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Abstract

Animals must integrate sensory cues with their current behavioral context to generate a suit-
able response. How this integration occurs is poorly understood. Previously, we developed
high-throughput methods to probe neural activity in populations of Caenorhabditis elegans
and discovered that the animal’s mechanosensory processing is rapidly modulated by the
animal’s locomotion. Specifically, we found that when the worm turns it suppresses its
mechanosensory-evoked reversal response. Here, we report that C. elegans use inhibitory
feedback from turning-associated neurons to provide this rapid modulation of mechanosen-
sory processing. By performing high-throughput optogenetic perturbations triggered on
behavior, we show that turning-associated neurons SAA, RIV, and/or SMB suppress
mechanosensory-evoked reversals during turns. We find that activation of the gentle-touch
mechanosensory neurons or of any of the interneurons AlZ, RIM, AIB, and AVE during a
turn is less likely to evoke a reversal than activation during forward movement. Inhibiting
neurons SAA, RIV, and SMB during a turn restores the likelihood with which mechanosen-
sory activation evokes reversals. Separately, activation of premotor interneuron AVA
evokes reversals regardless of whether the animal is turning or moving forward. We there-
fore propose that inhibitory signals from SAA, RIV, and/or SMB gate mechanosensory sig-
nals upstream of neuron AVA. We conclude that C. elegans rely on inhibitory feedback from
the motor circuit to modulate its response to sensory stimuli on fast timescales. This need
for motor signals in sensory processing may explain the ubiquity in many organisms of
motor-related neural activity patterns seen across the brain, including in sensory processing
areas.

Introduction

A critical role of the nervous system is to detect sensory information and to select a suitable
motor response, taking into consideration the animal’s environment and current behavior.
How the brain integrates sensory stimuli with broader context is an active area of research. For
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example, primates integrate a primary visual cue with a contextual visual cue to flexibly alter
their neural computations [1,2]. In Drosophila, dopaminergic signals reflect mating drive, a
long-lived internal state, that in turn gates the animal’s courtship response to auditory and
visual cues [3]. In Caenorhabditis elegans long-lived internal states lasting many minutes such
as hunger [4], quiescence [5-9], and arousal [10] are all thought to alter the animal’s response
to stimuli via various synaptic or neuromodulatory mechanisms and have also been shown to
alter the animal’s mechanosensory response [11,12]. In those investigations, sensory signals
are combined with one another or are integrated with long-lived internal state. Less is known
about how sensory processing is modulated by short-timescale behavior. Short seconds-time-
scale modulation of sensory processing is of particular interest because (1) it allows the animal
to respond to urgent signals, such as threats; and (2) because the timescale suggests a circuit
level mechanism, instead of other longer timescale mechanisms, such as neuromodulation or
changes in gene expression. Here, we investigate short-timescale behavioral modulation of the
C. elegans gentle-touch response.

We study the nematode C. elegans because its compact brain is well suited for investigations
spanning sensory input to motor output [13,14]. The C. elegans gentle-touch circuitry allows
the animal to avoid predation and is one of the most well-studied circuits of the worm [15-
17]. We previously discovered that animals traveling forward are much more likely to respond
to a mechanosensory stimulus by backing up (reversal), than animals that receive the same
stimulus while they are in the middle of a turn [18,19]. In other words, the worm’s response to
mechanosensory stimuli is gated by the animal’s short-timescale behavioral context. Suppress-
ing mechanosensory-evoked reversals during turns may be part of a predator avoidance strat-
egy. Turns are an important part of the C. elegans escape response, and by preventing turns
from being interrupted prematurely, the animal may be ensuring that the escape response con-
tinues to completion [18,20,21].

The neural mechanism underlying this rapid modulation of sensorimotor processing has
not previously been described. Because turns are short lived, lasting less than 2 s, we suspect
gating is mediated by fast neural dynamics at the circuit level.

In mouse, fly and C. elegans, regions across the brain exhibit activity patterns related to the
animal’s locomotory state and body pose [22-25]. A leading hypothesis is that these motor sig-
nals may be important to modulate sensory representations including but not limited to vision
[26], thermosensation [27], or corollary discharge [27-29]. In this study, we sought to investi-
gate how locomotory signals interact on short timescales with downstream mechanosensory-
related signals to modulate mechanosensory processing.

We previously developed a high-throughput closed-loop optogenetic approach [19] to
interrogate the mechanosensorimotor circuitry in C. elegans. Here, we use this method to
explore downstream mechanosensory processing by activating or inhibiting neurons associ-
ated with generating turns and reversals. We measure the animal’s behavior in response to
over 97,000 stimulus events. From these measurements, we identified a putative circuit by
which inhibitory signals from turning-associated neurons disrupt mechanosensory processing
and modulates the likelihood of a reversal depending on the animal’s behavior.

Results

Turns on their own decrease the likelihood of mechanosensory-evoked
reversals
Previously, we reported that optogenetic activation of all six gentle-touch mechanosensory

neurons delivered during forward locomotion appeared more likely to evoke a transition to
backward locomotion, called a “reversal,” than activation delivered during the onset of a turn
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[18]. We then developed high-throughput methods to probe this behavior with greater statisti-
cal power and concluded that either turning itself or possibly some other behavior related to
turning modulates mechanosensory-evoked reversals (Fig 1A-1C, S1-S3 Videos) [19].

We sought to distinguish whether turns themselves modulated the reversals or whether it
was another ancillary behavior related to turns. Turns in our previous recordings most often
occurred immediately after backward locomotion—part of a fixed action pattern called the
“escape response” that consists of backward locomotion, a turn and then finally forward loco-
motion [20]. By contrast, about 44% of the turns we observed were preceded by only forward
locomotion, what we call “isolated” turns. We sought to test whether isolated turns also exhib-
ited a reduction in mechanosensory-evoked responses.

By reanalyzing our prior measurements [19], we found that isolated turns also reduced the
likelihood of a reversal response (Fig 1C and 1D). This finding suggests that turns alone are
sufficient to modulate the likelihood of a mechanosensory-evoked reversal response. We there-
fore focused on the turn regardless of what behavior preceded it and for the remainder of the
investigation we consider both isolated and escape-like turns together. Turning continued to
modulate the likelihood of mechanosensory-evoked reversals even after animals had been
stimulated multiple times and begun showing signs of habituation S1 Fig. And the probability
of evoked reversals did not change appreciably in new experiments with modest changes of the
inter-stimulus interval as shown in S2 Fig. And we show that light evoked reversals require the
necessary optogenetic co-factor all-trans retinal, as expected, S3 Fig. In the remainder of the
work, we present results from only new experiments designed to investigate how turning mod-
ulates mechonsensory-evoked reversals.

Turns decrease the likelihood of interneuron-evoked reversals, except for
those evoked by AVA

Mechanosensory signals from the anterior gentle-touch mechanosensory neurons AVM and
ALM are thought to evoke a reversal response by traveling downstream through a network of
interneurons that are associated with backward locomotion [15,16,21,30-33]. These include
neurons AVD [16,30,34,35], AVA [36-38], AIZ [39], RIM [37,40], AIB [37], AVE [41] (Fig
2A, taken directly from nemanode.org [42]). Like the anterior mechanosensory neurons, inter-
neurons AVA, AIZ, RIM, AIB, and AVE are known to induce reversals upon stimulation
[37,39,41]. To better understand where this network interacts with turning, we sought to
investigate whether these interneurons’ ability to evoke reversals also depends on turning. We
used a collection of transgenic strains with cell-specific or near-cell-specific promoters that
drive expression of the optogenetic proteins Chrimson or ChR2 in each of these interneurons
(Table 1). We then used our previously reported high-throughput closed-loop optogenetic
delivery system [19] to stimulate the interneuron with 3 s whole-body illumination when the
worm was either crawling forward or beginning to turn. In this way, we measured the animal’s
response to many thousands of optogenetic stimulation events.

As expected, optogenetic activation during forward locomotion of any of the interneurons
AVE, AIZ, RIM, AIB, or AVA evoked reversals (Fig 2B) at a higher rate than the baseline prob-
ability of a spontaneous reversal (54 Fig). Activating any of the interneurons we tested, except
for AVA, showed a statistically significant decrease in the probability of evoking reversals
when activated during turns, compared to during forward locomotion, Fig 2B. In other words,
activation of these interneurons showed a turning-dependent response, similar to the mechan-
osensory neurons. By contrast, turning did not significantly modulate AVA’s ability to evoke
reversals and the worm often aborted its turn and reversed when AVA was activated during
the turn (Fig 2B, S4 Video).
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Fig 1. Turns decrease the likelihood of mechanosensory-evoked reversals. (A) Closed-loop optogenetic stimulation
is delivered to animals as they crawl based on their current behavior. (B) Optogenetic stimulation is delivered to
gentle-touch mechanosensory neurons in worms that are either moving forward (top row) or turning (bottom row).
(C) The probability of a reversal is shown in response to stimulation during forward movement or turn. Responses are
also shown for a low-light no-stimulation control. This figure only is a reanalysis of recordings from [19]. The number
of stimulation events, from left to right: 6,002, 1,114, 5,996, and 1,050. (D) The probability of reversal in response to
stimulation during turning is shown broken down further by turn subtype: escape-like turns “Esc” and isolated turns
“Iso.” N = 6,002, 602, 512, 5,996, 599, and 451 stim events, from left to right. The number of plates for forward and
turn context are 29 and 47, respectively. The 95% confidence intervals for population proportions are reported; ***
indicates p<0.001, “n.s.” indicates p>0.05 via two proportion Z-test. Exact p values for all the statistical tests are listed
in S1 Table. All data underlying this figure can be found at https://doi.org/10.25452/figshare.plus.23903202.

https://doi.org/10.1371/journal.pbio.3002280.9001
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Fig 2. Turns decrease the likelihood of interneuron evoked reversals, except for AVA. (A) Anatomical connectivity
showing chemical (arrows) and electrical (resistor symbol) synapses among the anterior mechanosensory neurons,
downstream interneurons, and turning-associated neurons. (B) Probability of a reversal response is shown for 3 s
optogenetic stimulation to the listed neurons either during forward movement or immediately after the onset of
turning, Strains are listed in Table 1. Illumination was 80 #W/mm? red light to activate Chrimson in AVE or AVA, 300
#W/mm? blue light to activate ChR2 in RIM or AIB, and 340 ¢W/mm? to activate ChR2 in AIZ. Error bars indicate
95% confidence intervals for population proportions; *** indicates p<0.001, “n.s.” indicates p>0.05 via two-
proportion Z-test, and p value for AVA stimulation group is 0.125. Exact p values for all the statistical tests are listed in
S1 Table. N = 2,612, 601, 883, 107, 880, 511, 1,007, 342, 409, and 191 stimulus events, from left-to-right, measured
across the following number of plates: 16, 27, 12, 19, 4, 24, 8, 16, 8, and 20. All data underlying this figure can be found
at https://doi.org/10.25452/figshare.plus.23903202.

https://doi.org/10.1371/journal.pbio.3002280.9002

From these perturbations, we conclude that neurons AIZ, RIM, AIB, and AVE lie either at
or upstream of the junction in which turning signals modulate the reversal response. AVA, in
contrast, lies in the pathway downstream of the arrival of turning related signals. We therefore
sought to investigate neural sources of this turning-related signal.
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Table 1. Strains used.

Strain Target neuron expression

name

AML67 ALML, ALMR, AVM, PLML,
PLMR, PVM

TQ3301 AlZ

QW910 RIM
QW1097 | AIB

Not AVE
provided

AML17 AVA
AML496 | RIV, SMB, SAA

AML499 RIV, SMB, SAA; ALML, ALMR,
AVM, PLML, PLMR, PVM

N2
KG1180

https://doi.org/10.1371/journal.pbio.3002280.t001

additional Genotype Figure Ref
expression

wifls46[Pmec-4::Chrimson::SL2:mCherry::unc-54 40ng/ul] Figs 1C, 1D, S1, S2, | [18]

S3, S7B, and S8
xuls198[Pser-2(2)::frt::ChR2::YFP,Podr-2(2b)::flp, Punc-122::YFP]; Figs 2B, 54, and S8 | [39]
lite-1(xu7)X

zfIs9[Ptdc-1::ChR2::GFP, lin-15+]; lite-1(ce314)X Figs 2B, S4, and S8 | [40]
zfIs112[Pnpr-9::ChR2::GFP, lin15+]; lite-1(ce314)X Figs 2B, S4, and S8 | [40]
Popt-3::Chrimson Figs 2B, S4,and S8 | [41]
11, 14, M4, and wifIs2[Prig-3::Chrimson::SL2::mCherry] Figs 2B, S4, and S8 | This
NSM [59] work
witfIs465 [Plim-4::gtACR2::SL2::eGFP::unc-54 80ng/ul + Punc-122:: | Figs 3, S5, S7C, and | This
RFP 50ng/ul] S8 work
wifls46[Pmec-4::Chrimson::SL2::mCherry::unc-54 40ng/ul]; wtfls465 | Figs 4, S6, S7A, and | This
[Plim-4::gtACR2::SL2::eGFP::unc-54 80ng/ul + Punc-122::RFP 50ng/ | S8 work
ul]
- S8 Fig
lite-1(ce314) S8 Fig [61]

We note that for any given perturbation shown in Fig 2B, we are interested in the change of
probability of reversal between the forward and turning contexts. We do not concern ourselves
with overall differences in reversal probability for perturbations of different neurons because
that may arise from differences in gene expression or differences in the efficiencies of ChR2
compared to Chrimson. Stimulation of AVD was not tested because no suitable single-cell pro-
moter was found.

Turning-associated neurons RIV, SMB, and SAA regulate reversals

Turning in the worm occurs either when the animal is moving forward, is paused, or is transi-
tioning from backward to forward locomotion, but not during sustained backward locomotion
[43]. Neuron cell types RIV, SMB, and SAA are among those neurons associated with turning.
RIV, SMB, and SAAD have increased calcium activity during turns [21,44], and ablation of
RIV, SMB, or SAA show defects in turning or head bending amplitude [30,44]. Wang and col-
leagues observed that inhibiting RIV, SMB, and SAA when the animal is backing up prolongs
the reversal [21]. They therefore proposed that activity from turning-related neurons may
inhibit reversals. We expressed the blue light inhibitory opsin, gtACR2 [45,46], in these neu-
rons and independently confirmed that inhibiting RIV, SMB, and SAA, increases reversal
duration, Figs 3 and S6 Fig. We therefore sought to investigate whether these turning neurons
also inhibit reversals during turns and whether they may explain why mechanosensory stimu-
lation is less likely to evoke reversals during turning.

Inhibiting RIV, SMB, and SAA abolishes the turning dependent
modulation of mechanosensory processing

We reasoned that if the turning neurons RIV, SMB, and SAA inhibit reversals, then releasing
this inhibition after a turn has begun should allow mechanosensory stimuli delivered during
the turn to evoke reversals as effectively as if they were delivered during forward locomotion.
We designed an experiment to simultaneously inhibit these turning neurons while stimulating
the touch neurons immediately after the onset of a turn. We expressed a blue light inhibitory
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Fig 3. RIV, SMB, and SAA neurons influence reversal duration. Neurons RIV, SMB, and SAA were optogenetically
inhibited when worms spontaneously reversed. The time spent going backwards is reported in a 10-s window
coinciding with optogenetic inhibition upon reversal onset. Worms expressed the inhibitory opsin gtACR2 in neurons
RIV, SMB, and SAA under the lim-4 promoter. [llumination intensity of either 180 yW/mm? (“+”) or 2 yW/mm?” (“0”
control) was delivered. Worms spent more time reversing when these neurons were inhibited than in the control.
Error bars represent 95% confidence intervals; p value via two-proportion Z-test is 1.93E—09. N = 612 and 695 stimulus
events for “0” and “+” conditions, respectively, across 14 plates. All data underlying this figure can be found at https://
doi.org/10.25452/figshare.plus.23903202.

https://doi.org/10.1371/journal.pbio.3002280.9003

O +

opsin, gtACR?2, in the turning-associated neurons RIV, SMB, and SAA and a red light activat-
ing opsin Chrimson in the gentle-touch neurons. Inhibiting RIV, SMB, and SAA after the
onset of a turn did not completely stop the animal and it still successfully exited the turn (see
S5 Video). We reasoned that ongoing RIV, SMB, and SAA activity was not necessary for the
completion of the turn once initiated and this therefore allowed us to inhibit these turning-
associated neurons in a context in which the animal was still turning.

Activating the touch neurons by delivering red light immediately after the onset of a turn
was less likely to evoke a reversal than when delivered during forward locomotion, Fig 4, as
expected. But when we also inhibited the RIV, SMB, and SAA turning-associated neurons
with blue light immediately after the turn began, the likelihood of evoking reversals via red
light activation of the touch neurons was significantly higher and, crucially, not significantly
different than for activation during forward locomotion (see S6 Video). In other words, inhib-
iting these turning-associated neurons after turn onset abolished the turning-dependence of
the mechanosensory response. This is consistent with a model in which signals from RIV,
SMB, and/or SAA disrupt mechanosensory processing during turning. By inhibiting those
neurons after the onset of a turn, we prevent this disruption, presumably by inhibiting an
inhibitory signal.

We performed additional experiments to rule out alternative explanations for why blue
light illumination restored the likelihood of a mechanosensory-evoked reversal response
(S7B Fig and S1 Text). For example, we find that blue light illumination when no inhibitory
opsin is present is insufficient to restore mechanosensory-evoked reversal responses during
turns, suggesting that the effect is not an artifact of the blue light alone (S7B Fig). Taken
together, we conclude that inhibition of the turning neurons during turns disinhibits the
mechanosensory-evoked reversal response.
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N =8, 16, and 16. Additional controls are shown in S7 Fig. All data underlying this figure can be found at https://doi.
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https://doi.org/10.1371/journal.pbio.3002280.9004

Signals from turning neurons gate mechanosensory processing

Our measurements supports a model in which the turning neurons RIV, SMB, and/or SAA
gate mechanosensory information and prevent it from propagating further downstream to
evoke a reversal, Fig 5. In this model, mechanosensory signals from the gentle-touch mechano-
sensory neurons ALM and AVM propagate downstream in a feedforward manner to reversal-
associated interneurons RIM, AIZ, AIB, and AVE. If the animal is moving forward, the
mechanosensory signals continue to propagate to AVA and evoke reversals. But if the animal
is turning, inhibitory signals originating from RIV/SMB/SAA suppress or disrupt mechano-
sensory-related signals within the interneurons and prevent downstream mechanosensory-
related signals from propagating to AVA. This model is consistent with our measurements
and leads us to conclude that turning-related inhibitory signals gates downstream mechano-
sensory processing.

Discussion and conclusions

Here, we show that putative inhibitory signals from turning-associated neurons RIV/SMB/
SAA modulate mechanosensory-evoked reversals downstream of the gentle-touch neurons
and upstream of neuron AVA. But within those constraints, where exactly might those signals
combine? Neuron wiring and gene expression data suggests that one location may be across
the inhibitory synapses from SAA to AIB and RIM. SAA releases acetylcholine and makes
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Fig 5. Putative circuit mechanism. In response to gentle-touch, mechanosensory neurons propagate signals
downstream through the network and reach neuron AVA to evoke a reversal. But during turning, neurons RIV, SMB,
and/or SAA send inhibitory signals that disrupt sensory-related signals before they reach AVA, thus gating the
likelihood of a reversal.

https://doi.org/10.1371/journal.pbio.3002280.9005

chemical synapses onto AIB and RIM, which both express inhibitory acetylcholine receptors
[42,47-50]: AIB expresses the inhibitory acetylcholine receptors lgc-47, and acc-I; while RIM
expresses inhibitory (e.g., Igc-47 [50], and acc-1 [51]) and excitatory (e.g., acr-3) acetylcholine
receptors. We note that AIB and RIM both synapse onto AVA, therefore, SAA-mediated inhi-
bition of AIB and RIM may decrease overall excitation to AVA, broadly consistent with our
cartoon model in Fig 5.

Wang and colleagues had previously predicted that turning circuitry may inhibit reversal
circuitry [21]. Now in contemporaneous work from the same group, Huo and colleagues show
that activation of SAA/RIV/SMB terminates reversals and inhibits RIM when RIM is already
active [51] likely through an ACC-1 acetylcholine-gated chloride channel [51], but possibly
also through LGC-47 [52].

Our findings are consistent with the mechanism proposed in [51] in which SAA blocks
reversals by inhibiting RIM. More broadly our findings reinforce a longstanding hypothesis
that different motor programs in the worm inhibit one another, as was previously proposed
for forward and reverse locomotion [53].

In our model, AVA performs a role similar to that of a “decision neuron” with respect to
reversals [54]. This is consistent with our previous observation that AVA’s calcium activity
more closely reflects the animal’s decision to reverse and is less reflective of the strength of the
stimulus (e.g., AVA’s activity does not reflect how many touch neurons are activated) [36].

The simple model we describe in Fig 5 assumes feed-forward propagation of signals from
ALM and AVM through the downstream network to AVA and omits recurrent connections
among the neurons in between. Future investigations are needed to explore additional contri-
butions from recurrence in the network, further complexities from wiring, such as potentially
excitatory synaptic input from SAAV to AVA [49,55], and the role of AVD, for which we
lacked a cell-specific promoter.
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More broadly, we show that motor-related signals are directly influencing neural activity in
areas that contain a mix of sensory and motor information. This is reminiscent of saccadic
suppression in vision [56-58] and corollary discharge [27-29] in which motor-related activity
modulates or impinges upon sensory representations. Our findings add to a growing body of
evidence suggesting that behavior information is necessary for sensory processing. The brain’s
presumed need to access both types of information in the same place may explain why behav-
ior-related neural activity patterns are seen across so many brain areas in mice, fly, and
worms, including in nominally sensory areas [22-25].

Because turning events are infrequent, spontaneous and brief, they are rare compared to
the time the animal spends moving forward or backwards. But obtaining sufficient statistical
power to probe sensory processing during turns required hundreds of observations per condi-
tion. In total, we measured 97,268 behavior responses to stimulation, including 16,544 during
turns. This investigation was therefore only made feasible by leveraging the recent high-
throughput methods we presented in [19] that use computer vision and targeted illumination
to track many worms in parallel and to automatically deliver stimuli triggered upon the ani-
mal’s turns.

Materials and methods
Strains

Strains used in this work are listed in Table 1. Light-gated ion channels have been expressed in
most strains to either excite or inhibit specific neurons. We expressed excitatory opsin Chrim-
son in the six gentle-touch neurons using the mec-4 promoter. Promoters ser-2, tdc-1, npr-9,
opt-3, and rig-3 are used to express excitatory opsin in neurons AIZ, RIM, AIB, AVE, and
AVA, respectively. Some strains have additional expression in other neurons, listed in Table 1.
For example, the promoter rig-3 is widely used to study AVA [36-38], as it is here, despite also
having off-target expression in pharyngeal neurons I1, I4, M4, and NSM neurons [59]. To
express gtACR2 in RIV, SMB, and SAA, we used the lim-4 promoter (RRID:
Addgene_195853), following the same strategy as in [21] and confirmed the expression pattern
using fluorescence microscopy, S5 Fig. For that strain, we performed integration using a mini-
SOG approach. We injected into CZ20310 worms, followed by a blue light treatment (450 nm,
M450LP1, Thorlabs) for 30 min as described in [60]. Before conducting experiments, we out-
crossed integrated worms with the wild-type N2 strains for at least six generations to generate
AML496. AML496 worms were then crossed into AML67 worms to create AML499. Our
transgenic strains include a mix of WT and lite-1 mutant backgrounds. We measured no sys-
tematic difference in locomotion or to endogenous blue light response in these two back-
grounds for the light levels and conditions used here S8 Fig.

Nematode handling

All worm strains were maintained at 20°C, on regular NGM media plates seeded with E. coli
(OP50) as food source. Experiments were performed on young adult animals. To obtain young
adults, worms were bleached 3 days prior to the experiments. Bleached eggs were washed and
centrifuged in M9 (0.8 rcf for 2 min) three times. Bleached eggs were suspended in M9 and
stored in a shaker overnight. The following morning hatched L1 larvae were centrifuged and
transferred to freshly seeded plates consisting of 1 ml of 0.5 mM all-trans-retinal mixed with
OP50 and stored in the dark at 20°C until young adulthood.

For experiments, young adult worms were washed in M9 and transferred to an empty aga-
rose plate for experiments. Excess M9 solution was absorbed with a kimwipe as described in
[18,19].
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Behavior analysis

Computer vision-based behavior analysis was used to identify when the animal is moving for-
ward, when it is undergoing a reversal, or when it is turning. The closed loop latency from
detecting a turn to delivering an optogenetic stimulation is 167 ms [19]. Analysis was per-
formed as reported previously using two different sets of algorithms, one for real time applica-
tions and the other retrospectively in post-processing [19]. All figures in this work reflect
behavior classifications from the off-line retrospective analysis.

Briefly, animals are segmented and a centerline is detected. Additional logic is used to find
centerlines even when the animal touches itself [18]. The animal’s center of mass velocity is
also computed. Behavior classification is first performed by classifying pose dynamics in a
behavior map [18,62] and then refined by inspecting the animal’s ellipse ratio and center of
mass velocity to catch any omitted turns, or instances when the behavior mapper fails to clas-
sify. Compared to our previous recent work [19], we changed two parameters to be more con-
servative in classifying animals as turning or reversing. Specifically, to be classified as turning
we now require that the binary image of the animal have an ellipse ratio of 3.1, compared to
3.6 previously. Similarly, to be classified as a reversal, the animal must now achieve a center of
mass velocity of —0.11 mm/s, instead of —0.1 mm/s, during the 3 s optogenetic stimulus win-
dow. These changes were minor and were implemented to catch rare events that previously
had escaped classification.

For experiments probing reversal duration, we report the time the animal spent going back-
wards in a 10 s window, coinciding with optogenetic inhibition; 10 s was chosen because it was
a compromise between the 12 s used in [21] and the shorter stimuli that we typically use [19].
So for example, if after stimulus onset the animal continued moving backwards for 3 s, then
paused for 1 s, and moved backwards for 2 s more, we report a “reversal duration” of 5 s.

Optogenetic activation and inhibition

In this work, we deliver whole-body optogenetic illumination specifically when the animal is
either moving forward, or turning, or reversing. We conduct different sets of experiments for
each of these three conditions, using different sets of animals for each experiment. In all cases,
we use a projector-based illumination system that tracks many individuals on a plate full of
animals, segments them in real time, and addresses each animal individually to shine light on
their whole body, as described previously [19]. All experiments are performed on plates con-
taining approximately 30 to 40 animals.

To measure the animal’s response to optogenetic activation or inhibition delivered during
the onset of turns, our system waited until it detected that an animal was beginning to turn,
and then delivered a stimulus automatically. In post-processing, we retrospectively evaluated
whether the turn was valid at time of stimulus onset and only included those stimuli events
that met our more stringent criteria, as described in [19].

To measure the animal’s response to optogenetic perturbations during forward locomotion,
we optogenetically illuminated all tracked animals on the plate every 30 s, in open loop. In
post-processing, we then only considered those animals that were moving forward at the time
of illumination. The worms in the open loop assays were stimulated every 30 s. However, in
the closed loop experiments, the worms were stimulated when turns were detected. As a result,
the worms received optogentic stimulus less frequently, shown in S2B Fig. There was no statis-
tically significant difference in the probability of evoked reversal for stimuli delivered during
forward locomotion in these two conditions S2A Fig.

To measure the animal’s response to optogenetic inhibition during reversals, our system
waited until it detected that an animal had been reversing for 1 s, and then delivered the
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illumination. As before, we retrospectively confirmed that the animal was reversing before
including it for further analysis.
Mlumination color, intensity, and duration are listed in Table 2.

Table 2. List of optogenetic measurements performed during behavior.

Target Perturbation Target Stim Stim ISI | Illumination | Illumination | Strain | ATR # Total | Figures | Ref.
neuron(s) behavior | triggered | duration | (s) | intensity (WW/ color plates | Plates | stim
on (s) mm?) events
ALML, Excite Chrimson | Forward - 3 30 0.5, 80 Red AML67 + 29 11,998 | Figs 1C, | [19]
ALMR, Turn Turns >30 + 47 2,164 1D, 81,
AVM, S2B, and
PLML, S3
PLMR,
PVM
AlZ Excite ChR2 Forward - 3 30 2, 340 Blue TQ3301 + 16 5,258 Figs 2B, | This
Turn Turns >30 + 27 | 1,184 Shand | work
S8A
RIM Excite ChR2 Forward - 3 30 2,300 Blue QW910 + 12 1,766 | Figs 2B, | This
Turn Turns >30 + 19 238 S4,and | work
S8A
AIB Excite ChR2 Forward - 3 30 2,300 Blue QW1097 + 4 1,747 Figs 2B, | This
Turn Turns >30 & 24 | 1,038 @ Shand | work
S8A
AVE Excite Chrimson | Forward - 3 30 0.5, 80 Red AVE + 8 2,413 | Figs2B | This
Turn Turns >30 + 16 | 832 | andSt | work
AVA Excite Chrimson | Forward - 3 30 0.5, 80 Red AML17 + 8 1,035 | Figs2B | This
Turn Turns >30 + 20 | 411 | andS4 | work
RIV,SMB, | Inhibit gtACR2 | Reversal | Reversals 10 >30 2,180 Blue AMILA496 + 14 1,307 Fig 3 This
SAA work
ALML, Inhibit gtACR2 | Reversal | Reversals 10 >30 2,180 Blue AML499 + 12 2,532 S6 Fig
ALMR,
AVM,
PLML,
PLMR,
PVM, RIV,
SMB, SAA
ALML, Excite Chrimson | Forward - 3 30 60 Red AML499 + 8 5,381 Figs4 | This
IZLVN;/?’ Turn Turns >30 + 16 1,525 and S7A | work
PLML) Excite Chrimson Turn Turns >30 Red = 60, Red + Blue + 16 1,115
PLMR. and Inhibit Blue = 180
PVM, RIV, EEE
SMB, SAA | Inhibit gtACR2 Turn Turns >30 180 Blue + 15 954
Control Turn Turns >30 Red =0.5, Red + Blue + 8 1,961
Blue =2
ALML, Excite Chrimson | Forward - 3 30 60 Red AML67 + 6 3,722 S7B Fig | This
ALMR, Turn Turns >30 + 12 903 work
AVM,
PLML, Turn Turns >30 Red = 60, Red + Blue + 15 794
PLMR, Blue = 180
PVM Turn Turns >30 180 Blue + 16 579
Control Turn Turns >30 Red = 0.5, Red + Blue + 15 772
Blue =2
RIV, SMB, | Inhibit gtACR2 Turn Turns 3 >30 2,180 Blue AML496 + 16 2,074 S7CFig | This
SAA work

(Continued)
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Table 2. (Continued)

Target Perturbation Target Stim Stim ISI | Illumination | Illumination | Strain | ATR # Total | Figures | Ref.
neuron(s) behavior | triggered | duration | (s) | intensity (WW/ color plates | Plates | stim
on (s) mm?) events
ALML, Control to test | Forward - 3 30 300 Blue AML67 - 4 6,564 S8A Fig | This
ALMR, Endogonous work
AVM, Blue Light
PLML, Response
PLMR,
PVM
AlZ Forward - 3 30 300 Blue TQ3301 - 4 3,213 This
work
RIM Forward - 3 30 300 Blue QW910 - 4 3,365 This
work
AIB Forward - 3 30 300 Blue QW1097 - 4 3,867 This
work
AVE Forward - 3 30 300 Blue AVE - 4 7,006 This
work
AVA Forward - 3 30 300 Blue AML17 - 4 993 This
work
RIV, SMB, Forward - 3 30 300 Blue AML496 - 4 4,516 This
SAA work
ALML, Forward - 3 30 300 Blue AML499 - 4 3,324 This
ALMR, work
AVM,
PLML,
PLMR,
PVM, RIV,
SMB, SAA
- Forward - 3 30 300 Blue N2 - 4 646 This
work
- Forward - 3 30 300 Blue KG1180 - 4 6,470 This
work
ALML, Excite Chrimson | Forward - 3 30 0.5, 80 Red AML67 + 4 1,631 S2A Fig | This
ALMR, work
AVM,
PLML,
PLMR,
PVM
ALML, Excite Chrimson | Forward - 3 59 0.5, 80 Red AML67 + 4 1,094 S2A Fig | This
ALMR, work
AVM,
PLML,
PLMR,
PVM
ALML, Excite Chrimson | Forward - 3 30 80 Red AML67 - 4 876 S3 Fig This
ALMR, work
AVM,
PLML,
PLMR,
PVM
452 97,268

https://doi.org/10.1371/journal.pbio.3002280.t002

Statistical analysis

In our analysis, stimulus events are the fundamental unit. Throughout the manuscript, we
report the proportion of all stimulus events that result in a reversal, the total number of stimu-
lus events, and the corresponding 95% confidence interval, calculated analytically. To reject
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the null hypothesis that two empirically observed proportions are the same, we use a two-pro-
portion Z-test and report a p value [63].

Supporting information

S1 Fig. Probability of reversing in response to stimuli delivered during turns is consistently
lower than in response stimuli delivered during forward locomotion throughout the dura-
tion of the 30-min assay. Probability of evoked reversal in response to optogenetic stimulation
to gentle-touch mechanosensory neurons (Pmec-4::Chrimson) is calculated for three different
portions of the 30-min experiment. Habituation is visible, but the relative difference in reversal
probability persists. Error bars show 95% confidence intervals of the population proportions;
*** indicates p<0.001 via two-proportion Z-test. Exact p values for all the statistical tests are
listed in S1 Table. N = 2,006, 420, 2,077, 403, 1,919, and 291 stimulation events from left to
right. The number of assay plates for forward and turn context are N = 29 and 47, respectively.
This figure is a reanalysis of measurements presented in [19]. All data underlying this figure
can be found at https://doi.org/10.25452/figshare.plus.23903202.

(PDF)

S2 Fig. Probability of reversal is similar for two different inter-stimulus intervals. (A) Ani-
mals expressing Chrimson in their gentle-touch mechanosensory neurons were optogeneti-
cally stimulated in open loop every 30 s or 59 s. Only responses to stimuli delivered during
forward locomotion are included. These are new experiments not previously reported.

N =1,631 and 1,094 stim events for 30 s and 59 s inter-stimulus interval assays. We used four
plates for both 30 s and 59 s inter-stimulus interval assays. Error bars show 95% confidence
intervals of the population proportions, and p value via two-proportion Z-test is 0.196. (B) 59 s
(vertical red bar) is the mean inter stimulus interval (ISI) experienced by worms in the closed-
loop turn-triggered stimulus experiments previously presented in [19]. The ISI is not constant
because it depends on when the worm turns. The distribution of the ISI experienced by worms
during those experiments in Fig 1 is shown in blue. All data underlying this figure can be
found at https://doi.org/10.25452/figshare.plus.23903202.

(PDF)

S3 Fig. Red light evoked reversal responses are all-trans retinal dependent, as expected.
Animals that express chrimson in the touch receptor neurons were grown in the presence or
absence of the necessary co-factor all-trans retinal (ATR) and exposed to 80 yW/mm? intensity
red light. The 95% confidence intervals for population proportions are reported. Two sample Z-
test was used to calculate significance; *** indicates p<0.001. The exact p value is listed in

S1 Table. The number of stimulus events for each condition (from left bar to right bar) are:
6,002 and 876. The number of assay plates for ATR + and ATR — conditions are 29, 4. Note that
the ATR + condition was previously reported in [19] and also appears in Fig 1C and 1D. The
ATR - condition was recorded contemporaneously, but is presented here for the first time. All
data underlying this figure can be found at https://doi.org/10.25452/figshare.plus.23903202.
(PDF)

S4 Fig. Baseline reversal probabilities measured via low-light (control) illumination. These
are control experiments corresponding to the experiments presented in Fig 2B. Baseline rever-
sal probabilities for each strain in each condition are measured by shining a low-intensity con-
trol stimulus. Three seconds of only 0.5 uW/mm® of red light illumination (neuron AVE and
AVA) or 2 uW/mm? of blue light illumination (neuron AIZ, RIM, and AIB). The 95% confi-
dence intervals for population proportions are reported. Two proportion Z-test was used to
calculate significance; p value for AIZ, RIM, AIB, AVE, and AVA stimulation group is 0.596,
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0.936, 0.045, 0.565, 0.262, respectively. The number of stimulus events for each condition
(from left-most bar to right-most bar) are: 2,646, 583, 883, 131, 867, 527, 1,406, 490, 626, and
220. The number of assay plates for forward and turn context for neurons from left to right are
16,27, 12,19, 4, 24, 8, 16, 8, and 20. All data underlying this figure can be found at https://doi.
org/10.25452/figshare.plus.23903202.

(PDF)

S5 Fig. Expression pattern of lim-4 promoter. Fluorescence/Bright field, merged image of
AML496 worms showing the expression of eGFP driven by lim-4 promoter using (Plim-4::
gtACR2::SL2::eGFP) expression vector. eGFP can be seen in the neurons RIV, SMB, and SAA.
(PDF)

S6 Fig. Inhibition of RIV, SMB, and SAA prolong reversals, in a second transgenic back-
ground. Same experiment as in Fig 3, but in a transgenic background that also expresses
Chrimson in the mechanosensory neurons. Results are consistent with Fig 3. Worm spent
more time reversing when the RIV, SMB, and SAA neurons were inhibited compared to when
a control stimulus intensity was used. Error bars represent 95% confidence intervals; ***
cates p<<0.001 via two-proportion Z-test. The exact p value is listed in S1 Table. The number of
stimulus events for mock and experimental conditions are 1,168 and 1,364, respectively. The

indi-

number of assays was N = 12. All data underlying this figure can be found at https://doi.org/
10.25452/figshare.plus.23903202.
(PDF)

S7 Fig. Additional control experiments show that blue light alone cannot restore mechano-
sensory-evoked reversal response. (A) Probability of reversals when either touch neurons are
activated, or RIV, SMB, and SAA are inhibited, or both simultaneously; during either forward
movement or turn onset. First three bars are same as in Fig 4. Touch neurons express Chrim-
son and are activated with red light. RIV, SMB, and SAA expressing gtACR?2 are inhibited
with blue light. Strains are listed in Table 1. The 95% confidence intervals for population pro-
portions are reported. N = 5,381, 1,525, 1,115, 1,961, and 954 stim events, from left to right.
The number of assays from left to right bars are: N = 8, 16, 16, 8, and 15. (B) Same experiments
were repeated in a strain that expressed Chrimson in the gentle-touch mechanosensory neu-
rons, but no inhibitory opsins. N = 3,722, 903, 794, 772, and 579 stim events. The number of
assays from left to right bars are: N =6, 12, 15, 15, and 16. (C) Same experiments are shown for
animals that only express inhibitory opsin gtACR2 in RIV, SMB, and SAA, but no Chrimson.
N =1,041 and 1,033 stim events. The number of assay is: N = 16; *** indicates p<0.001, “n.s.”
indicates p>0.05 via two-proportion Z-test. Exact p values for all the statistical tests are listed
in S1 Table. All data underlying this figure can be found at https://doi.org/10.25452/figshare.
plus.23903202.

(PDF)

S8 Fig. Endogenous blue light sensitivity and baseline locomotion activity of strains used.
(A) To characterize endogenous sensitivity to blue light, blue light-evoked reversal probability
is measured for different strains with and without the all-trans retinal (ATR) co-factor needed
for optogenetic proteins. The 300 yW/mm® blue light intensity used here, is less than that
reported to evoke the animal’s endogenous blue light response [64]. Only those strains that
express ChR2 are measured on retinal (ATR+, left, N = 2,612, 883, 880 from left to right, same
as Fig 2B), while all strains, including the Chrimson strains, are measured in the off-retinal
condition (ATR-, right, N = 6,564, 3,213, 3,365, 3,867, 7,006, 993, 4,516, 3,324, 646, and 6,470
from left to right). Error bars show 95% confidence intervals for population proportions. We
include a lite-1 mutant and wild-type N2 for comparison because our transgenic strains
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include a mix of both wild-type and lite-1 backgrounds. (B) Average speed of each strains used
in this work are shown N = 1,654, 564, 1,065, 654, 983, 1,099, 1,251, 837, 1,706, and 1,952 from
left to right. All data underlying this figure can be found at https://doi.org/10.25452/figshare.
plus.23903202.

(PDF)

S1 Video. Example showing behavior of a population of animals during an experiment
from [19]. Middle 24 s of a 30-min recording is shown. Optogenetic stimulation is delivered
in closed loop when turning of an individual animal is detected. Each yellow numbered “x”
represents a tracked animal, with its track shown in yellow. Inset at top left shows detailed
movements of worm number 213, denoted by a green square. The head of the worm is repre-
sented by a green dot. A centerline is drawn through the worm’s body and is shown in green.
The dynamic circular pattern of green and white spots in the center of the video is a visual
timestamp system projected onto the plate that is used for synchronizing the timing of video
analysis, as described in [19].

(MP4)

$2 Video. Example of a worm reversing in response to optogenetic stimulation of its gen-
tle-touch mechanosensory neurons delivered during forward locomotion. Recording is
from [19]. Animals express Chrimson in gentle-touch mechanosensory neurons (strain name:
AML67). Stimulus was delivered in open loop. Green dot denotes the animal’s head. Green
line denotes its centerline. Yellow line shows the trajectory of a point midway along the ani-
mal’s centerline over the past 10 s. Red indicates area illuminated by red light.

(MP4)

$3 Video. Example of a worm receiving optogenetic stimulation of its gentle-touch
mechanosensory neurons during the onset of a turn. Recording is from [19]. Animals
express Chrimson in gentle-touch mechanosensory neurons (strain name: AML67). This
worm does not reverse in response to stimulation. Stimuli was triggered in closed-loop by the
animal’s turn. Green dot denotes the animal’s head. Green line denotes its centerline. Yellow
line shows the trajectory of a point midway along the animal’s centerline over the past 10 s.
Red indicates area illuminated by red light.

(MP4)

$4 Video. Example of a worm aborting a turn and reversing when neuron AVA was acti-
vated following the onset of the turn. Animals express Chrimson in neuron AVA (strain
name: AML17). Stimulation was delivered upon the onset of a turn in closed loop. Green dot
denotes the animal’s head. Green line denotes its centerline. Yellow line shows the trajectory
of a point midway along the animal’s centerline over the past 10 s. Red indicates area illumi-
nated by red light.

(MP4)

S5 Video. Example of a worm completing a turn during inhibition of neurons RIV, SMB,
and SAA. Animals express the inhibitory opsin gtACR?2 in these neurons (strain name:
AML496). Stimulation was delivered upon the onset of a turn in closed loop. Green dot
denotes the animal’s head. Green line denotes its centerline. Yellow line shows the trajectory
of a point midway along the animal’s centerline over the past 10 s. Blue indicates area illumi-
nated by blue light.

(MP4)

$6 Video. Example of a worm aborting a turn and reversing when neurons RIV, SMB, and
SAA are inhibited and the gentle-touch mechanosenseory neurons are activated (strain
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name: AML499). Animals express the inhibitory opsin gtACR2 in RIV, SMB, and SAA and
the excitatory opsin Chrimson in the gentle-touch mechanosensory neurons. Blue and red
light illumination was delivered simultaneously upon the onset of a turn in closed loop. Green
dot denotes the animal’s head. Green line denotes its centerline. Yellow line shows the trajec-
tory of a point midway along the animal’s centerline over the past 10 s. Purple indicates area
illuminated by red and blue light.
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