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Abstract

The brain is composed of disparate neural populations that communicate and interact with

one another. Although fiber bundles, similarities in molecular architecture, and synchronized

neural activity all reflect how brain regions potentially interact with one another, a compre-

hensive study of how all these interregional relationships jointly reflect brain structure and

function remains missing. Here, we systematically integrate 7 multimodal, multiscale types

of interregional similarity (“connectivity modes”) derived from gene expression, neurotrans-

mitter receptor density, cellular morphology, glucose metabolism, haemodynamic activity,

and electrophysiology in humans. We first show that for all connectivity modes, feature simi-

larity decreases with distance and increases when regions are structurally connected. Next,

we show that connectivity modes exhibit unique and diverse connection patterns, hub pro-

files, spatial gradients, and modular organization. Throughout, we observe a consistent pri-

macy of molecular connectivity modes—namely correlated gene expression and receptor

similarity—that map onto multiple phenomena, including the rich club and patterns of abnor-

mal cortical thickness across 13 neurological, psychiatric, and neurodevelopmental disor-

ders. Finally, to construct a single multimodal wiring map of the human cortex, we fuse all 7

connectivity modes and show that the fused network maps onto major organizational fea-

tures of the cortex including structural connectivity, intrinsic functional networks, and

cytoarchitectonic classes. Altogether, this work contributes to the integrative study of interre-

gional relationships in the human cerebral cortex.

Introduction

Brain connectivity classically refers to the physical neural fibers that link disparate neuronal

populations. Axonal projections can be reconstructed by imaging fluorescently labeled pro-

teins that are either injected into or genetically expressed by a cell, or by stacking electron
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microscopy images of thinly sliced brain sections [1,2]. At the macroscale, diffusion-weighted

imaging can be used to trace large fiber bundles that connect pairs of brain regions in vivo,

which collectively constitute the structural connectome [3,4]. Across organisms, spatial scales,

and imaging techniques, the brain’s white-matter architecture (“structure”) exhibits hallmark

features including a prevalence of short range connections resulting in functionally segregated

modules [5,6], and a small number of disproportionately densely interconnected hubs [7].

Ultimately, studying the brain’s structural connectome has advanced our understanding of

how information is transmitted [8,9], how brain structure supports function [10], and how

perturbations may result in network-defined pathology spread [11].

However, the graph representation of the structural connectome, in which regional nodes

are identical, does not account for the molecular and physiological heterogeneity that exists in

the brain. An emerging representation of connectivity is feature similarity: If 2 brain regions

exhibit similar biological features, we might expect them to be related to one another and

engaged in common function [12–16]. Neuroanatomical tract-tracing studies in nonhuman

primates have extensively shown that biological feature similarity is fundamental to brain

organization [17,18]. These pioneering studies demonstrated that neuronal projection patterns

can be predicted based on the laminar differentiation of the source and target regions [19] and

has been extended to human prefrontal cortex and other model organisms [20,21]. Further-

more, local differences in laminar architecture follow a gradient of receptor density [22,23]

and synaptic plasticity [24], indicating an alignment between multiple local features and con-

nectivity. However, these studies are currently limited to qualitative measurements of

cytoarchitectonic similarity, small subsets of brain regions, model organisms, and to a single

perspective of molecular make-up (but see [25]).

An alternative approach is to acquire densely sampled whole-cortex neuroimaging data

across large populations with the goal of constructing a connectivity matrix based on feature

similarity. This approach is already widely used on the BOLD signal where haemodynamic

time courses are correlated with each other and also exists for time series measures from other

imaging modalities such as magneto-/electroencephalography (MEG/EEG) and dynamic

FDG-fPET (all called “functional connectivity”) [26–30]. In cases where multiple measures of

a feature exist at each brain region, such as gene expression levels across many genes, interre-

gional similarity can be estimated with respect to a single local feature [14,23,31–35]. In each

case, the ensuing region × region correlation matrix represents a form of connectivity between

brain regions.

As multiple estimates of interregional similarity become available through emerging tech-

nologies and data sharing efforts, it becomes possible to integrate them into a single framework

and deduce how they interact with one another, and in what ways they are unique or comple-

mentary. For example, cortical structure is heterogeneously coupled to haemodynamic func-

tional connectivity along the sensory-association cortical hierarchy [36,37]. Information about

interregional feature similarity adds additional insight on how structure supports function and

has been shown to improve the structure-function concordance [23,38,39]. The advance in

neuroimaging techniques and data sharing standards has now made it possible to study multi-

ple forms of interregional relationships jointly, spanning a range of spatial and temporal scales.

The future of connectomics is therefore no longer limited to structural connectivity, but can

be approached from a multimodal, multiscale angle.

Here, we integrate 7 layers of interregional relationships, including gene expression, recep-

tor density, cellular composition, metabolism, electrophysiology, and temporal fingerprints, to

assemble a comprehensive, multiscale wiring blueprint of the cerebral cortex. Although they

are all effectively networks reconstructed by correlating feature similarity, hereafter, we refer

to them as connectivity modes. First, we establish the common and unique manners in which
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connectivity modes reflect cortical structure and geometry. Next, we identify cross-modal

hubs as well as circuits that consistently display large interregional similarity across multiple

connectivity modes. We then test how different connectivity modes capture patterns of abnor-

mal cortical thickness across 13 neurological, psychiatric, and neurodevelopmental disorders.

Moreover, we show that connectivity modes demonstrate diverse gradient and modular

decompositions. Finally, we iteratively fuse all 7 connectivity modes into a single multimodal

network. All 7 connectivity modes are publicly available in 3 parcellation resolutions (https://

github.com/netneurolab/hansen_many_networks), in hopes of facilitating integrative, multi-

scale analysis of human cortical connectivity.

Results

For each brain feature, a similarity network can be represented as a region × region matrix.

Rows and columns represent cortical regions, and elements—the edges of the similarity net-

work—represent how similarly 2 regions present the specific feature. This similarity can also

be thought of as connectedness, such that 2 regions that share similar features are considered

strongly connected. For simplicity, we therefore refer to correlation-based similarity as “con-

nectivity” and the similarity networks as “connectivity modes.” To comprehensively bench-

mark cortical connectivity modes, we construct and analyze 7 different connectivity matrices,

spanning multiple spatial and temporal scales. These include: (1) correlated gene expression,

describing transcriptional similarity across >8,000 genes from the Allen Human Brain Atlas

(AHBA) [40]; (2) receptor similarity, describing how correlated pairs of cortical regions are in

terms of protein density of 18 neurotransmitter receptors/transporters [23]; (3) laminar simi-

larity, describing how correlated pairs of cortical regions are in terms of cell-staining intensity

profiles from the BigBrain atlas [14,41]; (4) metabolic connectivity, measured as the correla-

tion of dynamic FDG-PET (glucose uptake) time series [29,42]; (5) haemodynamic resting-

state connectivity, measured as the correlation of functional magnetic resonance imaging

(fMRI) BOLD time series from the Human Connectome Project (HCP) [43]; (6) electrophysi-

ological connectivity, measured as the first principal component of resting-state magnetoen-

cephalography (MEG) connectivity across 6 canonical frequency bands from the HCP [43,44];

and (7) temporal profile similarity, a comprehensive account for dynamic similarity (above

and beyond a Pearson’s correlation between time series, as is the case in haemodynaimc con-

nectivity) which is measured as the correlation between time series features of the fMRI BOLD

signal [45–47]. To facilitate comparison between networks, and to mitigate differences

between data types and processing pipelines, each network was parcellated to 400 cortical

regions and edge values were normalized using Fisher’s r-to-z transform [48]. Networks were

also parcellated to an alternative functional and anatomical cortical atlas in multiple resolu-

tions (100 and 68 cortical regions) for the sensitivity and replication analyses (see Sensitivity

and replication analysis).

Common organizational patterns of connectivity modes

In Fig 1A, we visualize each normalized connectivity matrix as a heatmap where the colorbar

limits are −3 and 3 standard deviations of the edge weight distribution (for edge weight distri-

butions, see S1A Fig). Cortical regions are ordered by left then right hemisphere. Within each

hemisphere, regions are further stratified by their membership in the 7 canonical intrinsic

functional networks (Schaefer-400 parcellation [48,49]). Homotopic connections stand out,

indicating that homologous cortical regions in left and right hemispheres are consistently simi-

lar to each other no matter the biological feature (S1B Fig [50,51]). Previous work has hypothe-

sized that cortical dynamics in homotopic regions are synchronized due to common
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brainstem input [52,53]; our work opens an additional hypothesis that similarities in dynamics

may also be related to similar molecular composition.

Visually, each connectivity mode demonstrates nonrandom network organization, which

we explore in subsequent sections. Furthermore, similarity between cortical regions decreases

as both Euclidean and geodesic distance between cortical regions increases (Figs 1B and S2),

consistent with the notion that proximal neural elements are more similar to one another

[18,23,31,45,54,55]. However, there is variability in how feature similarity decreases with dis-

tance. For example, dynamic modes demonstrate stronger exponential relationships, whereas

molecular modes demonstrate either weak exponential or linear (in the case of laminar simi-

larity) fits.

We next sought to relate each connectivity mode to the brain’s underlying structural archi-

tecture. We constructed a weighted structural connectome using diffusion-weighted MRI data

from the HCP; this network represents whether, and how much, 2 cortical regions are
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Fig 1. Common organizational patterns of connectivity modes. Each connectivity mode is represented as a normalized similarity matrix, where elements of

the matrix index how similarly two cortical regions present a specific feature. (a) Connectivity modes are shown as heatmaps, ordered according to the

400-region Schaefer parcellation [48]. The colorbar limits are −3 to 3 standard deviations of the edge weight distribution. (b) Edge weights between every pair

of cortical regions (i.e., upper triangular elements) decrease with Euclidean distance across all 7 connectivity modes. Darker color represents greater density of

points. Exponential equations or Spearman correlation coefficients are shown depending on whether the relationship is better fit by an exponential or linear

function. Similar relationships with geodesic distance are shown in S2 Fig. (c) Edge weight distributions are visualized separately for edges that also exist in the

structural connectome (blue) and those that do not (gray), according to a group-consensus structural connectome from the HCP [43]. Structurally connected

cortical regions show greater similarity than regions that are not structurally connected. Boxplots represent the first, second (median), and third quartiles,

whiskers represent the non-outlier end-points of the distribution, and diamonds represent outliers (>1.5 inter-quartile range). (d) For edges that also exist in

the structural connectome, connectivity mode edge weight increases with the strength of the structural connection. The data underlying this figure can be

found at https://github.com/netneurolab/hansen_many_networks. HCP, Human Connectome Project.

https://doi.org/10.1371/journal.pbio.3002314.g001
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connected by white matter streamlines. We find that, across all 7 connectivity modes, cortical

regions that are physically connected by white matter show greater feature similarity than those

that are not connected, suggesting that biologically similar neuronal populations are in direct

communication (Fig 1C). These differences are greater than in a population of degree- and edge

length-preserving surrogate structural connectomes, indicating that the effect is specifically due

to wiring rather than spatial proximity [56]. Notably, neuroanatomical studies in model organ-

isms have found that cytoarchitectonic similarity predicts neuronal projections better than dis-

tance [57–59]; we expand on this by showing that all connectivity modes demonstrate greater

similarity for structurally connected cortical regions in the human. Finally, for the subset of

edges with a structural connection, we find a correlation between the strength of the structural

connection and each connectivity mode’s edge weight (Fig 1D) [59,60]. Altogether, we find that

connectivity modes demonstrate commonalities that respect distance, neuroanatomy, and ana-

tomical connectivity, regardless of imaging modality or biological mechanism.

Structural and geometric features of connectivity modes

Although connectivity modes share organizational properties, the median correlation between

them is r = 0.25 (range: r = 0.10–0.53; S3 Fig). In other words, connectivity modes are not

redundant. To directly compare edge weights across connectivity modes, we converted edge

weights to ranks, such that the smallest (i.e., most negative) edge is ranked 1 and the strongest

(i.e., most positive) edge is ranked 79,800 (equal to the number of edges in each network,

under the 400-region Schaefer parcellation). We focus on 2 metrics to classify edges between

cortical regions: distance (brain geometry) and structural connectivity (brain structure).

Spatial proximity influences interregional similarity, such that proximal regions tend to

share similar biological and physiological features (Fig 1B) [56,59,61]. We therefore sought to

investigate how distance shapes interregional feature similarity in greater detail and in a com-

parative manner. We first bin all 79,800 edges into 50 equally sized bins (1,596 edges per bin).

For each connectivity mode separately, we calculate the median edge rank within each bin

(Fig 2A). Median edge rank decreases as the distance between cortical regions in each bin

increases, consistent with our finding in Fig 1B. We find 2 broad patterns: receptor similarity,

temporal similarity, haemodynamic connectivity, and metabolic connectivity show moderate

decrease of edge strength with distance, whereas correlated gene expression, laminar similar-

ity, and especially electrophysiological connectivity demonstrate a sharper decrease of edge

strength with distance. In other words, distance plays a unique role in shaping each individual

connectivity mode, with electrophysiological connectivity, laminar similarity, and correlated

gene expression being most influenced by distance. That receptor similarity is grouped with

predominantly dynamic modes (haemodynamic, metabolic, and temporal similarity) may

reflect the influence that receptor density has on cortical dynamics.

We next shift our focus to the subset of edges with an anatomical connection, according to

the structural connectome (N = 4,954 out of 79,800 edges). For each connectivity mode, we

plot the distribution of rank-transformed feature similarity (edge rank) for these edges that

also exist in the structural connectome (Fig 2B). This lets us determine which connectivity

modes demonstrate the greatest coupling between high interregional feature similarity and

structural connectivity: namely, receptor similarity and correlated gene expression. Previous

work has found a close correspondence between cytoarchitecture and neuronal projections in

macaque brains [18,62]; our findings suggest a possible genetic and neuroreceptor mechanism

underlying this relationship. The primacy of molecular connectivity modes is a finding that

returns in the next analysis and when we compare connectivity modes to disease pathology

(Connectivity modes and disease-specific abnormal cortical thickness).
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We next track how edge strength changes depending on the structural embedding of each

cortical region. We focus on the cortex’s rich club: a set of disproportionately interconnected

high-degree regions that is thought to mediate long-range information propagation and inte-

gration [7,63]. Is this rich club architecture supported by specific biological and physiological

features? To address this question, for each structural degree threshold k2[5,50] (where struc-

tural degree is defined as the number of structural connections made by a cortical region), we

calculate the rich club coefficient ratio on the binary structural connectome: the tendency for

regions of degree�k to be preferentially connected to one another, with respect to a popula-

tion of degree-preserving surrogate networks. We find that the rich club coefficient ratio is

inflated at approximately 30�k�43, confirming the existence of rich club organization

(Fig 2C). This topological rich club regime denotes a degree range where cortical regions are

unexpectedly densely interconnected [64]. Next, for each connectivity mode at each k, we calcu-

late the median edge rank of all structurally supported edges that link 2 cortical regions with

degree�k (Fig 2D). Moreover, we ask whether within-set edge ranks (i.e., edges connecting

regions with degree�k) are statistically greater than all other edges (Welch’s one-sampled t test).

gene
receptor

metabolic

temporal

laminar

electrophys

haemodynamic

m
ed

ia
n 

ed
ge

 ra
nk

 (x
10

4 )

0

1

2

3

4

5

6

7

8

binned distance between regions

gene

receptor

metabolic

temporal

laminar
electrophys

haemodynamic

de
ns

ity
 (x

10
-6

)

0

1

2

3

4

5

edge rank (x104)
0 2 4 6 8

10 20 30 40 50
structural degree threshold (k)

5 15 25 35 45

receptor
metabolic

temporal

laminar

electrophys

haemodynamic

gene

2

3

4

5

6

a | distance-based connectivity b | structurally-supported connections

d | rich club connections

10 20 30 40 50
structural degree threshold (k)

5 15 25 35 45

1.0

1.2

1.4

1.6

1.8

2.0

ric
h 

cl
ub

 c
oe

ffi
ci

en
t r

at
io

k=37

short-range medium-range long-range

c | structural rich club

stronger edgeweaker edge

st
ro

ng
er

 e
dg

e
w

ea
ke

r e
dg

e

m
ed

ia
n 

ed
ge

 ra
nk

 (x
10

4 )
st

ro
ng

er
 e

dg
e

w
ea

ke
r e

dg
e

region

re
gi

on

Fig 2. Structural and geometric features of connectivity modes. To compare edge weights across networks, edges are rank-transformed. (a) Edges are

binned into 50 equally sized bins of increasing Euclidean distance (79,800 edges total under the 400-region Schaefer parcellation, 1,596 edges per bin). For

each connectivity mode, the median edge rank is plotted within each bin. (b) A kernel density estimation is applied on the rank-transformed feature

similarity (edge rank) distribution of edges that also have a structural connection, for each connectivity mode. (c) For a structural degree threshold k 2 [5,

50], we calculate the rich club coefficient ratio and show a characteristic increase in rich club coefficient ratio when 30� k� 43. Circles indicate structural

degree thresholds where the rich club coefficient ratio is significantly greater than a null distribution of ratios calculated using a degree-preserving rewired

network (1,000 repetitions). On the right, we show the set of structural edges connecting regions with structural degree�37. Edge shade and thickness are

proportional to edge weight, and point size is proportional to structural degree. The binary structural connectome is shown in the inset. (d) For each k 2

[5, 50] and for each connectivity mode, we calculate the median edge rank of structurally-supported edges that connected regions with structural

degree� k. Circles indicate structural degree thresholds where the median rich-link edge rank of a connectivity mode is significantly greater than the edge

rank of all other structurally supported edges (Welch’s t test, one-sided). The data underlying this figure can be found at https://github.com/netneurolab/
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https://doi.org/10.1371/journal.pbio.3002314.g002

PLOS BIOLOGY Multimodal, multiscale connectivity blueprints of the cerebral cortex

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002314 September 25, 2023 6 / 34

https://github.com/netneurolab/hansen_many_networks
https://github.com/netneurolab/hansen_many_networks
https://doi.org/10.1371/journal.pbio.3002314.g002
https://doi.org/10.1371/journal.pbio.3002314


We find that edges in the cortex’s topological rich club regime are particularly dominated

by molecular features (e.g., laminar similarity, correlated gene expression, and receptor simi-

larity) [57]. Haemodynamic and electrophysiological connectivity are especially weak for links

between high-degree regions, and temporal similarity is unstable. Metabolic connectivity is an

additional connectivity mode that demonstrates significantly increased edge strength for links

between high-degree regions, suggesting that energy consumption is synchronized between

structural hubs [63,65–67]. Collectively, these findings indicate that the rich club may reflect

coordinated patterns of interregional microscale similarity across multiple molecular features.

On the other hand, the rich club is not characterized by similar neural dynamics, possibly

related to the functional flexibility of these regions [68].

Cross-modal hubs

Mapping hubs in the human brain has been a topic of great interest in the last 15 years, but the

majority of our knowledge comes from anatomical and haemodynamic connectivity [69,70].

For a more comprehensive understanding of brain regions that make many strong connec-

tions, it would be important to map their connectivity profiles at different levels of organiza-

tion. We therefore ask whether there exist edges that are consistently high-strength, and if so,

which cortical regions, which we call cross-modal hubs, make these connections. For every

connectivity mode, we show an axial view of the 0.5% strongest edges (Fig 3A; see S4 Fig for

coronal and sagittal views). Interestingly, high-strength edges vary across connectivity modes:

some networks form densely interconnected cores (i.e., electrophysiological connectivity and

temporal similarity), some emphasize long-range (i.e., haemodynamic connectivity) or short-

range (i.e., metabolic connectivity) connections, and others appear more nonspecific (i.e., cor-

related gene expression, receptor similarity, and laminar similarity; Fig 3A). This variability is

also reflected in the hubness profiles of each connectivity modality, where a region’s hubness is

defined as the sum of the rank-transformed edge weights between it and all other regions

(Fig 3B). The variability of hubness points to the importance of characterizing network archi-

tecture from multiple complementary perspectives.

Are there consistencies in high-strength edges and regions? Previous work has shown that

the cortex can be organized into modules of regions that are either functionally similar

(“intrinsic networks” [49]) or cellularly similar (“cytoarchitectonic classes” [71,72]). We

wanted to know whether connectivity modes across multiple scales emphasize edges that link

cortical regions within these functional and cytoarchitectonic networks, regardless of whether

the connectivity mode represents cortical function or cellular composition. For a given net-

work classification (e.g., intrinsic networks), we call edges that join 2 cortical regions in the

same network (e.g., the visual network) intra-class edges [32]. We then calculate how many of

the x strongest edges in a given connectivity mode overlap with intra-class edges. We let x vary

in increments of 0.5% from 0.5% to 5% of the strongest edges in a connectivity mode.

For intrinsic networks (Fig 3C, left), the strongest edges in the haemodynamic network are

almost entirely intra-class edges (90.2% for the top 0.5% strongest edges, and 72.2% for the top

5% edges). The strongest edges in correlated gene expression are also primarily intra-class

edges (88.7% for the top 0.5% strongest edges) but this ratio decreases to 52.8% at 5% of the

strongest edges. Meanwhile, for cytoarchitectonic classes (Fig 3C, right), receptor similarity,

correlated gene expression, and metabolic connectivity most maximize intra-class edges.

Across both intrinsic and cytoarchitectonic networks, temporal similarity retains the fewest

intra-class edges. Nonetheless, the negative slopes in Fig 3C indicates that, for every connectiv-

ity mode, strongest edges are preferentially edges that connect cortical regions within the same

functional and cytoarchitectonic network (Fig 3C). More generally, when we consider the
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median edge rank across all connectivity modes, we find that consistently high-strength edges

primarily connect visual, posterior parietal, and anterior temporal regions (Fig 3D, left).

Finally, we focus on the cortical regions: given the spatial diversity of hub profiles (Fig 3B),

are there regions that consistently show relatively high weighted degree—that is, are consis-

tently similar to other brain regions—across multiple connectivity modes? We quantify cross-

modal hubness as the median hubness across connectivity modes (i.e., the median across brain

plots shown in Fig 3B). We find that transmodal eulaminate regions such as the supramarginal

gyrus, superior parietal cortex, precuneus, and dorsolateral prefrontal cortex are most consis-

tently similar to other cortical regions across 7 biological phenotypes, from molecular compo-

sition to neural dynamics (Fig 3D, right). Interestingly, the regions identified as cross-modal

hubs are commonly thought of as hubs in the structural connectome; we find that they also

demonstrate large feature similarity across multiple levels of organization.

Why are some cortical regions highly similar to many other regions across multiple spatial

scales and biological mechanisms? We hypothesized that cross-modal hubs are more cogni-

tively flexible and able to support higher-order, evolutionarily advanced cognitive processes.

We therefore correlated cross-modal hubness with a map of evolutionary cortical expansion
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Fig 3. Cross-modal hubs. (a) For each connectivity mode, we plot the 0.5% strongest edges. Darker and thicker edges indicate stronger edges. Points represent

cortical regions and are sized according to the sum of edge weights (weighted degree). Cortical views are axial, with anterior regions at the top of the page (for

coronal and sagittal views, see S4 Fig). (b) For each connectivity mode, regional hubness is defined as the sum of rank transformed edge weights across regions.

(c) For a varying threshold of strongest edges (0.5%–5% in 0.5% intervals), we calculate the proportion of edges that connect 2 regions within the same intrinsic

network [49] (left) and cytoarchitectonic class [71] (right). (d) Across all 7 connectivity modes, we calculate the median edge rank of each edge and plot the

0.5% strongest edges (left). Likewise, we calculate the median hubness (shown in panel b), which we find is significantly correlated with evolutionary cortical

expansion (r = 0.42, pspin = 0.0001) [73]. The data underlying this figure can be found at https://github.com/netneurolab/hansen_many_networks.

https://doi.org/10.1371/journal.pbio.3002314.g003

PLOS BIOLOGY Multimodal, multiscale connectivity blueprints of the cerebral cortex

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002314 September 25, 2023 8 / 34

https://github.com/netneurolab/hansen_many_networks
https://doi.org/10.1371/journal.pbio.3002314.g003
https://doi.org/10.1371/journal.pbio.3002314


[73]. Indeed, the identified cross-modal core coincides with cortical regions that are more

expanded across phylogeny (r = 0.43, pspin = 0.0001). In other words, cortical regions that are

expanded in humans and therefore likely involved in higher-order cognition share many fea-

tures across multiple scales, suggesting they can integrate signals from a more diverse set of

neural circuits. Ultimately, hubs that are defined using connectivity modes other than the clas-

sical structural connectome provide novel perspectives on how regions participate in neural

circuits.

Connectivity modes and disease-specific abnormal cortical thickness

Pioneering studies in postmortem tissue gave rise to the theory that the physicochemical com-

position of neurons at local brain regions results in a selective vulnerability to brain disease

[74]. Other classical studies have shown that disease propagation in the cerebral cortex is

related to microscale features such as myelination [75]. These propagation patterns have been

successfully modeled at the level of the whole-cortex using the structural connectome, and

often perform better when informed by local biological features such as the expression of a spe-

cific gene [76,77]. Recent findings build on this notion and posit that the course and expres-

sion of multiple brain diseases is mediated by shared molecular vulnerability rather than a

single molecular perturbation [33,78]. We therefore tested whether disease propagation pat-

terns derived from the connectivity modes could predict abnormal cortical thickness patterns

for 13 different neurological, psychiatric, and neurodevelopmental diseases and disorders

from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium

(N = 21,000 patients, N = 26,000 controls) [33,79,80]. The disease-specific abnormal cortical

thickness patterns are regional z-scored case-versus-control effect sizes, representing deviation

from normative cortical thickness. We refer to these regional values as “abnormal cortical

thickness” or simply “abnormality.”

We define the “exposure” that region i has to region j’s pathology as the product between

the (i,j)-edge strength (cij if cij>0) and region j’s abnormal cortical thickness (dj) (Fig 4A)

[33,81–83]. Then, the global disease exposure to region i is the mean exposure between region

i and all other regions in the network with positive edge strength (note that we find consistent

results when we use all edges of the network (S5a Fig)). Finally, we correlate abnormal cortical

thickness with disease exposure to determine whether the disease demonstrates a cortical dis-

ease profile that reflects the underlying connectivity mode (Fig 4A, right). Given a disease

where greater disease exposure results in greater abnormal cortical thickness, we would expect

to find a large positive correlation. This analysis is repeated for each connectivity mode and

each disorder, and correlation coefficients are visualized in Fig 4B (see S6 Fig for results

including the fused network (Fusing connectivity modes)).

We find that correlated gene expression and receptor similarity most consistently amplify

the exposure of pathology in a manner that closely resembles the structural cortical profile of

the disease. Interestingly, when we repeat the analysis using only negative edges (cij if cij<0),

we find opposite results: Cortical regions with high abnormality are negatively connected (that

is, are dissimilar to) regions with low abnormality (S5B Fig). This suggests that dissimilarity

may attenuate disease spread. By repeating the analysis using weighted structural connectivity

(in which case, we only consider structurally connected regions) and Euclidean distance

between cortical regions (in which case, we always consider the full network), we are able to

uncover cases where feature similarity amplifies disease exposure more than structure or dis-

tance alone (Fig 4C). Abnormal cortical thickness patterns of psychiatric disorders in particu-

lar (e.g., MDD, schizophrenia, bipolar disorder, OCD) are better explained by correlated gene

expression and receptor similarity than structure or distance. This integrative analysis makes it
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possible to hone in on the imaging modalities and biological mechanisms that might most

reflect cortical pathology in a disease-general manner. Furthermore, it demonstrates the value

in employing feature similarity as a network rather than limiting network models to the struc-

tural connectome.
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Fig 4. Contributions of connectivity modes to disease vulnerability. Abnormal cortical thickness profiles for 13 neurological, psychiatric, and

neurodevelopmental disorders were collected from the ENIGMA consortium (cortex plots shown in panel b; N = 21,000 patients, N = 26,000

controls [79,80]). (a) Given a specific disorder and connectivity mode, dj represents the abnormal cortical thickness of region j, and cij represents the

edge weight (similarity) between regions i and j. For every region i, we calculate the average abnormal cortical thickness of all other regions j6¼i in

the network, weighted by the edge strength (“disease exposure”; note that we omit negative connections, such that Ni represents the number of

positive connections made by region i). Next, we correlate disease exposure and regional abnormal cortical thickness across cortical regions (scatter

plot; points represent cortical regions). We show the connectivity profiles of 2 example regions (highlighted in purple in the left brain network and

orange in the right brain network). (b) The analytic workflow presented in panel (a) is repeated for each disorder and connectivity mode, and we

visualize Spearman correlations in a heatmap. (c) This analysis is repeated for weighted structural connectivity (where we only consider structurally

connected regions), and Euclidean distance (where we always consider all regions in the network). We also repeat this analysis for the fused network

(see Fusing connectivity modes), and results are shown in S6 Fig. The data underlying this figure can be found at https://github.com/netneurolab/

hansen_many_networks. ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; ENIGMA, Enhancing Neuroimaging

Genetics through Meta-Analysis; MDD, major depressive disorder; OCD, obsessive-compulsive disorder.

https://doi.org/10.1371/journal.pbio.3002314.g004
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Gradients and modules of connectivity modes

We next consider how each connectivity mode is intrinsically organized, both in terms of axes

of variation (i.e., spatial gradients) and network modules [14,22,84–86]. The principal gradi-

ent, quantified as the first principal component of a connectivity mode, is a regional quantifi-

cation of how feature similarity varies across the cerebral cortex. They can be interpreted as a

single-dimensional representation of the connectivity mode and will highlight the regions that

are especially similar to or dissimilar from one another. We start by studying an underappreci-

ated element of the principal component: How much variance is explained by (i.e., how repre-

sentative is) each principal gradient? We find that the prominence of the first gradient can

vary substantially across connectivity modes (Fig 5A). For example, the temporal similarity

gradient is especially dominant (accounting for 73.8% of variance), while the metabolic con-

nectivity gradient is especially nondominant (accounting for 12.7% of variance; Fig 5B). Fur-

thermore, we find that cortical gradients do not all follow a uniform sensory-association axis

[87–89], rather, the first principal component of each connectivity mode varies considerably

(median absolute correlation between gradients r = 0.36; Fig 5C).

An alternative perspective of intrinsic network organization comes from considering

whether and how the network clusters into segregated modules [5]. In other words, which sub-

sets of cortical regions are similar to one another (according to a specific connectivity mode)

and are these modules consistent across connectivity modes? We apply the Louvain commu-

nity detection algorithm to each connectivity mode to search for groups of regions that exhibit

high within-module similarity and high between-module dissimilarity [90,91]. The Louvain

algorithm is unsupervised and does not require a predefined number of clusters as input;

instead, the resolution parameter (γ) tunes the ease with which more communities are detected

(larger γ results in more communities being identified). To get a sense of the resolution of

each network (i.e., the number of communities the network might naturally exhibit, if at all),

we track the number of communities identified by the Louvain community detection algo-

rithm across different values of γ (Fig 5D). We find that the community detection solution for

electrophysiology is highly unstable, with the number of identified communities changing rap-

idly with small changes in γ. The most stable solution at γ = 1 simply delineates the main corti-

cal lobes that suggests that electrophysiological connectivity organization is better described as

a gradient but not as distinct modules of brain regions. Haemodynamic connectivity and tem-

poral similarity show a similar trend, where partitions of greater than approximately 5 net-

works become increasingly unstable. Meanwhile, correlated gene expression, laminar

similarity, and receptor similarity show more stable community solutions, where larger

changes in γ are required for the network to split itself into more communities. This suggests

that molecular connectivity modes can be described from the perspective of a small number

(<10) of modules. We show 1 possible consensus community detection solution for each net-

work in Fig 5E, which demonstrates that the modular organization and gradient decomposi-

tion of networks tend to be closely aligned. Collectively, this shows that each connectivity

mode has a unique gradient decomposition and community structure.

Fusing connectivity modes

Each connectivity mode that we have studied so far represents a single scale of organization

describing distinct but related interregional relationships. Given that the brain is integrated,

how do these connectivity modes layer onto one another to support brain structure and func-

tion? To address this questions, we apply an unsupervised learning technique, similarity net-

work fusion (SNF), to merge all 7 connectivity modes into a single multimodal network

(Fig 6A) [92]. SNF iteratively fuses each connectivity mode in a manner that strengthens edges
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that are consistently strong and weakens inconsistent (or consistently weak) edges, while giv-

ing each connectivity modality equal influence on the fusion processes. Altogether, the fused

network represents a data-driven integration of each level of cortical connectivity.

The fused network’s strongest edges exist between regions within somatomotor and visual

cortex (Fig 6B, bottom), likely reflecting the conserved molecular and dynamic composition of

these phylogenetically older cortical regions. Meanwhile, cortical regions with the greatest

weighted degree exist in anterior temporal and superior frontal cortex (Fig 6B, right). The

fused network exhibits nonrandom network organization including strong homotopic con-

nectivity and a negative exponential relationships with distance (Fig 6B left, c). In addition,

structurally connected edges have significantly stronger edge weight than non-connected

edges, against a degree- and edge-length preserving structural null (Fig 6D). Finally, the fused

network demonstrates a greater correlation between edge weight and weighted structural con-

nectivity than any of the individual connectivity modes (r = 0.53). This shows how combining

interregional similarity across multiple scales better reflects anatomical connectivity than any

single perspective of interregional similarity [10]. This may be because regions that are similar

across multiple scales are more likely to be connected or because brain connectivity gives rise

to shared biological features.
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connectivity mode across different resolution parameters (0.1� γ� 6.0, in intervals of 0.1) and the number of ensuing communities is plotted as a function of

γ. (e) For each connectivity mode, we show a single community detection solution for a specified γ, and we indicate the number of communities (n). The data

underlying this figure can be found at https://github.com/netneurolab/hansen_many_networks.

https://doi.org/10.1371/journal.pbio.3002314.g005
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We next asked whether the strongest edges in the fused network exist between functionally

and cytoarchitectonically similar cortical regions (Fig 6E). We find that nearly all (97.7%) of

the top 0.5% strongest edges in the fused network are between regions within the same func-

tional network. In fact, the fused network outperforms haemodynamic connectivity—the con-

nectivity mode for which these intrinsic functional networks are designed and optimized.

Likewise, for cytoarchitectonic classes, we find that the fused network retains more intra-class

edges than any other network when the number of strongest edges considered is�2.5%. Since
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https://doi.org/10.1371/journal.pbio.3002314.g006
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the fused network represents an integrated connectivity mode, we asked whether the strongest

edges of the fused network might simultaneously maximize intrinsic and cytoarchitectonic

intra-class edges. Indeed, when considering the top 0.5% to 5.0% strongest edges, the number

of edges that exist between regions in the same intrinsic and cytoarchitectonic classes is consis-

tently greatest for the fused network. Altogether, the fused network maps onto intrinsic net-

works and cytoarchitectonic classes better than any individual network. This demonstrates

how large-scale phenomena emerge from a confluence of multiple microscopic determinants.

Sensitivity and replication analysis

Finally, to ensure results are not dependent on the parcellation, we repeated all analyses

(except Fig 4 which depends on the 68-region Desikan–Killiany parcellation) using the

100-region Schaefer parcellation and the 68-region Desikan–Killiany parcellation [48,93,94].

We find similar results under these alternative parcellations (S7 Fig). These coarser resolutions

reveal dense frontal inter-connectivity in the metabolic network, which was not visible at the

400-node parcellation likely due to smoothing effects in dynamic PET data. Furthermore, we

share all 7 connectivity modes at these 3 parcellations (Schaefer-400, Schaefer-100, Desikan–

Killany-68) in hopes of facilitating integrative connectome analyses in the future (https://

github.com/netneurolab/hansen_many_networks).

Discussion

This work integrates multiple representations of cortical connectivity to establish how diverse

connectivity modes contribute to cortical structure and function. We systematically document

the common organizational patterns of connectivity modes, as well as their unique contribu-

tions to structure and geometry. We find that molecular connectivity modes amplify disease

exposure resulting in spatial patterns of abnormal cortical thickness. We show that connectiv-

ity modes demonstrate diverse dominant gradients and modular structure. Finally, we derive a

multimodal, multiscale network by parsimoniously integrating multiple connectivity modes.

Connectomics—the study of relationships between neural elements across multiple scales—

is an important and popular paradigm in neuroscience [3,95,96]. Numerous technological and

analytic methods have been developed to reconstruct interregional relationships, some focused

on physical wiring, others on molecular similarity, and others still on coherence between

regional neural activity. Despite being rooted in common questions, these connectivity modes

are often studied in separate literatures. What network features are unique or common to each

connectivity mode remains unknown and the practice of studying connectivity modes sepa-

rately has precluded a truly integrated understanding of interregional relationships.

Detailed comprehensive datasets alongside better data sharing practices have made multi-

modal, integrative approaches to studying human brain connectivity more feasible [89,97–99].

Examples include comparisons of dynamic FDG-PET and BOLD connectivity [15,29], BOLD

connectivity and electrophysiology [28,44,100,101], structural and BOLD connectivity

[60,102], and correlated gene expression and structural connectivity [103]. Combining con-

nectivity modes has also been used to better resolve clusters of functional activation in BOLD

data [104] and inform the application of deep brain stimulation to psychiatric and neurological

diseases [105,106]. Encouragingly, previous work has found that incorporating multiple per-

spectives of brain connectivity can result in novel discoveries, including improved generative

models of brain connectivity [107], structure-function coupling [23,38], epicenters of trans-

diagnostic alterations [33,34], and the characterization of homophilic wiring principles [108].

Although these integrative approaches open exciting new questions about brain organiza-

tion, an important challenge remains: How do we ensure that conclusions are rooted in the
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underlying biology rather than assumptions and idiosyncrasies of individual data modalities?

We attempted to mitigate this challenge by repeating analyses using other analytic choices,

applying conservative null models, normalizing each connectivity mode prior to analysis

(Fisher’s r-to-z transformation), and rank-transforming edges to facilitate comparison of edge

strengths across data types. This provides a level of confidence but is by no means an exhaus-

tive verification that data types do not influence results. Indeed, each dataset is accompanied

by its own set of limitations including instances of false positives and negatives in diffusion

tractography [109–111], nonspecific binding for some PET tracers [112], and heterogeneous

patterns of signal to noise ratios across all imaging types. As open datasets are created and

shared, it will become more feasible to determine how results are influenced by processing

choices and imaging modalities.

The study of connectomics has been dominated by a focus on structural and haemody-

namic connectivity. This has resulted in the assumption that, at the level of the whole-cortex,

homologous [113], spatially proximal [55], and structurally connected [54] brain regions tend

to be more similar. By systematically integrating 7 multiscale perspectives of cortical connec-

tivity, we can conclude in a more systematic and comprehensive manner that these properties

are indeed fundamental to cortical organization but that there is considerable variation across

connectivity modes. For example, the negative exponential relationship with distance is almost

linear for molecular connectivity modes, especially when we consider geodesic instead of

Euclidean distance (S2 Fig). A second assumption is that diverse brain features should all fol-

low the functionally defined unimodal-transmodal hierarchical gradient and can be organized

in terms of intrinsic resting-state networks [49,86,114–116]. However, we find that microscale

connectivity modes (e.g., correlated gene expression, receptor similarity) are well delineated

by a partition based on cytoarchitectonic classes, whereas dynamic connectivity modes (e.g.,

haemodynamic connectivity, electrophysiological connectivity) fit better into intrinsic func-

tional systems. Indeed, connectivity modes are poorly correlated with one another, suggesting

that each connectivity mode provides a fundamentally different but important view of how

cortical regions participate in neural circuits at different spatial and temporal scales [117].

In an effort to understand which cortical regions are consistently central across many levels

of description, we identify a set of cross-modal hubs. Brain hubs are conventionally defined as

regions with a relatively large number of structural connections, but this definition ignores the

multiscale character of brain networks. Indeed, we find that hub profiles are not redundant

across biological mechanisms. Instead, we identify a subset of cortical regions that are uniquely

central across multiple levels of description. These cross-modal hubs exist in the precuneus,

supramarginal gyrus, and dorsolateral prefrontal cortex: association regions that expand in

surface area and develop into more differentiated eulaminate (6-layer) cortex during evolution

[18,73,118]. This suggests that phylogenetic structural modifications—including increased cel-

lular complexity and density [119]—may support integration of information across multiple

biological scales, resulting in higher-level cognition including language, planning, and com-

plex executive functions. Interestingly, these regions are distinct from the anatomically central

(e.g., limbic) regions that were previously hypothesized to be integrative general-domain hubs,

based on multiple measures of centrality calculated on the structural connectome [120]. Future

work should investigate more deeply how structural centrality is aligned with biological feature

similarity. Altogether, cross-modal hubs open a new perspective on hub function: Instead of

being rooted only in high structural connectivity, hubs can be classified according to their par-

ticipation in different biological systems [65].

Integrative connectomics opens the possibility of benchmarking and comparing biological

mechanisms to one another. For example, we consistently identify a dichotomy between

molecular (e.g., correlated gene expression, receptor similarity, laminar similarity) and
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dynamic (e.g., haemodynamic and electrophysiological connectivity) modes. First, molecular

feature similarity is significantly increased for links between regions of the brain’s rich club:

high-degree regions that show dense inter-connectivity which is thought to improve global

communication efficiency and integration [7]. A transcriptional signature of rich club connec-

tivity was previously shown to be driven by genes involved in metabolism, supporting the the-

ory that the brain’s rich club is energetically expensive [63,121,122]. Interestingly, we find that

metabolic connectivity is increased in rich links, suggesting that the rich club is also synchro-

nized in its energy consumption [66,67].

Second, molecular feature similarity—particularly correlated gene expression and receptor

similarity—best explains the spatial patterning of multiple cortical disease abnormalities.

Recent work has explored the idea that multiple pathologies spread trans-synaptically, includ-

ing misfolded proteins, aberrant neurodevelopmental signals, and excitotoxic electrical dis-

charge, resulting in patterns of pathology that reflect the underlying structural architecture of

the brain [11,81]. Here, we consider the possibility that shared vulnerability to disease arises

not just from structural connectivity but also from multiscale biological attributes [33]. We use

changes in cortical thickness as the marker of potential pathology and find that when disease

exposure is informed by transcriptional and receptor similarity, we can reproduce the cortical

profile of multiple diseases (r>0.5 for most). We also find evidence that molecular dissimilarity

may serve as a mitigating factor of pathological spread (S5B Fig), although more work is neces-

sary to determine the link between regional dissimilarity and pathology. The consistent pri-

macy of molecular connectivity modes demonstrates that mapping cortical connectivity from

the perspective of underlying microscale features—gene transcription, receptor density, cellu-

lar composition—is just as, if not more, informative than oft-studied dynamical modes such as

haemodynamic connectivity. This analysis can be extended in future work by studying the

connectivity modes of patient populations and will hopefully motivate future causal work link-

ing molecular mechanisms to the spreading of pathological markers in the brain.

Lastly, we examine the gradient and modular organization of connectivity modes. Low-

dimensional topographical representations of cortical features, whether spatially continuous

(gradients) or discrete (modules), present insight on how different levels of cortical organiza-

tion are aligned with one another. For example, graded changes in the proportion of neural

projections originating from upper versus lower laminar layers has been related to gradients of

pyramidal neuron soma size, number of synaptic boutons, number of vesicles, amount of neu-

rotransmitter release, and firing rate, providing a comprehensive explanation for the laminar

origin of cortico-cortical connections [123]. Likewise [22], showed that autoradiography-

derived gradients of receptor density reflect excitatory/inhibitory and ionotropic/metabotropic

ratios and follow a sensory-association functional hierarchy. Here, we view local molecular

and dynamic features from the perspective of a network to study the organization of cortical

“connectivity,” rather than axes of variation of the underlying data [22,23,124]. This approach

lets us apply not only gradient decomposition but also community detection—rarely used in

brain imaging outside of structural and haemodynamic connectivity—to the networks. We

find that connectivity modes have unique gradient and modular decomposition which means

it is not sufficient to assume a single spatial organization for the cortex. Interestingly, previous

work has found that fMRI-derived functional communities can themselves be diverse: they

fluctuate over time, during tasks, and throughout hormonal cycles [125–127]. These tempo-

rary changes in network organization may reflect the diverse modular organization of underly-

ing molecular mechanisms. The biological origins of the diversity in spatial gradients will be

an important direction for future research [88,128].

Throughout this report, we have illustrated how cortical connectivity can be extended from

neural wiring to many complementary perspectives of interregional relationships. We focus
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on densely sampled data across the whole-cortex to make general claims about patterns of cor-

tical organization. Most of the data employed are derived from in vivo neuroimaging in rela-

tively large samples of healthy adult humans. However, these questions about multiscale

cortical organization can—and have, for decades—be asked with more anatomical specificity

using methods such as cell staining and tract-tracing in small samples of ex vivo brains, gener-

ally from model organisms [17,18,21,129]. Such studies have demonstrated that neurons make

projection patterns that are tightly linked to the cellular architecture of the cortex, including

the laminar differentiation of the source and target of a neural projection [19] (e.g., the Struc-

tural Model, reviewed in [18]). Intertwined with laminar differentiation and tract-tracing pro-

jection patterns is also the phylogenetic age of the cortical region [119], markers of plasticity

and stability [24], and likely also receptor architecture [130,131]. Furthermore, the field of

developmental biology presents fundamental organizational principles for how the brain

develops its spatial organization and topology [132]. Large-scale neuroimaging connectomic

studies complement biological and neuroanatomical studies by extending predictions to the

scale of the whole human cortex and across many more brain phenotypes. For example, we

confirm that laminar similarity is related to connectivity and the brain’s rich club [57], but

extend this to gene expression, receptor architecture, and metabolism. The synergy between

neuroanatomical and imaging fields is necessary to fully capture interregional relationships

across multiple layers of description.

The present work should be considered alongside some methodological considerations.

First, the results are only representative of the 7 included connectivity modes; future work

should replicate the findings in similar connectivity modes derived from external datasets, as

well as extend this work into additional forms of connectivity. One exciting avenue would be

to annotate structural connectomes with measures of myelin or axon caliber derived from

quantitative MRI such as magnetization transfer (MT), T1 relaxation rate (R1), or axon diame-

ter [133–135]. Second, each connectivity matrix is dependent on the quality of the imaging

modality, and each imaging method operates at a unique spatial and temporal resolution.

Results may therefore be influenced by differences in how the data are acquired. In addition to

this, the group-consensus structural network that was used throughout the analyses (in partic-

ular Figs 1, 2, 4 and 6) was reconstructed from diffusion spectrum imaging and tractography,

which is prone to false-positives and false-negatives [109,111]. We tried to mitigate this by run-

ning extensive sensitivity analyses. Third, in an effort to make correlated gene expression com-

parable to the other modes, data interpolation and mirroring was conducted, potentially

biasing this network towards homotopic connections. Fourth, connectivity modes are com-

piled across different individuals of varying ages, sex ratios, and handedness. Results are there-

fore limited to group-averages and motivate future deep phenotyping studies of the brain

across multiple scales and modalities. Fifth, the chosen functionally defined Schaefer parcella-

tion used for all main analyses may better reflect functional networks (e.g., haemodynamic

connectivity, electrophysiological connectivity, temporal similarity) than molecular networks.

We aimed to mitigate this limitation by repeating analyses using an anatomically defined par-

cellation (Desikan–Killiany; S7 Fig). Future integrative parcellations designed using multiple

brain phenotypes would be ideal for studying multiscale, multimodal connectivity modes.

Altogether, this work combines 7 perspectives of cortical connectivity from diverse spatial

scales and imaging modalities including gene expression, receptor density, cellular composi-

tion, metabolic consumption, haemodynamic activity, electrophysiology, and time series fea-

tures. We demonstrate both the similar and complementary ways in which connectivity

modes reflect cortical geometry, structure, and disease. This serves as a step towards the next-

generation integrative, multimodal study of cortical connectivity.
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Methods

Connectivity modes

We construct cortical connectivity modes for 7 different brain features: gene expression, recep-

tor density, lamination, glucose uptake, haemodynamic activity, electrophysiological activity,

and temporal profiles. Each connectivity mode is defined across 400 cortical regions, ordered

according to 7 intrinsic networks (visual, somatomotor, dorsal attention, ventral attention,

limbic, frontoparietal, and default mode), separated by hemispheres (left, right) [48]. This

functionally defined parcellation scheme was chosen because the parcels are approximately

equal in size and parcel boundaries respect both functional boundaries (as determined by rest-

ing-state and task-based fMRI) as well as histological boundaries [48]. Nonetheless, we

repeated the analyses using the coarser 100-region Schaefer parcellation as well as an anatomi-

cally defined 68-region Desikan–Killiany parcellation and found consistent results (S7 Fig;

parcellated connectivity modes all available at https://github.com/netneurolab/hansen_many_

networks). To facilitate comparison between connectivity modes, each connectivity mode is

normalized using Fisher’s r-to-z transform (z = arctanh(r)). We describe the construction of

each connectivity mode in detail below.

Correlated gene expression. Correlated gene expression represents the transcriptional

similarity between pairs of cortical regions. Regional microarray expression data were

obtained from 6 postmortem brains (1 female, ages 24.0–57.0, 42.50±13.38) provided by the

AHBA (https://human.brain-map.org [40]). Data were processed with the abagen

toolbox (version 0.1.1; https://github.com/rmarkello/abagen [136]) using a 400-region volu-

metric atlas in MNI space.

First, microarray probes were reannotated using data provided by [137]; probes not

matched to a valid Entrez ID were discarded. Next, probes were filtered based on their expres-

sion intensity relative to background noise [138], such that probes with intensity less than the

background in�50% of samples across donors were discarded, yielding 31,569 probes. When

multiple probes indexed the expression of the same gene, we selected and used the probe with

the most consistent pattern of regional variation across donors (i.e., differential stability

[139]), calculated with:

DS pð Þ ¼
1
N
2

� �
XN� 1

i¼1

XN

j¼iþ1

r BiðpÞ;BjðpÞ
h i

;

where ρ is Spearman’s rank correlation of the expression of a single probe, p, across regions in

2 donors Bi and Bj, and N is the total number of donors. Here, regions correspond to the struc-

tural designations provided in the ontology from the AHBA.

The MNI coordinates of tissue samples were updated to those generated via nonlinear reg-

istration using the Advanced Normalization Tools (ANTs; https://github.com/chrisfilo/

alleninf). To increase spatial coverage, tissue samples were mirrored bilaterally across the left

and right hemispheres [103]. Samples were assigned to brain regions in the provided atlas if

their MNI coordinates were within 2 mm of a given parcel. If a brain region was not assigned a

tissue sample based on the above procedure, every voxel in the region was mapped to the near-

est tissue sample from the donor in order to generate a dense, interpolated expression map.

The average of these expression values was taken across all voxels in the region, weighted by

the distance between each voxel and the sample mapped to it, in order to obtain an estimate of

the parcellated expression values for the missing region. All tissue samples not assigned to a

brain region in the provided atlas were discarded.
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Inter-subject variation was addressed by normalizing tissue sample expression values across

genes using a robust sigmoid function [46]:

xnorm ¼
1

1þ exp � ðxg � hxg iÞIQRx

� � ;

where hxi is the median and IQRx is the normalized interquartile range of the expression of a

single tissue sample across genes. Normalized expression values were then rescaled to the unit

interval:

xscaled ¼
xnorm � minðxnormÞ

maxðxnormÞ � minðxnormÞ
:

Gene expression values were then normalized across tissue samples using an identical pro-

cedure. Samples assigned to the same brain region were averaged separately for each donor,

yielding a regional expression matrix for each donor with 400 rows, corresponding to brain

regions, and 15,633 columns, corresponding to the retained genes. A threshold of 0.1 was

imposed on the differential stability of each gene, such that only stable genes were retained for

future analysis, resulting in 8,687 retained genes.

Finally, the region × region correlated gene expression matrix was constructed by correlat-

ing (Pearson’s r) the normalized gene expression profile at every pair of brain regions. This

matrix was then normalized using Fisher’s r-to-z transform.

Receptor similarity. Receptor similarity indexes the degree to which the receptor density

profiles at 2 cortical regions are correlated. Conceptually, it can be thought of as how similarly

2 cortical regions might “hear” the same neural signal. PET tracer images for 18 neurotrans-

mitter receptors and transporters were obtained from [23] and neuromaps (v0.0.1, https://

github.com/netneurolab/neuromaps [89]). The receptors/transporters span 9 neurotransmit-

ter systems including: dopamine (D1, D2, DAT), norepinephrine (NET), serotonin (5-HT1A,

5-HT1B, 5-HT2, 5-HT4, 5-HT6, 5-HTT), acetylcholine (α4β2, M1, VAChT), glutamate

(mGluR5), GABA (GABAA), histamine (H3), cannabinoid (CB1), and opioid (MOR). Tracer

names and number of participants (with number of females in parentheses) are listed for each

receptor in S1 Table. Each PET tracer image was parcellated to 400 cortical regions and z-

scored. A region-by-region receptor similarity matrix was constructed by correlating (Pear-

son’s r) receptor profiles at every pair of cortical regions. This matrix was then normalized

using Fisher’s r-to-z transform.

Laminar similarity. Laminar similarity is estimated from histological data and aims to

uncover how similar pairs of cortical regions are in terms of cellular distributions across the

cortical laminae. Specifically, we use data from the BigBrain, a high-resolution (20 μm) histo-

logical reconstruction of a postmortem brain from a 65-year-old male [14,41]. Cell-staining

intensity profiles were sampled across 50 equivolumetric surfaces from the pial surface to the

white mater surface to estimate laminar variation in neuronal density and soma size. Intensity

profiles at various cortical depths can be used to approximately identify boundaries of cortical

layers that separate supragranular (cortical layers I to III), granular (cortical layer IV), and

infragranular (cortical layers V to VI) layers.

The data were obtained on fsaverage surface (164k vertices) from the BigBrainWarp tool-

box [140] and were parcellated into 400 cortical regions according to the Schaefer-400 atlas

[48]. The region × region laminar similarity matrix was calculated as the partial correlation

(Pearson’s r) of cell intensities between pairs of cortical regions, after correcting for the mean

intensity across cortical regions. Laminar similarity was first introduced in [14] and has also
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been referred to as “microstructure profile covariance.” This matrix was then normalized

using Fisher’s r-to-z transform.

Metabolic connectivity. Metabolic connectivity indexes how similarly 2 cortical regions

metabolize glucose over time and therefore how similarly 2 cortical regions consume energy.

Volumetric 4D PET images of [F18]-fluordoxyglucose (FDG, a glucose analogue) tracer uptake

over time were obtained from [42]. Specifically, 26 healthy participants (77% female, 18 to 23

years old) were recruited from the general population and underwent a 95-min simultaneous

MR-PET scan in a Siemens (Erlangen) Biograph 3-Tesla molecular MR scanner. Participants

were positioned supine in the scanner bore with their head in a 16-channel radiofrequency

head coil and were instructed to lie as still as possible with eyes open and think of nothing in

particular. FDG (average dose 233 MBq) was infused over the course of the scan at a rate of 36

mL/h using a BodyGuard 323 MR-compatible infusion pump (Caesarea Medical Electronics,

Caesarea, Israel). Infusion onset was locked to the onset of the PET scan. This data has been

validated and analyzed previously in [15,29].

PET images were reconstructed and preprocessed according to [15]. Specifically, the

5,700-second PET time series for each subject was binned into 356 3D sinogram frames each

of 16-s intervals. The attenuation for all required data was corrected via the pseudo-CT

method [141]. Ordinary Poisson-Ordered Subset Expectation Maximization algorithm (3 iter-

ations, 21 subsets) with point spread function correction was used to reconstruct 3D volumes

from the sinogram frames. The reconstructed DICOM slices were converted to NIFTI format

with size 344 × 344 × 127 (voxel size: 2.09 × 2.09 × 2.03 mm3) for each volume. A 5 mm

FWHM Gaussian postfilter was applied to each 3D volume. All 3D volumes were temporally

concatenated to form a 4D (344 × 344 × 127 × 356) NIFTI volume. A guided motion correc-

tion method using simultaneously acquired MRI was applied to correct the motion during the

PET scan; 225 16-s volumes were retained commencing for further analyses.

Next, the 225 PET volumes were motion corrected (FSL MCFLIRT [142]) and the mean

PET image was brain extracted and used to mask the 4D data. The fPET data were further pro-

cessed using a spatiotemporal gradient filter to remove the accumulating effect of the radio-

tracer and other low-frequency components of the signal [42]. Finally, each time point of the

PET volumetric time series were registered to MNI152 template space using Advanced Nor-

malization Tools in Python (ANTSpy, https://github.com/ANTsX/ANTsPy), parcellated to

400 regions according to the Schaefer atlas, and time series at pairs of cortical regions were cor-

related (Pearson’s r) to construct a metabolic connectivity matrix for each subject. A group-

averaged metabolic connectome was obtained by averaging connectivity across subjects, and

lastly, the matrix was normalized using Fisher’s r-to-z transform.

Haemodynamic connectivity. Haemodynamic connectivity, commonly simply referred

to as “functional connectivity,” captures how similarly pairs of cortical regions exhibit fMRI

BOLD activity at rest [143]. The fMRI BOLD time series picks up on magnetic differences

between oxygenated and deoxygenated hemoglobin to measure the haemodynamic response:

the oversupply of oxygen to active brain regions [144]. fMRI data were obtained for 326 unre-

lated participants (age range 22 to 35 years, 145 males) from the HCP (S900 release [43]). All 4

resting state fMRI scans (2 scans (R/L and L/R phase encoding directions) on day 1 and 2

scans (R/L and L/R phase encoding directions) on day 2, each about 15-min long; TR = 720

ms) were available for all participants. fMRI data were preprocessed using HCP minimal pre-

processing pipelines [43,145]. Specifically, all 3T fMRI time series were corrected for gradient

nonlinearity, head motion using a rigid body transformation, and geometric distortions using

scan pairs with opposite phase encoding directions (R/L, L/R) [146]. Further preprocessing

steps include co-registration of the corrected images to the T1w structural MR images, brain

extraction, normalization of whole brain intensity, high-pass filtering (>2,000 s FWHM; to
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correct for scanner drifts), and removing additional noise using the ICA-FIX process

[146,147]. The preprocessed time series were then parcellated to 400 cortical brain regions

according to the Schaefer atlas [48]. The parcellated time series were used to construct func-

tional connectivity matrices as a Pearson correlation coefficient between pairs of regional time

series for each of the 4 scans of each participant. A group-average functional connectivity

matrix was constructed as the mean functional connectivity across all individuals and scans.

This matrix was then normalized using Fisher’s r-to-z transform.

Electrophysiological connectivity. Electrophysiological connectivity was measured using

MEG recordings, which tracks the magnetic field produced by neural currents. Resting state

MEG data was acquired for n = 33 unrelated healthy young adults (age range 22 to 35 years)

from the HCP (S900 release [43]). The data includes resting state scans of approximately

6-min long and noise recording for all participants. MEG anatomical data and 3T structural

MRI of all participants were also obtained for MEG preprocessing.

The present MEG data was first processed and used by [44]. Resting state MEG data was

preprocessed using the open-source software, Brainstorm (https://neuroimage.usc.edu/

brainstorm/ [148]), following the online tutorial for the HCP dataset (https://neuroimage.usc.

edu/brainstorm/Tutorials/HCP-MEG). MEG recordings were registered to individual struc-

tural MRI images before applying the following preprocessing steps. First, notch filters were

applied at 60, 120, 180, 240, and 300 Hz, followed by a high-pass filter at 0.3 Hz to remove

slow-wave and DC-offset artifacts. Next, bad channels from artifacts (including heartbeats, eye

blinks, saccades, muscle movements, and noisy segments) were removed using Signal-Space

Projections (SSP).

Preprocessed sensor-level data was used to construct a source estimation on HCP’s fsLR4k

cortex surface for each participant. Head models were computed using overlapping spheres

and data and noise covariance matrices were estimated from resting state MEG and noise

recordings. Linearly constrained minimum variance (LCMV) beamformers was used to obtain

the source activity for each participant. Data covariance regularization was performed and the

estimated source variance was normalized by the noise covariance matrix to reduce the effect

of variable source depth. All eigenvalues smaller than the median eigenvalue of the data covari-

ance matrix were replaced by the median. This helps avoid instability of data covariance inver-

sion caused by the smallest eigenvalues and regularizes the data covariance matrix. Source

orientations were constrained to be normal to the cortical surface at each of the 8,000 vertex

locations on the cortical surface, then parcellated according to the Schaefer-400 atlas [48].

After preprocessing and parcellating the data, amplitude envelope correlations were per-

formed between time series at each pair of brain regions, for 6 canonical frequency bands sepa-

rately (delta (2 to 4 Hz), theta (5 to 7 Hz), alpha (8 to 12 Hz), beta (15 to 29 Hz), low gamma

(30 to 59 Hz), and high gamma (60 to 90 Hz)). Amplitude envelope correlation is applied

instead of directly correlating the time series because of the high sampling rate (2,034.5 Hz) of

the MEG recordings. An orthogonalization process was applied to correct for the spatial leak-

age effect by removing all shared zero-lag signals [149]. The composite electrophysiological

connectivity matrix is the first principal component of all 6 connectivity matrices (vectorized

upper triangle) and closely resembles alpha connectivity (S8 Fig). Finally, the matrix under-

went Fisher’s r-to-z transform.

Temporal profile similarity. Temporal profile similarity was first introduced by, and

obtained from [45], and represents how much 2 cortical regions exhibit similar temporal fea-

tures, as calculated on fMRI time series. Note that although this connectivity mode is derived

from the same imaging modality as haemodynamic connectivity, it is fundamentally different

from haemodynamic connectivity as it represents a comprehensive account of dynamic simi-

larity (Pearson’s r = 0.24, S3 Fig). This is in contrast to haemodynamic connectivity that
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measures the Pearson’s correlation between the time series themselves. Specifically, we used

the highly comparative time series analysis toolbox, hctsa [46,47] to perform a massive feature

extraction of the parcellated fMRI time series (see Haemodynamic connectivity) at each brain

region of each participant. The hctsa package extracted over 7,000 local time series features

using a wide range of operations based on time series analysis. The extracted features include,

but are not limited to, distributional features, entropy and variability, autocorrelation, time-

delay embeddings, and nonlinear features of a given time series. Following the feature extrac-

tion procedure, the outputs of the operations that produced errors were removed and the

remaining features (6,441 features) were normalized across nodes using an outlier-robust sig-

moidal transform. We used Pearson’s correlation coefficients to measure the pairwise similar-

ity between the time series features of all possible combinations of cortical areas. As a result, a

temporal profile similarity network was constructed for each individual and each run, repre-

senting the strength of the similarity of the local temporal fingerprints of cortical areas. This

matrix was then normalized using Fisher’s r-to-z transform.

Structural connectivity

Diffusion weighted imaging (DWI) data were obtained for 326 unrelated participants (age

range 22 to 35 years, 145 males) from the HCP (S900 release [43]) [146]. DWI data was prepro-

cessed using the MRtrix3 package [150] (https://www.mrtrix.org/). More specifically, fiber ori-

entation distributions were generated using the multi-shell multi-tissue constrained spherical

deconvolution algorithm from MRtrix [151,152]. White matter edges were then reconstructed

using probabilistic streamline tractography based on the generated fiber orientation distribu-

tions [153]. The tract weights were then optimized by estimating an appropriate cross-section

multiplier for each streamline following the procedure proposed by [154] and a connectivity

matrix was built for each participant using the 400-region Schaefer parcellation [48]. A group-

consensus binary network was constructed using a method that preserves the density and

edge-length distributions of the individual connectomes [155–157]. Edges in the group-con-

sensus network were assigned weights by averaging the log-transformed streamline count of

nonzero edges across participants. Edge weights were then scaled to values between 0 and 1.

Disease exposure

Patterns of cortical thickness from the ENIGMA consortium and the enigma toolbox were

available for 13 neurological, neurodevelopmental, and psychiatric disorders (https://github.

com/MICA-MNI/ENIGMA [33,79,80]), including: 22q11.2 deletion syndrome (N = 474 par-

ticipants, N = 315 controls) [158], attention-deficit/hyperactivity disorder (ADHD; N = 733

participants, N = 539 controls) [159], autism spectrum disorder (ASD; N = 1,571 participants,

N = 1,651 controls) [160], idiopathic generalized (N = 367 participants), right temporal lobe

(N = 339 participants), and left temporal lobe (N = 415 participants) epilepsies (N = 1,727 con-

trols) [161], depression (N = 2,148 participants, N = 7,957 controls) [162], obsessive-compul-

sive disorder (OCD; N = 1,905 participants, N = 1,760 controls) [163], schizophrenia

(N = 4,474 participants, N = 5,098 controls) [164], bipolar disorder (N = 1,837 participants,

N = 2,582 controls) [165], obesity (N = 1,223 participants, N = 2,917 controls) [166], schizotypy

(N = 3,004 participants) [167], and Parkinson’s disease (N = 2,367 participants, N = 1,183 con-

trols) [168]. The ENIGMA consortium is a data-sharing initiative that relies on standardized

processing and analysis pipelines, such that disorder maps are comparable [79]. Altogether,

over 21,000 participants were scanned across the 13 disorders, against almost 26,000 controls.

The analysis was limited to adults in all cases except ASD where the abnormal cortical thick-

ness map is only available aggregated across all ages (2 to 64 years). The values for each map
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are z-scored effect sizes (Cohen’s d) of cortical thickness in patient populations versus healthy

controls. Imaging and processing protocols can be found at http://enigma.ini.usc.edu/

protocols/. Local review boards and ethics committees approved each individual study sepa-

rately, and written informed consent was provided according to local requirements.

We calculate disease exposure for every disease and network, after masking the network

such that all edges with negative strength are assigned a strength of 0. For a given network and

disease, disease exposure of a node i is defined as,

Di ¼
1

Ni

XNi

j6¼i;j¼1

dj � cij;

where Ni is the number of positive connections made by region i, dj is the abnormal cortical

thickness at region j, and cij is the edge strength between regions i and j. This analysis was

repeated after regressing the exponential fit in Fig 1B from each network, to ensure results are

not driven by distance (S9 Fig).

Community detection

For each connectivity mode, communities were identified using the Louvain algorithm, which

maximizes positive edge strength within communities and negative edge strength between

communities [90]. Specifically, brain regions were assigned to communities in a manner that

maximizes the quality function

Q gð Þ ¼
1

mþ
wþij � gp

þ

ij

h i
d si; sj

� �
�

1

mþ þm�
X

ij

½wþij � dp
�

ij �d si; sj

� �
;

where wþij is the network with only positive correlations and likewise for w�ij and negative cor-

relations. The term p�ij ¼ ðs
�
i s
�
j Þ=ð2m

�Þ represents the null model: the expected density of con-

nections between nodes i and j, where s�i ¼
P

jw
�
ij and m� ¼

P
i;j>iw

�
ij . The variable σi is the

community assignment of node i and δ(σi, σj) is the Kronecker function and is equal to 1 when

σi = σj and 0 otherwise. The resolution parameter, γ, scales the relative importance of the null

model, making it easier (γ>1) or harder (γ<1) for the algorithm to uncover many communi-

ties. In other words, as γ increases, increasingly fine network partitions are identified. We

tested 60 values of γ, from γ = 0.1 to γ = 6.0, in increments of 0.1. At each γ, we repeated the

algorithm 250 times and constructed a consensus partition, following the procedure recom-

mended in [91].

Similarity network fusion

First introduced by [92], SNF is a method for combining multiple measurement types for the

same observations (e.g., patients, or in our case, brain regions) into a single similarity network

where edges between observations represent their cross-modal similarity. For each data source,

SNF constructs an independent similarity network, defines the K nearest neighbors for each

observation, and then iteratively combines the networks in a manner that gives more weight to

edges between observations that are consistently high-strength across data types. We used

snfpy (https://github.com/rmarkello/snfpy [169]), an open-source Python implementation of

the original SNF code provided by [92]. A brief description of the main steps in SNF follows,

adapted from its original presentation in [92].

In the present report, the 7 data sources to be fused are the 7 connectivity modes (correlated

gene expression, receptor similarity, laminar similarity, metabolic connectivity, haemody-

namic connectivity, electrophysiological connectivity, and temporal similarity). First,
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similarity networks for each connectivity mode are constructed where edges are determined

using a scaled exponential similarity kernel:

W i; jð Þ ¼ e�
r2ðxi ;xjÞ
m�i;j ;

where W(i,j) is the edge weight between regions i and j, ρ(xi, xj) is the Euclidean distance

between regions i and j, μ2R is a hyperparameter that is set empirically, and

�i;j ¼
�rðxi;NiÞ þ �rðxj;NjÞ þ rðxi; xjÞ

3
;

where �rðxi;NiÞ is the average distance between xi and all other regions in the network. Note

that μ is a scaling factor that determines the weighting of edges between regions in the similar-

ity network and is set to μ = 0.5 in the present report.

Next, each W is normalized such that:

P i; jð Þ ¼

Wði; jÞ
2
P

k6¼iWði; kÞ
; j 6¼ i

1

2
; j ¼ i

:

8
>><

>>:

Finally, a sparse matrix S of the K nearest (i.e., strongest) neighbors is constructed:

S i; jð Þ ¼
Wði; jÞ

P
k2Ni

Wði; kÞ
; j 2 Ni

0; otherwise
:

8
><

>:

In other words, the matrix P encodes the full information about the similarity of each

region to all other regions (within a given connectivity mode), whereas S encodes only the sim-

ilarity of the K most similar regions to each region. K is SNF’s second hyperparameter, which

we set to one tenth the number of regions in the network [40].

The similarity networks are then iteratively fused. At each iteration, the matrices are made

more similar to each other via:

PðvÞ ¼ SðvÞ �
P

k6¼vP
ðkÞ

m � 1
� ðSðvÞÞT; v ¼ 1; 2; . . . mf g:

After each iteration, the generated matrices are renormalized as in the normalization step.

Fusion stops when the matrices have converged or after a specified number of iterations (in

our case, 20). Regions xi and xj will likely be neighbors in the fused network if they are neigh-

bors in multiple similarity networks. Furthermore, if xi and xj are not very similar in one data

type, their similarity can be expressed in another data type. Note that the edge weights in the

final fused network are a byproduct of the iterative multiplication and normalization steps,

and therefore can become very small. Greater edge magnitude represents greater similarity (no

negative edges exist, by design).

After the fusion process, we confirm that no single network exerts undue influence on the

final fused network by repeating the fusion process while excluding a single network. The min-

imum correlation (Spearman r) between the leave-one-out fused network and the complete

fused network is 0.958. In addition to this, we confirm that alternative K and μ parameters

would not make large difference to the fused network. We test K2[20, 59] and μ2[0.3, 0.8] and

find that these alternative fused networks are highly correlated with the original (minimum

Spearman r = 0.924).
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Null models

Spin tests. Spatial autocorrelation-preserving permutation tests were used to assess statis-

tical significance of associations across cortical regions, termed “spin tests” [170–172]. We cre-

ated a surface-based representation of the parcellation on the FreeSurfer fsaverage surface, via

files from the Connectome Mapper toolkit (https://github.com/LTS5/cmp). We used the

spherical projection of the fsaverage surface to define spatial coordinates for each parcel by

selecting the coordinates of the vertex closest to the center of the mass of each parcel [36].

These parcel coordinates were then randomly rotated, and original parcels were reassigned the

value of the closest rotated parcel (10,000 repetitions). Parcels for which the medial wall was

closest were assigned the value of the next most proximal parcel instead. The procedure was

performed at the parcel resolution rather than the vertex resolution to avoid upsampling the

data and to each hemisphere separately.

Network randomization. Structural networks were randomized using a procedure that

preserves the density, edge length, degree distributions of the empirical network [56,172].

Edges were binned according to Euclidean distance (10 bins). Within each bin, pairs of edges

were selected at random and swapped, for a total number of swaps equal to the number of

regions in the network multiplied by 20. This procedure was repeated 1,000 times to generate

1,000 null structural networks, which were then used to generate null distributions of net-

work-level measures.
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