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Abstract

Models that predict brain responses to stimuli provide one measure of understanding of a

sensory system and have many potential applications in science and engineering. Deep arti-

ficial neural networks have emerged as the leading such predictive models of the visual sys-

tem but are less explored in audition. Prior work provided examples of audio-trained neural

networks that produced good predictions of auditory cortical fMRI responses and exhibited

correspondence between model stages and brain regions, but left it unclear whether these

results generalize to other neural network models and, thus, how to further improve models

in this domain. We evaluated model-brain correspondence for publicly available audio neu-

ral network models along with in-house models trained on 4 different tasks. Most tested

models outpredicted standard spectromporal filter-bank models of auditory cortex and

exhibited systematic model-brain correspondence: Middle stages best predicted primary

auditory cortex, while deep stages best predicted non-primary cortex. However, some state-

of-the-art models produced substantially worse brain predictions. Models trained to recog-

nize speech in background noise produced better brain predictions than models trained to

recognize speech in quiet, potentially because hearing in noise imposes constraints on bio-

logical auditory representations. The training task influenced the prediction quality for spe-

cific cortical tuning properties, with best overall predictions resulting from models trained on

multiple tasks. The results generally support the promise of deep neural networks as models

of audition, though they also indicate that current models do not explain auditory cortical

responses in their entirety.
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Introduction

An overarching aim of neuroscience is to build quantitatively accurate computational models

of sensory systems. Success entails models that take sensory signals as input and reproduce the

behavioral judgments mediated by a sensory system as well as its internal representations. A

model that can replicate behavior and brain responses for arbitrary stimuli would help validate

the theories that underlie the model but would also have a host of important applications. For

instance, such models could guide brain-machine interfaces by specifying patterns of brain

stimulation needed to elicit particular percepts or behavioral responses.

One approach to model building is to construct machine systems that solve biologically rele-

vant tasks, based on the hypothesis that task constraints may cause them to reproduce the char-

acteristics of biological systems [1,2]. Advances in machine learning have stimulated a wave of

renewed interest in this model building approach. Specifically, deep artificial neural networks

now achieve human-level performance on real-world classification tasks such as object and

speech recognition, yielding a new generation of candidate models in vision, audition, language,

and other domains [3–8]. Deep neural network (DNN) models are relatively well explored

within vision, where they reproduce some patterns of human behavior [9–12] and in many

cases appear to replicate aspects of the hierarchical organization of the primate ventral stream

[13–16]. These and other findings are consistent with the idea that brain representations are

constrained by the demands of the tasks organisms must carry out, such that optimizing for

ecologically relevant tasks produces better models of the brain in a variety of respects.

These modeling successes have been accompanied by striking examples of model behaviors

that deviate from those of humans. For instance, current neural network models are often vul-

nerable to adversarial perturbations—targeted changes to the input that are imperceptible to

humans, but which change the classification decisions of a model [17–20]. Current models

also often do not generalize to stimulus manipulations to which human recognition is robust,

such as additive noise or translations of the input [12,21–24]. Models also typically exhibit

invariances that humans lack, such that model metamers—stimuli that produce very similar

responses in a model—are typically not recognizable as the same object class to humans [25–

27]. And efforts to compare models to classical perceptual effects exhibit a mixture of successes

and failures, with some human perceptual phenomena missing from the models [28,29]. The

causes and significance of these model failures remain an active area of investigation and

debate [30].

Alongside the wave of interest within human vision, DNN models have also stimulated

research in audition. Comparisons of human and model behavioral characteristics have found

that audio-trained neural networks often reproduce patterns of human behavior when opti-

mized for naturalistic tasks and stimulus sets [31–35]. Several studies have also compared

audio-trained neural networks to brain responses within the auditory system [31,36–44]. The

best known of these prior studies is arguably that of Kell and colleagues [31], who found that

DNNs jointly optimized for speech and music classification could predict functional magnetic

resonance imaging (fMRI) responses to natural sounds in auditory cortex substantially better

than a standard model based on spectrotemporal filters. In addition, model stages exhibited

correspondence with brain regions, with middle stages best predicting primary auditory cortex

and deeper stages best predicting non-primary auditory cortex. However, Kell and colleagues

[31] used only a fixed set of 2 tasks, investigated a single class of model, and relied exclusively

on regression-derived predictions as the metric of model-brain similarity.

Several subsequent studies built on these findings by analyzing models trained on various

speech-related tasks and found that they were able to predict cortical responses to speech bet-

ter than chance, with some evidence that different model stages best predicted different brain
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regions [40–43]. Another recent study examined models trained on sound recognition tasks,

finding better predictions of brain responses and perceptual dissimilarity ratings when com-

pared to traditional acoustic models [44]. But each of these studies analyzed only a small num-

ber of models, and each used a different brain dataset, making it difficult to compare results

across studies, and leaving the generality of brain-DNN similarities unclear. Specifically, it has

remained unclear whether DNNs trained on other tasks and sounds also produce good predic-

tions of brain responses, whether the correspondence between model stages and brain regions

is consistent across models, and whether the training task critically influences the ability to

predict responses in particular parts of auditory cortex. These questions are important for sub-

stantiating the hierarchical organization of the auditory cortex (by testing whether distinct

stages of computational models best map onto different regions of the auditory system), for

understanding the role of tasks in shaping cortical representations (by testing whether optimi-

zation for particular tasks produces representations that match those of the brain), and for

guiding the development of better models of the auditory system (by helping to understand

the factors that enable a model to predict brain responses).

To answer these questions, we examined brain-DNN similarities within the auditory cortex

for a large set of models. To address the generality of brain-DNN similarities, we tested a large

set of publicly available audio-trained neural network models, trained on a wide variety of

tasks and spanning many types of models. To address the effect of training task, we supple-

mented these publicly available models with in-house models trained on 4 different tasks. We

evaluated both the overall quality of the brain predictions as compared to a standard baseline

spectrotemporal filter model of the auditory cortex [45], as well as the correspondence between

model stages and brain regions. To ensure that the general conclusions were robust to the

choice of model-brain similarity metric, wherever possible, we used 2 different metrics: the

variance explained by linear mappings fit from model features to brain responses [46], and

representational similarity analysis [47] (noting that these 2 metrics evaluate distinct infer-

ences about what might be similar between 2 representations [48,49]). We used 2 different

fMRI datasets to assess the reproducibility and robustness of the results: the original dataset

([50]; n = 8) used in Kell and colleagues’ article [31], to facilitate comparisons to those earlier

results, as well as a second recent dataset ([51]; n = 20) with data from a total of 28 unique par-

ticipants. We analyzed auditory cortical brain responses, as subcortical responses are challeng-

ing to measure with the necessary reliability (and hence were not included in the datasets we

analyzed).

We found that most DNN models produced better predictions of brain responses than the

baseline model of the auditory cortex. In addition, most models exhibited a correspondence

between model stages and brain regions, with lateral, anterior, and posterior non-primary

auditory cortex being better predicted by deeper model stages. Both of these findings indicate

that many such models provide better descriptions of cortical responses than traditional filter-

bank models of auditory cortex. However, not all models produced good predictions, suggest-

ing that some training tasks and architectures yield better brain predictions than others. We

observed effects of the training data, with models trained to hear in noise producing better

brain predictions than those trained exclusively in quiet. We also observed significant effects

of the training task on the predictions of speech, music, and pitch-related cortical responses.

The best overall predictions were produced by models trained on multiple tasks. The results

replicated across both fMRI datasets and with representational similarity analysis. The results

indicate that many DNNs replicate aspects of auditory cortical representations but indicate the

important role of training data and tasks in obtaining models that yield accurate brain predic-

tions, in turn consistent with the idea that auditory cortical tuning has been shaped by the

demands of having to support auditory behavior.
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Results

Deep neural network modeling overview

The artificial neural network models considered here take an audio signal as input and trans-

form it via cascades of operations loosely inspired by biology: filtering, pooling, and normali-

zation, among others. Each stage of operations produces a representation of the audio input,

typically culminating in an output stage: a set of units whose activations can be interpreted as

the probability that the input belongs to a particular class (for instance, a spoken word, or pho-

neme, or sound category).

A model is defined by its “architecture”—the arrangement of operations within the model

—and by the parameters of each operation that may be learned during training. These parame-

ters are typically initialized randomly and are then optimized via gradient descent to minimize

a loss function over a set of training data. The loss function is typically designed to quantify

performance of a task. For instance, training data might consist of a set of speech recordings

that have been annotated, the model’s output units might correspond to word labels, and the

loss function might quantify the accuracy of the model’s word labeling compared to the anno-

tations. The optimization that occurs during training would cause the model’s word labeling

to become progressively more accurate.

A model’s performance is a function of both the architecture and the training procedure;

training is thus typically conducted alongside a search over the space of model architectures to

find an architecture that performs the training task well. Once trained, a model can be applied

to any arbitrary stimulus, yielding a decision (if trained to classify its input) that can be com-

pared to the decisions of human observers, along with internal model responses that can be

compared to brain responses. Here, we focus on the internal model responses, comparing

them to fMRI responses in human auditory cortex, with the goal of assessing whether the rep-

resentations derived from the model reproduce aspects of representations in the auditory cor-

tex as evaluated by 2 commonly used metrics.

Model selection

We began by compiling a set of models that we could compare to brain data (see “Candidate

models” in Methods for full details and Tables 1 and 2 for an overview). Two criteria dictated

Table 1. External model overview.

Model name Brief description Model input Model output Training dataset

AST (Audio Spectrogram

Transformer) [142]

Transformer architecture for audio classification. Spectrogram AudioSet label (527) AudioSet (ImageNet

pretraining) [55,124]

DCASE2020 [143] Recurrent network trained for automated audio captioning. Spectrogram Audio text captions

(4,367)

Clotho V1 [144]

DeepSpeech2 [145] Recurrent architecture for automatic speech recognition. Spectrogram Characters (29) LibriSpeech [146]

MetricGAN [147] Generative adversarial network for speech enhancement. Spectrogram Voice-enhanced

audio

VoiceBank-DEMAND [148]

S2T (Speech-to-Text) [149] Transformer architecture for automatic speech recognition

and speech-to-text translation.

Spectrogram Words (10,000) LibriSpeech [146]

SepFormer (Separation

Transformer) [150]

Transformer architecture for speech separation. Waveform Source-separated

audio

WHAMR! [151]

VGGish [152] Convolutional architecture for audio classification. Spectrogram Video label (30,871) YouTube-100M [152]

VQ-VAE (ZeroSpeech2020)

[153]

Autoencoder architecture for sound reconstruction

(generation of speech in a target speaker’s voice).

Spectrogram Audio in target

speaker’s voice

ZeroSpeech 2019 training

dataset [154]

Wav2Vec2 [129] Transformer architecture for automatic speech recognition. Waveform Characters (32) LibriSpeech [146]

https://doi.org/10.1371/journal.pbio.3002366.t001
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the choice of models. First, we sought to survey a wide range of models to assess the generality

with which DNNs would be able to model auditory cortical responses. Second, we wanted to

explore effects of the training task. The main constraint on the model set was that there were

relatively few publicly available audio-trained DNN models available at the time of this study

(in part because much work on audio engineering is done in industry settings where models

and datasets are not made public). We thus included every model for which we could obtain a

PyTorch implementation that had been trained on some sort of large-scale audio task (i.e., we

neglected models trained to classify spoken digits, or other tasks with small numbers of classes,

on the grounds that such tasks are unlikely to place strong constraints on the model represen-

tations [52,53]). The PyTorch constraint resulted in the exclusion of 3 models that were other-

wise available at the time of the experiments (see Methods). The resulting set of 9 models

varied in both their architecture (spanning convolutional neural networks, recurrent neural

networks, and transformers) and training task (ranging from automatic speech recognition

and speech enhancement to audio captioning and audio source separation).

To supplement these external models, we trained 10 models ourselves: 2 architectures

trained separately on each of 4 tasks as well as on 3 of the tasks simultaneously. We used the 3

tasks that could be implemented using the same dataset (where each sound clip had labels for

words, speakers, and audio events). One of the architectures we used was similar to that used

in our earlier study [31], which identified a candidate architecture from a large search over

number of stages, location of pooling, and size of convolutional filters. The model was selected

entirely based on performance on the training tasks (i.e., word and music genre recognition).

The resulting model performed well on both word and music genre recognition and was more

predictive of brain responses to natural sounds than a set of alternative neural network

Table 2. In-house model overview.

Model name Brief description Model input Model output Training dataset

CochCNN9 Word Convolutional architecture for word recognition Cochleagram Word label (794) Word-Speaker-Noise

dataset [25]

CochCNN9 Speaker Convolutional architecture for speaker recognition Cochleagram Speaker label (433) Word-Speaker-Noise

dataset [25]

CochCNN9

AudioSet

Convolutional architecture for auditory event

recognition (AudioSet)

Cochleagram AudioSet label (517) Word-Speaker-Noise

dataset [25]

CochCNN9

MultiTask

Convolutional architecture for word recognition,

speaker recognition, and auditory event recognition

(AudioSet)

Cochleagram Three output layers: Word label (794),

Speaker label (433), AudioSet label (517)

Word-Speaker-Noise

dataset [25]

CochCNN9 Genre Convolutional architecture for music genre classification Cochleagram Genre label (41) Genre task using

Million Song Dataset

[155]

CochResNet50

Word

Convolutional architecture for word recognition Cochleagram Word label (794) Word-Speaker-Noise

dataset [25]

CochResNet50

Speaker

Convolutional architecture for speaker recognition Cochleagram Speaker label (433) Word-Speaker-Noise

dataset [25]

CochResNet50

AudioSet

Convolutional architecture for auditory event

recognition (AudioSet)

Cochleagram AudioSet label (517) Word-Speaker-Noise

dataset [25]

CochResNet50

MultiTask

Convolutional architecture for word recognition,

speaker recognition, and auditory event recognition

(AudioSet)

Cochleagram Three output layers: Word label (794),

Speaker label (433), AudioSet label (517)

Word-Speaker-Noise

dataset [25]

CochResNet50

Genre

Convolutional architecture for music genre classification Cochleagram Genre label (41) Genre task using

Million Song Dataset

[155]

SpectroTemporal Linear filterbank with spectral and temporal

modulations [45]

Cochleagram Spectrotemporal embedding space (None)

https://doi.org/10.1371/journal.pbio.3002366.t002
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architectures as well as a baseline model of auditory cortex. This in-house architecture (hence-

forth CochCNN9) consisted of a sequence of convolutional, normalization, and pooling stages

preceded by a hand-designed model of the cochlea (henceforth termed a “cochleagram”). The

second in-house architecture was a ResNet50 [54] backbone with a cochleagram front end

(henceforth CochResNet50). CochResNet50 was a much deeper model than CochCNN9

(50 layers compared to 9 layers) with residual (skip layer) connections, and although this archi-

tecture was not determined via an explicit architecture search for auditory tasks, it was devel-

oped for computer vision tasks [54] and outperformed CochCNN9 on the training tasks (see

Methods; Candidate models). We used 2 architectures to obtain a sense of the consistency of

any effects of task that we might observe.

The 4 in-house training tasks consisted of recognizing words, speakers, audio events

(labeled clips from the AudioSet [55] dataset, consisting of human and animal sounds, excerpts

of various musical instruments and genres, and environmental sounds), or musical genres

from audio (referred to henceforth as Word, Speaker, AudioSet, and Genre, respectively). The

multitask models had 3 different output layers, one for each included task (Word, Speaker,

and AudioSet), connected to the same network. The 3 tasks for the multitask network were

originally chosen because we could train on all of them simultaneously using a single existing

dataset (the Word-Speaker-Noise dataset [25]) in which each clip has 3 associated labels: a

word, a speaker, and a background sound (from AudioSet). For the single-task networks, we

used one of these 3 sets of labels. We additionally trained models with a fourth task—a music-

genre classification task originally presented by Kell and colleagues [31] that used a distinct

training set. As it turned out, the first 3 tasks individually produced better brain predictions

than the fourth, and the multitask model produced better predictions than any of the models

individually, and so we did not explore additional combinations of tasks. These in-house mod-

els were intended to allow a controlled analysis of the effect of task, to complement the all-

inclusive but uncontrolled set of external models.

We compared each of these models to an untrained baseline model that is commonly used

in cognitive neuroscience [45]. The baseline model consisted of a set of spectrotemporal mod-

ulation filters applied to a model of the cochlea (henceforth referred to as the SpectoTemporal

model). The SpectroTemporal baseline model was explicitly constructed to capture tuning

properties observed in the auditory cortex and previously been found to account for auditory

cortical responses to some extent [56], particularly in primary auditory cortex [57], and thus

provided a strong baseline for model comparison.

Brain data

To assess the replicability and robustness of the results, we evaluated the models on 2 indepen-

dent fMRI datasets (each with 3 scanning sessions per participant). Each presented the same

set of 165 two-second natural sounds to human listeners. One experiment [50] collected data

from 8 participants with moderate amounts of musical experience (henceforth NH2015). This

dataset was analyzed in a previous study investigating DNN predictions of fMRI responses

[31]. The second experiment [51] collected data from a different set of 20 participants, 10 of

whom had almost no formal musical experience, and 10 of whom had extensive musical train-

ing (henceforth B2021). The fMRI experiments measured the blood-oxygen-level-dependent

(BOLD) response to each sound in each voxel in the auditory cortex of each participant

(including all temporal lobe voxels that responded significantly more to sound than silence,

and whose test-retest response reliability exceeded a criterion; see Methods; fMRI data). We

note that the natural sounds used in the fMRI experiment, with which we evaluated model-
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brain correspondence, were not part of the training data for the models, nor were they drawn

from the same distribution as the training data.

General approach to analysis

Because the sounds were short relative to the time constant of the fMRI BOLD signal, we sum-

marized the fMRI response from each voxel as a single scalar value for each sound. The pri-

mary similarity metric we used was the variance in these voxel responses that could be

explained by linear mappings from the model responses, obtained via regression. This regres-

sion analysis has the advantage of being in widespread use [31,46,56,58,59,60] and hence facili-

tates comparison of results to related work. We supplemented the regression analysis with a

representational similarity analysis [47] and wherever possible present results from both

metrics.

The steps involved in the regression analysis are shown in Fig 1A. Each sound was passed

through a neural network model, and the unit activations from each network stage were used

to predict the response of individual voxels (after averaging unit activations over time to

mimic the slow time constant of the BOLD signal). Predictions were generated with cross-vali-

dated ridge regression, using methods similar to those of many previous studies using encod-

ing models of fMRI measurements [31,46,56,58,59,60]. Regression yields a linear mapping that

rotates and scales the model responses to best align them to the brain response, as is needed to

compare responses in 2 different systems (model and brain, or 2 different brains or models). A

model that reproduces brain-like representations should yield similar patterns of response var-

iation across stimuli once such a linear transform has been applied (thus “explaining” a large

amount of the brain response variation across stimuli).

The specific approach here was modeled after that of Kell and colleagues [31]: We used

83 of the sounds to fit the linear mapping from model units to a voxel’s response and then

evaluated the predictions on the 82 remaining sounds, taking the median across 10 training-

/test cross-validation splits and correcting for both the reliability of the measured voxel

response and the reliability of the predicted voxel response [61,62]. The variance explained

by a model stage was taken as a metric of the brain-likeness of the model representations.

We asked (i) to what extent the models in our set were able to predict brain data, and

(ii) whether there was a relationship between stages in a model and regions in the human

brain. We performed the same analysis on the SpectroTemporal baseline model for

comparison.

To assess the robustness of our overall conclusions to the evaluation metric, we also per-

formed representational similarity analysis to compare the representational geometries

between brain and model responses (Fig 1B). We first measured representational dissimilarity

matrices (RDMs) for a set of voxel responses from the Pearson correlation of all the voxel

responses to one sound with that for another sound. These correlations for all pairs of sounds

yields a matrix, which is standardly expressed as 1−C, where C is the correlation matrix. When

computed from all voxels in the auditory cortex, this matrix is highly structured, with some

pairs of sounds producing much more similar responses than others (S1 Fig). We then analo-

gously measured this matrix from the time-averaged unit responses within a model stage. To

assess whether the representational geometry captured by these matrices was similar between a

model and the brain, we measured the Spearman correlation between the brain and model

RDMs. As in previous work [63,64], we did not correct this metric for the reliability of the

RDMs but instead computed a noise ceiling for it. We estimated the noise ceiling as the corre-

lation between a held-out participant’s RDM and the average RDM of the remaining

participants.
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The 2 metrics we employed are arguably the 2 most commonly used for model-brain com-

parison and measure distinct things. Regression reveals whether there are linear combinations

of model features that can predict brain responses. A model could thus produce high explained

variance even if it contained extraneous features that have no correspondence with the brain

(because these will get low weight in the linear transform inferred by regression). By

Fig 1. Analysis method. (A) Regression analysis (voxelwise modeling). Brain activity of human participants (n = 8,

n = 20) was recorded with fMRI while they listened to a set of 165 natural sounds. Data were taken from 2 previous

publications [50,51]. We then presented the same set of 165 sounds to each model, measuring the time-averaged unit

activations from each model stage in response to each sound. We performed an encoding analysis where voxel activity

was predicted by a regularized linear model of the DNN activity. We modeled each voxel as a linear combination of

model units from a given model stage, estimating the linear transform with half (n = 83) the sounds and measuring the

prediction quality by correlating the empirical and predicted response to the left-out sounds (n = 82) using the Pearson

correlation. We performed this procedure for 10 random splits of the sounds. Figure adapted from Kell and colleagues’

article [31]. (B) Representational similarity analysis. We used the set of brain data and model activations described for

the voxelwise regression modeling. We constructed a representational dissimilarity matrix (RDM) from the fMRI

responses by computing the distance (1−Pearson correlation) between all voxel responses to each pair of sounds. We

similarly constructed an RDM from the unit responses from a model stage to each pair of sounds. We measured the

Spearman correlation between the fMRI and model RDMs as the metric of model-brain similarity. When reporting

this correlation from a best model stage, we used 10 random splits of sounds, choosing the best stage from the training

set of 83 sounds and measuring the Spearman correlation for the remaining set of 82 test sounds. The fMRI RDM is

the average RDM across all participants for all voxels and all sounds in NH2015. The model RDM is from an example

model stage (ResNetBlock_2 of the CochResNet50-MultiTask network).

https://doi.org/10.1371/journal.pbio.3002366.g001
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comparison, RDMs are computed across all model features and hence could appear distinct

from a brain RDM even if there is a subset of model features that captures the brain’s represen-

tational space. Accurate regression-based predictions or similar representational geometries

also do not necessarily imply that the underlying features are the same in the model and the

brain, only that the model features are correlated with brain features across the stimulus set

that is used [57,65] (typically natural sounds or images). Model-based stimulus generation can

help address the latter issue [57] but ideally require a dedicated neuroscience experiment for

each model, which in this context was prohibitive. Although the 2 metrics we used have limita-

tions, an accurate model of the brain should replicate brain responses according to both met-

rics, making them a useful starting point for model evaluation. When describing the overall

results of this study, we will describe both metrics as reflecting model “predictions”—regres-

sion provides predictions of voxel responses (or response components, as described below),

whereas representational similarity analysis provides a prediction of the RDM.

Many DNN models outperform traditional models of the auditory cortex

We first assessed the overall accuracy of the brain predictions for each model using regularized

regression, aggregating across all voxels in the auditory cortex. For each DNN model,

explained variance was measured for each voxel using the single best-predicting stage for that

voxel, selected with independent data (see Methods; Voxel response modeling). This approach

was motivated by the hypothesis that particular stages of the neural network models might

best correspond to particular regions of the cortex. By contrast, the baseline model had a single

stage intended to model the auditory cortex (preceded by earlier stages intended to capture

cochlear processing), and so we derived predictions from this single “cortical” stage. In each

case, we then took the median of this explained variance across voxels for a model (averaged

across participants).

As shown in Fig 2A, the best-predicting stage of most trained DNN models produced better

overall predictions of auditory cortex responses than did the standard SpectroTemporal base-

line model [45] (see S2 Fig for predictivity across model stages). This was true for all of the in-

house models as well as about half of the external models developed in engineering contexts.

However, some models developed in engineering contexts did not produce good predictions,

substantially underpredicting the baseline model. The heterogeneous set of external models

was intended to test the generality of brain-DNN relations and sacrificed controlled compari-

sons between models (because models differed on many dimensions). It is thus difficult to pin-

point the factors that cause some models to produce poor predictions. This finding

nonetheless demonstrates that some models that are trained on large amounts of data, and

that perform some auditory tasks well, do not accurately predict auditory cortical responses.

But the results also show that many models produce better predictions than the classical Spec-

troTemporal baseline model. As shown in Fig 2A, the results were highly consistent across the

2 fMRI datasets. In addition, results were fairly consistent for different versions of the in-

house models trained from different random seeds (Fig 2B).

Brain predictions of DNN models depend critically on task optimization

To assess whether the improved predictions compared to the SpectroTemporal baseline model

could be entirely explained by the DNN architectures, we performed the same analysis with

each model’s parameters (for instance, weights, biases) permuted within each model stage

(Fig 2C and 2D). This model manipulation destroyed the parameter structure learned during

task optimization, while preserving the model architecture and the marginal statistics of the

model parameters. This was intended as replacement for testing untrained models with
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Fig 2. Evaluation of overall model-brain similarity. (A) Using regression, explained variance was measured for each voxel, and the

aggregated median variance explained was obtained for the best-predicting stage for each model, selected using independent data.

Grey line shows variance explained by the SpectroTemporal baseline model. Colors indicate the nature of the model architecture:

CochCNN9 architectures in shades of red, CochResNet50 architectures in shades of green, Transformer architectures in shades of

violet (AST, Wav2Vec2, S2T, SepFormer), recurrent architectures in shades of yellow (DCASE2020, DeepSpeech2), other

convolutional architectures in shades of blue (VGGish, VQ-VAE), and miscellaneous in brown (MetricGAN). Error bars are within-

participant SEM. Error bars are smaller for the B2021 dataset because of the larger number of participants (n = 20 vs. n = 8). For both

datasets, most trained models outpredict the baseline model. (B) We trained the in-house models from 2 different random seeds. The

median variance explained for the first- and second-seed models are plotted on the x- and y-axes, respectively. Each data point

represents a model using the same color scheme as in panel A. (C, D) Same analysis as in panels A and B but for the control networks

with permuted weights. All permuted models produce worse predictions than the baseline. (E) Representational similarity between all

auditory cortex fMRI responses and the trained computational models. The models and colors are the same as in panel A. The dashed

black line shows the noise ceiling measured by comparing one participant’s RDM with the average of the RDMs from the other
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randomly initialized weights [31], the advantage being that it seemed a more conservative test

for the external models, for which the initial weight distributions were in some cases

unknown.

In all cases, these control models produced worse predictions than the trained models, and

in no case did they outpredict the baseline model. This result indicates that task optimization

is consistently critical to obtaining good brain predictions. It also provides evidence that the

presence of multiple model stages (and selection of the best-predicting stage) is not on its own

sufficient to cause a DNN model to outpredict the baseline model. These conclusions are con-

sistent with previously published results [31] but substantiate them on a much broader set of

models and tasks.

Qualitatively similar conclusions from representational similarity

To ensure that the conclusions from the regression-based analyses were robust to the choice of

model-brain similarity metric, we conducted analogous analyses using representational simi-

larity. Analyses of representational similarity gave qualitatively similar results to those with

regression. We computed the Spearman correlation between the RDM for all auditory cortex

voxels and that for the unit activations of each stage of each model, choosing the model stage

that yielded the best match. We used 83 of the sounds to choose the best-matching model

stage and then measured the model-brain RDM correlation for RDMs computed for the

remaining 82 sounds. We performed this procedure with 10 different splits of the sounds,

averaging the correlation across the 10 splits. This analysis showed that most of the models in

our set had RDMs that were more correlated with the human auditory cortex RDM than that

of the baseline model (Fig 2E), and the results were consistent across 2 trained instantiations

of the in-house models (Fig 2F). Moreover, the 2 measures of model-brain similarity (variance

explained and correlation of RDMs) were correlated in the trained networks (R2 = 0.75 for

NH2015 and R2 = 0.79 for B2021, p< 0.001), with models that showed poor matches on one

metric tending to show poor matches on the other. The correlations with the human RDM

were nonetheless well below the noise ceiling and not much higher than those for the baseline

model, indicating that none of the models fully accounts for the fMRI representational similar-

ity. As expected, the RDMs for the permuted models were less similar to that for human audi-

tory cortex, never exceeding the correlation of the baseline model (Fig 2G and 2H). Overall,

these results provide converging evidence for the conclusions of the regression-based analyses.

Improved predictions of DNN models are most pronounced for pitch,

speech, and music-selective responses

To examine the model predictions for specific tuning properties of the auditory cortex, we

used a previously derived set of cortical response components. Previous work [50] found that

cortical voxel responses to natural sounds can be explained as a linear combination of 6

response components (Fig 3A). These 6 components can be interpreted as capturing the tun-

ing properties of underlying neural populations. Two of these components were well

participants (we plot the noise ceiling rather than noise correcting as in the regression analyses in order to be consistent with what is

standard for each analysis). Error bars are within-participant SEM. As in the regression analysis, many of the trained models exhibit

RDMs that are more correlated with the human RDM than is the baseline model’s RDM. (F) The Spearman correlation between the

model and fMRI RDMs for 2 different seeds of the in-house models. The results for the first and second seeds are plotted on the x-

and y-axes, respectively. Each data point represents a model using the same color scheme as in panel E. (G, H) Same analysis as in

panels E and F but with the control networks with permuted weights. RDMs for all permuted models are less correlated with the

human RDM compared to the baseline model’s correlation with the human RDM. Data and code with which to reproduce results are

available at https://github.com/gretatuckute/auditory_brain_dnn.

https://doi.org/10.1371/journal.pbio.3002366.g002

PLOS BIOLOGY Many but not all deep neural network audio models capture brain responses

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002366 December 13, 2023 11 / 70

https://github.com/gretatuckute/auditory_brain_dnn
https://doi.org/10.1371/journal.pbio.3002366.g002
https://doi.org/10.1371/journal.pbio.3002366


accounted for by audio frequency tuning, and 2 others were relatively well explained by tuning

to spectral and temporal modulation frequencies. One of these latter 2 components was selec-

tive for sounds with salient pitch. The remaining 2 components were highly selective for

speech and music, respectively. The 6 components had distinct (though overlapping) anatomi-

cal distributions, with the components selective for pitch, speech, and music most prominent

in different regions of non-primary auditory cortex. These components provide one way to

examine whether the improved model predictions seen in Fig 2 are specific to particular

aspects of cortical tuning.

We again used regression to generate model predictions, but this time using the component

responses rather than voxel responses (Fig 3B). We fit a linear mapping from the unit activa-

tions in a model stage (for a subset of “training” sounds) to the component response, then

measured the predictions for left-out “test” sounds, averaging the predictions across test splits.

The main difference between the voxel analyses and the component analyses is that we did not

noise-correct the estimates of explained component variance. This is because we could not

Fig 3. Component decomposition of fMRI responses. (A) Voxel component decomposition method. The voxel responses of a set of participants are

approximated as a linear combination of a small number of component response profiles. The solution to the resulting matrix factorization problem is

constrained to maximize a measure of the non-Gaussianity of the component weights. Voxel responses in auditory cortex to natural sounds are well accounted

for by 6 components. Figure adapted from Norman-Haignere and colleagues’ article [50]. (B) We generated model predictions for each component’s response

using the same approach used for voxel responses, in which the model unit responses were combined to best predict the component response, with explained

variance measured in held-out sounds (taking the median of the explained variance values obtained across train/test cross-validation splits).

https://doi.org/10.1371/journal.pbio.3002366.g003
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estimate test-retest reliability of the components, as they were derived with all 3 scans worth of

data. We also restricted this analysis to regression-based predictions because representational

similarity cannot be measured from single response components.

Fig 4A shows the actual component responses (from the dataset of Norman-Haignere and

colleagues [50]) plotted against the predicted responses for the best-predicting model stage

(selected separately for each component) of the multitask CochResNet50, which gave the best

overall voxel response predictions (Fig 2). The model replicates most of the variance in all

components (between 61% and 88% of the variance, depending on the component). Given

that 2 of the components are highly selective for particular categories, one might suppose that

the good predictions in these cases could be primarily due to predicting higher responses for

some categories than others, and the model indeed reproduces the differences in responses to

different sound categories (for instance, with high responses to speech in the speech-selective

component, and high responses to music in the music-selective component). However, it also

replicates some of the response variance within sound categories. For instance, the model pre-

dictions explained 51.9% of the variance in responses to speech sounds in the speech-selective

component, and 53.5% of the variance in the responses to music sounds in the music-selective

component (both of these values are much higher than would be expected by chance; speech:

p = 0.001; music: p< 0.001). We note that although we could not estimate the reliability of the

components in a way that could be used for noise correction, in a previous paper, we measured

their similarity between different groups of participants, and this was lowest for component 3,

followed by component 6 [51]. Thus, the differences between components in the overall qual-

ity of the model predictions are plausibly related to their reliability.

The component response predictions were much worse for models with permuted weights,

as expected given the results of Fig 2 (Fig 4B; results shown for the permuted multitask

CochResNet50; results were similar for other models with permuted weights, though not

always as pronounced). The notable exceptions were the first 2 components, which reflect fre-

quency tuning [50]. This is likely because frequency information is made explicit by a convolu-

tional architecture operating on a cochlear representation, irrespective of the model weights.

For comparison, we also show the component predictions for the SpectroTemporal baseline

model (Fig 4C). These are significantly better than those of the best-predicting stage of the per-

muted CochResNet50MultiTask model (one-tailed p< 0.001; permutation test) but signifi-

cantly worse than those of the trained CochResNet50MultiTask model for all 6 components

(one-tailed p< 0.001; permutation test).

These findings held across most of the neural network models we tested. Most of the trained

neural network models produced better predictions than the SpectroTemporal baseline model

for most of the components (Fig 5A), with the improvement being specific to the trained mod-

els (Fig 5B). However, it is also apparent that the difference between the trained and permuted

models is most pronounced for components 4 to 6 (selective for pitch, speech, and music,

respectively; compare Fig 5A and 5B). This result indicates that the improved predictions for

task-optimized models are most pronounced for higher-order tuning properties of auditory

cortex.

Many DNN models exhibit model-stage-brain-region correspondence with

auditory cortex

One of the most intriguing findings from the neuroscience literature on DNN models is that

the models often exhibit some degree of correspondence with the hierarchical organization of

sensory systems [13–16,31,66], with particular model stages providing the best matches to

responses in particular brain regions. To explore the generality of this correspondence for
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Fig 4. Example model predictions for 6 components of fMRI responses to natural sounds. (A) Predictions of the 6

components by a trained DNN model (CochResNet50-MultiTask). Each data point corresponds to a single sound

from the set of 165 natural sounds. Data point color denotes the sound’s semantic category. Model predictions were

made from the model stage that best predicted a component’s response. The predicted response is the average of the

predictions for a sound across the test half of 10 different train-test splits (including each of the splits for which the

sound was present in the test half). (B) Predictions of the 6 components by the same model used in (A) but with

permuted weights. Predictions are substantially worse than for the trained model, indicating that task optimization is

important for obtaining good predictions, especially for components 4–6. (C) Predictions of the 6 components by the

SpectroTemporal model. Predictions are substantially worse than for the trained model, particularly for components

4–6. Data and code with which to reproduce results are available at https://github.com/gretatuckute/auditory_brain_

dnn.

https://doi.org/10.1371/journal.pbio.3002366.g004
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Fig 5. Summary of model predictions of fMRI response components. (A) Component response variance explained

by each of the trained models. Model ordering is the same as that in Fig 2A for ease of comparison. Variance explained

was obtained from the best-predicting stage of each model for each component, selected using independent data. Error

bars are SEM over iterations of the model stage selection procedure (see Methods; Component modeling). See S3 Fig

for a comparison of results for models trained with different random seeds (results were overall similar for different
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audio-trained models, we first examined the best-predicting model stage for each voxel of each

participant in the 2 fMRI datasets, separately for each model. We used regression-based pre-

dictions for this analysis as it was based on single voxel responses.

We first plotted the best-predicting stage as a surface map displayed on an inflated brain.

The best-predicting model stage for each voxel was expressed as a number between 0 and 1,

and we plot the median of this value across participants. In both datasets and for most models,

earlier model stages tended to produce the best predictions of primary auditory cortex, while

deeper model stages produced better predictions of non-primary auditory cortex. We show

these maps for the 8 best-predicting models in Fig 6A and provide them for all remaining

models in S4 Fig. There was some variation from model to model, both in the relative stages

that yield the best predictions and in the detailed anatomical layout of the resulting maps, but

the differences between primary and non-primary auditory cortex were fairly consistent across

models. The stage-region correspondence was specific to the trained models; the models with

permuted weights produce relatively uniform maps (S5 Fig).

To summarize these maps across models, we computed the median best stage for each

voxel across all 15 models that produced better overall predictions compared to the baseline

model (Fig 2A). The resulting map provides a coarse measure of the central tendency of the

individual model maps (at the cost of obscuring the variation that is evident across models). If

there was no consistency across the maps for different models, this map should be uniform.

Instead, the best-stage summary map (Fig 6B) shows a clear gradient, with voxels in and

around primary auditory cortex (black outline) best predicted by earlier stages than voxels

beyond primary auditory cortex. This correspondence is lost when the weights are permuted,

contrary to what would be expected if the model architecture was primarily responsible for the

correspondence (Fig 6C).

To quantify the trends that were subjectively evident in the surface maps, we computed the

average best stage within 4 anatomical regions of interest (ROIs): one for primary auditory cor-

tex, along with 3 ROIs for posterior, lateral, and anterior non-primary auditory cortex. These

ROIs were combinations of subsets of ROIs in the Glasser [67] parcellation (Fig 7A). The ROIs

were taken directly from a previous publication [51], where they were intended to capture the

auditory cortical regions exhibiting reliable responses to natural sounds and were not adapted

in any way to the present analysis. We visualized the results of this analysis by plotting the aver-

age best stage for the primary ROI versus that of each of the non-primary ROIs, expressing the

stage’s position within each model as a number between 0 and 1 (Fig 7B). In each case, nearly all

models lie above the diagonal (Fig 7C), indicating that all 3 regions of non-primary auditory cor-

tex are consistently better predicted by deeper model stages compared to primary auditory cortex,

irrespective of the model. This result was statistically significant in each case (Wilcoxon signed

rank test: two-tailed p< 0.005 for all 6 comparisons; 2 datasets × 3 non-primary ROIs). By com-

parison, there was no clear evidence for differences between the 3 non-primary ROIs (two-tailed

Wilcoxon signed rank test: after Bonferroni correction for multiple comparisons, none of the 6

comparisons reached statistical significance at the p< 0.05 level; 2 datasets × 3 comparisons). See

S6 Fig for the variance explained by each model stage for each model for the 4 ROIs.

To confirm that these results were not merely the result of the DNN architectural structure

(for instance, with pooling operations tending to produce larger receptive fields at deeper

seeds). (B) Component response variation explained by each of the permuted models. The trained models (both in-

house and external), but not the permuted models, tend to outpredict the SpectroTemporal baseline for all

components, but the effect is most pronounced for components 4–6. Data and code with which to reproduce results

are available at https://github.com/gretatuckute/auditory_brain_dnn.

https://doi.org/10.1371/journal.pbio.3002366.g005
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stages compared to earlier stages), we performed the same analysis on the models with per-

muted weights. In this case, the results showed no evidence for a mapping between model

stages and brain regions (S7A Fig; no significant difference between primary and non-primary

Fig 6. Surface maps of best-predicting model stage. (A) To investigate correspondence between model stages and brain regions, we plot the model stage that

best predicts each voxel as a surface map (FsAverage) (median best stage across participants). We assigned each model stage a position index between 0 and 1

(using minmax normalization such that the first stage is assigned a value of 0 and the last stage a value of 1). We show this map for the 8 best-predicting models

as evaluated by the median noise-corrected R2 plotted in Fig 2A (see S4 Fig for maps from other models). The color scale limits were set to extend from 0 to the

stage beyond the most common best stage (across voxels). We found that setting the limits in this way made the variation across voxels in the best stage visible

by not wasting dynamic range on the deep model stages, which were almost never the best-predicting stage. Because the relative position of the best-predicting

stage varied across models, the color bar scaling varies across models. For both datasets, middle stages best predict primary auditory cortex, while deep stages

best predict non-primary cortex. We note that the B2021 dataset contained voxel responses in parietal cortex, some of which passed the reliability screen. We

have plotted a best-predicting stage for these voxels in these maps for consistency with voxel inclusion criteria in the original publication [51], but note that

these voxels only passed the reliability screen in a few participants (see panel D) and that the variance explained for these voxels was low, such that the best-

predicting stage is not very meaningful. (B) Best-stage map averaged across all models that produced better predictions than the baseline SpectroTemporal

model. The map plots the median value across models and thus is composed of discrete color values. The thin black outline plots the borders of an anatomical

ROI corresponding to primary auditory cortex. (C) Best-stage map for the same models as in panel B, but with permuted weights. (D) Maps showing the

number of participants per voxel location on the FsAverage surface for both datasets (1–8 participants for NH2015; 1–20 participants for B2021). Darker colors

denote a larger number of participants per voxel. Because we only analyzed voxels that passed a reliability threshold, some locations only passed the threshold

in a few participants. Note also that the regions that were scanned were not identical in the 2 datasets. Data and code with which to reproduce results are

available at https://github.com/gretatuckute/auditory_brain_dnn.

https://doi.org/10.1371/journal.pbio.3002366.g006
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Fig 7. Nearly all DNN models exhibit stage-region correspondence. (A) Anatomical ROIs for analysis. ROIs were

taken from a previous study [51], in which they were derived by pooling ROIs from the Glasser anatomical parcellation

[67]. (B) To summarize the model-stage-brain-region correspondence across models, we obtained the median best-

predicting stage for each model within the 4 anatomical ROIs from A: primary auditory cortex (x-axis in each plot in C

and D) and anterior, lateral, and posterior non-primary regions (y-axes in C and D) and averaged across participants.

(C) We performed the analysis on each of the 2 fMRI datasets, including each model that outpredicted the baseline

model in Fig 2 (n = 15 models). Each data point corresponds to a model, with the same color correspondence as in Fig 2.

Error bars are within-participant SEM. The non-primary ROIs are consistently best predicted by later stages than the

primary ROI. (D) Same analysis as (C) but with the best-matching model stage determined by correlations between the

model and ROI representational dissimilarity matrices. RDMs for each anatomical ROI (left) are grouped by sound

category, indicated by colors on the left and bottom edges of each RDM (same color-category correspondence as in Fig

4). Higher-resolution fMRI RDMs for each ROI including the name of each sound are provided in S1 Fig. Data and

code with which to reproduce results are available at https://github.com/gretatuckute/auditory_brain_dnn.

https://doi.org/10.1371/journal.pbio.3002366.g007
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ROIs in any of the 6 cases; Wilcoxon signed rank tests, two-tailed p> 0.16 in all cases). This

result is consistent with the surface maps (Figs 6C and S5), which tended to be fairly uniform.

We repeated the ROI analysis using representational similarity to determine the best-

matching model stage for each ROI and obtained similar results. The model stages with repre-

sentational geometry most similar to that of non-primary ROIs were again situated later than

the model stage most similar to the primary ROI, in both datasets (Fig 7D; Wilcoxon signed

rank test: two-tailed p< 0.007 for all 6 comparisons; 2 datasets × 3 non-primary ROIs). The

model stages that provided the best match to each ROI according to each of the 2 metrics

(regression and representational similarity analysis) were correlated (R2 = 0.21 for NH2015

and R2 = 0.21 for B2021, measured across the 60 best stage values from 15 trained models for

the 4 ROIs of interest, p< 0.0005 in both cases). This correlation is highly statistically signifi-

cant but is nonetheless well below the maximum it could be given the reliability of the best

stages (conservatively estimated as the correlation of the best stage between the 2 fMRI data-

sets; R2 = 0.87 for regression and R2 = 0.94 for representational similarity). This result suggests

that the 2 metrics capture different aspects of model-brain similarity and that they do not fully

align for the models we have at present, even though the general trend for deeper stages to bet-

ter predict non-primary responses is present in both cases.

Overall, these results are consistent with the stage-region correspondence findings of Kell

and colleagues [31] but show that they apply fairly generally to a wide range of DNN models,

that they replicate across different brain datasets, and are generally consistent across different

analysis methods. The results suggest that the different representations learned by early and

late stages of DNN models map onto differences between primary and non-primary auditory

cortex in a way that is qualitatively consistent across a diverse set of models. This finding pro-

vides support for the idea that primary and non-primary human auditory cortex instantiate

distinct types of representations that resemble earlier and later stages of a computational hier-

archy. However, the specific stages that best align with particular cortical regions vary across

models and depend on the metric used to evaluate alignment. Together with the finding that

all model predictions are well below the maximum attainable value given the measurement

noise (Fig 2), these results indicate that none of the tested models fully account for the repre-

sentations in human auditory cortex.

Presence of noise in training data modulates model predictions

We found in our initial analysis that many models produced good predictions of auditory cor-

tical brain responses, in that they outpredicted the SpectroTemporal baseline model (Fig 2).

But some models gave better predictions than others, raising the question of what causes dif-

ferences in model predictions. To investigate this question, we analyzed the effect of (a) the

training data and (b) the training task the model was optimized for, using the in-house models

that consisted of the same 2 architectures trained on different tasks.

Out of the many manipulations of training data that one could in principle test, the pres-

ence of background noise was of particular theoretical interest. Background noise is ubiquitous

in real-world auditory environments, and the auditory system is relatively robust to its pres-

ence [31,68–75], suggesting that it might be important in shaping auditory representations.

For this reason, the previous models in Kell and colleagues’ article [31], as well as the in-house

model extensions shown in Fig 2, were all trained to recognize words and speakers in noise

(on the grounds that this is more ecologically valid than training exclusively on “clean”

speech). We previously found in the domains of pitch perception [32] and sound localization

[33] that optimizing models for natural acoustic conditions (including background noise

among other factors) was critical to reproducing the behavioral characteristics of human
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perception, but it was not clear whether model-brain similarity metrics would be analogously

affected. To test whether the presence of noise in training influences model-brain similarity,

we retrained both in-house model architectures on the word and speaker recognition tasks

using just the speech stimuli from the Word-Speaker-Noise dataset (without added noise). We

then repeated the analyses of Figs 2 and 5.

As shown in Fig 8, models trained exclusively on clean speech produced significantly worse

overall brain predictions compared to those trained on speech in noise. This result held for

both the word and speaker recognition tasks and for both model architectures (regression:

p< 0.001 via one-tailed bootstrap test for each of the 8 comparisons, 2 datasets × 4 compari-

sons; representational similarity: p< 0.001 in each case for same comparisons). The result was

not specific to speech-selective brain responses, as the boost from training in noise was seen

for each of the pitch-selective, speech-selective, and music-selective response components

(S8 Fig). This training data manipulation is obviously one of many that are in principle possi-

ble and does not provide an exhaustive examination of the effect of training data, but the

results are consistent with the notion that optimizing models for sensory signals like those for

which biological sensory systems are plausibly optimized increases the match to brain data.

They are also consistent with findings that machine speech recognition systems, which are typ-

ically trained on clean speech (usually because there are separate systems to handle denoising),

do not always reproduce characteristics of human speech perception [76,77].

Training task modulates model predictions

To assess the effect of the training task a model was optimized for, we analyzed the brain pre-

dictions of the in-house models, which consisted of the same 2 architectures trained on differ-

ent tasks. The results shown in Fig 2 indicate that some of our in-house tasks (word, speaker,

AudioSet, genre tasks) produced better overall predictions than others and that the best overall

Fig 8. Model predictions of brain responses are better for models trained in background noise. (A) Effect of noise in training on model-brain similarity

assessed via regression. Using regression, explained variance was measured for each voxel and the aggregated median variance explained was obtained for the

best-predicting stage for each model, selected using independent data. Grey line shows variance explained by the SpectroTemporal baseline model. Colors

indicate the nature of the model architecture with CochCNN9 architectures in shades of red, and CochResNet50 architectures in shades of green. Models

trained in the presence of background noise are shown in the same color scheme as in Fig 2; models trained with clean speech are shown with hashing. Error

bars are within-participant SEM. For both datasets, the models trained in the presence of background noise exhibit higher model-brain similarity than the

models trained without background noise. (B) Effect of noise in training on model-brain representational similarity. Same conventions as (A), except that the

dashed black line shows the noise ceiling measured by comparing one participant’s RDM with the average of the RDMs from each of the other participants.

Error bars are within-participant SEM. Data and code with which to reproduce results are available at https://github.com/gretatuckute/auditory_brain_dnn.

https://doi.org/10.1371/journal.pbio.3002366.g008
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model as evaluated with either metric (regression or RDM similarity) was that trained on 3 of

the tasks simultaneously (the CochResNet50-MultiTask).

To gain insight into the source of these effects, we examined the in-house model predictions

for the 6 components of auditory cortical responses (Fig 3) that vary across brain regions. The

components seemed a logical choice for an analysis of the effect of task on model predictions

because they isolate distinct cortical tuning properties. We focused on the pitch-selective,

speech-selective, and music-selective components because these showed the largest effects of

model training (components 4 to 6, Figs 4 and 5) and because the tasks that we trained on

seemed a priori most likely to influence representations of these types of sounds. This analysis

was necessarily restricted to the regression-based model predictions because RDMs are not

defined for any single component’s response.

A priori, it was not clear what to expect. The representations learned by neural networks

are a function both of the training stimuli and the task they are optimized for [32,33], and in

principle, either (or both) could be critical to reproducing the tuning found in the brain. For

instance, it seemed plausible that speech and music selectivity might only become strongly evi-

dent in systems that must perform speech- and music-related tasks. However, given the dis-

tinct acoustic properties of speech, music and pitch, it also seemed plausible that they might

naturally segregate within a distributed neural representation simply from generic representa-

tional constraints that might occur for any task, such as the need to represent sounds efficiently

[78–80] (here imposed by the finite number of units in each model stage). Our in-house tasks

allowed us to distinguish these possibilities, because the training stimuli were held constant

(for 3 of the tasks and for the multitask model; the music genre task involved a distinct training

set), with the only difference being the labels that were used to compute the training loss.

Thus, any differences in predictions between these models reflect changes in the representa-

tion due to behavioral constraints rather than the training stimuli.

We note that the AudioSet task consists of classifying sounds within YouTube video sound-

tracks, and the sounds and associated labels are diverse. In particular, it includes many labels

associated with music—both musical genres and instruments (67 and 78 classes, respectively,

out of 516 total). By comparison, our musical genre classification task contained exclusively

genre labels, but only 41 of them. It thus seemed plausible that the AudioSet task might pro-

duce music- and pitch-related representations.

Comparisons of the variance explained in each component revealed interpretable effects of

the training task (Fig 9). The pitch-selective component was best predicted by the models

trained on AudioSet (R2 was higher for AudioSet-trained model than for the word-, speaker-,

or genre-trained models in both the CochCNN9 and CochResNet50 architectures, one-tailed

p< 0.005 for all 6 comparisons, permutation test). The speech-selective component was best

predicted by the models trained on speech tasks. This was true both for the word recognition

task (R2 higher for the word-trained model than for the genre- or AudioSet-trained models for

both architectures, one-tailed p< 0.0005 for 3 out of 4 comparisons; p = 0.19 for CochRes-

Net50-Word versus AudioSet) and for the speaker recognition task (one-tailed p< 0.005 for

all 4 comparisons). Finally, the music-selective component was best predicted by the models

trained on AudioSet (R2 higher for the AudioSet-trained model than for the word-, speaker-,

or genre-trained models for both architectures, p< 0.0005 for all 6 comparisons), consistent

with the presence of music-related classes in this task. We note also that the component was

less well predicted by the models trained to classify musical genre. This latter result may indi-

cate that the genre dataset/task does not fully tap into the features of music that drive cortical

responses. For instance, some genres could be distinguished by the presence or absence of

speech, which may not influence the music component’s response [50,51] (but which could

enable the representations learned from the genre task to predict the speech component). Note
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that the absolute variance explained in the different components cannot be straightforwardly

compared, because the values are not noise corrected (unlike the values for the voxel

responses).

The differences between tasks were most evident in scatter plots of the variance explained

for pairs of components (Fig 9B). For instance, the speech-trained models are furthest from

the diagonal when the variance explained in the speech and music components are compared.

Fig 9. Training task modulates model predictions. (A) Component response variance explained by each of the trained in-house models. Predictions are

shown for components 4–6 (pitch-selective, speech-selective, and music-selective, respectively). The in-house models were trained separately on each of 4 tasks

as well as on 3 of the tasks simultaneously, using 2 different architectures. Explained variance was measured for the best-predicting stage of each model for each

component selected using independent data. Error bars are SEM over iterations of the model stage selection procedure (see Methods; Component modeling).

Grey line plots the variance explained by the SpectroTemporal baseline model. (B) Scatter plots of in-house model predictions for pairs of components. The

upper panel shows the variance explained for component 5 (speech-selective) vs. component 6 (music-selective), and the lower panel shows component 6

(music-selective) vs. component 4 (pitch-selective). Symbols denote the training task. In the left panel, the 4 models trained on speech-related tasks are furthest

from the diagonal, indicating good predictions of speech-selective tuning at the expense of those for music-selective tuning. In the right panel, the models

trained on AudioSet are set apart from the others in their predictions of both the pitch-selective and music-selective components. Error bars are smaller than

the symbol width (and are provided in panel A) and so are omitted for clarity. Data and code with which to reproduce results are available at https://github.

com/gretatuckute/auditory_brain_dnn.

https://doi.org/10.1371/journal.pbio.3002366.g009
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And the AudioSet-trained models, along with the multitask models, are well separated from

the other models when the pitch- and music-selective components are compared. Given that

these models were all trained on the same sounds, the differences in their ability to replicate

human cortical tuning for pitch, music, and speech suggests that these tuning properties

emerge in the models from the demands of supporting of specific behaviors. The results do

not exclude the possibility that these tuning properties could also emerge through some form

of unsupervised learning or from some other combination of tasks. But they nonetheless pro-

vide a demonstration that the distinct forms of tuning in the auditory cortex could be a conse-

quence of specialization for domain-specific auditory abilities.

We found that in each component and architecture, the multitask models predicted compo-

nent responses about as well as the best single-task model. It was not obvious a priori that a

model trained on multiple tasks would capture the benefits of each single-task model—one

might alternatively suppose that the demands of supporting multiple tasks with a single repre-

sentation would muddy the ability to predict domain-specific brain responses. Indeed, the

multitask models achieved slightly lower task performance than the single-task models on

each of the tasks (see Methods; Training CochCNN9 and CochResNet50 models—Word,

Speaker, and AudioSet tasks). This result is consistent with the results of Kell and colleagues

[31] that dual-task performance was impaired in models that were forced to share representa-

tions across tasks [31]. However, this effect evidently did not prevent the multitask model rep-

resentations from capturing speech- and music-specific response properties. This result

indicates that multitask training is a promising path toward better models of the brain, in that

the resulting models appear to combine the advantages of individual tasks.

Representation dimensionality correlates with model predictivity but does

not explain it

Although the task manipulation showed a benefit of multiple tasks in our in-house models, the

task alone does not obviously explain the large variance across external models in the measures

of model-brain similarity that we used. Motivated by recent claims that the dimensionality of a

model’s representation tends to correlate with regression-based brain predictions of ventral

visual cortex [81], we examined whether a model’s effective dimensionality could account for

some of the differences we observed between models (S9 Fig).

The effective dimensionality is intended to summarize the number of dimensions over

which a model’s activations vary for a stimulus set and is estimated from the eigenvalues of the

covariance matrix of the model activations to a stimulus set (see Methods; Effective

dimensionality). Effective dimensionality cannot be greater than the minimum value of either

the number of stimuli in the stimulus set or the model’s ambient dimensionality (i.e., the num-

ber of unit activations) but is typically lower than both of these because the activations of dif-

ferent units in a model can be correlated. Effective dimensionality must limit predictivity

when a model’s dimensionality is lower than the dimensionality of the underlying neural

response, because a low dimensional model response could not account for all of the variance

in a high dimensional brain response.

We measured effective dimensionality for each stage of each evaluated model (S9 Fig). We

preprocessed the model activations to match the preprocessing used for the model-brain com-

parisons. The effective dimensionality for model stages ranged from approximately 1 to

approximately 65 for our stimulus set (using the regression analysis preprocessing). By com-

parison, the effective dimensionality of the fMRI responses was 8.75 (for NH2015) and 5.32

(for B2021). Effective dimensionality tended to be higher in trained than in permuted models

and tended to increase from one model stage to the next in trained models. The effective
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dimensionality of a model stage was modestly correlated with the stage’s explained variance

(R2 = 0.19 and 0.20 for NH2015 and B2021, respectively; S9 Fig, panel Aii), and with the

model-brain RDM similarity (R2 = 0.15 and 0.18 for NH2015 and B2021, respectively; S9 Fig,

panel Bii). However, this correlation was much lower than the reliability of the explained vari-

ance measure (R2 = 0.98, measured across the 2 fMRI datasets for trained networks; S9 Fig,

panel Ai) and the reliability of the model-brain RDM similarity (R2 = 0.96; S9 Fig, panel Bi).

Effective dimensionality thus does not explain the majority of the variance across models—

there was wide variation in the dimensionality of models with good predictivity and also wide

variation in predictivity of models with similar dimensionality.

Intuitively, dimensionality could be viewed as a confound for regression-based brain pre-

dictions. High-dimensional model representations might be more likely to produce better

regression scores by chance, on the grounds that the regression can pick out a small number of

dimensions that approximate the function underlying the brain response, while ignoring other

dimensions that are not brain-like. But because the RDM is a function of all of a representa-

tion’s dimensions, it is not obvious why high dimensionality on its own should lead to higher

RDM similarity. The comparable relationship between RDM similarity and dimensionality

thus helps to rule out dimensionality as a confound in the regression analyses. In addition,

both relationships were quite modest. Overall, the results show that there is a weak relationship

between dimensionality and model-brain similarity but that it cannot explain most of the vari-

ation we saw across models.

Discussion

We examined similarities between representations learned by contemporary DNN models and

those in the human auditory cortex, using regression and representational similarity analyses

to compare model and brain responses to natural sounds. We used 2 different brain datasets to

evaluate a large set of models trained to perform audio tasks. Most of the models we evaluated

produced more accurate brain predictions than a standard spectrotemporal filter model of the

auditory cortex [45]. Predictions were consistently much worse for models with permuted

weights, indicating a dependence on task-optimized features. The improvement in predictions

with model optimization was particularly pronounced for cortical responses in non-primary

auditory cortex selective for pitch, speech, or music. Predictions were worse for models trained

without background noise. We also observed task-specific prediction improvements for partic-

ular brain responses, for instance, with speech tasks producing the best predictions of speech-

selective brain responses. Accordingly, the best overall predictions (aggregating across all vox-

els) were obtained with models trained on multiple tasks. We also found that most models

exhibited some degree of correspondence with the presumptive auditory cortical hierarchy,

with primary auditory voxels being best predicted by model stages that were consistently ear-

lier than the best-predicting model stages for non-primary voxels. The training-dependent

model-brain similarity and model-stage-brain-region correspondence was evident both with

regression and representational similarity analyses. The results indicate that more often than

not, DNN models optimized for audio tasks learn representations that capture aspects of

human auditory cortical responses and organization.

Our general strategy was to test as many models as we could, and the model set included

every audio model with an implementation in PyTorch that was publicly available at the time

of our experiments. The motivation for this “kitchen sink” approach was to provide a strong

test of the generality of brain-DNN correspondence. The cost is that the resulting model com-

parisons were uncontrolled—the external models varied in architecture, training task, and

training data, such that there is no way to attribute differences between model results to any
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one of these variables. To better distinguish the role of the training data and task, we comple-

mented the external models with a set of models built in our lab that enabled a controlled

manipulation of task, and some manipulations of the training data. These models had identical

architectures, and for 3 of the tasks had the same training data, being distinguished only by

which of 3 types of labels the model was asked to predict.

Insights into the auditory system

What do our results reveal about the auditory system? The main immediate biological contribu-

tion lies in providing further evidence and context for functional differentiation between

regions of human auditory cortex. Discussions of auditory cortical functional organization

commonly revolve around 2 proposed principles. The first is that the cortex is organized hierar-

chically into a sequence of stages corresponding to cortical regions [31,82–84]. Much of the evi-

dence for hierarchy is associated with speech processing, in that speech-specific responses only

emerge outside of primary cortical areas [50,59,85–90,91]. Other evidence for hierarchical orga-

nization comes from analyses of responses to natural sounds, which show selective responses to

music and song in non-primary auditory cortex [50,51,92]. These non-primary responses occur

with longer latencies and longer integration windows [93] than primary cortical responses. In

addition, stimuli that are matched in audio and modulation frequency content to natural

sounds drive responses in primary, but not non-primary, auditory cortex [57]. Non-primary

areas also show greater invariance to real-world background noise [74]. The present results pro-

vide a distinct additional type of evidence for a broad distinction between the computational

description of primary and non-primary auditory cortex, with primary and non-primary voxels

being consistently best predicted by earlier and later stages of hierarchical models, respectively.

We note that these results do not speak to the anatomical connections between regions, only to

their stimulus selectivity and correspondence to hierarchical computational models. The pres-

ent results in particular do not necessarily imply that the observed regional differences reflect

strictly sequential stages of processing [94]. But they do show that the qualitative relationship to

earlier and later model stages is fairly consistent across datasets and models.

The second commonly articulated principle of functional organization is that of domain

specificity—the idea that different regions are specialized for different auditory functions. Pre-

vious evidence for this idea comes from findings that selectivity for particular stimulus attri-

butes is localized to distinct regions of auditory cortex. In particular, speech selectivity is

typically found to be localized to the superior temporal gyrus [50,59,85–90,91], music-selective

responses are localized anterior and posterior from primary auditory cortex [50,51,92,95,96],

and location-specific responses to the planum temporale [97–101]. The present results provide

additional evidence for domain-specific responses, in that particular tasks produced model

representations that best predicted particular response components. This was true even though

the models in question were trained on identical sound sets. The results indicate that the way

sound is used to perform tasks can shape representations in ways that cannot be entirely

explained by the distribution of sound features a system is optimized for. The results lend plau-

sibility to the idea that the response selectivity found in the human auditory cortex (to pitch,

music, and speech) could arise from optimization for specific tasks, though it does not prove

this possibility (because it remains possible that similar tuning properties could emerge from

the right type of unsupervised learning).

How to build a model of auditory cortex?

What do our results reveal about how to build a good model of human auditory cortex? First,

they provide broad additional support for the idea that training a hierarchical model to
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perform tasks on natural audio signals produces representations that exhibit some alignment

with the cortex as measured by 2 commonly used metrics (better alignment than was obtain-

able by previous generations of models). The fact that many models produce relatively good

predictions suggests that these models contain audio features that typically align to some

extent with brain representations, at least for the fMRI measurements we are working with,

and in the sense of producing responses that are correlated for natural sounds. And the fact

that results were consistently worse for models with permuted weights suggests that training is

critical to obtaining these features. Second, some models built for engineering purposes pro-

duce poor brain predictions. Although the heterogeneity of the models limits our ability to

diagnose the factors that underlie these model-brain discrepancies, the result suggests that we

should not expect every DNN model to produce strong alignment with the brain. Third, back-

ground noise in the training data consistently improved the predictions of models trained on

speech tasks. The improvement held for speech-selective responses in addition to responses

not specifically related to speech. Thus, even the representation of speech seems to be made

more brain-like by training in noise. Fourth, multiple tasks seem to improve predictions. The

results suggest that particular tasks produce representations that align well with particular

brain responses, such that a model trained on multiple tasks gets the best of all worlds (Fig 9).

We note also that the 2 external models that produced model-brain similarity on par with the

in-house models were trained on one of the in-house model tasks (AudioSet), further consis-

tent with the idea that the task is important. Fifth, models with higher-dimensional representa-

tions are somewhat more likely to produce good matches with the brain. At present, it is not

clear what drives this effect, but there was a modest but consistent effect evident with both

metrics we used.

A majority of the models we tested produced overall predictivity between 60% and 75% of

the explainable variance (for regression-based predictions). These values were well above that

of the SpectroTemporal baseline model but well below the noise ceiling. Moreover, the RDM

similarity was far below the noise ceiling for all models. This result thus indicates that all cur-

rent models are inadequate as complete descriptions of auditory fMRI responses. Our results

provide some suggestions for how to improve the models, with the main avenue being training

on more realistic data and on a more diverse set of tasks, but it remains to be seen whether

incremental extensions will be enough to bridge the gap that is evident in our results.

We note that none of the DNN models we tested were designed or tuned in any way to be

able to predict brain responses. One of the in-house models was the result of an architecture

search, but that search was constrained only to achieve good task performance. Thus, the mod-

els were optimized only to be able to carry out particular auditory functions. The advent of

publicly available brain/behavior benchmarks [102] raises the possibility that models could be

“hacked” to score well on model-brain comparisons, but such benchmarks are not yet in wide-

spread use in audition and played no role in our model development. By contrast, the baseline

SpectroTemporal filter model was explicitly designed to replicate auditory cortical tuning seen

experimentally in spectrotemporal receptive fields [45]. For instance, the filters are logarithmi-

cally spaced, consistent with neurophysiological [103] and psychophysical [104,105] observa-

tions, and tuned to both spectral and temporal modulation. It is thus expected that the

baseline model would be able to predict cortical responses to some extent, particularly in pri-

mary auditory cortex [56,57], and indeed, its predictions were much better than those of the

permuted models. The fact that task-optimized models tend to produce better matches to the

cortex than the baseline model thus seems nontrivial.

Another difference between the tested DNN models and the baseline SpectroTemporal

model is the number of stages: The DNN models have multiple stages, while the baseline

model has a single stage intended to model the auditory cortex. The multiple stages in DNN
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models require choosing which model stages contribute to model predictions. In principle, all

stages of a DNN model could be used concurrently to model the brain response of interest.

Instead, our model comparisons used the best-predicting model stage (selected using data dis-

tinct from that used to measure the explained variance or RDM similarity). Although this

allows an additional hyperparameter when fitting multistage models, this analysis choice could

be argued to disadvantage multistage models—if there was no correspondence between model

stages and brain regions, or if the correspondence was sufficiently poor, better predictions

might result by using features combined across multiple stages. We also found that the DNN

models with permuted weights in all cases produced worse matches to the cortex than the sin-

gle-stage baseline model, providing further evidence that the analysis procedure does not

intrinsically favor multistage models. These observations again suggest that the better-than-

baseline matches of task-optimized DNN models to the cortex are nontrivial.

The poor performance of some of the models built for engineering purposes suggests a cau-

tionary note. Training neural network models at scale requires substantial compute resources

and expertise, and it is thus tempting to obtain models that have been developed in industry

labs for other purposes and attempt to use them as models of the brain [41,42,106]. Our results

suggest that one should not assume that such a model will necessarily produce good brain pre-

dictions. In particular, the 3 speech recognition models (S2T, Wav2Vec2, and DeepSpeech2)

all produced worse predictions than all of our main in-house models (Fig 2). This result is also

consistent with the fact that speech recognition systems derived in engineering contexts do not

reproduce some characteristics of human speech perception [76,77]. These model shortcom-

ings could relate to these models having been trained on clean speech (as is common for such

systems given that they are typically combined with separate denoising systems)—when we

explicitly manipulated background noise during training, we found that training without

noise caused the in-house models to produce worse brain predictions. The inclusion of an ini-

tial cochlear stage may also help to produce representations and behavior like those of biologi-

cal auditory systems [32], though we did not manipulate that here.

Relation to prior work

The best-known prior study along these lines is that of Kell and colleagues [31], and the results

here qualitatively replicate the key results of that study. One contribution of the present study

thus lies in showing that these earlier results hold for many different auditory models. In par-

ticular, most trained models produce better predictions than the SpectroTemporal baseline

model, and most exhibit a correspondence between model stages and brain regions. The con-

sistently worse predictions obtained from models with random/permuted weights also repli-

cates prior work, providing more evidence that optimizing representations for tasks tends to

bring them in closer alignment with biological sensory systems. We also extended the

approach of Kell and colleagues [31] by substantiating these main conclusions using represen-

tational similarity analyses in addition to regression-based predictions, providing converging

evidence for model-brain matches. Overall, the results indicate a qualitatively similar set of

results to those obtained in the ventral visual pathway, where many different trained models

produce overall good predictions [64].

The study of Kell and colleagues [31] used a model trained on 2 tasks but did not test the

extent to which the multiple tasks improved the overall match to human brain responses.

Here, we compared model-brain similarity for models trained on single tasks and models

trained on multiple tasks and saw advantages for multiple tasks. We note that it is not always

straightforward to train models to perform multiple tasks and indeed that Kell and colleagues

[31] found that task performance was optimized when the representations subserving the 2
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tasks were partially segregated. This representational segregation could potentially interact

with the extent to which the model representations match to human brain responses. But for

the tasks we considered here, it was not necessary to explicitly force representational segrega-

tion in order to achieve good task performance or good predictions of human brain responses.

Beyond the study by Kell and colleagues [31], there have been relatively few other efforts to

compare neural network models to auditory cortical responses. One study compared represen-

tational similarity of fMRI responses to music to the responses of a neural network trained on

music annotations but did not compare to standard baseline models of auditory cortex [36].

Another study optimized a network for a small-scale (10-digit) word recognition task and

reported seeing some neurophysiological properties of the auditory system [38]. Koumura and

colleagues [37,107] trained networks on environmental sound or speech classification and

observed tuning to amplitude modulation, similar to that found in peripheral and mid-level

stages of biological auditory systems but did not investigate the putative hierarchy of cortical

regions. Giordano and colleagues [44] found that 3 DNN models predicted non-primary voxel

responses better than standard acoustic features, generally consistent with the results shown

here. Millet and colleagues [41] used a self-supervised speech model to predict brain responses

to naturalistic speech and found a stage-region correspondence similar to that found by Kell

and colleagues [31] and in the present work. However, they used a model that we found to pro-

duce poor predictivity compared to others that we tested, and the overall variance explained

was relatively low. Similarly, Vaidya and colleagues [42] demonstrated that certain self-super-

vised speech models capture distinct stages of speech processing. Our results complement

these findings in showing that they apply to a large set of models and to responses to natural

sounds more generally.

Limitations of our approach and results

The analyses presented here are intrinsically limited by the coarseness of fMRI data in space

and time. Voxels contain many thousands of neurons, and the slow time constant of the

BOLD signal averages the underlying neuronal responses on a timescale of several seconds. It

remains possible that responses of single neurons would be harder to relate to the responses of

the sorts of models tested here, particularly when temporal dynamics are examined. Our analy-

ses are also limited by the number of stimuli that can feasibly be presented in an fMRI experi-

ment (less than 200 given our current methods and reliability standards). It is possible that

larger stimulus sets would better differentiate the models we tested.

The conclusions here are also limited by the 2 metrics of model-brain similarity that we

used. The regression-based metric of explained variance is based on the assumption that repre-

sentational similarity can be meaningfully assessed using a linear mapping between responses

to natural stimuli [46,108,109]. This assumption is common in systems neuroscience but

could obscure aspects of a model representation that deviate markedly from those of the brain,

because the linear mapping picks out only the model features that are predictive of brain

responses. There is ample evidence that DNN models tend to rely partially on different features

than humans [18,19] and have partially distinct invariances [25,27] for reasons that remain

unclear. Encoding model analyses may mask the presence of such discrepant model properties.

They also leave open the possibility that the features that are picked out by the linear mapping

are not the same as those in the brain—they only need to be correlated with the brain features

to produce good brain predictions on a finite dataset [57,65]. We note that accurate predic-

tions of brain responses may be useful in a variety of applied contexts and so have value inde-

pendent of the extent to which they capture intuitive notions of similarity. In addition,

accurate predictive models might be scientifically useful in helping to better understand what
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is represented in a brain response (for instance, by generating predictions of stimuli that yield

high or low responses that can then be tested experimentally [110]). But there are nonetheless

limitations when relying exclusively on regression to evaluate whether a model replicates brain

representations.

Representational dissimilarity matrices complement regression-based metrics but have

their own limitations. RDMs are computed from the entirety of a representation, and so reflect

all of its dimensions, but conversely are not invariant to linear transformations. Scaling some

dimensions up and others down can alter an RDM even if it does not alter the information

that can be extracted from the underlying representation. Further, RDMs rely on choosing a

distance measure between model responses to construct the RDM and a distance measure

between 2 RDMs, and the most commonly used measures do not obey formal properties of

metric spaces [111]. Although the RDM comparisons we employ are in widespread use, the

measurement of representational similarity is an active area of research, with alternative met-

rics under development [111]. Moreover, RDMs must be computed from sets of voxel

responses and so are sensitive to the (potentially ad hoc) choice of which voxels to pool

together. For instance, our first analysis (Fig 2) pooled voxels across all of auditory cortex, and

this may have limited the similarity observed with individual model stages (potentially explain-

ing why the DNN models show only a modest advantage over the baseline model via this met-

ric). By contrast, regression metrics can be evaluated on individual voxels.

The fact that the regression and RDM analyses yielded similar qualitative conclusions is

reassuring, but they are but 2 of a large space of possible model-brain similarity metrics

[57,111–113]. In addition, the correspondence between the 2 metrics was not perfect. The cor-

relation between overall variance explained (the regression metric) and the human-model

RDM similarity across network stages was R2 = 0.56 and 0.58 for NH2015 and B2021, respec-

tively—much higher than chance but below the noise ceiling for the 2 measures (S10 Fig). In

addition, the best model stages for each ROI were generally only weakly correlated between

the 2 metrics (Fig 7). These discrepancies are not well understood at present but must eventu-

ally be resolved for the modeling enterprise to declare success.

Although we found consistent evidence for correspondence between model stages and

brain regions, this correspondence was coarse: The best-predicting model stages tended to be

later for non-primary voxels than for primary voxels. There is at present no evidence for any-

thing more fine-grained (for instance, with each stage of a model mapping onto a distinct

stage of the auditory system). The evaluation of a more fine-grained correspondence is limited

in part by fMRI data. For instance, the cortex is composed of distinct layers of neurons that

might be expected to map onto distinct stages of an artificial neural network, but our fMRI

data do not resolve layers within a cortical column. The many subcortical stages of auditory

processing might be expected to be captured by early model stages (as would be consistent

with the relatively late position of the best-predicting stages for cortical voxels) but are difficult

to measure as reliably as is needed for the model comparisons used here. The position of the

best-predicting stage also varied a fair bit across models. We do not find this surprising given

the diversity of tasks on which the models were trained, and the diversity of model architec-

tures, but we also lack a theory at present for why the best-predicting stages are in particular

places for particular models.

Another limitation is that we did not evaluate the behavior of the models we tested. In

other work, we have found that models trained to perform natural tasks on natural stimuli

tend to reproduce a fairly wide range of human psychophysical results [31–33], but we did not

conduct such experiments on the present set of models, in part because we currently lack psy-

chophysical batteries for some of the training tasks (specifically, speaker and audio event rec-

ognition). It is thus possible that the models learn to perform the training tasks differently
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than humans despite using features that enable above-baseline predictions of brain responses

[23,25,27,57,114].

As discussed above, our study is unable to disentangle effects of model architecture, task,

and training data on the brain predictions of the external models tested. We emphasize that

this was not our goal—we sought to test a wide range of models as a strong test of the general-

ity of brain-DNN similarities, cognizant that this would limit our ability to assess the reasons

for model-brain discrepancies. The in-house models nonetheless help reveal some of the fac-

tors that drive differences in model predictions.

Future directions

The finding that task-optimized neural networks generally enable improved predictions of

auditory cortical brain responses motivates a broader examination of such models, as well as

further model development for this purpose. For instance, the finding that different tasks best

predict different brain responses suggest that models that both recognize and produce speech

might help to explain differences in “ventral” and “dorsal” speech pathways [115], particularly

if paired with branching architectures [31] that can be viewed as hypotheses for distinct func-

tional pathways. Models trained to localize sounds [33] in addition to recognizing them might

help explain aspects of the cortical encoding of sound location and its possible segregation

from representations of sound identity [97,116–120]. Task-optimized models could potentially

also help clarify findings that currently do not have an obvious functional interpretation, for

instance, the tendency for responses to broadband onsets to be anatomically segregated from

responses to sustained and tonal sounds [50,121,122], if such response properties emerge for

some tasks and not others.

On the other hand, it remains unclear whether improvements in tasks and training datasets

can entirely bridge the substantial remaining gaps between current neural network models

and the brain. In principle, current model failures (aberrant behaviors such as adversarial

examples and discrepant metamers, along with sub-ceiling model-brain similarity according

to many metrics) might be explained simply by differences in the training task or training data

relative to those that biological organisms are plausibly optimized for [123]. For instance,

models are often optimized for a single task, and on data that is arguably more stereotyped (for

instance, with images centered on single objects [124,125]) than the sensory data encountered

by organisms in the world, and this might be expected to limit the match to human behavior,

with improvements to be expected as tasks and data are made richer. Our results from training

in noise and the multitask networks are consistent with this general idea. However, it also

remains possible that because biological sensory systems result from complex evolutionary his-

tories, they might not be well approximated by the result of a single optimization procedure

for a fixed set of training objectives [30], which might limit the extent to which pure task opti-

mization is likely to account for biological perception.

One can also question the role of tasks in the optimization that produces biological percep-

tual systems. As is widely noted, the learning algorithm used in most of the models we consid-

ered (supervised learning) is not a plausible account for how biological organisms incorporate

data from their environment [126]. The use of supervised learning is motivated by the possibil-

ity that one could converge on an accurate model of the brain’s representations by replicating

some constraints that shape neural representations even if the way those constraints are

imposed deviates from biology. It is nonetheless conceivable (and perhaps likely) that fully

accurate models will require learning algorithms that more closely resemble the optimization

processes of biology, in which nested loops of evolutionary selection and (largely unsuper-

vised) learning over development combine to produce systems that can perform a wide range
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of tasks well and thus successfully pass on their genes. Some initial steps in this direction can

be found in recent models that are optimized without labeled training data [41,42,127,128].

Our model set contained one such contrastive self-supervised model (Wav2Vec2 [129]), and

although its brain predictions were worse than those of most of the supervised models, this

direction clearly merits extensive exploration.

It will also be important to use additional means of model evaluation, such as model-

matched stimuli [25,27,57], stimuli optimized for a model’s predicted response [110,130–132],

methods that directly substitute brain responses into models [112], or recently proposed alter-

native methods to measure representational similarity [111]. These additional types of evalua-

tions could help address some of the limitations discussed in the previous section. And,

ultimately, analyses such as these need to be related to more fine-grained anatomy and brain

response measurements. Model-based analyses of human intracranial data [43,133] and sin-

gle-neuron responses from nonhuman animals both seem like promising next steps in the pur-

suit of complete models of biological auditory systems.

Methods

Voxel response modeling

The following voxel encoding model methods are adapted from those of Kell and colleagues

[31], and where the methods are identical, we have reproduced the analogous sections of the

methods verbatim. We summarize the minor differences from the methods of Kell and col-

leagues [31] at the end of this section. All voxel response modeling and analysis code was writ-

ten in Python (version 3.6.10), making heavy use of the numpy [134] (version 1.19.0), scipy

[135] (version 1.4.1), and scikit-learn [136] libraries (version 0.24.1).

General. We performed an encoding analysis in which each voxel’s time-averaged

activity was predicted by a regularized linear model of the DNN activity. We operationa-

lized each model stage within each candidate model (see section “Candidate models”) as a

hypothesis of a neural implementation of auditory processing. The fMRI hemodynamic sig-

nal to which we were comparing the candidate model blurs the temporal variation of the

cortical response, thus a fair comparison of the model to the fMRI data involved predicting

each voxel’s time-averaged response to each sound from time-averaged model responses.

We therefore averaged the model responses over the temporal dimension after extraction.

Because it seemed possible that units with real-valued activations might average out to near-

zero values, we extracted unit activations after model stages that transform the output to

positive values (ReLU, Tanh stages). Transformer architectures had no such stages, so we

extracted the real-valued unit activations and analyzed all model stages in this way. Pilot

analyses suggested that voxel predictions from these models were similar when we time-

averaged unit activations that were exclusively positive (specifically, when we used the root

mean square (RMS) instead of the mean).

Voxelwise modeling: Regularized linear regression and cross-validation. We modeled

each voxel’s time-averaged response as a linear combination of a model stage’s time-averaged

unit responses. We first generated 10 randomly selected train/test splits of the 165 sound sti-

muli into 83 training sounds and 82 testing sounds. For each split, we estimated a linear map

from model units to voxels on the 83 training stimuli and evaluated the quality of the predic-

tion using the remaining 82 testing sounds (described below in greater detail). For each voxel-

stage pair, we took the median across the 10 splits. The linear map was estimated using regular-

ized linear regression. Given that the number of regressors (i.e., time-averaged model units)

typically exceeded the number of sounds used for estimation [83], regularization was critical.

We used L2-regularized (“ridge”) regression, which can be seen as placing a zero-mean
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Gaussian prior on the regression coefficients. Introducing the L2-penalty on the weights

results in a closed-form solution to the regression problem, which is similar to the ordinary

least-squares regression normal equation:

w ¼ ðXTXþ nlIÞ� 1XTy

where w is a d-length column vector (the number of regressors—i.e., the number of time-aver-

aged units for the given stage), y is an n-length column vector containing the voxel’s mean

response to each sound (length 83), X is a matrix of regressors (n stimuli by d regressors), n is

the number of stimuli used for estimation [83], and I is the identity matrix (d by d). We

demeaned each column of the regressor matrix (i.e., each model unit’s response to each

sound), but we did not normalize the columns to have unit norm. Similarly, we demeaned the

target vector (i.e., the voxel’s or the component’s response to each sound). By not constraining

the norm of each column to be one, we implemented ridge regression with a non-isotropic

prior on each unit’s learned coefficient. Under such a prior, units with larger norm were

expected a priori to contribute more to the voxel predictions. In pilot experiments, we found

that this procedure led to more accurate and stable predictions in left-out data, compared with

a procedure where the columns of the regressor matrices were normalized (i.e., with an isotro-

pic prior). The demeaning was performed on the train set, and the same transformation was

applied on the test set. This ensured independence (no data leakage) between the train and test

sets.

Performing ridge regression requires selecting a regularization parameter that trades off

between the fit to the (training) data and the penalty for weights with high coefficients. To

select this regularization parameter, we used leave-one-out cross-validation within the set of

83 training sounds. Specifically, for each of 100 logarithmically spaced regularization parame-

ter values (1e-50, 1e-49, . . ., 1e48, 1e49), we measured the squared error in the resulting pre-

diction of the left-out sound using regression weights derived from the other sounds in the

training split. We computed the average of this error (across the 83 training sounds) for each

of the 100 potential regularization parameter values. We then selected the regularization

parameter that minimized this mean squared error. Finally, with the regularization parameter

selected, we used all 83 training sounds to estimate a single linear mapping from a stage’s fea-

tures to a given voxel’s response. We then used this linear mapping to predict the response to

the left-out 82 test sounds and evaluated the Pearson correlation of the predicted voxel

response with the observed voxel response. If the predicted voxel response had a standard

deviation of exactly 0 (no variance of the prediction across test sounds), the Pearson correla-

tion coefficient was set to 0. Similarly, if the Pearson correlation coefficient was negative, indi-

cating that the held-out test sounds were not meaningfully predicted by the linear map from

the training set, the Pearson correlation value was similarly set to 0. We squared this Pearson

correlation coefficient to yield a measure of variance explained. We found that the selected reg-

ularization parameter values rarely fell on the boundaries of the search grid, suggesting that

the range of the search grid was appropriate. We emphasize that the 82 test sounds on which

predictions were ultimately evaluated were not incorporated into the procedure for selecting

the regularization parameter nor for estimating the linear mapping from stage features to a

voxel’s response—i.e., the procedure was fully cross-validated.

Selecting regularization coefficients independently for each voxel-stage regression was com-

putationally expensive but seemed important for our scientific goals given that the optimal reg-

ularization parameter could vary across voxel-stage pairs. For instance, differences in the

extent to which the singular value spectrum of the feature matrix is uniform or peaked (which

influences the extent to which the XTX+nλI matrix in the normal equation above is well
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conditioned) can lead to differences in the optimal amount of regularization. Measurement

noise, which varies across voxels, can also influence the degree of optimal regularization. By

allowing different feature sets (stages) to have different regularization parameters, we are

enabling each feature set to make the best possible predictions, which is appealing given that

the prediction quality is the critical dependent variable that we compare across voxels and

stages. Varying the regularization parameter across feature sets while predicting the same

voxel response will alter the statistics of the regression coefficients across feature sets and thus

would complicate the analysis and interpretation of regression coefficients. However, we are

not analyzing the regression coefficients in this work.

Voxelwise modeling: Correcting for reliability of the measured voxel response. The

use of explained variance as a metric for model evaluation is inevitably limited by measure-

ment noise. To correct for the effects of measurement noise, we computed the reliability of

both the measured voxel response and the predicted voxel response. Correcting for the reliabil-

ity of the measured response is important to make comparisons across different voxels,

because (as shown in, for instance, Figure S2 in Kell and colleagues’ article [31]) the reliability

of the BOLD response varies across voxels. This variation can occur for a variety of reasons

(for instance, distance from the head coil elements). Not correcting for the reliability of the

measured response will downwardly bias the estimates of variance explained and will do so dif-

ferentially across voxels. This differential downward bias could lead to incorrect inferences

about how well a given set of model features explains the response of voxels in different parts

of auditory cortex.

Voxelwise modeling: Correcting for reliability of the predicted voxel response. Mea-

surement noise corrupts the test data to which model predictions are compared (which we

accounted for by correcting for the reliability of the measured voxel response, as described

above), but noise is also present in the training data and thus also inevitably corrupts the esti-

mates of the regression weights mapping from model features to a given voxel. This second

influence of measurement noise is often overlooked but can be addressed by correcting for the

reliability of the predicted response. Doing so is important for 2 reasons. First, as with the reli-

ability of the measured voxel response, not correcting for the predicted voxel response can

yield incorrect inferences about how well a model explains different voxels. Second, the reli-

ability of the predicted response for a given voxel can vary across feature sets, and failing to

account for these differences can lead to incorrect inferences about which set of features best

explains that voxel’s response. It was thus, in practice, important to correct for the reliability of

the predicted voxel response. By correcting for both the reliability of the measured voxel

response and the reliability of the predicted response, the ceiling of our measured r-squared

values was 1 for all voxels and all stages, enabling comparisons of voxel predictions across all

voxels and all neural network stages.

Voxelwise modeling: Corrected measure of variance explained. To correct for the reli-

ability, we employ the correction for attenuation [61]. It is a standard technique in many fields

and is becoming more common in neuroscience. The correction estimates the correlation

between 2 variables independent of measurement noise (here the measured voxel response

and the model prediction of that response). The result is an unbiased estimator of the correla-

tion coefficient that would be observed from noiseless data. Our corrected measure of variance

explained was the following:

r2∗
v;v̂ ¼

rðv123; v̂123Þ
2

r0vr0v̂

where v123 is the voxel response to the 82 left-out sounds averaged over the 3 scans, v̂123 is the
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predicted response to the 82 left-out sounds (with regression weights learned from the other

83 sounds), r is a function that computes the correlation coefficient, r0v is the estimated reliabil-

ity of that voxel’s response to the 83 sounds, and r0v̂ is the estimated reliability of that predicted

voxel’s response. r0v is the median of the correlation between all 3 pairs of scans (scan 0 with

scan 1; scan 1 with scan 2; and scan 0 with scan 2), which is then Spearman–Brown corrected

to account for the increased reliability that would be expected from tripling the amount of data

[61]. r0v̂ is analogously computed by taking the median of the correlations for all pairs of pre-

dicted responses (models fitted on a single scan) and Spearman–Brown correcting this mea-

sure. Note that for very noisy voxels, this division by the estimated reliability can be unstable

and can cause for corrected variance explained measures that exceed one. To ameliorate this

problem, we limited both the reliability of the prediction and the reliability of the voxel

response to be greater than some value k [58]. For k = 1, the denominator would be con-

strained to always equal 1, and, thus, the “corrected” variance explained measured would be

identical to uncorrected value. For k = 0, the corrected estimated variance explained measure

is unaffected by the value k. This k-correction can be seen through the lens of a bias-variance

trade-off: This correction reduces the amount of variance in the estimate of variance explained

across different splits of stimuli but does it at the expense of a downward bias of those variance

explained metrics (by inflating the reliability measure for unreliable voxels). For r0v, we used a k

of 0.182, which is the p< 0.05 significance threshold for the correlation of two 83-dimensional

Gaussian variables (i.e., with the same length as our 83-dimensional voxel response vectors

used as the training set), while for r0v̂ , we used a k of 0.183, which is the p< 0.05 significance

threshold for the correlation of two 82-dimensional Gaussian variables (i.e., same length as

our 82-dimensional predicted voxel response vectors, the test set).

Voxelwise modeling: Summary. We repeated this procedure for each stage and voxel 10

times, once each for 10 random train/test splits, and took the median explained variance across

the 10 splits for a given stage-voxel pair. We performed this procedure for all stages of all can-

didate models and all voxels (across 2 datasets: NH2015: 7,694 voxels, B2021: 26,792 voxels).

Thus, for each stage and voxel, this resulted in 10 explained variance values (R2). We computed

the median explained variance across these 10 cross-validation splits for each voxel-stage pair.

For comparison, we performed an identical procedure with the stages of a permuted network

with the same architecture as our main networks (see section “Candidate models with per-

muted weights”) and the SpectroTemporal baseline model. In all analyses, if a noise-corrected

median explained variance value exceeded 1, we set the value to 1 to avoid an inflation of the

explained variance.

In summary, the voxel prediction methods were largely the same as those in Kell and col-

leagues’ article [31], with the following differences. First, we imposed a different range of regu-

larization constants to avoid hitting the bounds of the range. This difference was necessitated

to accommodate a larger and more diverse set of models than in Kell and colleagues’ article

[31] as well as changes to scikit learn in the years separating our study from that of Kell and

colleagues [31]. Second, we set the r-squared values for negative r values to 0, rather than using

signed r-squared values as in Kell and colleagues’ article [31]. This seemed like the best choice

given that negative r values indicates that a model cannot predict the data. Third, we used a dif-

ferent limit for the reliability used to correct the explained variance. Our limit was the mini-

mum correlation that would be statistically significant for a sample size of 82 and 83 (which is

the sample size for which the reliability is measured), whereas Kell and colleagues [31]

assumed a sample size of 165. Fourth, we omitted the Fisher z transform when averaging r-

squared values, as it seemed hard to motivate. We strongly suspect that none of these differ-

ences qualitatively affect any important result, but we list them here for transparency.
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Voxelwise predictions across models [Fig 2]. To compare how well each candidate

model explained the variance in the fMRI data, we aggregated the explained variance across all

voxels in the dataset of interest (NH2015: 7,694 voxels, B2021: 26,792 voxels) for each model.

We evaluated each candidate model using its best-predicting stage. Selection of the best-pre-

dicting model stage was performed in one of 2 ways. In the main analysis featured in Fig 2, for

each voxel, we used half of the 10 cross-validation test splits to select the best-predicting stage

and the remaining 5 test splits to obtain the median explained variance. This yielded a median

explained variance per voxel. To ensure that this procedure did not depend on the random 5

cross-validation splits selected, we repeated this procedure 10 times for each model. We then

obtained the mean of the explained variance values for each voxel across these 10 iterations.

To mitigate concerns that this analysis might be affected by the overlap in sounds in the 5 splits

used to select the best stage and the 5 splits used to measure the explained variance, we per-

formed a second analysis in which we selected the best-predicting model stage using all the

voxels for all but one participant and then measured the explained variance in each of the vox-

els in the left-out participant. This analysis measures explained variance with data fully inde-

pendent from that used to choose the best stage but is less consistent with the rest of the

analyses (for instance, the maps of the best-predicting model stage, in which it was critical to

choose the best-predicting stage separately for each voxel). We confirmed that the results

shown in Fig 2 were qualitatively similar if this second procedure was used to choose the best-

predicting stage for each model. To obtain an aggregated explained variance across voxels for

each model, we first obtained the median across voxels within each participant and then took

the mean across participants. An identical procedure was used for the permuted networks.

Voxelwise predictions across model stages [S2 Fig]. To visualize how well each stage of

each candidate model explained variance in the fMRI data, we aggregated the explained vari-

ance across all voxels in the dataset of interest (NH2015: 7,694 voxels, B2021: 26,792 voxels)

for each model. Given that no model stage selection procedure took place, we simply obtained

the median across voxels within each participant and then took the mean across participants

for each model stage, identical to the aggregation procedure for the best-stage voxelwise pre-

dictions (Fig 2).

Best-predicting model stage [Fig 6/Fig 7]. We also examined which model stage best

predicted each voxel’s response (an “argmax” analysis, i.e., the position that best predicts the

response for each voxel). We assigned each model stage a position index between 0 and 1

(using minmax normalization such that the first stage was assigned a value of 0 and the last

stage a value of 1, i.e., (current_stage − min_stage) / (num_stages − min_stage)). For summary

maps (Fig 6), we predicted responses in individuals and then aggregated results across partici-

pants (median), after they were aligned in a common coordinate system (i.e., the FsAverage

surface from FreeSurfer) using K-Nearest Neighbor interpolation. For the across-model sum-

mary map, we took the median of the best model stage positions across the n = 15 best-per-

forming models (rounded to the first decimal place). The plots were visualized using Freeview

using default parameters (Freeview version 7.3.2). The color overlay was an inverse color

wheel. The color scale limits were set to extend from 0 to the stage beyond the most common

best stage (across voxels in both fMRI datasets). The permuted control networks were visual-

ized using an identical color scale to the trained networks.

To quantify these summary maps, we compared the best-predicting model stage within dif-

ferent regions of the auditory cortex (Fig 7). We used 4 anatomical ROIs: one for primary

auditory cortex along with 3 ROIs for posterior, lateral, and anterior non-primary auditory

cortex. These ROIs were combinations of subsets of ROIs in the Glasser [67] parcellation. We

note that they were taken directly from a previous publication [51] where they were intended

to capture the auditory cortical regions exhibiting reliable responses to natural sounds and
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were not adapted in any way to the present analysis. For each model, we computed the relative

model stage position of the best-predicting stage within each ROI (an “argmax” analysis, as

shown on the summary maps; Fig 6), which we summarized by taking the median across vox-

els within each ROI for each participant followed by the mean across participants (similar to

the aggregation procedure in Fig 2). This yielded an average relative best model stage position

per candidate model within each ROI. An identical procedure was used for the permuted

networks.

Component modeling

We complemented the voxelwise modeling with analogous predictions of components of the

fMRI response derived from all of the voxels. In previous work [50], we found that voxel

responses to natural sounds can be explained as a linear combination of 6 response compo-

nents (Fig 3A). The components are derived from the auditory cortical voxels (pooled across

participants) that exceed a criterion of reliability. Each component is defined by a response to

each of the sounds in the stimulus set and has a weight for each voxel in the pool.

We predicted the responses for each of these 6 components in a manner similar to the vox-

elwise modeling. The only difference was that we did not perform any noise-ceiling correction

for the components (the components do not have repetitions across scan sessions, unlike the

voxel responses). Thus, all component predictions reported are the “raw” explained variance

(squared Pearson correlation coefficient).

Component predictions across models [Figs 5 and 9]. To compare how well each candi-

date model explained the component responses, we selected the best-predicting model stage

for each candidate model using independent data (identical to the procedure described in

“Voxelwise predictions across models” for the voxel data).

Component predictions across sounds [Fig 4]. We visualized the component response

predictions by plotting them against the actual responses (derived from Norman-Haignere

and colleagues’ article [50]) for each sound. We did this for the best-predicting model stage of

the CochResNet50-MultiTask (best-performing model overall; Fig 2A) for each component.

The best-predicting model stage was selected across 10 iterations of the independent model

stage selection procedure, as described in section “Voxelwise predictions across models.” For

each of the 10 iterations, we used the median explained variance value of 5 random cross-vali-

dation test splits to identify the best model stage. Thus, 10 iterations of this procedure yielded

10 best-predicting model stages. For each component, we selected the most frequently occur-

ring best-predicting model stage as the stage with which to visualize a given component’s pre-

dictions. Given a component and model stage, we obtained the predicted component response

for a sound by taking the mean over all cross-validation splits in which that sound was

included in the test set. In that way, we obtained the average prediction for each sound and

each component. We note that the predicted component responses visualized in Fig 4 were

demeaned during the regression procedure (using the training set mean to demean the test set,

ensuring no data leakage between train/test sets; see section “Voxelwise modeling: Regularized

linear regression and cross-validation”), but the predicted responses were transformed back to

their original scale (by adding back their mean) for visualization in Fig 4 (ordinate values).

The actual component responses in Fig 4 were taken directly from Norman-Haignere and col-

leagues’ article [50] without any transformations (abscissa values).

Representational similarity analysis

To assess the robustness of our conclusions to the evaluation metric, we also investigated the

similarity of model and fMRI responses using representational similarity analysis (RSA)
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[47,63,64]. We used the same set of model stages and time-averaged representations as were

used in the regression-based voxelwise modeling analysis. To construct the model representa-

tional dissimilarity matrix (RDM) for each model and model stage, we computed the dissimi-

larity (1 minus the Pearson correlation coefficient) between the model activations evoked by

each pair of sounds. Similarly, to construct the fMRI RDM, we computed the dissimilarity in

voxel responses (1 minus the Pearson correlation coefficient) between all voxel responses from

a participant to each pair of sounds. Before computing the RDMs from the fMRI or model

responses, we z-scored the voxel or unit responses. As a measure of fMRI and model similarity,

we computed the Spearman rank ordered correlation coefficient between the fMRI RDM and

the model RDM.

Representational similarity analysis: Across model comparison. In the analysis shown

in Fig 2, we compared the RDMs computed across all voxels of a participant to the RDM com-

puted from the time-averaged unit responses of each stage of each model. To choose the best-

matching stage, we first generated 10 randomly selected train/test splits of the 165 sound sti-

muli into 83 training sounds and 82 testing sounds. For each split, we computed the RDMs for

each model stage and for each participant’s fMRI data for the 83 training sounds. We then

chose the model stage that yielded the highest Spearman ρ measured between the model stage

RDM and the participant’s fMRI RDM. Using this model stage, we measured the model and

fMRI RDMs from the test sounds and computed the Spearman ρ. We repeated this procedure

10 times, once each for 10 random train/test splits, and took the median Spearman ρ across

the 10 splits. We performed this procedure for all candidate models and all participants (across

2 datasets: NH2015: 8 participants, B2021: 20 participants) and computed the mean Spearman

ρ across participants for each model. For comparison, we performed an identical procedure

with permuted versions of each neural network model and with the SpectroTemporal baseline

model.

Representational similarity analysis: Noise ceiling. The representational similarity anal-

ysis is limited by measurement noise in the fMRI data. As an estimate of the RDM correlation

that could be reasonably expected to be achieved between a model RDM and a single partici-

pant’s fMRI RDM, we calculated the correlation between one participant’s RDM and the aver-

age of all the other participant’s RDM. Within each dataset (NH2015 and B2021), we held out

one participant and averaged the RDMs across the remaining participants. The RDMs were

measured from the same 10 train/test splits of the 165 sounds described in the previous sec-

tion, using the 82 test sounds for each split. We then calculated the Spearman ρ between the

RDM from the held-out participant and the average participant RDM. We took the median

Spearman ρ across the 10 splits of data to yield a single value for each participant. This proce-

dure was repeated holding out each participant, and the noise ceiling shown in Figs 2E, 2G,

and 8B is the mean across the measured value for each held-out participant. This corresponds

to the “lower bound” of the noise ceiling used in prior work [63]. We plotted the noise ceiling

on the results graphs rather than noise-correcting the human-model RDM correlation to be

consistent with prior modeling papers that have used this analysis [63,64].

Representational similarity analysis: Best model stage analysis. We also examined

which model stage best captured the RDM measured from each anatomical ROI (an “argmax”

analysis). We assigned each model stage a position index between 0 and 1 (minmax normaliza-

tion like in the regression-based analyses). Given that we only report the “argmax” for this

analysis (and not the measured values), we used the full set of 165 sounds to compute the

RDMs. For a given ROI, we measured each participant’s fMRI RDM computed on the voxels

within the ROI. For each model, we computed the RDM for each stage and measured the

Spearman ρ between the model-stage RDM and the fMRI ROI RDM. We measured the arg-

max across the stages for each model and each participant. We then took the mean of this
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position index across participants to yield an average relative best model stage per candidate

model within each ROI. An identical procedure was used for the permuted networks.

Representational similarity analysis: Visualization. For fMRI RDMs, we computed the

RDM individually for each participant and then averaged the RDM for visualization. Both

fMRI and model RDMs are grouped and colored by the sound categories assigned in Norman-

Haignere and colleagues’ article [50]. fMRI RDMs for all auditory cortex voxels and for each

ROI can be found in S1 Fig.

Effective dimensionality

We investigated the effective dimensionality (ED) of the representations at each model stage as

well as of the measured fMRI activity. The ED [137] was calculated on the set of 165 sounds

that were used for the brain comparisons. The ED was evaluated as:

ED ¼
ðSiliÞ

2

Sil
2

i

where λi are the square of the singular values obtained from the matrix of<activations> by

<sounds>. This matrix was measured from the fMRI or model activations that were used for

the regression analysis (demeaning each voxel or unit response) or for the RSA analysis (z-

scoring the voxel or unit responses). In practice, these 2 different forms of preprocessing

altered the ED measure, with ED values being about twice as large following the RSA prepro-

cessing compared to the regression preprocessing. For instance, the ED for the fMRI data was

8.75 (for NH2015) and 5.32 (for B2021) using the regression preprocessing, but 16.9

(NH2015) and 12.9 (B2021) when using the representational similarity preprocessing. We

used the 2 types of preprocessing to maintain consistency with the 2 types of model-brain simi-

larity analysis, but the conclusions of the ED analysis would not have been qualitatively differ-

ent had we exclusively used one type of preprocessing or the other.

Statistical analysis

Voxel responses: Pairwise model comparisons (regression and representational similar-

ity). For statistical comparison of brain predictions between models trained with and without

background noise, we evaluated significance nonparametrically by bootstrapping across par-

ticipants (n = 8 for NH2015, n = 20 for B2021). For each model trained without background

noise, we sampled the participant explained variance values with replacement (8 or 20 values,

sampled 10,000 times) and took the average. The resulting histogram was compared to the

noise-trained model’s observed value averaged across all participants. The p-value was

obtained by counting the number of times the bootstrapped value was smaller than the

observed value, divided by the number of bootstrap iterations (n = 10,000). The test was one-

tailed because it was motivated by the hypothesis that the model trained in background noise

would produce better fMRI response predictions than the models trained without background

noise.

Comparisons of best predicting model stages between ROIs (regression and representa-

tional similarity). For statistical comparison of the mean model stage position index for

pairs of anatomical ROIs (related to Fig 7), we performed a Wilcoxon signed rank test. The

test compared the average values across models obtained from the primary ROI versus the

average values obtained from the non-primary ROI across models. The test was two-tailed. In

exploratory analyses of best predicting model stages among the 3 non-primary ROIs, we per-

formed a Bonferroni correction for multiple comparisons due to the lack of a priori

hypotheses.
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Component responses: Pairwise model comparisons (regression). For statistical com-

parison of component predictions between pairs of models (related to Figs 5 and 9), we evalu-

ated significance nonparametrically via a permutation test. Based on the model stage selection

procedure described in section “Component predictions across models,” we obtained 10 inde-

pendently selected median explained variance values per component. For a given component,

we took the average across the 10 explained variance values for each model and then computed

the difference between the 2 models. We generated a null distribution by randomly permuting

the model assignment and measuring the difference between the averages of these permuted

model assignment lists. The p-value was obtained by counting the number of times the

observed difference was smaller than the values measured from permuted data, divided by the

number of permutations (n = 10,000). The test was one-tailed because in each case, it was

motivated by a hypothesis that one model would produce better component response predic-

tions than the other. Specifically, there were 2 types of comparisons. In the first, the trained

models were compared to the SpectroTemporal baseline model. In the second, models trained

on a task that was plausibly related to the selectivity of a component (for instance, the word

task for the speech component) were compared to models trained on a task not obviously

related to that component (for instance, the genre task for the speech component).

fMRI data (NH2015)

The initial sections of the fMRI data collection methods used in Norman-Haignere and col-

leagues’ article [50] are very similar to the methods reported in Kell and colleagues’ article [31]

and the text is replicated with minor edits.

fMRI cortical responses to natural sounds. The fMRI data analyzed here is a subset of

the data in Norman-Haignere and colleagues’ article [50], only including the participants who

completed 3 scanning sessions. Eight participants (4 female, mean age: 22 years, range: 19 to

25; all right-handed) completed 3 scanning sessions (each approximately 2 hours). Participants

were non-musicians (no formal training in the 5 years preceding the scan), native English

speakers, and had self-reported normal hearing. Two other participants only completed 2

scans and were excluded from these analyses, and 3 additional participants were excluded due

to excessive head motion or inconsistent task performance. The decision to exclude these 5

participants was made before analyzing any of their fMRI data. All participants provided

informed consent, and the Massachusetts Institute of Technology Committee on the Use of

Humans as Experimental participants approved experiments (protocol number 2105000382).

Natural sound stimuli. The stimuli were a set of 165 two-second sounds selected to span

the sorts of sounds that listeners most frequently encounter in day-to-day life [50]. All sounds

were recognizable—i.e., classified correctly at least 80% of the time in a 10-way alternative

forced choice task run on Amazon Mechanical Turk, with 55 to 60 participants per sound. See

S1 Table for names of all stimuli and category assignments. To download all 165 sounds, see

the McDermott lab website: http://mcdermottlab.mit.edu/downloads.html.

fMRI scanning procedure. Sounds were presented using a block design. Each block

included 5 presentations of the identical 2-second sound clip. After each 2-second sound, a

single fMRI volume was collected (“sparse scanning”), such that sounds were not presented

simultaneously with the scanner noise. Each acquisition lasted 1 second and stimuli were pre-

sented during a 2.4-second interval (200 ms of silence before and after each sound to minimize

forward/backward masking by scanner noise). Each block lasted 17 seconds (5 repetitions of a

3.4-second repetition time (TR)). This design was selected based on pilot results showing that

it gave more reliable responses than an event-related design given the same amount of overall

scan time. Blocks were grouped into 11 runs, each with 15 stimulus blocks and 4 blocks of
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silence. Silence blocks were the same duration as the stimulus blocks and were spaced ran-

domly throughout the run. Silence blocks were included to enable estimation of the baseline

response. To encourage participants to attend equally to each sound, participants performed a

sound intensity discrimination task. In each block, one of the 5 sounds was 7 dB lower than

the other 4 (the quieter sound was never the first sound). Participants were instructed to press

a button when they heard the quieter sound.

fMRI data acquisition. MR data were collected on a 3T Siemens Trio scanner with a

32-channel head coil at the Athinoula A. Martinos Imaging Center of the McGovern Institute

for Brain Research at MIT. Each functional volume consisted of 15 slices oriented parallel to

the superior temporal plane, covering the portion of the temporal lobe superior to and includ-

ing the superior temporal sulcus. TR was 3.4 seconds (although acquisition time was only 1

second), echo time (TE) was 30 ms, and flip angle was 90 degrees. For each run, the 5 initial

volumes were discarded to allow homogenization of the magnetic field. In-plane resolution

was 2.1 × 2.1 mm (96 × 96 matrix), and slice thickness was 4 mm with a 10% gap, yielding a

voxel size of 2.1 × 2.1 × 4.4 mm. iPAT was used to minimize acquisition time. T1-weighted

anatomical images were collected in each participant (1 mm isotropic voxels) for alignment

and surface reconstruction.

fMRI data preprocessing. Functional volumes were preprocessed using FSL and in-

house MATLAB scripts. Volumes were corrected for motion and slice time. Volumes were

skull stripped, and voxel time courses were linearly detrended. Each run was aligned to the

anatomical volume using FLIRT and BBRegister [138,139]. These preprocessed functional vol-

umes were then resampled to vertices on the reconstructed cortical surface computed via Free-

Surfer [140] and were smoothed on the surface with a 3-mm FWHM 2D Gaussian kernel to

improve SNR. All analyses were done in this surface space, but for ease of discussion, we refer

to vertices as “voxels” throughout this paper. For each of the 3 scan sessions, we estimated the

mean response of each voxel (in the surface space) to each stimulus block by averaging the

response of the second through the fifth acquisitions after the onset of each block (the first

acquisition was excluded to account for the hemodynamic lag). Pilot analyses showed similar

response estimates from a more traditional GLM. These signal-averaged responses were con-

verted to percent signal change (PSC) by subtracting and dividing by each voxel’s response to

the blocks of silence. These PSC values were then downsampled from the surface space to a

2-mm isotropic grid on the FreeSurfer-flattened cortical sheet. For summary maps, we regis-

tered each participant’s surface to Freesurfer’s fsaverage template.

Voxel selection. For individual participant analyses, we used the same voxel selection cri-

terion as Kell and colleagues [31], selecting voxels with a consistent response to sounds from a

large anatomical constraint region encompassing the superior temporal and posterior parietal

cortex. Specifically, we used 2 criteria: (1) a significant response to sounds compared with

silence (p< 0.001, uncorrected); and (2) a reliable response to the pattern of 165 sounds across

scans. The reliability measure was as follows:

r ¼ 1 �
kv12 � projv3

v12k2

kv12k2

projv3
v12 ¼

v3 � v12

kv3k
2

2

 !

v3

where v12 is the response of a single voxel to the 165 sounds averaged across the first 2 scans (a

vector), and v3 is that same voxel’s response measured in the third. The numerator in the sec-

ond term in the first equation is the magnitude of the residual left in v12 after projecting out
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the response shared with v3. This “residual magnitude” is divided by its maximum possible

value (the magnitude of v12). The measure is bounded between 0 and 1 but differs from a cor-

relation in assigning high values to voxels with a consistent response to the sound set, even if

the response does not vary substantially across sounds. We found that using a more traditional

correlation-based reliability measure excluded many voxels in primary auditory cortex because

some of them exhibit only modest response variation across natural sounds. We included vox-

els with a value of this modified reliability measure of 0.3 or higher, which when combined

with the sound responsive t test yielded a total of 7,694 voxels across the 8 participants (mean

number of voxels per participant: 961.75; range: 637 to 1,221).

fMRI data (B2021)

fMRI cortical responses to natural sounds. The fMRI data analyzed here is from Boebin-

ger and colleagues’ article [51]. Twenty participants (14 female, mean age: 25 years, range: 18

to 34; all right-handed) completed 3 scanning sessions (each approximately 2 hours). Half of

these participants (n = 10) were highly trained musicians, with an average of 16.3 years of for-

mal training (ranging from 11 to 23 years, SD = 2.5) that began before the age of 7 [141] and

continued until the time of scanning. The other half of the participants (n = 10) were non-

musicians with less than 2 years of total music training, which could not have occurred either

before the age of 7 or within the 5 years preceding the time of scanning. All participants pro-

vided informed consent, and the Massachusetts Institute of Technology Committee on the

Use of Humans as Experimental Subjects approved experiments (protocol number

2105000382).

Natural sound stimuli. The stimuli consisted of the set of 165 two-second natural sounds

from Norman-Haignere and colleagues’ article [50], as well as 27 additional music and drum-

ming clips from a variety of musical cultures, for a total of 192 sounds. For consistency with

Norman-Haignere and colleagues’ [50] dataset, we constrained our analyses to the same set of

165 sounds.

fMRI scanning procedure. The fMRI scanning procedure was similar to the design of

Norman-Haignere and colleagues [50], except for the following minor differences. Each stimu-

lus block consisted of 3 repetitions of an identical 2-second sound clip and lasted 10.2 seconds

(3 repetitions of a 3.4-second TR). Each of the 3 scanning sessions consisted of 16 runs (for a

total of 48 functional runs per participant), with each run containing 24 stimulus blocks and 5

silent blocks of equal duration that were evenly distributed throughout the run. The shorter

stimulus blocks used in this experiment allowed each stimulus block to be presented 6 times

throughout the course of the 48 runs. To encourage participants to attend equally to each

sound, participants performed a sound intensity discrimination task. In each block, either the

second or third repetition was 12 dB lower, and participants were instructed to press a button

when they heard the quieter sound.

fMRI data acquisition. The data acquisition parameters were similar to those from Nor-

man-Haignere and colleagues [50], with a few minor differences. MR data were collected on a

3T Siemens Prisma scanner with a 32-channel head coil at the Athinoula A. Martinos Imaging

Center of the McGovern Institute for Brain Research at MIT. Each functional volume con-

sisted of 48 slices oriented parallel to the superior temporal plane, covering the whole brain.

However, all analyses were restricted to an anatomical mask encompassing the same portions

of the temporal and parietal lobes as in Norman-Haignere and colleagues’ article [50]. TR was

3.4 seconds (TA = 1 second), TE was 33 ms, and flip angle was 90 degrees. For each run, the 4

initial volumes were discarded to allow homogenization of the magnetic field. In-plane resolu-

tion was 2.1 × 2.1 mm (96 × 96 matrix), and slice thickness was 3 mm with a 10% gap, yielding
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a voxel size of 2.1 × 2.1 × 3.3 mm. An SMS acceleration factor of 4 was used in order to mini-

mize acquisition time. T1-weighted anatomical images were collected in each participant (1

mm isotropic voxels) for alignment and surface reconstruction.

fMRI data preprocessing. Preprocessing was identical to Norman-Haignere and col-

leagues’ [50]. However, the initial analyses of this dataset differ from Norman-Haignere and

colleagues’ [50] in that a GLM was used to estimate voxel responses rather than signal averag-

ing, which was necessary due to the use of shorter stimulus blocks that caused more overlap

between BOLD responses to different stimuli. For each of the 3 scan sessions, we estimated the

mean response of each voxel (in the surface space) by modeling each block as a boxcar func-

tion convolved with a canonical hemodynamic response function (HRF). The model also

included 6 motion regressors and a first-order polynomial noise regressor to account for linear

drift in the baseline signal. The resulting voxel beta weights were then downsampled from the

surface space to a 2-mm isotropic grid on the FreeSurfer-flattened cortical sheet. For summary

maps, we registered each participant’s surface to Freesurfer’s fsaverage template.

Voxel selection. The process of selecting voxels was identical to Norman-Haignere and

colleagues’ process [50], except that the reliability of voxel responses was determined by com-

paring the vectors of 192 beta weights estimated separately for the two-halves of the data

(v1 = first 3 repetitions from runs 1 to 24, v2 = last 3 repetitions from runs 25 to 48). Voxels

were selected using the following reliability measure:

r ¼ 1 �
kv12 � projv3

v12k
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2
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v12 ¼
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including voxels with a value of 0.3 or higher and further selecting only voxels with significant

responses to sounds (p< 0.001, uncorrected). The combination of these 2 criteria yielded a

total of 26,792 voxels across the 20 participants (mean number of voxels per participant: 1,340;

range: 1,020 to 1,828).

Candidate models

We investigated a set of n = 19 candidate models. Nine of these models were trained by other

labs for engineering purposes (“external”), and 10 of these models were trained by us (“in-

house”). Tables 1 and 2 show an overview of the 9 external models and 10 in-house models,

respectively. For completeness, the SpectroTemporal baseline model is included in Table 2

along with the in-house models. Details on model architectures and training can be found

below. For each model description, the model stage names match those in the code imple-

menting the model. In the model-brain similarity analyses, we only included layers with

learned parameters.

External models. Nine external models implemented in PyTorch were obtained from pub-

licly available repositories. To our knowledge, the requirement that models be available in

PyTorch implementations (at the time our experiments were run) resulted in the exclusion of 3

models that we would have otherwise included: YAMNet [55,156] (https://github.com/

tensorflow/models/tree/master/research/audioset/yamnet), DeepSpeech1 [157] ((https://github.

com/mozilla/DeepSpeech), and NPC [158] (https://github.com/Alexander-H-Liu/NPC). To

accommodate the required dependencies, a separate software environment was created to run
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each model, and the versions of Python, PyTorch, and TorchAudio are reported separately for

each model.

AST. Audio Spectrogram Transformer (AST) is an attention-based, convolution-free

transformer architecture for audio classification.

We used the pretrained model available by Yuan Gong and colleagues as described in Gong

and colleagues’ article [142]. Specifically, we used the model that was pretrained on ImageNet

[124] using a vision transformer architecture (data-efficient image Transformer [159]) and

afterwards trained on AudioSet [55] (the best single model checkpoint that consisted of a

model where all weights were averaged across model checkpoints from the first to last training

epoch, model name: “Full AudioSet, 10 tstride, 10 fstride, with Weight Averaging (0.459

mAP)” (https://github.com/YuanGongND/ast).

AST is composed of an initial embedding layer followed by 12 multilevel encoder blocks

that match the transformer architecture [160,161]. Model activations were extracted at the out-

put of each transformer encoder block. In addition to model activations from the transformer

blocks, we extracted the initial embeddings that are fed to the model, as well as the final logits

over AudioSet classes, yielding 14 layers in total.

As described in Gong and colleagues’ article [142], the audio input to AST is the raw audio

waveform that is converted into a sequence of 128 log-mel filterbank features computed with

25 ms Hamming windows every 10 ms. As the model was trained on AudioSet, the input size

to the model was 10.24 seconds (1,024 time frames). The model implementation zero-padded

any input less than this length. Thus, the spectrogram was of size [1,24, 128] ([n_temporal,

n_spectral]), which in our analyses resulted from a zero-padded 2-second audio clip. The spec-

trogram was normalized by subtracting the average value measured from the training dataset

spectrograms (in this case, AudioSet) and dividing by 2 times the training dataset spectrogram

standard deviation. The spectrogram was split into a sequence of 101 16 × 16 patches (see

Gong and colleagues’ article [142] for details on the patch embedding procedure) with an over-

lap of 6 in both time and frequency (i.e., stride [10, 10]). These patches were projected into an

embedding of size 768 (“the patch embedding layer”) using the single convolutional layers as

specified under “Architecture” in Gong and colleagues’ article [142]. Two classification tokens

were prepended to the embedding, which was then passed through 12 transformer encoder

blocks. AST was trained on the full AudioSet dataset (consisting of the official balanced and

full training set, i.e., around 2M segments) using cross-entropy. The final layer was a linear

classification layer over 527 audio labels.

Architecture. The AST architecture is denoted in Table 3 with the sizes of the tensors propa-

gated through the network denoted in parentheses. Encoder refers to each transformer encod-

ing block. Model stages that were used for voxel and component response modeling are

denoted in bold. Here and elsewhere, the model stage names match those in the code imple-

menting the model.

For AST, we thus extracted model representations from the following 14 layers with the

number of unit activations (regressors) for each sound denoted in parentheses: Embedding

(768), Encoder_1 (768), Encoder_2 (768), Encoder_3 (768), Encoder_4 (768), Encoder_5

(768), Encoder_6 (768), Encoder_7 (768), Encoder_8 (768), Encoder_9 (768), Encoder_10

(768), Encoder_11 (768), Encoder_12 (768), Linear_1 (527).

Extractions were performed using torch = 1.8.1, torchaudio = 0.8.1 in Python 3.8.11.

DCASE2020 baseline. The DCASE2020 baseline model (henceforth DCASE2020) is

recurrent architecture trained for automated audio captioning [143], where the model accepts

audio as input and outputs the textual description (i.e., the caption) of that signal. We used the

pretrained model implemented by Drossos and colleagues (https://github.com/audio-

captioning/dcase-2020-baseline).
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The input to the model is a log-mel spectrogram (audio was peak normalized prior to spec-

trogram conversion, i.e., divided by the maximum value of the absolute value of the audio sig-

nal) with 64 frequency bins resulting from a short-time Fourier transform applying 23 ms

windows (window size) every 11.5 ms (stride). This yields log spectrogram patches of 173 × 64

bins that are the inputs to the model, i.e., a 2D array [n_temporal, n_spectral]. These spectro-

grams are passed through a 3-layer bidirectional GRU encoder and a one bidirectional layer

GRU decoder with a linear readout. There are residual connections between the second and

third encoder GRUs. The linear readout is a linear projection into C classes representing the

4,367 one-hot encoding of unique caption words. The decoder iterates for 22 time steps.

DCASE2020 was trained using cross-entropy loss on the development split of Clotho v1

[144], which consists of 2,893 audio clips with 14,465 captions. The audio samples are of 15- to

30-second duration, each audio sample having 5 captions of length 8 to 20 words.

Architecture. The DCASE2020 architecture is denoted in Table 4 with the sizes of the ten-

sors propagated through the network denoted in parentheses. Model stages that were used for

voxel and component response modeling are denoted in bold. The 2 outputs of bidirectional

recurrent stages were concatenated (i.e., treated as different features).

Thus, for DCASE, we extracted model representations from the following 5 layers with the

number of unit activations (regressors) for each sound denoted in parentheses: GRU_1 (512),

GRU_2 (512), GRU_3 (512), GRU_4 (256), Linear_1 (4367).

Extractions were performed using torch = 1.3.1 in Python 3.7.10.

Table 3. AST architecture.

Input (1,024,128)

Embedding: Conv2d(1, 768, kernel_size = [16, 16], stride = [10, 10]) (12, 101, 768)

Encoder_1 (1,214, 768)

Encoder_2 (1,214, 768)

Encoder_3 (1,214, 768)

Encoder_4 (1,214, 768)

Encoder_5 (1,214, 768)

Encoder_6 (1,214, 768)

Encoder_7 (1,214, 768)

Encoder_8 (1,214, 768)

Encoder_9 (1,214, 768)

Encoder_10 (1,214, 768)

Encoder_11 (1,214, 768)

Encoder_12 (1,214, 768)

Linear_1(in_features = 768, out_features = 527, bias = True) (1, 527)

https://doi.org/10.1371/journal.pbio.3002366.t003

Table 4. DCASE2020 architecture.

Input (173, 64)

Dropout(p = 0.25)

GRU_1(input_size = 64, output_size = 256, bidirectional = True) (2,256)

GRU_2(input_size = 512, output_size = 256, bidirectional = True) (2,256)

GRU_3(input_size = 512, output_size = 256, bidirectional = True) (2,256)

Dropout(p = 0.25)

GRU_4(input_size = 512, output_size = 256, bidirectional = False) (1,256)

Linear_1(in_features = 256, out_features = 4367) (22, 4,367)

https://doi.org/10.1371/journal.pbio.3002366.t004
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DeepSpeech2. DeepSpeech2 is a recurrent architecture for automatic speech recognition

[145]. We used the pretrained PyTorch model by Sean Naren and collaborators (https://

github.com/SeanNaren/deepspeech.pytorch).

As described by Amodei and colleagues [145], the input to the model is a log-spectrogram

with 161 frequency bins resulting from a short-time Fourier transform applying 20 ms win-

dows (window size) every 10 ms (stride). This yields log spectrogram patches of 201 × 161 bins

that are the inputs to the model, i.e., a 2D array [n_temporal, n_spectral]. Each spectrogram

was normalized by subtracting the mean spectrogram value and dividing by the standard devi-

ation. These spectrograms were transformed by two 2D convolutional layers followed by 5

bidirectional recurrent long short-term memory (LSTM) layers and ending in a fully con-

nected layer. The fully connected layer is a linear projection into C classes representing the

vocabulary of the task. The vocabulary consists of 29 classes (output features), corresponding

to English characters and space, apostrophe, blank. DeepSpeech2 was trained using a CTC loss

on the Librispeech corpus [146] (960 hours).

Architecture. The DeepSpeech2 architecture is denoted in Table 5 with the sizes of the ten-

sors propagated through the network denoted in parentheses. Model stages that were used for

voxel and component response modeling are denoted in bold. The 2 outputs of bidirectional

recurrent stages (using the LSTM output cell states) were concatenated (i.e., treated as different

features).

Thus, for DeepSpeech2, we extracted model representations from the following 8 layers

with the number of unit activations (regressors) for each sound denoted in parentheses: Hard-

Tanh_1 (2,592), HardTanh_2 (1,312), LSTM_1 (2,048), LSTM_2 (2,048), LSTM_3 (2,048),

LSTM_4 (2,048), LSTM_5 (2,048), Linear_1 [29].

Extractions were performed using torch = 1.7.1, torchaudio = 0.7.2 in Python 3.6.13.

MetricGAN. MetricGAN+ (henceforth MetricGAN) is a generative adversarial network

(GAN) for speech enhancement. We used the pretrained model available by SpeechBrain

Table 5. DeepSpeech2 architecture.

Input (201, 161)

Conv2d_1(in_channels = 1, out_channels = 32, kernel_size = [41,11], stride = [2,2], padding =

[20,5])

[32, 81, 101]

BatchNorm2d_1(num_features = 32) [32, 81, 101]

HardTanh_1(min_val = 0, max_val = 20) [32, 81, 101]

Conv2d_2(in_channels = 32, out_channels = 32, kernel_size = [21,11], stride = [2,1], padding =

[10,5])

[32, 41, 101]

BatchNorm2d_2(num_features = 32) [32, 41, 101]

HardTanh_2(min_val = 0, max_val = 20) [32, 41, 101]

LSTM_1(input_size = 1,312, hidden_size = 1,024, bidirectional = True) (2, 1,024)

SequenceWise BatchNorm1d_1(num_features = 1,024) (101, 1,024)

LSTM_2(input_size = 1,024, hidden_size = 1,024, bidirectional = True) (2, 1,024)

SequenceWise BatchNorm1d_2(num_features = 1,024) (101, 1,024)

LSTM_3(input_size = 1,024, hidden_size = 1,024, bidirectional = True) (2, 1,024)

SequenceWise BatchNorm1d_3(num_features = 1,024) (101, 1,024)

LSTM_4(input_size = 1,024, hidden_size = 1,024, bidirectional = True) (2, 1,024)

SequenceWise BatchNorm1d_4(num_features = 1,024) (101, 1,024)

LSTM_5(input_size = 1,024, hidden_size = 1,024, bidirectional = True) (2, 1,024)

BatchNorm1d_5(num_features = 1,024) (101, 1,024)

Linear_1(in_features = 1,024, out_features = 29 [101, 29]

https://doi.org/10.1371/journal.pbio.3002366.t005
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[162] (hosted by HuggingFace) as described in Fu and colleagues’ article [147]. Specifically, we

used a model that was pretrained on the Voicebank-DEMAND dataset [148] (training files:

20,000 (58.03 hours) + validation files: 5,000 (14.65 hours)) (https://huggingface.co/

speechbrain/metricgan-plus-voicebank).

The generator of MetricGAN is a bidrectional long short-term memory (BLSTM) with 2

bidirectional LSTM layers followed by 2 fully connected layers. The objective of the generator

is to estimate a mask consisting of the noise in the signal in order to generate clean speech.

The discriminator of MetricGAN consists of a convolutional architecture (not investigated

here).

As described in Fu and colleagues’ article [147], the audio input to the model is the magni-

tude spectrogram resulting from a short-time Fourier transform applying 32 ms (window size)

windows every 16 ms (stride) resulting in 256 power frequency bins. This yields magnitude

spectrogram patches of 126 × 256 bins that are the inputs to the model, i.e., a 2D array [n_tem-

poral, n_spectral] that are passed through the BLSTM and linear layers of the generator model.

Architecture. The MetricGAN architecture is denoted in Table 6 with the sizes of the tensors

propagated through the network denoted in parentheses. Model stages that were used for

voxel and component response modeling are denoted in bold. The 2 outputs of bidirectional

recurrent stages (using the LSTM output cell states) were concatenated (i.e., treated as different

features).

For MetricGAN, we thus extracted model representations from the following 4 layers with

the number of unit activations (regressors) for each sound denoted in parentheses: LSTM_1

(400), LSTM_2 (400), LeakyReLU_1 (300), Linear_2 (257).

Extractions were performed using torch = 1.9.1, speechbrain = 0.5.10, huggingface-

hub = 0.0.17 in Python 3.8.11.

S2T. S2T (also known as Speech-to-Text) is an attention-based transformer architecture

for automatic speech recognition and speech-to-text translation. We used the pretrained

model available by HuggingFace [163] as described in Wang and colleagues’ article [149]. Spe-

cifically, we used the large model trained on Librispeech corpus [146] (960 hours) (https://

huggingface.co/facebook/s2t-large-librispeech-asr).

S2T is an encoder-decoder model. The encoder part is composed of 2 convolutional layers fol-

lowed by 12 multilevel encoder blocks that match the transformer architecture [160,161]. Model

activations were extracted at the output of each transformer encoder block. In addition to model

activations from the transformer blocks, we extracted the initial embeddings that were fed to the

model, yielding 13 layers in total. We did not investigate the decoder part of the model.

As described by Wang and colleagues [149], the audio input to S2T is a log-mel spectro-

gram with 80 mel-spaced frequency bins resulting from a short-time Fourier transform apply-

ing 25 ms windows every 10 ms. Each spectrogram was normalized by subtracting the mean

value of the spectrogram and dividing by the standard deviation. This yields the log-mel spec-

trogram of 198 × 80 bins that are the inputs to the model, i.e., a 2D array [n_temporal,

Table 6. MetricGAN architecture.

Input (126, 257)

LSTM_1(input_size = 257, hidden_size = 200, bidirectional = True) (2, 200)

LSTM_2(input_size = 257, hidden_size = 200, bidirectional = True) (2, 200)

Linear_1(in_features = 400, out_features = 300, bias = True) (126, 300)

LeakyReLU_1 (126, 300)

Linear_2(in_features = 300, out_features = 257, bias = True) (126, 257)

https://doi.org/10.1371/journal.pbio.3002366.t006
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n_spectral]. The spectrogram is passed through 2 convolutional layers before it is then passed

through the 12 transformer encoder blocks. S2T was trained using cross-entropy loss, and the

output consists of the 10K unigram vocabulary from SentencePiece [164].

Architecture. The S2T architecture is denoted in Table 7 with the sizes of the tensors propa-

gated through the network denoted in parentheses (which is determined by the total stride in

the initial feature encoder part of the architecture; not investigated here). Encoder refers to

each transformer encoding block. Model stages that were used for voxel and component

response modeling are denoted in bold.

Thus, for S2T, we extracted model representations from the following 13 layers with the

number of unit activations (regressors) for each sound denoted in parentheses: Embedding

(1,024), Encoder_1 (1,024), Encoder_2 (1,024), Encoder_3 (1,024), Encoder_4 (1,024),

Encoder_5 (1,024), Encoder_6 (1,024), Encoder_7 (1,024), Encoder_8 (1,024), Encoder_9

(1,024), Encoder_10 (1,024), Encoder_11 (1,024), Encoder_12 (1,024).

Extractions were performed using transformers = 4.10.0, torch = 1.9.0, huggingface-

hub = 0.0.16 in Python 3.8.11.

SepFormer. SepFormer (also known as Separation Transformer) is an attention-based

transformer architecture for speech separation. We used the pretrained model available by

SpeechBrain [162] (hosted by HuggingFace) as described in Subakan and colleagues’ article

[150]. Specifically, we used a model that was pretrained on the WHAMR! dataset [151] (train-

ing files: 20,000 (58.03 hours) + validation files: 5,000 (14.65 hours)) (https://huggingface.co/

speechbrain/sepformer-whamr).

SepFormer is composed of an initial encoder followed by 32 multilevel dual-path encoder

blocks similar to the transformer architecture [160,161] followed by a decoder. The trans-

former blocks follow a dual-path framework consisting of transformer blocks that model

short-term dependencies (IntraTransformer, IntraT) and transformer blocks that model lon-

ger-term dependencies (InterTransformer, InterT). There are, respectively, 8 such IntraT and

InterT blocks, yielding 16 transformer blocks, which is then repeated twice, yielding 32 trans-

former blocks in total. The objective of the dual-path transformer architecture is to estimate

optimal masks to separate the audio sources present in the audio mixtures. The model was

trained using scale-invariant source-to-noise ratio loss.

As described in Subakan and colleagues’ article [150], the audio input to SepFormer is the

raw audio waveform that is transformed by a single convolutional layer (encoder) followed by

Table 7. S2T architecture.

Input (198, 80)

Embedding/input post feature encoder (50, 1,024)

Encoder_1 (50, 1,024)

Encoder_2 (50, 1,024)

Encoder_3 (50, 1,024)

Encoder_4 (50, 1,024)

Encoder_5 (50, 1,024)

Encoder_6 (50, 1,024)

Encoder_7 (50, 1,024)

Encoder_8 (50, 1,024)

Encoder_9 (50, 1,024)

Encoder_10 (50, 1,024)

Encoder_11 (50, 1,024)

Encoder_12 (50, 1,024)

https://doi.org/10.1371/journal.pbio.3002366.t007

PLOS BIOLOGY Many but not all deep neural network audio models capture brain responses

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002366 December 13, 2023 47 / 70

https://huggingface.co/speechbrain/sepformer-whamr
https://huggingface.co/speechbrain/sepformer-whamr
https://doi.org/10.1371/journal.pbio.3002366.t007
https://doi.org/10.1371/journal.pbio.3002366


chunking the temporal dimension into patches of size 250. These chunks were then passed

through the 32 transformer encoder blocks.

Model activations were extracted at the output of each transformer encoder block. In addi-

tion to model activations from the transformer blocks, we extracted the initial encoder embed-

dings that are fed to the model, yielding 33 layers in total.

Architecture. The SepFormer architecture is denoted in Table 8 with the sizes of the tensors

propagated through the network denoted in parentheses. Encoder refers to each transformer

encoding block. Model stages that were used for voxel and component response modeling are

denoted in bold.

For SepFormer, we thus extracted model representations from the following 33 layers with

the number of unit activations (regressors) for each sound denoted in parentheses: Embedding

(after ReLU) (256), Encoder_1 (256), Encoder_2 (256), . . ., Encoder_31 (256), Encoder_32

(256).

Extractions were performed using torch = 1.9.1, speechbrain = 0.5.10, huggingface-

hub = 0.0.17 in Python 3.8.11.

VGGish. VGGish is a convolutional architecture for audio classification inspired by the

VGG model for image recognition [165]. VGGish converts audio input features into a seman-

tically meaningful, 128-dimensional embedding. We used the pretrained VGGish by Hershey

and colleagues [152] (https://github.com/tensorflow/models/tree/master/research/audioset,

specifically the PyTorch-compatible port by Harri Taylor and collaborators as found here:

https://github.com/harritaylor/torchvggish).

VGGish was trained on the YouTube-100M corpus (70M training videos, 5.24 million

hours with 30,871 labels) [152]. The videos average 4.6 minutes and are (machine) labeled

with 5 labels on average per video from the set of 30,871 labels. The model was trained to pre-

dict the video-level labels based on audio information using a cross-entropy loss function. As

described by Hershey and colleagues [152], the audio input consists of 960 ms audio frames

that are decomposed with a short-time Fourier transform applying 25 ms (window size) win-

dows every 10 ms (stride) resulting in 64 log mel-spaced frequency bins. This yields log-mel

spectrogram patches of 96 × 64 bins that are the inputs to the model, i.e., a 3D array [n_frames,

n_temporal, n_spectral]. Given that VGGish contained an additional temporal dimension (the

n_frames dimension), we averaged over both temporal dimensions (the n_temporal dimen-

sion, which corresponds to the time dimension of the spectrogram as well as the n_frames

dimension, which corresponds to the batch dimension) to obtain a time-averaged model

representation.

Architecture. The VGGish architecture is denoted in Table 9 with the sizes of the tensors

propagated through the network denoted in parentheses. Model stages that were used for

voxel and component response modeling are denoted in bold.

Table 8. SepFormer architecture.

Input (1, 16,000)

Embedding: Conv1d(1, 256, kernel_size = (16,), stride = (8,), bias = False) (256, 1,999)

ReLU_1() (256, 1,999)

Conv1d(256, 256, kernel_size = (1,), stride = (1,), bias = False) (256, 1,999)

Encoder_1 (18, 250, 256)

Encoder_2 (18, 250, 256)

. . . . . .

Encoder_31 (18, 250, 256)

Encoder_32 (18, 250, 256)

https://doi.org/10.1371/journal.pbio.3002366.t008
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Thus, for VGGish, we extracted model representations from the following 13 layers with

the number of unit activations (regressors) for each sound denoted in parentheses: ReLU_1

(4,096), MaxPool2d_1 (2,048), ReLU_2 (4,096), MaxPool2d_2 (2,048), ReLU_3 (4,096),

ReLU_4 (4,096), MaxPool2d_3 (2,048), ReLU_5 (4,096), ReLU_6 (4,096), MaxPool2d_4

(2,048), ReLU_7 (4,096), ReLU_8 (4,096), ReLU_9 [128].

Extractions were performed using torch = 1.8.0 and torchaudio = 0.8.1 in Python 3.8.5.

VQ-VAE (ZeroSpeech2020). Vector-quantized variational autoencoder (henceforth

VQ-VAE) is an encoder-decoder architecture trained for audio reconstruction, which can

then be used to generate speech in a target speaker’s voice. The model was trained for the Zer-

oSpeech 2020 challenge [166]. We used the pretrained model by Benjamin van Niekerk and

colleagues as described in Niekerk and colleagues’ article [153] (https://github.com/bshall/

ZeroSpeech).

VQ-VAE consists of a CNN-based encoder and an RNN-based decoder. The encoder

encodes the audio spectrogram, and the decoder produces the new sound waveform. The

model maps speech into a discrete latent space before reconstructing the original waveform.

As described by Niekerk and colleagues [153], the input to VQ-VAE is the log-mel spectro-

gram (audio was peak normalized prior to spectrogram conversion by dividing by the maxi-

mum of the absolute value of the audio signal, and this signal was multiplied by 0.999) with 80

mel-spaced frequency bins resulting from a short-time Fourier transform applying 25 ms

Table 9. VGGish architecture.

Input [2, 96, 64]

Conv2d_1(in_channels = 1, out_channels = 64, kernel_size = [3,3], stride = [1,1], padding =

[1,1])

[2, 64, 96, 64]

ReLU_1() [2, 64, 96, 64]

MaxPool2d_1(kernel_size = 2, stride = 2, padding = 0) [2, 64, 48, 32]

Conv2d_2(in_channels = 64, out_channels = 128, kernel_size = [3,3], stride = [1,1], padding =

[1,1]

[2, 128, 48, 32]

ReLU_2() [2, 128, 48, 32]

MaxPool2d_2(kernel_size = 2, stride = 2, padding = 0) [2, 128, 24, 16]

Conv2d_3(in_channels = 128, out_channels = 256, kernel_size = [3,3], stride = [1,1], padding =

[1,1])

(2, 256, 24, 16)

ReLU_3() (2, 256, 24, 16)

Conv2d_4(in_channels = 256, out_channels = 256, kernel_size = [3,3], stride = [1,1], padding =

[1,1]

(2, 256, 24, 16)

ReLU_4() (2, 256, 24, 16)

MaxPool2d_4(kernel_size = 2, stride = 2, padding = 0) (2, 256, 12, 8)

Conv2d_5(in_channels = 256, out_channels = 512, kernel_size = [3,3], stride = [1,1], padding =

[1,1])

(2, 512, 12, 8)

ReLU_5() (2, 512, 12, 8)

Conv2d_6(in_channels = 512, out_channels = 512, kernel_size = [3,3], stride = [1,1], padding =

[1,1])

(2, 512, 12, 8)

ReLU_6() (2, 512, 12, 8)

MaxPool2d_6(kernel_size = 2, stride = 2, padding = 0) (2, 512, 6, 4)

Linear_1(in_features = 12,288, out_features = 4,096) (2, 4,096)

ReLU_7() (2, 4,096)

Linear_2(in_features = 4,096, out_features = 4,096) (2, 4,096)

ReLU_8() (2, 4,096)

Linear_3(in_features = 4,096, out_features = 128) [2, 128]

ReLU_9() [2, 128]

https://doi.org/10.1371/journal.pbio.3002366.t009
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windows every 10 ms. This yields the log-mel spectrogram of 201 × 80 bins that are the inputs

to the model, i.e., a 2D array [n_temporal, n_spectral]. These spectrograms were transformed

by five 1D convolutional layers. The model was trained to maximize the log-likelihood of the

waveform given the discretized latent space bottleneck (details in Niekerk and colleagues’ arti-

cle [153]). The model was trained on the ZeroSpeech 2019 English dataset consisting of the

Train Voice Dataset (4 hours 40 minutes) and the Train Unit Dataset (15 hours 40 minutes)

[154]. To extract model activations, the audio samples were converted to the first encountered

speaker ID on the available speaker ID list (“S015”).

Architecture. The VQ-VAE encoder architecture is denoted in Table 10 with the sizes of the

tensors propagated through the network denoted in parentheses. We did not investigate the

decoder part of VQ-VAE. Model stages that were used for voxel and component response

modeling are denoted in bold.

Thus, for VQ-VAE, we extracted model representations from the following 5 layers with

the number of unit activations (regressors) for each sound denoted in parentheses: ReLU_1

(768), ReLU_2 (768), ReLU_3 (768), ReLU_4 (768), ReLU_5 (768).

Extractions were performed using torch = 1.9.0 in Python 3.8.11.

Wav2Vec2. Wav2Vec2 is a self-supervised transformer architecture for automatic speech

recognition that learns representations of speech from masked parts of raw audio. We used the

pretrained model from Huggingface Transformers [163]; original model can be found here:

https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec#wav2vec-20). Spe-

cifically, we used the base version trained and fine-tuned on the Librispeech corpus [146] (960

hours) (https://huggingface.co/facebook/wav2vec2-base-960h).

Wav2Vec2 is composed of an initial multilayer convolutional feature encoder followed

by 12 multilevel encoder blocks that match the transformer architecture [160,161]. Model

activations were extracted at the output of each transformer encoder block. In addition

to model activations from the transformer blocks, we extracted the initial embeddings that

are fed to the model, as well as the final logits over character tokens, yielding 14 layers in

total.

As described by Baevski and colleagues [129], the audio input to Wav2Vec2 is a sound

waveform of zero mean and unit variance. Wav2Vec2 is trained via a contrastive task where

Table 10. VQ-VAE architecture.

Input (80, 201)

Conv1d_1(80, 768, kernel_size = (3,), stride = (1,), bias = False) (768, 199)

BatchNorm1d_1(768, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (768, 199)

ReLU_1() (768, 199)

Conv1d(768, 768, kernel_size = (3,), stride = (1,), padding = (1,), bias = False) (768, 199)

BatchNorm1d(768, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (768, 199)

ReLU_2() (768, 199)

Conv1d(768, 768, kernel_size = (4,), stride = (2,), padding = (1,), bias = False) (768, 99)

BatchNorm1d(768, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (768, 99)

ReLU_3() (768, 99)

Conv1d(768, 768, kernel_size = (3,), stride = (1,), padding = (1,), bias = False) (768, 99)

BatchNorm1d(768, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (768, 99)

ReLU_4() (768, 99)

Conv1d(768, 768, kernel_size = (3,), stride = (1,), padding = (1,), bias = False) (768, 99)

BatchNorm1d(768, eps = 1e-05, momentum = 0.1, affine = True, track_running_stats = True) (768, 99)

ReLU_5() (768, 99)

https://doi.org/10.1371/journal.pbio.3002366.t010
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the true speech input is masked in a latent space and has to be distinguished from distractors.

The contrastive loss is augmented by a diversity loss to encourage the model to use samples

equally often. The pretrained model is fine-tuned for speech recognition by adding a linear

projection on top of the network into C classes representing the vocabulary of the task by min-

imizing a CTC loss [167]. The vocabulary consists of 32 classes (output features), correspond-

ing to English characters + bos_token = ’<s>’, eos_token = ’</s>’, unk_token = ’<unk>’,

pad_token = ’<pad>’, word_delimiter_token = ’|’.

Architecture. The Wav2Vec2 architecture is denoted in Table 11 with the sizes of the tensors

propagated through the network denoted in parentheses (which is determined by the total

stride in the initial feature encoder part of the architecture; not investigated here). Encoder

refers to each transformer encoding block. Model stages that were used for voxel and compo-

nent response modeling are denoted in bold.

For Wav2Vec2, we thus extracted model representations from the following 14 layers with

the number of unit activations (regressors) for each sound denoted in parentheses: Embedding

(768), Encoder_1 (768), Encoder_2 (768), Encoder_3 (768), Encoder_4 (768), Encoder_5

(768), Encoder_6 (768), Encoder_7 (768), Encoder_8 (768), Encoder_9 (768), Encoder_10

(768), Encoder_11 (768), Encoder_12 (768), Linear_1 [32].

Extractions were performed using transformers = 4.10.0, torch = 1.9.0, huggingface-

hub = 0.0.16 in Python 3.8.11.

In-house models

The in-house models consisted of a fixed cochleagram stage followed by either a convolutional

architecture similar to that used in Kell and colleagues’ article [31] or a ResNet50 architecture.

We refer to the full model architectures as CochCNN9 (indicating the 9 stages of this model)

and CochResNet50. The models were trained either on the Word-Speaker-Noise dataset [25],

which supports 3 different tasks (word, speaker, and audio event recognition), or the musical

genre dataset compiled in Kell and colleagues’ article [31]. In-house models were trained and

evaluated with Python 3.8.2 and PyTorch 1.5.0.

Cochleagram inputs. The SpectroTemporal model and all CochResNet50 and

CochCNN9 architectures had a cochleagram representation as the input to the model. A

Table 11. Wav2Vec2 architecture.

Input (32,000)

Embedding/input post feature encoder (99, 768)

Encoder_1 (99, 768)

Encoder_2 (99, 768)

Encoder_3 (99, 768)

Encoder_4 (99, 768)

Encoder_5 (99, 768)

Encoder_6 (99, 768)

Encoder_7 (99, 768)

Encoder_8 (99, 768)

Encoder_9 (99, 768)

Encoder_10 (99, 768)

Encoder_11 (99, 768)

Encoder_12 (99, 768)

Linear_1 (99, 768)

https://doi.org/10.1371/journal.pbio.3002366.t011
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cochleagram is a time-frequency representation of the audio with frequency bandwidth and

spacing that mimics the human ear, followed by a compressive nonlinearity [105,168]. The

audio waveform passes through a bank of 211 bandpass filters ranging from 50 Hz to 10 kHz.

Audio was sampled at 20 kHz for the SpectroTemporal and the Word, Speaker, and AudioSet

task models and was sampled at 16 kHz for the genre task models. Filters are zero-phase with

frequency response equal to the positive portion of a single period of a cosine function. Filter

spacing was set by the Equivalent Rectangular Bandwidth (ERB N) scale. Filters perfectly tile

the spectrum such that the summed square response across all frequencies is flat, which

includes 4 low-pass and 4 high-pass filters. The envelope was extracted from each filter sub-

band using the magnitude of the analytic signal (Hilbert transform), and the envelopes were

raised to the power of 0.3 to simulate basilar membrane compression. The resulting envelopes

were lowpass filtered and downsampled to 200 Hz, without any zero padding, resulting in a

cochleagram representation of 211 frequency channels by 390 time points. This representation

was the input to the auditory models. Cochleagram generation was implemented in PyTorch

(code available: https://github.com/jenellefeather/chcochleagram).

SpectroTemporal model. For comparison to previous hand-engineered models of the

auditory system, we included a single-layer SpectroTemporal model based on Chi and col-

leagues’ article [45]. The main difference was that spectral filters were specified in cycles/erb

(rather than cycles/octave) as the input signal to the model is a cochleagram with ERB-spaced

filters. The model consists of a linear filter bank tuned to spectrotemporal modulations at dif-

ferent frequencies, spectral scales, and temporal rates. The different frequencies were imple-

mented via applying the spectrotemporal filters as a 2D convolution with zero padding in

frequency (800 samples) and time (211 samples). Spectrotemporal filters were constructed

with center frequencies for the spectral modulations of [0.0625, 0.125, 0.25, 0.5, 1, 2] cycles/

erb. Center frequencies for the temporal modulations consisted of [0.5, 1, 2, 4, 8, 16, 32, 64]

and both upward and downward frequency modulations were included (resulting in 96 filters).

An additional 6 purely spectral and 8 purely temporal modulation filters were included for a

total of 110 modulation filters. To extract the power in each frequency band for each filter, we

squared the output of each filter response at each time step and took the average across time

for each frequency channel, similar to previous studies [31,45,57]. These power measurements

were used as the regressors for voxel and component modeling (23,421 activations).

CochCNN9 architecture. The CochCNN9 architecture is based on the architecture in

Kell and colleagues’ article [31] that emerged from a neural network architecture search. The

architecture used here differed in that the input to the first layer of the network is maintained

as the 211 × 390 size cochleagram rather than being reshaped to 256 × 256. The convolutional

layer filters and pooling regions were adjusted from those of Kell and colleagues’ [31] architec-

ture to maintain the same receptive field size in frequency and time given the altered input

dimensions. The other difference was that the network here was trained with batch normaliza-

tion rather than the local response normalization used in Kell and colleagues’ article [31].

Along with the CochResNet50, this architecture was used for task optimization comparisons

throughout the paper.

The CochCNN9 architecture is denoted in Table 12 with the sizes of the tensors propagated

through the network denoted in parentheses. Model stages that were used for voxel and com-

ponent response modeling are denoted in, and num_classes corresponds to the number of

logits used for training each task (Table 1).

Thus, for CochCNN9, we extracted model representations from the following 10 layers

with the number of unit activations (regressors) for each sound denoted in parentheses:

Cochleagram (211), ReLU_1 (6,816), MaxPool2d_1 (3,456), ReLU_2 (4,608), MaxPool2d_2

(2,304), ReLU_3 (4,608), ReLU_4 (9,216), ReLU_5 (4,608), AvgPool_1 (2,560), ReLU_6 (4,096).
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CochResNet50 architecture. The CochResNet50 model is composed of a ResNet50 back-

bone architecture applied to a cochleagram representation (with 2D convolutions applied to

the cochleagram). Along with CochCNN9, this architecture was used for task optimization

comparisons throughout the paper.

The CochResNet50 architecture is in Table 13 with the sizes of the tensors propagated

through the network denoted in parentheses. Model stages that were used for voxel and com-

ponent response modeling are denoted in bold, and num_classes corresponds to the number

of logits used for training each task (Table 1). The ResNetBlock components of the architecture

are reported in Table 14.

Thus, for CochResNet50, we extracted model representations from the following 8 layers

with the number of unit activations (regressors) for each sound denoted in parentheses:

Table 12. CochCNN9 architecture.

Input (cochleagram) (1,211,390)

BatchNorm2d_1 [1] (1,211,390)

Conv2d_1(1, 96, kernel_size = [7, 14], stride = [3, 3], padding = ’same’) [96, 71, 130]

ReLU_1 [96, 71, 130]

MaxPool2d_1(kernel_size = [2,5], stride = [2,2], padding = ’same’) [96, 36, 65]

BatchNorm2d_2 [96] [96, 36, 65]

Conv2d_2(96, 256, kernel_size = [4,8], stride = [2,2], padding = ’same’) (256, 18, 33)

ReLU_2 (256, 18, 33)

MaxPool2d_2(kernel_size = [2,5], stride = [2,2], padding = ’same’) (256, 9, 17)

BatchNorm2d_3 (256) (256, 9, 17)

Conv2d_3 (512, kernel_size = [2,5], stride = [1,1], padding = ’same’) (512, 9, 17)

ReLU_3 (512, 9, 17)

Conv2d_4 (1024, kernel_size = [2,5], stride = [1,1], padding = ’same’) (1,024, 9, 17)

ReLU_4 (1,024, 9, 17)

Conv2d_5 (512, kernel_size = [2,5], stride = [1,1], padding = ’same’) (512, 9, 17)

ReLU_5 (512, 9, 17)

AvgPool_1 (kernel_size = [2,5], stride = [2,2], padding = ’same’) (512, 5, 9)

Linear_1 (4,096)

ReLU_6 (4,096)

Dropout_1 (p = 0.5) (4,096)

Linear_2 (num_classes)

https://doi.org/10.1371/journal.pbio.3002366.t012

Table 13. CochResNet50 architecture.

Input (cochleagram) (1,211,390)

Conv2d_1(1, 64, kernel_size = 7, stride = 2, padding = 3, bias = False) (64, 106, 195)

BatchNorm2d_1 [64] (64, 106, 195)

ReLU_1 (64, 106, 195)

MaxPool2d_1(kernel_size = 3, stride = 2, padding = 1) [64, 53, 98]

ResNetBlock_1(inplanes = 64, planes = 64, num_blocks = 3, stride = 1) (256, 53, 98)

ResNetBlock_2(inplanes = 256, planes = 128, num_blocks = 4, stride = 2) (512, 27, 49)

ResNetBlock_3(inplanes = 512, planes = 256, num_blocks = 6, stride = 2) (1,024, 14, 25)

ResNetBlock_4(inplanes = 1024, planes = 512, num_blocks = 3, stride = 2) (2,048, 7, 13)

AvgPool_1 (2,048, 1, 1)

Linear_1 (num_classes)

https://doi.org/10.1371/journal.pbio.3002366.t013
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Cochleagram (211), ReLU_1 (6,784), MaxPool_1 (3,392), ResNetBlock_1 (13,568), ResNet-

Block_2 (13,824), ResNetBlock_3 (14,336), ResNetBlock_4 (14,336), AvgPool_1 (2,048).

Training dataset for CochCNN9 and CochResNet50 models—Word, Speaker, and

AudioSet tasks. Eight in-house models were trained on the Word-Speaker-Noise dataset.

This dataset was first presented in Feather and colleagues’ article [25] and was constructed

from existing speech recognition and audio event classification datasets. The dataset descrip-

tion that follows is reproduced from Feather and colleagues’ article [27] with some additions

to further detail the speaker and audio event recognition tasks.

The dataset was approximately balanced to enable performance of 3 tasks on the same

training exemplar: (1) recognition of the word at the center of a 2-second speech clip; (2) rec-

ognition of the speaker; and (3) recognition of audio events that were superimposed with the

speech clips (serving as “background noise” for the speech tasks while enabling an audio event

recognition task).

The speech clips used in the dataset were excerpted from the Wall Street Journal [169]

(WSJ) and Spoken Wikipedia Corpora [170] (SWC). To choose speech clips, we screened

WSJ, TIMIT [171], and a subset of articles from SWC for appropriate audio clips (specifically,

clips that contained a word at least 4 characters long and that had 1 second of audio before the

beginning of the word and after the end of the word, to enable the temporal jittering augmen-

tation described below). Some SWC articles were left out of the screen due to (a) potentially

offensive content for human listening experiments (29/1,340 clips); (b) missing data (35/1,340

clips); or (c) bad audio quality (for example, due to computer-generated voices of speakers

reading the article or the talker changing midway through the clip (33/1,340 clips). Each seg-

ment was assigned the word class label of the word overlapping the segment midpoint and a

speaker class label determined by the speaker. With the goal of constructing a dataset with

speaker and word class labels that were approximately independent, we selected words and

speaker classes such that the exemplars from each class spanned at least 50 unique cross-class

labels (for instance, 50 unique speakers for each of the word classes). This exclusion fully

removed TIMIT from the training dataset. We then selected words and speaker classes that

each contained at least 200 unique utterances, and such that each class could contain a maxi-

mum of 25% of a single cross-class label (for instance, for a given word class, a maximum of

Table 14. CochResNet50 block components.

1. input (x)

2. 1 × 1 Conv2d(inplanes, planes, stride = 1)

3. BatchNorm2d(planes)

4. ReLU

5. 3 × 3 Conv2d (planes, planes, stride = 1)

6. BatchNorm2d(planes)

7. ReLU

8. 1 × 1 Conv2d (planes, planes * expansion, stride = 1)

9. BatchNorm2d(planes)

10. Residual connection on x (if inplanes! = planes * expansion): 1 × 1 Conv2D (inplanes, planes * expansion, stride)

11. Residual connection on x (if inplanes! = planes * expansion): BatchNorm2d(planes * expansion)

12. Add output from [9] to output from [11]

13. (Output) ReLU

Multiple of these residual blocks (num_blocks) are stacked together to form a single ResNetBlock. The expansion

factor was set to 4 for all layers (expansion = 4).

https://doi.org/10.1371/journal.pbio.3002366.t014
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25% of utterances could come from the same speaker). These exemplars were subsampled so

that the maximum number in any word or speaker class was less than 2,000. The resulting

training dataset contained 230,356 unique clips in 793 word classes and 432 speaker classes,

with 40,650 unique clips in the test set. Each word class had between 200 and 2,000 unique

exemplars. A “null” class was used as a label for the word and speaker when a background clip

was presented without the added speech.

The audio event clips that were superimposed on the speech clips were a subset of examples

from the “Unbalanced Train” split of the AudioSet dataset (a set of annotated YouTube video

soundtracks) [55]. To minimize ambiguity for the 2 speech tasks, we removed any sounds

under the “Speech” or “Whispering” branch of the AudioSet ontology. Since a high proportion

of AudioSet clips contain music, we achieved a more balanced set by excluding any clips that

were only labeled with the root label of “Music,” with no specific branch labels. We also

removed silent clips by first discarding everything tagged with a “Silence” label and then cull-

ing clips containing more than 10% zeros. This screening resulted in a training set of 718,625

unique natural sound clips spanning 516 categories. Each AudioSet clip was a maximum of 10

seconds long, from which a 2-second excerpt was randomly cropped during training (see

below). A “null” audio event label was used as a label when speech clips were presented without

added background sound.

During training, the speech clips from the Word-Speaker-Noise dataset were randomly

cropped in time and superimposed on random crops of the AudioSet clips. Data augmenta-

tions during training consisted of (1) randomly selecting a clip from the prescreened AudioSet

clips to pair with each labeled speech clip; (2) randomly cropping 2 seconds of the AudioSet

clip and 2 seconds of the speech clip, cropped such that the labeled word remained in the cen-

ter of the clip (due to training pipeline technicalities, we used a preselected set of 5,810,600

paired speech and natural sound crops that spanned 25 epochs of the full set of speech clips

and 8 passes through the full set of AudioSet clips); (3) superimposing the speech and the

noise (i.e., the AudioSet crop) with a signal-to-noise ratio (SNR) sampled from a uniform dis-

tribution between −10 dB SNR and 10 dB SNR, augmented with additional samples of speech

without an AudioSet background (i.e., with infinite SNR, 2,464 examples in each epoch) and

samples of AudioSet without speech (i.e., with negative infinite SNR, 2,068 examples in each

epoch); and (4) setting the RMS amplitude of the resulting signal to 0.1. By constructing the

dataset in this way, we could train networks on different tasks while using the same dataset

and training and test augmentations.

Evaluation performance for the word and speaker recognition tasks was measured from one

pass through the speech test set (i.e., one crop from each of the 40,650 unique test set speech

clips) constructed with the same augmentations used during training (specifically, variable SNR

and temporal crops, paired with a set of AudioSet test clips from the “Balanced Train” split,

same random seed used to test each model such that test sets were identical across models).

The representation from the AudioSet-trained models were evaluated with a support vector

machine (SVM) fit to the ESC-50 dataset [172], composed of 50 types of environmental

sounds. After the model was trained, and for each of the 5 folds in ESC-50, an SVM was fit to

the output representation of the top of the layer immediately before the final linear layer (Avg-

Pool_1 for CochResNet50 and ReLU_6 for CochCNN9). Each fold had 400 sounds, resulting

in 1,600 sounds used for training when holding out each fold. As the networks were trained

with 2-second-long sound clips, we took random 2-second crops of the ESC-50 sounds. For

each sound in the training and test data, we took 5 two-second-long crops at random from the

5-second sound (randomly selecting a new crop if the chosen crop was all zeros). The 5 crops

of the training data were all used in fitting the SVM, treated as separate training data points.
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After the predictions were measured for the 5 crops for each test sound, we chose the label that

was predicted most often as the prediction for the test sound.

The SVM was implemented with sklearn’s LinearSVC, with cross validation over 5 regulari-

zation parameters (C = [0.01, 0.1, 1.0, 10.0, 100.0]). For cross validation, a random selection of

25% of the training sounds were held out, and the SVM was fit on the other 75% of the sounds,

and this was repeated 3 times (the 5 crops from a given sound were never split up between

cross validation training and test splits, such that the cross-validation tested for generalization

to held-out sounds). This cross-validation strategy is independent of the held-out test fold, as

it only relies on the training dataset. A best regularization parameter was determined by choos-

ing the parameter that resulted in the maximum percent correct averaged across the 3 splits,

and we refit the SVM using the selected regularization parameter on the entire training dataset

of 1,600 sounds to measure the performance on the held-out fold (400 sounds). The reported

performance is the average across the 5 folds of the ESC-50 dataset.

Training CochCNN9 and CochResNet50 models—Word, Speaker, and AudioSet

tasks. Each audio model was trained for 150 epochs of the speech dataset (corresponding to

48 epochs of the AudioSet training data). The learning rate was decreased by a factor of 10

after every 50 speech epochs (16 AudioSet epochs). All models were trained on the OpenMind

computing cluster at MIT using NVIDIA GPUs.

The Word and Speaker networks were trained with a cross entropy loss on the target labels.

Because the AudioSet dataset has multiple labels per clip, the logits are passed through a sig-

moid and the Binary Cross Entropy is used as the loss function. Models had weight decay of

1e-4, except for models trained on the AudioSet task (including the multitask models) which

had weight decay of 0.

Both of the CochResNet50 and CochCNN9 architectures were trained simultaneously on all

3 tasks by including 3 fully connected layers as the final readout. These models were optimized

by adding together a weighted loss from each individual task and minimizing this summed loss.

The weights used for the loss function were 1.0 (Word), 0.25 (Speaker), and 300 (AudioSet).

Additional training details are given in Table 15.

Training dataset for CochCNN9 and CochResNet50 models—Musical genre task. The

genre task was the 41-way classification task introduced by Kell and colleagues [31]. The

sounds and labels were derived from The Million Song Dataset [155]. Genre labels were

obtained from user-generated “tags” from the MusicBrainz open-source music encyclopedia

(https://musicbrainz.org/). Tags were first culled to eliminate those that did not apply to at

least 10 different artists or that did not obviously correspond to a genre. These tags were then

grouped into genre classes using hierarchical clustering applied to the tag co-occurrence

matrix, grouping together tags that overlapped substantially. See Table S2 from Kell and col-

leagues’ article [31] for a list of genres and the tags associated with each genre.

Training exemplars for the genre task were obtained by randomly excerpting 2-second clips

from the tracks that had tags for the genre labels selected for the task. The music excerpts were

superimposed with 2-second excerpts of one of 4 different background noises: (1) auditory

scenes; (2) 2-speaker speech babble; (3) 8-speaker speech babble; or (4) music-shaped noise.

Music-shaped noise consisted of a 2-second clip of noise that was matched to the average spec-

trum of its corresponding 2-second clip of music. SNRs were selected to yield performance in

human listeners that was below ceiling (but above chance). The mean SNR for each of the 4

background types was 12 dB, with the SNR for each training example drawn randomly from a

Gaussian with a standard deviation of 2 dB. All waveforms were downsampled to 16 kHz.

Training CochCNN9 and CochResNet50 models—Musical genre task. The genre net-

works were trained with a cross entropy loss, and a stochastic gradient descent optimizer was

used for training with weight decay of 1e-4, momentum of 0.9, and an initial learning rate of
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0.01. The models were trained for 125 epochs of the genre dataset, and the learning rate was

dropped by a factor of 10 after every 50 epochs. A batch size of 64 was used for training. The

CochCNN9 architecture achieved Top 1 accuracy of 83.21% and Top 5 of 96.19% on the musi-

cal genre task, and the CochResNet50 model achieved Top 1 accuracy of 87.99% and Top 5

accuracy of 97.56%.

Models trained on clean speech. Models trained on clean speech used the speech clips

from the Word-Speaker-Noise dataset [25] without using the associated AudioSet back-

grounds. Data augmentations during training consisted of (1) pseudorandomly selecting a

labeled speech clip as in the original dataset; (2) randomly cropping 2 seconds of the speech

clip, cropped such that the labeled word remained in the center of the clip; and (3) setting the

RMS amplitude of the resulting signal to 0.1. Each clean speech model was trained for 150

epochs of the speech dataset. The learning rate was decreased by a factor of 10 after every 50

speech epochs. All models were trained on the OpenMind computing cluster at MIT using

NVIDIA GPUs. The Word and Speaker networks were trained with a cross entropy loss on

the target labels.

Evaluation performance for the word and speaker recognition tasks was measured from

one pass through the speech test set (i.e., one crop from each of the 40,650 unique test set

speech clips) constructed with the 2-second temporal crop and RMS normalization used dur-

ing training (same random seed used to test each model such that test sets were identical across

models). Additional details of model training and performance are given in Table 16.

Candidate models with permuted weights

In addition to the trained networks, we also analyzed “permuted” versions of the models with

the exact same architecture as the trained models. We created these models by replacing all

parameters making up the trained model in each network by random permutations across all

Table 15. Training details for CochCNN9 and CochResNet50 models.

Model Name Batch Size Initial Learning Rate Num Classes (includes “null”) Accuracy on Training Task

CochCNN9 Word 128 0.01 794 (Top 1) 66.640%

(Top 5) 83.102%

CochCNN9 Speaker 128 0.01 433 (Top 1) 96.216%

(Top 5) 99.058%

CochCNN9 AudioSet 128 0.00001* 517 (ESC-50 SVM) 83.60%

CochCNN9 MultiTask 128 0.00001* Three tasks: (Word) 794, (Speaker) 433, (AudioSet) 517 (Top 1 Word) 64.954%

(Top 5 Word) 81.998%

(Top 1 Speaker) 86.686%

(Top 5 Speaker) 96.039%

(ESC-50 SVM) 82.60%

CochResNet50 Word 256 0.1 794 (Top 1) 86.792%

(Top 5) 95.149%

CochResNet50 Speaker 256 0.1 433 (Top 1) 99.114%

(Top 5) 99.835%

CochResNet50 AudioSet 256 0.001* 517 (ESC-50 SVM) 91.6%

CochResNet50 MultiTask 256 0.001* Three tasks: (Word) 794, (Speaker) 433, (AudioSet) 517 (Top 1 Word) 83.459%

(Top 5 Word) 93.422%

(Top 1 Speaker) 94.354%

(Top 5 Speaker) 98.785%

(ESC-50 SVM) 87.450%

*Models trained with the AudioSet loss had additional gradient clipping (max l2 norm = 1.0) and learning rate warm-up for the first 500 batches of training (learning

rate = <initial learning rate> / (500-i), where i is the batch number).

https://doi.org/10.1371/journal.pbio.3002366.t015
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tensor dimensions within a given parameter block (for instance, a weight or bias matrix) for

each model stage. This model manipulation destroyed the parameter structure learned during

task optimization, while preserving the marginal statistics of the parameters. All analyses pro-

cedures were identical for trained and permuted networks.

Supporting information

S1 Fig. Representational dissimilarity matrices for fMRI voxels in (A) NH2015 and (B)

B2021. For visualization purposes, the RDMs are computed as 1 minus the Pearson correla-

tion coefficient between the 3-scan average BOLD responses for pairs of sounds. RDMs are

computed for all sound-responsive voxels (left) and using only a subset of voxels for each of

the anatomical ROIs (right). Sounds are grouped by sound categories (included in colors on

the axis). Data and code with which to reproduce results are available at https://github.com/

gretatuckute/auditory_brain_dnn.

(PDF)

S2 Fig. Median variance explained across model stages for each model. Explained variance

was measured for each voxel, and the aggregated median variance explained across all voxels

in auditory cortex was obtained. This aggregated median variance explained is plotted for all

candidate models (n = 19) for both fMRI datasets. The model plots are sorted according to

overall model performance (median noise-corrected R2 for NH2015 in Fig 2A in the main

text), meaning that the first subplot shows the best-performing model, CochResNet50-Multi-

Task, and the last subplot shows the worst-performing model, MetricGAN. Dark lines show

the trained networks, and lighter lines show the control networks with permuted weights.

Error bars are within-participant SEM. Error bars are smaller for the B2021 dataset because of

the larger number of participants (n = 20 vs. n = 8). We note that some of the variation in pre-

dictivity across model stages in the models with permuted weights could be driven by the

receptive field sizes at different stages, which are partly a function of the model architecture.

Data and code with which to reproduce results are available at https://github.com/

Table 16. Training details for CochCNN9 and CochResNet50 models trained on clean speech.

Model Name Batch

Size

Initial Learning

Rate

Num Classes (this number is inclusive of the “null” label, although no “null”

examples were included when training clean models)

Accuracy on Clean Speech for

Training Task

CochCNN9 Word 128 0.01 794 (Top 1) 82.311%

(Top 5) 94.150%

CochCNN9

WordClean

128 0.01 794 (Top 1) 84.365%

(Top 5) 95.078%

CochCNN9 Speaker 128 0.01 433 (Top 1) 99.799%

(Top 5) 99.990%

CochCNN9

SpeakerClean*
128 0.01 433 (Top 1) 99.905%

(Top 5) 99.998%

CochResNet50 Word 256 0.1 794 (Top 1) 94.212%

(Top 5) 98.993%

CochResNet50

WordClean

256 0.1 794 (Top 1) 93.998%

(Top 5) 98.662%

CochResNet50 Speaker 256 0.1 433 (Top 1) 99.973%

(Top 5) 100.000%

CochResNet50 Speaker

Clean

256 0.1 433 (Top 1) 99.988%

(Top 5) 100.000%

*Model had additional gradient clipping (max l2 norm = 1.0) and learning rate warm-up for the first 500 batches of training (learning rate = <initial learning rate> /

(500-i), where i is the batch number).

https://doi.org/10.1371/journal.pbio.3002366.t016

PLOS BIOLOGY Many but not all deep neural network audio models capture brain responses

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002366 December 13, 2023 58 / 70

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002366.s001
https://github.com/gretatuckute/auditory_brain_dnn
https://github.com/gretatuckute/auditory_brain_dnn
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3002366.s002
https://github.com/gretatuckute/auditory_brain_dnn
https://doi.org/10.1371/journal.pbio.3002366.t016
https://doi.org/10.1371/journal.pbio.3002366


gretatuckute/auditory_brain_dnn.

(TIF)

S3 Fig. Comparison of component variance explained by in-house models trained from

different random seeds. We trained the in-house models from 2 different random seeds. The

variance explained for the first seed is plotted on the x-axis and for the second seed on the y-

axis. Each data point represents a model using with the same color correspondence as in Fig 2

in the main text. Variance explained was obtained from the best-predicting stage of each

model for each component, selected using independent data. Error bars are SEM over itera-

tions of the model stage selection procedure (see Methods; Component modeling). Data and

code with which to reproduce results are available at https://github.com/gretatuckute/

auditory_brain_dnn.

(TIF)

S4 Fig. Surface maps of best-predicting model stage for trained models. The figure shows

surface maps for trained models that are not included in Fig 6A in the main text (which fea-

tured the n = 8 best-predicting models, leaving the n = 11 models shown here). The plots are

sorted according to overall model predictivity (the quantity plotted in Fig 2A in the main text).

As in Fig 6A in the main text, the plots show the model stage that best predicts each voxel as a

surface map (FsAverage) (median best stage across participants). We assigned each model

stage a position index between 0 and 1. The color scale limits were set to extend from 0 to the

stage beyond the most common best stage (across voxels). Data and code with which to repro-

duce results are available at https://github.com/gretatuckute/auditory_brain_dnn.

(TIF)

S5 Fig. Surface maps of best-predicting model stage for permuted control models. Panel A

shows the surface maps for the 8 models shown in Fig 6A in the main text, but with permuted

weights. Panel B shows surface maps for models with permuted weights that are not included

in Fig 6A in the main text. Identical analyses procedures and color scale limits were used for

the permuted models as for the trained ones. Data and code with which to reproduce results

are available at https://github.com/gretatuckute/auditory_brain_dnn.

(TIF)

S6 Fig. Median variance explained by each model stage of each model for different audi-

tory ROIs. Explained variance was measured for each voxel, and the aggregated median vari-

ance explained across each of the 4 anatomical ROIs (primary, anterior, lateral, posterior) was

obtained. This aggregated median variance explained is plotted for all stages of all candidate

models (n = 19) for both fMRI datasets. The model plots are sorted according to overall model

predictivity (median noise-corrected R2 for NH2015 in Fig 2A in the main text; same model

order as in S2 Fig). Error bars are within-participant SEM. Error bars are smaller for the B2021

dataset because of the larger number of participants (20 vs. 8). Data and code with which to

reproduce results are available at https://github.com/gretatuckute/auditory_brain_dnn.

(TIF)

S7 Fig. Stage-region correspondence of permuted models. This figure mirrors Fig 7 in the

main text, which shows the quantification of model-stage-region correspondence across

trained models. (A) As in Fig 7 in the main text, we obtained the median best-predicting stage

for each model within 4 anatomical ROIs (illustrated in Fig 7A, main text): primary auditory

cortex (x-axis in each plot in panels A and B) and anterior, lateral, and posterior non-primary

regions (y-axes in panels A and B). We performed the analysis on each of the 2 fMRI data sets,

including each model that outpredicted the baseline model in Fig 2A in the main text (n = 15
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models). Each data point corresponds to a model with permuted weights, with the same color

correspondence as in Fig 2 in the main text. None of the 6 possible comparisons (2 datasets × 3

non-primary ROIs) were statistically significant even without correction for multiple compari-

sons, p> 0.16 in all cases (Wilcoxon signed rank tests, two-tailed). (B) Same analysis as panel

A but with the best-matching model stage determined by correlations between the model and

ROI representational dissimilarity matrices. None of the 6 possible comparisons were statisti-

cally significant even without correction for multiple comparisons, p> 0.07 in all cases (Wil-

coxon signed rank tests, two-tailed). Data and code with which to reproduce results are

available at https://github.com/gretatuckute/auditory_brain_dnn.

(TIF)

S8 Fig. Component response variance explained by models trained with and without back-

ground noise. (A) Variance explained was obtained from the best-predicting stage of each

model for each component, selected using independent data. Models trained in the presence

of background noise are shown in the same color scheme as in Fig 2 in the main text; models

trained with clean speech are shown with hashing. Grey line shows variance explained by the

SpectroTemporal baseline model. Error bars are SEM over iterations of the model stage selec-

tion procedure (see Methods; Component modeling). (B) We trained the models from 2 dif-

ferent random seeds. The variance explained for the first seed is plotted on the x-axis and for

the second seed on the y-axis. Each data point represents a model. Data and code with which

to reproduce results are available at https://github.com/gretatuckute/auditory_brain_dnn.

(TIF)

S9 Fig. Effective dimensionality in relation to model-brain similarity metrics. (A) Effective

dimensionality and regression-based model-brain similarity metric (voxelwise modeling). Panel

i shows the consistency of the model evaluation metric (median noise-corrected R2) between

the 2 datasets analyzed in the paper (NH2015 and B2021). The consistency between datasets

provides a ceiling for the strength of the relationship shown in panel ii. Panel ii shows the rela-

tionship between the model evaluation metric (median noise-corrected R2) and effective

dimensionality (computed as described in Methods; Effective dimensionality). Each data point

corresponds to a model stage, with the same color correspondence as in Fig 2 in the main text.

(B) Same analysis as (A) but with the representational similarity analysis evaluation metric

(median Spearman correlation between the model and fMRI representational dissimilarity

matrices). All unique models in the study were included in this analysis (n = 20 models in Fig 2

in the main text plus n = 4 models trained on the word and speaker tasks without background

noise from Fig 8 in the main text, i.e., n = 24 models in total). Data and code with which to

reproduce results are available at https://github.com/gretatuckute/auditory_brain_dnn.

(TIF)

S10 Fig. Consistency between regression and representational similarity model-brain simi-

larity metrics. (A) Correlation between the regression-based metric (median noise-corrected

R2) and the representational similarity metric (median Spearman correlation) across trained

network stages for the NH2015 and B2021 datasets. Each data point corresponds to a network

stage, with the same color correspondence as in Fig 2 in the main text. (B) Same as panel A,

but for permuted network stages. All unique models in the study were included in this analysis

(n = 20 models in Fig 2 in the main text plus n = 4 models trained on the word and speaker

tasks without background noise from Fig 8 in the main text, i.e., n = 24 models in total). Data

and code with which to reproduce results are available at https://github.com/gretatuckute/

auditory_brain_dnn.

(TIF)
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S1 Table. Natural sound stimulus set. List of all 165 sounds presented to human listeners

while in the fMRI machine. Category assignments were based on judgments of human subjects

on Amazon Mechanical Turk. Source data originally published in [50].

(TIFF)
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21. Berardino A, Ballé J, Laparra V, Simoncelli EP. Eigen-Distortions of Hierarchical Representations.

Advances in Neural Information Processing Systems 30 (NIPS 2017). 2017.

22. Azulay A, Weiss Y. Why do deep convolutional networks generalize so poorly to small image transfor-

mations? J Mach Learn Res. 2019; 20:1–25.
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