Hyang-Jung Lee, Sang-Hun Lee.

Writing – original draft: Hyang-Jung Lee.

Writing – review & editing: Hyang-Jung Lee, Heeseung Lee, Chae Young Lim, Issac Rhim,

Sang-Hun Lee.

References
1. Gold JI, Law CT, Connolly P, Bennur S. The relative influences of priors and sensory evidence on an

oculomotor decision variable during perceptual learning. J Neurophysiol. 2008; 100(5):2653–2668.

https://doi.org/10.1152/jn.90629.2008 PMID: 18753326

2. Hwang EJ, Dahlen JE, Mukundan M, Komiyama T. History-based action selection bias in posterior pari-

etal cortex. Nat Commun. 2017; 8(1):1242. https://doi.org/10.1038/s41467-017-01356-z PMID:

29089500

PLOS BIOLOGY Corrective feedback on perceptual decisions

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002373 November 8, 2023 29 / 32

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002373.s009
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002373.s010
https://doi.org/10.1152/jn.90629.2008
http://www.ncbi.nlm.nih.gov/pubmed/18753326
https://doi.org/10.1038/s41467-017-01356-z
http://www.ncbi.nlm.nih.gov/pubmed/29089500
https://doi.org/10.1371/journal.pbio.3002373


3. Abrahamyan A, Silva LL, Dakin SC, Carandini M, Gardner JL. Adaptable history biases in human per-

ceptual decisions. Proc National Acad Sci. 2016; 113(25):E3548–E3557. https://doi.org/10.1073/pnas.

1518786113 PMID: 27330086

4. Busse L, Ayaz A, Dhruv NT, Katzner S, Saleem AB, Scholvinck ML, et al. The detection of visual con-

trast in the behaving mouse. J Neurosci. 2011; 31(31):11351–11361. https://doi.org/10.1523/

JNEUROSCI.6689-10.2011 PMID: 21813694

5. Scott BB, Constantinople CM, Erlich JC, Tank DW, Brody CD. Sources of noise during accumulation of

evidence in unrestrained and voluntarily head-restrained rats. eLife. 2015; 4:e11308. https://doi.org/10.

7554/eLife.11308 PMID: 26673896

6. Mendonça AG, Drugowitsch J, Vicente MI, DeWitt EEJ, Pouget A, Mainen ZF. The impact of learning

on perceptual decisions and its implication for speed-accuracy tradeoffs. Nat Commun. 2020; 11

(1):2757. https://doi.org/10.1038/s41467-020-16196-7 PMID: 32488065

7. Fernberger SW. Interdependence of judgments within the series for the method of constant stimuli. J

Exp Psychol. 1920; 3(2):126–150.

8. Lak A, Nomoto K, Keramati M, Sakagami M, Kepecs A. Midbrain dopamine neurons signal belief in

choice accuracy during a perceptual decision. Curr Biol. 2017; 27(6):821–832. https://doi.org/10.1016/j.

cub.2017.02.026 PMID: 28285994

9. Lak A, Hueske E, Hirokawa J, Masset P, Ott T, Urai AE, et al. Reinforcement biases subsequent per-

ceptual decisions when confidence is low, a widespread behavioral phenomenon. eLife. 2020; 9:

e49834. https://doi.org/10.7554/eLife.49834 PMID: 32286227

10. Lak A, Okun M, Moss MM, Gurnani H, Farrell K, Wells MJ, et al. Dopaminergic and prefrontal basis of

learning from sensory confidence and reward value. Neuron. 2020; 105(4):700–711.e6. https://doi.org/

10.1016/j.neuron.2019.11.018 PMID: 31859030

11. Nogueira R, Abolafia JM, Drugowitsch J, Balaguer-Ballester E, Sanchez-Vives MV, Moreno-Bote R.

Lateral orbitofrontal cortex anticipates choices and integrates prior with current information. Nat Com-

mun. 2017; 8(1):14823. https://doi.org/10.1038/ncomms14823 PMID: 28337990

12. Lee D, Seo H, Jung MW. Neural basis of reinforcement learning and decision making. Annu Rev Neu-

rosci. 2012; 35(1):287–308. https://doi.org/10.1146/annurev-neuro-062111-150512 PMID: 22462543

13. Daw ND, Doya K. The computational neurobiology of learning and reward. Curr Opin Neurobiol. 2006;

16(2):199–204. https://doi.org/10.1016/j.conb.2006.03.006 PMID: 16563737

14. Sutton R, Barto A. Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press; 1998.

15. Corrado GS, Sugrue LP, Seung HS, Newsome WT. Linear-nonlinear-poisson models of primate choice

dynamics. J Exp Anal Behav. 2005; 84(3):581–617. https://doi.org/10.1901/jeab.2005.23-05 PMID:

16596981

16. Lau B, Glimcher PW. Dynamic response-by-response models of matching behavior in rhesus monkeys.

J Exp Anal Behav. 2005; 84(3):555–579. https://doi.org/10.1901/jeab.2005.110-04 PMID: 16596980
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