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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Understanding central auditory processing critically depends on defining underlying auditory

cortical networks and their relationship to the rest of the brain. We addressed these ques-

tions using resting state functional connectivity derived from human intracranial electroen-

cephalography. Mapping recording sites into a low-dimensional space where proximity

represents functional similarity revealed a hierarchical organization. At a fine scale, a group

of auditory cortical regions excluded several higher-order auditory areas and segregated

maximally from the prefrontal cortex. On mesoscale, the proximity of limbic structures to the

auditory cortex suggested a limbic stream that parallels the classically described ventral and

dorsal auditory processing streams. Identities of global hubs in anterior temporal and cingu-

late cortex depended on frequency band, consistent with diverse roles in semantic and cog-

nitive processing. On a macroscale, observed hemispheric asymmetries were not specific

for speech and language networks. This approach can be applied to multivariate brain data

with respect to development, behavior, and disorders.

Introduction

The meso- and macroscopic organization of human neocortex has been investigated exten-

sively using resting state (RS) functional connectivity, primarily using functional magnetic res-

onance imaging (fMRI) [1,2]. RS data are advantageous as they avoid the substantial confound

of stimulus-driven correlations yet identify networks that overlap with those obtained using

event-related data [3] and thus are relevant to cognitive and perceptual processing. RS fMRI

has contributed greatly to our understanding of the organization of the human auditory corti-

cal hierarchy [4–6], but only a few complementary studies have been conducted using
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electrophysiology in humans (e.g., [7–9]). Compared to fMRI, intracranial electroencephalog-

raphy (iEEG) offers superior spatiotemporal resolution, allowing for analyses that accommo-

date frequency-dependent features of information exchange in these networks [10,11]. For

example, cortico-cortical feedforward versus feedback information exchange occurs via band-

specific communication channels (gamma band and beta/alpha bands, respectively) in both

the visual [11–15] and auditory [16–19] systems. There are also important regions involved in

speech and language processing for which iEEG can provide superior spatial resolution and

signal characteristics compared to fMRI, including in the anterior temporal lobe [20,21] and

the upper versus lower banks of the superior temporal sulcus (STS) [22,23]. However, variable

electrode coverage in human intracranial patients and small sample sizes are challenges to gen-

eralizing results.

We overcome these limitations using a large cohort of subjects that together have coverage

over most of the cerebral cortex and leverage these data to address outstanding questions

about auditory networks. We address the organization of human auditory cortex at 3 spatial

scales: fine-scale organization of regions adjacent to canonical auditory cortex, clustering of

cortical regions into functional processing streams, and hemispheric (a)symmetry associated

with language dominance. We present a unified analytical framework applied to RS human

iEEG data that embeds functional connectivity data into a Euclidean space in which proximity

represents functional similarity. A similar analysis has been applied previously to RS fMRI

data [24–26]. We extend this analytical approach and demonstrate methodology appropriate

for hypothesis testing at each of these spatial scales.

At the fine scale, individual areas within canonical auditory cortex and beyond have differ-

ent sensitivity and specificity of responses with respect to stimulus attributes [27–29]. These

differences are related to underlying connectivity patterns both within the auditory cortex and

with other brain areas [22]. Though there is broad agreement that posteromedial Heschl’s

gyrus (HGPM) represents core auditory cortex, functional relationships among HGPM and

neighboring higher-order areas are still a matter of debate. For example, the anterior portion

of the superior temporal gyrus (STGA) and planum polare (PP) are adjacent to auditory cortex

on Heschl’s gyrus yet diverge from it functionally [30,31]. The posterior insula (InsP), on the

other hand, has response properties similar to HGPM yet is not considered a canonical audi-

tory area [32]. The STS is a critical node in speech and language networks [22,33–37], yet its

functional relationships with other auditory areas are difficult to distinguish with neuroimag-

ing methods. Indeed, distinct functional roles of its upper and lower banks (STSU, STSL) have

only been recently elucidated with iEEG [23].

Questions remain regarding mesoscale organization as well. The auditory hierarchy is pos-

ited to be organized along 2 processing streams (ventral “what” and dorsal “where/audiomo-

tor”) [38–40]. The specific brain regions involved and the functional relationships within each

stream are vigorously debated [41–44]. Furthermore, communication between auditory cortex

and hippocampus, amygdala, and anterior insula (InsA) [45]—areas involved in auditory

working memory and processing of emotional aspects of auditory information [46–49]—sug-

gests a third “limbic” auditory processing stream, complementary to the dorsal and ventral

streams.

At a macroscopic scale, hemispheric lateralization is a classically described organizational

feature of speech and language function [50,51]. However, previous studies have shown exten-

sive bilateral activation during speech and language processing [52–54], and more recent mod-

els emphasize this bilateral organization [39]. Thus, the degree to which lateralization shapes

the auditory hierarchy and is reflected in hemisphere-specific connectivity profiles is unknown

[38,42,55–58].
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To address these questions, we applied diffusion map embedding (DME) [59,60] to func-

tional connectivity measured between cortical regions of interest (ROIs). DME is part of a

broader class of analytical approaches that leverage the spectral properties of similarity matri-

ces to reveal the intrinsic structure of datasets [61]. When applied to multivariate neurophysio-

logical signals, DME maps connectivity from anatomical space (i.e., the location of the

recording sites in the brain) into a Euclidean embedding space that reveals a “functional geom-

etry” [24]. In this space, the proximity of 2 ROIs reflects similarity in connectivity to the rest of

the network. Implicit in the use of the term “functional” is the assumption that 2 ROIs that are

similarly connected to the rest of the brain are performing similar functions. Here, we use the

DME approach to provide a low-dimensional representation convenient for display while also

facilitating quantitative comparisons on multiple spatial scales. We tested prespecified hypoth-

eses of specific ROI relationships involving STSL and STSU in the gamma band using permu-

tation tests. We applied exploratory statistical analyses to beta band connectivity, reasoning

that if gamma and beta band carry feedforward and feedback information, respectively, we

expect the largest differences between these 2 bands. We present key findings from all bands to

explore the sensitivity of our results to the choice of specific band.

This is the first time, to our knowledge, DME analysis has been applied to electrophysiologi-

cal data, which allows exploration of the band specificity of network structure. Also novel in

our approach is the examination of relationships based on inter-ROI distances in embedding

space, which are robust to changes in the underlying basis functions of the space.

Results

DME applied to iEEG data

Intracranial electrodes densely sampled cortical structures involved in auditory processing in

the temporal and parietal lobes, as well as prefrontal, sensorimotor, and other ROIs in 49 par-

ticipants (22 female; Fig 1, S1 and S2 Tables). A total of 6,742 recording sites (66.1% subdural,

33.9% depth) were used in the analyses. On average, each participant contributed 138 ± 54

(mean ± standard deviation) recording sites, representing 28 ± 7.7 ROIs (mean ± standard

deviation) (see example in Fig 2A). Fig 1B summarizes both subdural and depth electrode cov-

erage by plotting recording sites in Montreal Neurological Institute (MNI) coordinate space

and projecting them onto an average template brain for spatial reference. Of note, assignment

of recording sites to ROIs as depicted in Fig 1 was made based on the sites’ locations in each

participant’s brain rather than based on the projection onto the template brain, thus account-

ing for the high individual variability in cortical anatomy (see Methods for details).

The brain parcellation scheme depicted in Fig 1A was developed based on a combination of

physiological and anatomical criteria and has been useful in our previous analyses that were

largely focused on auditory processing [62–67]. One goal of the analysis presented in this

study is to develop instead a parcellation scheme based on functional relationships between

brain areas. Accordingly, we revisit below the parcellation shown in Fig 1A with a data-driven

scheme.

DME was applied to pairwise functional connectivity measured as orthogonalized power

envelope correlations [68] computed between recording sites in each participant. We focus on

gamma band power envelope correlations because of its established role in feedforward infor-

mation exchange in the auditory system [16–19] and use gamma band as a reference in presen-

tation of data from other bands. The functional connectivity matrix was normalized and

thresholded to yield a diffusion matrix Psymm with an apparent community structure along the

horizontal and vertical dimensions (Fig 2B). Within the context of DME, the term “diffusion”

reflects the idea of energy or information “diffusing” through the graph being analyzed. DME
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Fig 1. ROIs and electrode coverage in all 49 participants. (a) ROI parcellation scheme. (b) Locations of recording sites, determined for each

participant individually and color-coded according to the ROI group, are plotted in Montreal Neurological Institute (MNI) coordinate space
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reveals the functional geometry of the sampled cortical sites by using the structure of Psymm

and a free parameter t to map the recording sites into an embedding space. In this space, prox-

imity between nodes represents similarity in their connectivity to the rest of the network (Fig

2C; see S1 Fig for additional views). The parameter t corresponds to diffusion time: larger val-

ues of t shift focus from local towards global organization. DME exhibited superior signal-to-

noise (SNR) characteristics (i.e., distance between nodes versus uncertainty in node position;

see Methods) compared to direct analysis of functional connectivity in 43 out of 49 partici-

pants (S2 Fig).

Functionally distinct regions are isolated along principal dimensions in embedding space.

For example, in Fig 2C, auditory cortical sites (red/orange/yellow) and sites in prefrontal cor-

tex (blue) were maximally segregated along dimension 1 (see Fig 1 and S3 Table for the list of

abbreviations). Other regions (e.g., middle temporal gyrus) had a more distributed representa-

tion within the embedding space, consistent with their functional heterogeneity.

Functional geometry of cortical networks

Electrode placement was based solely on clinical criteria in each participant and thus precise

locations of recording sites varied across participants. To pool data across participants with

variable electrode coverage, it was necessary to compute Psymm matrices at the ROI level and

average across participants. The results for gamma band data are shown in Fig 3A. The eigen-

value spectrum |λi| of this averaged Psymm showed a clear separation between the first 4 and

the remaining dimensions (Fig 3A, inset), indicating that the first 4 dimensions of embedding

space accounted for much of the community structure of the data. Indeed, these first 4 dimen-

sions accounted for>80% of the diffusion distance averaged across all pairwise distances in

the space, a typical measure for deciding which dimensions to retain when DME is used as a

dimensionality reduction method [60]. This inflection point in the eigenvalue spectrum was

identified algorithmically (see Methods) for each frequency band and yielded the number of

retained dimensions n = 6, 6, 7, 4, and 6 for theta, alpha, beta, gamma, and high gamma bands,

respectively.

The gamma band data are plotted in the first 4 dimensions of embedding space in Fig 3B,

where the sizes of the ellipsoids for each ROI represent estimates of position variance across

participants obtained via bootstrapping. These data provide a graphical representation of the

functional geometry of all sampled brain regions (see also S3 Fig and S1 and S2 Movies; see S4

Fig for average beta band embeddings). Functionally related ROIs tended to group together,

and these ROI groups segregated within embedding space. For example, auditory cortical and

prefrontal ROIs were at opposite ends of dimension 1, as were visual cortical (ITGP, ITGM,

LingG, FG) and prefrontal ROIs. Parietal and limbic ROIs were at opposite ends of dimension

2, and auditory and visual ROIs were maximally segregated along dimension 4. By contrast,

some ROIs [e.g., STGA, anterior and middle portions of middle temporal gyrus (MTGA,

MTGM), middle cingulate (CingM)] were situated in the interior of the data cloud.

and projected onto the Freesurfer average template brain for spatial reference. All depicted sites were within cortical gray matter; some appear

as outside the brain due to individual variability in brain anatomy relative to the template brain. Color shades represent different ROIs within

a group. Projections are shown on the lateral, top-down (superior temporal plane), ventral and mesial views (top to bottom). Recording sites

over orbital, transverse frontopolar, inferior temporal gyrus, and temporal pole are shown in both the lateral and the ventral view. Sites in

fusiform, lingual, parahippocampal gyrus and gyrus rectus are shown in both the ventral and medial view. See S2 Table for detailed

information on electrode coverage. Sites in the frontal operculum (n = 23), parietal operculum (n = 21), amygdala (n = 80), hippocampus

(n = 86), putamen (n = 15), globus pallidus (n = 1), caudate nucleus (n = 10), substantia innominata (n = 5), and ventral striatum (n = 2) are

not visible due to the opacity of the template brain but are included in S2 Table. (c) ROI groups, ROIs, and abbreviations used in the present

study. See S3 Table for alphabetized list of abbreviations.

https://doi.org/10.1371/journal.pbio.3002239.g001
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The data shown in Fig 4 are based on a value of the diffusion parameter t = 1, chosen to

maximize the local network structure that can be detected in the data. To test the sensitivity of

the results to this parameter choice, the analysis was repeated using the “multiscale” imple-

mentation of DME, which considers all values of t simultaneously [69] (see Methods and S1

Text). The results were compared to those in Fig 4 by calculation the correlation of inter-ROI

Fig 2. Functional geometry of cortical networks revealed by DME applied to gamma band power envelope

correlations in a single participant (R376). (a) Electrode coverage. (b) Diffusion matrix Psymm. (c) Data plotted on

the same scale in the first and second, first and third, and first and fourth dimensions of embedding space (top to

bottom). Two points that are close in embedding space are similarly connected to the rest of the network and thus

assumed to be functionally similar.

https://doi.org/10.1371/journal.pbio.3002239.g002
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distances in the 2 analyses. The correlation was extremely high (r = 0.97), indicating that the

results are robust to the specific choice of the parameter t. Correlation values were also high

for results obtained with connectivity thresholds ranging from 10% to 50% (S5A Fig), indicat-

ing that the results were also robust to the specific choice of threshold.

One advantage of applying DME to electrophysiological data is the opportunity to examine

features of the embeddings that are band specific. DME applied to bands other than gamma

produced similar embeddings. Inter-ROI distances were similar for adjacent bands (r� 0.82),

Fig 3. Summary of functional geometry of cortical networks via DME applied to gamma band power envelope

correlations. The semiaxis lengths of each ellipsoid indicate the standard deviation of bootstrap estimates in each

dimension. (a) Average diffusion matrix. Inset: Eigenvalue spectrum. (b) Data plotted on the same scale in the first

and second, first and third, and first and fourth dimensions of embedding space (top to bottom). Estimates of variance

across participants in the locations of each ROI in embedding space were obtained via bootstrapping and are

represented by the size of the ellipsoid for each ROI.

https://doi.org/10.1371/journal.pbio.3002239.g003

Fig 4. Hierarchical clustering of embedding data shown in Fig 3. (a) Left side shows linkages between ROI groups

identified using agglomerative clustering. Two thresholds are denoted (vertical dashed lines), one yielding 5 clusters

and one yielding 9. ROIs are colored to indicate cluster membership. Right side shows auditory responsiveness in each

ROI, quantified as percentages of sites in each ROI with early (50–350 ms after stimulus onset; black bars) and late

(350–650 ms; white bars) high gamma responses to 300 ms monosyllabic words. (b) Brain parcellation based on

hierarchical clustering illustrated in (a).

https://doi.org/10.1371/journal.pbio.3002239.g004
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and even for nonadjacent bands (r� 0.67; S5B Fig). Thus, DME identified some organiza-

tional features of cortical networks that were not band specific.

A second connectivity measure based on phase synchronization (debiased weighted phase

lag index (wPLI) [70]) produced embeddings in the alpha and theta bands that were similar to

each other (r = 0.85; S5B Fig) and to those derived from envelope correlations in those bands

(r� 0.73), suggesting that common features of network structure are captured by DME. Inter-

estingly, correlations were much lower for beta band wPLI, indicating that a phase-based con-

nectivity measure captures distinct features in this band.

The mean correlation between inter-ROI embedding distances for original versus boot-

strapped data was high in each band (r = 0.91, 0.85, 0.87, 0.88, and 0.86 for high gamma,

gamma, beta, alpha, and theta, respectively). These analyses suggest that distances in embed-

ding space are robust across participants, indicating that DME offers a robust approach to

exploring functional geometry.

DME elucidates fine-scale functional organization beyond anatomical

proximity

The connectivity metric employed here discards components exactly in phase between 2 brain

regions, mitigating the influence of volume conduction [68]. However, brain areas that are

anatomically close to each other are often densely interconnected [71–73]. Thus, anatomical

proximity is expected to contribute to the observed functional geometry. Overall, however,

anatomical proximity explained only 14% of the variance in embedding distance derived from

gamma band connectivity (mean adjusted r2 = 0.14 for regressions between anatomical and

embedding Euclidean distance, calculated separately for each ROI). Anatomically adjacent

ROIs that were separated in embedding space for gamma band included STGA and STGM,

temporal pole (TP) and the rest of the anterior temporal lobe (ATL), and InsA and InsP. Simi-

lar results were obtained for embeddings derived from beta band data (S4 Fig). Thus, the

embedding representation elucidates organizational features beyond anatomical proximity.

Planum polare (PP) and posterior insula (InsP) are functionally distinct

from other auditory cortical ROIs

The grouping of canonical auditory ROIs is apparent in Figs 3B and S4, as PT, HGAL, and

middle and posterior portions of the superior temporal gyrus (STGM, STGP) were all close to

HGPM in embedding space. One notable exception, PP, located immediately anterior to ante-

rolateral Heschl’s gyrus (HGAL), segregated from the rest of auditory cortical ROIs along

dimension 2 in embedding space (Fig 3B, upper panel, lower left corner; S4 Fig, upper left

panel, lower left corner). This result is consistent with PP being a higher order auditory area.

In contrast, InsP is a region that is anatomically distant from HGPM yet responds robustly

to acoustic stimuli [32], suggesting that a portion of this area could be considered an auditory

region [74]. For example, InsP can track relatively fast (>100 Hz) temporal modulations, simi-

lar to HGPM [32,75], possibly due to direct inputs from the auditory thalamus. However, InsP

was functionally segregated from HGPM and was situated between auditory and limbic ROIs,

consistent with the broader role of InsP in both exteroceptive and interoceptive processing

[76,77].

Hierarchical distinction of STSU and STSL

Unlike InsP and PP, STSU was located near early auditory regions in embedding space, and

for gamma band was significantly closer to auditory cortex (core and non-core ROIs; see
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Fig 1) in embedding space compared to STSL (test by permutation of STSU/STSL labels,

p< 0.0001). In beta band, the difference in distance to auditory cortex was not significant

(p = 0.051). This distinction between STSL and STSU is consistent with differences in their

response properties reported recently [23]. Particularly, responses in STSL, but not STSU,

were predictive of performance in a semantic categorization task. Those results suggest that

STSL would likely be closer in embedding space to regions involved in semantic processing

compared to STSU. Indeed, for gamma band, STSL was significantly closer to ROIs reported

to contribute to semantic processing [inferior frontal gyrus (IFG) pars opercularis/triangularis/

orbitalis (IFGop, IFGtri, IFGor), TP, STGA, MTGA, MTGP, anterior and posterior portions of

inferior temporal gyrus (ITGA, ITGP), anterior and posterior angular gyrus (AGA, AGP),

supramarginal gyrus (SMG)] [78–80] compared to STSU (test by permutation of STSU/STSL

labels, p = 0.0011). Similar results were obtained in beta band (p = 0.00044).

Organization of ROIs outside auditory cortex

The data of Fig 3B and S4 Fig also characterize the temporal and parietal ROIs outside auditory

cortex that are nonetheless part of the extended auditory network, including components of

the dorsal and ventral processing streams. These “auditory-related” ROIs (shades of green)

were distributed along a considerable extent of all 4 dimensions, consistent with functional

heterogeneity of these regions and their involvement in integration of sensory information

from multiple modalities [81].

This heterogeneity, as well as the embedding locations of PP and STSU, suggests that DME

can be used to improve the brain parcellation scheme from Fig 1. For example, MTGA in that

scheme was labeled as part of the “Auditory-related” group based on its location on the lateral

temporal convexity and its anatomical proximity to canonical auditory cortex. The “Other”

group contains a large and diverse collection of ROIs whose relationship to auditory structures

and speech and language processing is unclear. A more principled approach is warranted to

arrange these and other ROIs into functional groups or streams based upon their physiology.

One approach to developing such a data-driven parcellation scheme is to apply hierarchical

clustering to the data in embedding space.

Hierarchical clustering identifies mesoscale-level organizational features:

ROI groups and processing streams

Hierarchical clustering was applied to the first 4 dimensions of the embedded gamma band

data shown in Fig 3. The analysis illustrated a mesoscale organization of cortical ROIs (Fig 4)

that aligned with the qualitative observations discussed above. As with any clustering scheme,

the number of clusters is difficult to determine based on the data alone. In the left column of

Fig 4A, we illustrate 2 possible thresholds yielding 5 and 9 clusters, respectively. In the 5-cluster

scheme, auditory cortical ROIs (excluding PP) formed an “Auditory” cluster with STSU at one

end of the dendrogram. At the other end, sensorimotor ROIs and ROIs typically considered

part of the dorsal auditory stream formed clusters (labeled “Action” and “Dorsal,” respec-

tively). The remaining 2 large clusters were dominated by ventral temporal and limbic ROIs

and by prefrontal and mesial ROIs (colored green and blue, respectively).

At a lower threshold, a 9-cluster scheme emerged. The ventral temporal/limbic cluster

divided into 3 distinct clusters. One of these (“Limbic”) included ROIs traditionally considered

part of the limbic system [parahippocampal gyrus (PHG), amygdala, and hippocampus], as

well as TP and the insula. A second (“Visual”) included ROIs in the ventral visual stream, and

a third (“Ventral”) consisted of ROIs typically considered part of the ventral auditory stream.

Similarly, the prefrontal cluster divided into 3 distinct clusters (“Ventromedial prefrontal,”
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“Lateral prefrontal,” and “Executive”). Thus, the hierarchical clustering analysis revealed a seg-

regation of ROIs in embedding space that aligned with known functional differentiation of

brain regions. Further, we can use this analysis to expand our understanding of hierarchical

relationships among clusters. For example, the “Auditory” cluster was distinct from other clus-

ters primarily in the temporal lobe but was closer to the “Limbic” cluster than “Ventral” or

“Visual.”

Results of hierarchical agglomerative clustering applied to data from all 5 frequency bands

are shown in S6 Fig. The color scheme for the ROIs is based on the gamma band results to pro-

vide a reference for comparison across bands. Auditory cortical ROIs consistently clustered

together, though the specific membership of that cluster varied slightly in alpha and beta

bands. Sensorimotor ROIs consistently clustered together, usually at a considerable distance

from auditory ROIs, though in high gamma band dorsal and ventral sensorimotor ROIs were

separated. Prefrontal and mesial ROIs tended to cluster together in all bands, albeit at variable

overall position relative to auditory and sensorimotor ROIs. PP tended to cluster with anterior

temporal lobe structures, and TP with limbic structures, regardless of frequency band. Thus,

the temporal scale of neuronal signaling contributes importantly to establishing the structure

of functional networks, consistent with previous results [10,11,82–84].

We evaluated the sensitivity of hierarchical clustering results to the choice of specific

threshold (S7A–S7E Fig). As for the analysis of results across frequency band, groups of ROIs

identified as clusters with a threshold of 33% in Fig 4 tended to cluster together for other

threshold values, although their relative position in the one-dimensional representation of the

dendrogram tended to vary. Results obtained using the multiscale DME approach were nearly

identical to those obtained with t = 1 (S7F Fig), indicating that clustering was robust to the

choice of the diffusion parameter t as well, consistent with results for inter-ROI distances

above.

We evaluated the robustness of this clustering scheme in our dataset by calculating stability

as the median normalized Fowlkes–Mallows index [85] across bootstrap iterations. The index

varies between 0 (random clustering across iterations) and 1 (identical clustering across itera-

tions). The results of the analysis as a function of threshold and frequency band indicated that

stability was not strongly dependent on either band or threshold, especially for 5 or more clus-

ters (S8A Fig). We also calculated cluster-wise stability as a function of the number of clusters

for gamma band using the Jaccard coefficient [86]. Stability varied across threshold and clus-

ters (S8B Fig). Notably, the auditory cluster was the most stable for gamma band data for both

the nClust = 5 and 9 results illustrated in Fig 4. By contrast, the “Executive” cluster for nClust = 9

was the least stable of the group.

In addition to these RS recordings, most participants engaged in additional experiments

investigating representation of acoustic stimuli in the brain [23,87–89]. We used these data to

evaluate auditory responsiveness of each recording site (Fig 4A, right column) and compare

these response profiles to the clustering results of Fig 4A (left column). As expected, ROIs in

the auditory cluster exhibited consistently high responsiveness to auditory stimuli, while visual

ROIs did not. By contrast, some clusters exhibited mixed responsiveness (e.g., InsP in the lim-

bic cluster), possibly indicating ROIs that serve as nodes bridging auditory and other brain

networks.

A brain parcellation scheme based on the gamma band clustering results is illustrated in Fig

4B. We note that as for other parcellation schemes based on functional connectivity (e.g.,

[2,90]), the specific threshold that is most relevant and useful depends on the questions being

asked and the sample size available for hypothesis testing. For example, smaller sample sizes

constrain hypothesis testing to a smaller number of brain subdivisions.
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DME identifies mesoscale topological features of cortical networks

In a network, “global hubs” integrate and regulate information flow by virtue of their centrality

and strong connectivity; spokes send and receive information to/from these hubs. Identifica-

tion of these nodes is critical for understanding the topology of brain networks [91], yet there

is ongoing debate about effective methods for identifying hubs and spokes [92]. Here, we pro-

pose a novel approach to use DME to identify global hubs versus spokes. First, we note that the

closer an ROI is to the center of the data cloud in embedding space, the more equal is its con-

nectivity to the rest of the network. A simulated example is illustrated in Fig 5A, which depicts

a network of 5 ROIs, with one serving as a global hub (Fig 5A, left panel, green). The network

structure can also be represented as an adjacency matrix, wherein the hub ROI has strong con-

nectivity with other ROIs (Fig 5A, middle panel). In embedding space, this ROI occupies a

central location, with the other 4 serving as spokes, i.e., nodes that interact with each other

through the central hub (Fig 5A, right panel).

However, a node’s proximity to the center of the data cloud reflects the homogeneityAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; allitalicizedwordshavebeenchangedtoregulartextthroughoutthetext:of its

connectivity to the rest of the network, not necessarily the strength of that connectivity. In the-

ory, a node could appear at a central location if it is weakly but consistently connected to all

other nodes. To determine whether this occurs in our dataset, we computed the Euclidean dis-

tance from the center of embedding space and mean connectivity for all of the ROIs in Fig 3B.

We show in Fig 5B a strong inverse relationship between these 2 measures. ROIs close to the

center of embedding space also exhibited strong mean connectivity, suggesting that global

hubs can be identified in these data using distance from the center of embedding space alone.

The identity of global hubs, and the extent to which specific nodes act as global hubs, varied

across frequency bands. In the high gamma and gamma bands, ROIs presenting most strongly

as global hubs included MTGA, STGA, and MTGM. ITGA, CingM, posterior cingulate/precu-

neus (PCC/pC), PP, fOperc, and STSL also exhibited hub-like properties. By contrast, the

ROIs that were farthest from the center of embedding space were mostly unimodal sensory

and motor regions, consistent with their roles as spokes in the network. The positioning of

these ROIs in embedding space and their roles as spokes are also indicated by the position of

these ROIs at the edges of the 1D representation depicted in the dendrograms of Figs 4 and S6.

In lower frequency bands, by contrast, CingM along with MTGM, InsP, and InsA, pre-

sented most strongly as global hubs, with the addition of ACC in the theta band. These results

are consistent with network organization depending on temporal scale and are consistent with

previous reports showing that mesial cortical structures regulate information flow on slower

time scales [10]. Thus, DME can identify band-specific topological features critical to informa-

tion flow within cortical networks.

Differences between language-dominant and nondominant hemispheres

are not specific to auditory-responsive and language-specialized ROIs

On a macroscopic scale, speech and language networks are lateralized in the human brain,

with nearly all right-handed and most left-handed individuals left hemisphere language-domi-

nant [93]. However, both hemispheres are activated during speech processing [33,39,56,94],

and the extent to which lateralization is reflected in asymmetries in the organization of RS

auditory networks is unclear. We hypothesized that that we would observe asymmetry in

gamma band data, specifically that ROIs would be in different positions in embedding space in

the language-dominant versus nondominant hemisphere. We investigated this issue by com-

paring the functional geometry of cortical networks derived from participants with electrode

coverage in the language-dominant (N = 24) versus nondominant (N = 22) hemisphere. ROIs

in the 2 hemispheres exhibited a similar functional organization in embedding space (S9 Fig).
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Permutation analysis indicated that for gamma band, the positions of ROIs in embedding

space were not significantly different between dominant and nondominant hemispheres (all p-

values> 0.05). Furthermore, there was no significant correlation between the change in posi-

tion in embedding space and either early or late auditory responsiveness (early: p = 0.94; late:

p = 0.86; Fig 6A). Similar results were obtained in exploratory analyses of beta band data,

though 1 ROI (MTGP, p = 0.013) did survive false discovery rate (FDR) correction for differ-

ence in position between the 2 hemispheres.

We also analyzed inter-ROI distances to determine whether functional interactions

between ROIs were different in the 2 hemispheres. For gamma band, pairwise inter-ROI dis-

tances in embedding space, calculated separately for dominant versus nondominant hemi-

sphere, were highly correlated (r = 0.88), with no obvious outliers (Fig 6B, left panel). The data

shown in Fig 6A have a slope<1, indicating that inter-ROI distances are consistently longer in

the dominant hemisphere compared to the nondominant hemisphere (p = 0.0032). This multi-

plicative scaling of the distances is consistent with the data occupying a larger volume in

embedding space for the dominant versus nondominant hemisphere, suggesting a greater

functional heterogeneity for the language-dominant side of the brain. After accounting for this

multiplicative scaling effect, following FDR correction, there were no specific inter-ROI dis-

tances that were significantly different between the 2 hemispheres. Similar results were

obtained in exploratory analyses of beta band data (pairwise inter-ROI distances r = 0.79; lon-

ger inter-ROI distances in dominant hemisphere p = 0.0071; no pairwise distances significant

after FDR correction).

When considering ROIs specifically involved in speech and language comprehension and

production [PT, PP, STSL, STGP, STGM, STGA, SMG, AGA, premotor cortex (PMC), pre-

central gyrus (PreCG), IFGop, IFGtr] [36,42,95], the correlation in pairwise inter-ROI dis-

tances in embedding space was also high (r = 0.90; Fig 6B). Furthermore, the data in Fig 6B

exhibited a similar multiplicative scaling as observed for all the ROIs shown in Fig 6A. Indeed,

the slope for the data in Fig 6B was indistinguishable from the slope for the data in Fig 6A

(p = 0.93). Similar results were obtained in exploratory analyses of beta band data (pairwise

inter-ROI distance correlations, r = 0.76; difference between speech and language ROIs versus

others, p = 0.35). Thus, hemispheric asymmetry of functional organization specific to speech

and language networks was not detectable in RS connectivity.

Comparison to embeddings derived from RS-fMRI data

So far, we have presented results at multiple spatial scales based on intracranial electrophysiol-

ogy. However, these intracranial recordings sample the brain nonuniformly and sparsely as

dictated by clinical considerations. This feature presents problems at 2 spatial scales: First, cor-

tical regions are not sampled uniformly (with some not sampled at all). Second, ROIs are not

sampled uniformly across their volume. To examine the impact of these sampling issues, we

compared iEEG-based DME to DME applied to RS-fMRI data available in a subset of 10 par-

ticipants (1,591 recording sites).

We first tested the consistency of functional geometry derived from the 2 modalities in the

same participants (Fig 7). Connectivity matrices were constructed based on RS-fMRI data

Fig 5. Identification of network hubs. (a) Schematic example illustrating the central positioning of global hubs in

embedding space. (b) ROIs from average embedding are plotted according to their mean connectivity to the rest of the

network versus their Euclidean distance to the centroid of the data cloud in the first 4 dimensions of embedding space.

Dashed lines denote across-ROI means. Dashed ellipses represent 1 and 2 standard deviations from the mean. (c)

Distance to center of embedding space for each ROI in the 5 studied frequency bands. Distances are normalized to the

median distance within each band to allow for comparison across bands.

https://doi.org/10.1371/journal.pbio.3002239.g005
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from voxels located at iEEG recording sites and grouped into the same ROIs as in Fig 1. The

fMRI and iEEG embeddings averaged across participants were qualitatively similar (Fig 7A

and 77B, respectively), and the overall organization derived from this subset was consistent

with that observed in the full iEEG dataset (cf. Fig 3B). Inter-ROI distances in the fMRI and

iEEG embedding spaces were correlated (Fig 7C). These correlations varied across band, with

highest correlations for gamma and high gamma band envelopes (r> 0.45; Fig 7D, line and

symbols), consistent with previous reports [82,96].

Fig 6. Hemispheric asymmetries in RS connectivity are not driven by auditory-responsive and language-

specialized ROIs. Inter-ROI distances in embedding space for nondominant versus dominant hemisphere

participants. (a) Comparison between the change in position in embedding space from dominant to nondominant

hemisphere and the auditory responsiveness of individual ROIs. Two-tailed Spearman’s rank tests did not reveal a

significant correlation between ROI asymmetry and percentage of either early or late auditory responsive sites within

the ROI (left and right panel, respectively). (b) Pairwise distances between all ROIs and between ROIs involved in

speech and language perception and production (PT, PP, STSL, STGP, STGM, STGA, SMG, AGA, PMC, PreCG,

IFGop, IFGtr) are shown in the left and right panel, respectively. Note that after splitting the data into the 2 subsets

(dominant and nondominant) STSU did not meet the inclusion criteria for analysis presented in the right panel (see

Methods, S2 Table).

https://doi.org/10.1371/journal.pbio.3002239.g006
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The analysis presented in Fig 7 provide a context for using fMRI data to address questions

regarding the effects of limited, nonuniform sampling. We used a standard parcellation

scheme developed for fMRI data (Schaefer–Yeo 400 ROIs; [90]) rather than the iEEG parcella-

tion scheme introduced in Fig 1, as the latter scheme does not cover the entire brain and can-

not be applied to automatically parcellate the fMRI data on a voxel-by-voxel basis.

The first question we addressed was the effect of nonuniformly sampling only a subset of

brain regions. For each participant, embeddings were derived from RS-fMRI connectivity

matrices computed from all cortical ROIs (Fig 8A, “Full fMRI,” first column). From these

embeddings, we selected only points in embedding space corresponding to ROIs sampled with

iEEG (Fig 8A, “Full fMRI (iEEG subset),” second column). We also computed embeddings for

each subject from only the fMRI ROIs sampled with iEEG in that subject [“Partial fMRI (ROI

level),” Fig 8A, third column]. We compared these embeddings to the “Full fMRI (iEEG sub-

set)” embeddings by computing the correlation between inter-ROI distances (Fig 8B).

Although the scale of the embeddings was different for the full fMRI versus partial fMRI data

(because the number of dimensions was different), the two were highly correlated (median

r = 0.90; Fig 8C). Thus, embeddings constructed from the portion of the brain sampled by

iEEG were quite similar to embeddings derived from the whole brain.

The second question we addressed was the effect of representing an entire ROI by sparse

sampling with a limited number of electrodes. We computed embeddings from the voxel aver-

ages across entire ROIs in each participant [“Partial fMRI (ROI level),” Fig 8A, third column]

and from averages of the voxels in grey matter spheres around iEEG recording sites [“Partial

fMRI (site level),” Fig 8A, rightmost column]. ROI- and site-level embedding distances were

strongly correlated (median r = 0.65; Fig 8C).

Thus, sparse sampling within an ROI had a greater impact on estimates of functional geom-

etry than limited sampling of the complete set of ROIs. Overall, however, ROIs were faithfully

represented in embedding space even when DME was based on a small number of locations

within ROIs. Taken together, these results indicate broad consistency between functional orga-

nization derived from iEEG and fMRI and the robustness of this approach to sparse sampling

afforded by iEEG recordings.

Discussion

Organization of auditory cortical networks

We have shown that DME applied to iEEG data can be used to characterize the organization of

the human auditory cortical hierarchy at multiple spatial scales. We demonstrate methodology

for testing specific hypotheses about gamma band data at each of these scales using DME. We

also use exploratory analyses (e.g., hierarchical clustering, analyses of other frequency bands)

to generate data-driven hypotheses for study using future data sets.

Investigating cortical network organization using resting state data

The results presented here are based on the analysis of RS (i.e., task-free) data. Relationships

between brain signals recorded at different locations derive from synaptic connections

between neurons in those locations. Thus, these data provide valuable information about the

underlying brain organization despite the absence of a task or a controlled sensory stimulus.

Fig 7. Comparison of iEEG and fMRI connectivity data in embedding space. (a) Participant-averaged embeddings

for fMRI. (b) Participant-averaged embeddings for iEEG (gamma band power envelope correlations). (c) Inter-ROI

embedding distances computed from the data in (a) and (b). (d) Summary of distance correlations at each frequency

band.

https://doi.org/10.1371/journal.pbio.3002239.g007

PLOS BIOLOGY Auditory cortical resting state networks

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002239 August 31, 2023 17 / 44

https://doi.org/10.1371/journal.pbio.3002239.g007
https://doi.org/10.1371/journal.pbio.3002239


Fig 8. Comparison of embeddings derived from full fMRI connectivity matrices and connectivity matrices

computed using only ROIs sampled with iEEG. (a) Data in the first 4 dimensions of embedding space for a single

participant. Shown are embeddings of all derived from the full RS-fMRI connectivity matrix (first column); the subset

of the data points in the first column corresponding to ROIs sampled via iEEG (second column); and embeddings

derived from connectivity matrices including only the ROIs sampled via iEEG, calculated by averaging across the

entire ROI (third column), and calculated based on the specific recording sites in that participant (fourth column). (b)

Comparison of embedding distances calculated from the full fMRI embedding (i.e., data in (a), second column) versus

distances calculated from the partial fMRI embedding (i.e., data in (a), third column). (c) Summary across participants
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The same areas that are coactivated during sensory processing exhibit RS connectivity with

each other, and RS networks map onto relevant behavioral and task-related domains [2,3].

Numerous previous studies based on BOLD fMRI have used analyses of RS activity to gain

insight into the organization of human brain networks and how this organization is altered

due to brain disorders, during development and ageing, and in response to pharmacological

treatments [22,26,97–101].

Connectivity can also be measured in the context of event-related paradigms, including

behavioral tasks [3,102]. These analyses have provided important insights into the relationship

between network structure and function [103], especially in the context of attention [104]. A

key advantage of RS analyses is that they are based on data that are far more stationary com-

pared to data derived from task-based experiments. In the case of sensory regions, this avoids

a confound inherent to investigations of connectivity in the presence of a stimulus, which itself

would produce correlated activity at directly driven sites, i.e., 2 unconnected sites in the brain

driven by the same sensory stimulus will exhibit apparent connectivity solely due to the stimu-

lus, in the absence of a physical connection between the sites. Additionally, RS analyses typi-

cally can draw on considerably more data than is available from task-based experiments,

allowing for better estimates of connectivity.

As in previous studies, we provide a snapshot of the organization of these networks, corre-

sponding to a static representation. However, these networks are dynamic due to short- and

long-term plasticity driven both by internal (e.g., changes in arousal state) and external factors

(e.g., sensory stimulation and directed behavior). The organization derived from studies such

as this one provides a framework for understanding these dynamics.

Frequency band-specific properties of cortical networks

Previous reports have shown that cortical networks defined by functional or effective connectiv-

ity derived from electrophysiological data exhibit organizational structure that depends on the

frequency band being analyzed. This manifests in 2 ways relevant to the results presented here.

First, canonical RS networks originally identified using RS BOLD fMRI data vary across band

in the strength of within-network connectivity and in the relationship between electrophysio-

logical- and fMRI-derived connectivity networks [10,82]. Second, detailed analyses of the rela-

tionship between anatomical projection patterns and functional or effective connectivity

indicate that especially in auditory and visual cortical hierarchies, feedforward information

streams rely on connectivity primarily in gamma and high-gamma bands, while lower fre-

quency bands (alpha, beta) underlie feedback connectivity [11–19]. Based on these previous

reports, we suggest that the gamma band organization that is the focus of the current report

reflects feedforward connectivity. Indeed, the auditory responsiveness profile depicted in Fig 4B

is most strongly predicted by clustering analysis applied to gamma and high-gamma band data

in embedding space. Results for other bands differed from gamma band results especially in the

identity of network hubs (Fig 5), where CingM cortex emerged as the ROI with the most pro-

nounced “hubness.” By contrast, the overall organizational features considered at various spatial

scales did not differ strongly between bands, suggesting that while temporal scale is an impor-

tant contributor to network organization, functional connectivity on these different scales tends

to overlap. In the case of comparisons between feedforward and feedback networks, this is con-

sistent with the tendency of cortical areas to be coupled bidirectionally [105].

of distance correlations between full fMRI embeddings versus partial embeddings calculated based on the entire ROI

(left: “Full vs. Partial (ROI)”) and between partial embeddings calculated based on the entire ROI versus those

calculated based on recording sites [i “Partial (ROI) vs. Partial (site)”].

https://doi.org/10.1371/journal.pbio.3002239.g008
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Fine scale: Organization of auditory cortex

At a fine spatial scale, previous work in nonhuman primates has defined over a dozen auditory

cortical fields based on cytoarchitectonics, connectivity, and response properties [106]. By

contrast, there is no consensus on how auditory cortex is organized in humans, with multiple

parcellations based on cytoarchitectonics, tonotopy, or myeloarchitecture [107–110]. Our

results contribute to this body of knowledge by showing that several superior temporal ROIs

including core auditory cortex (HGPM) and putative auditory belt and parabelt areas (PT,

HGAL, STGM) [107,110] group together in embedding space across all frequency bands.

Thus, in spite of their diversity in processing of specific features of acoustic signals, these ROIs

are positioned at a similar level in the auditory cortical hierarchy. Other regions, such as STGP

and STSU, group with these cortical ROIs in theta, gamma, and high-gamma, but not in alpha

and beta. For gamma band, proximity of STGP and STGM to HGPM in embedding space is

consistent with previous studies that interpret these regions as relatively early non-core audi-

tory cortex [29,111,112]. By contrast, although PP is anatomically close and connected to

HGPM [113], for both gamma and beta band, it was not close to HGPM in embedding space.

PP is distinguished among auditory cortical regions for its syntactic-level language processing

[30] and its preferential activation by music, which has a strong affective component [31]. This

functional differentiation is reflected in its segregation from the group of auditory cortical

ROIs in embedding space.

Fine scale: Functional differentiation between STSU and STSL

The STS is a critical node in speech and language networks linking canonical auditory cortex

with higher-order temporal, parietal, and frontal areas [22,33–37]. Previous studies have

shown that STSU and STSL differ in cytoarchitecture [114] and have distinct responses to

speech [27,57,115,116]. A recent iEEG study demonstrated enhanced, shorter latency

responses to speech syllables in STSU compared to STSL [23]. STSU is traditionally not con-

sidered part of canonical auditory cortex (but see [108]), yet it was located close to auditory

cortical ROIs in embedding space in gamma band. STSL, by contrast, was closer in embedding

space to semantic ROIs in both beta and gamma bands. This is consistent with iEEG evidence

that responses in STSL, but not STSU, correlated with performance on a semantic categoriza-

tion task [23]. The regions specifically involved in semantic processing is a current topic of

debate, with multiple competing models [21,78–80]. We defined a list of semantic processing

regions by combining across these models. Taken together, the results firmly place STSU and

STSL at different levels of the auditory cortical hierarchy defined by gamma band connectivity.

Mesoscale: Functional and theoretical framework of a limbic auditory

pathway

Multiple lines of evidence support a pathway linking auditory cortical and limbic structures

[117–120] that subserves auditory memory [45,48,49] and affective sound processing [121].

The data presented here contribute to our understanding of this pathway. Clustering analysis

identified a set of ROIs including structures classically labeled as limbic (PHG, Amy, Hipp) as

well as insula (InsP, InsA) and TP positioned close to the auditory cluster in embedding space

for both gamma and beta bands (Figs 4 and S4). This suggests a close functional relationship

that could form the basis for a limbic stream. InsP, with strong auditory responsiveness and

overlapping response properties with HGPM, is likely involved in the transformation of audi-

tory information in auditory cortex to affective representations in InsA [32]. Thus, InsP could

serve as critical linking node between auditory and limbic structures.
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TP is involved in semantic processing [21,30] and auditory memory [122], in particular the

representation and retrieval of memories for people, social language, and behaviors (“social

knowledge”) [123]. Tight clustering of TP with limbic ROIs in embedding space is consistent

with its previously reported functional association with limbic cortex [124,125], with which TP

shares key features of laminar cytoarchitecture and strong connectivity [126]. We suggest that

the organization depicted in Figs 3 and 4, combined with evidence for bidirectional informa-

tion sharing between auditory cortex and limbic areas, merits the identification of a third audi-

tory processing stream alongside the dorsal and ventral streams [38,127]. This “limbic stream”

would underlie auditory contributions to affective and episodic memory processing.

Mesoscale: Ventral and dorsal streams linking auditory and frontal cortex

Current models of speech and language processing posit the existence of ventral and dorsal

processing streams linking non-core auditory cortex with PMC and IFG via several distinct

anatomical pathways encompassing temporal, parietal, and frontal cortex [36,38–40]. Despite

substantial experimental evidence supporting these models, there is a lack of consensus on the

specific functions subserved by the 2 streams. For example, while there is consensus that the

ventral stream subserves auditory object identification (“what” processing), the dorsal stream

has been envisioned to subserve spatial processing (“where”; [38]) and audiomotor processing

[39]. There is a parallel debate about the specific cortical regions comprising the 2 streams.

As broadly predicted by these models, temporal and parietal ROIs segregated in embedding

space in the analysis presented here (Figs 3, 4, S4, and S6). Across frequency bands, we

observed a cluster that included STSL and ATL ROIs, in conformity with the ventral auditory

stream proposed by Hickok and Poeppel [39] and Friederici [40]. By contrast, the cluster that

included SMG, AGP, and AGA aligned with the dorsal processing stream as proposed by

Rauschecker and Scott [38]. The proximity of these dorsal ROIs to sensorimotor ROIs is con-

sistent with sensorimotor contributions to dorsal stream processing [43,128]. Association of

FG and MOG with the ventral and dorsal clusters, respectively, likely represents the sharing of

information across sensory modalities. For example, visual information has been shown to

contribute to processing in the ventral (“what”) pathway [129,130].

A previous fMRI-based DME study found that primary sensory and default mode ROIs seg-

regated along the first dimension in embedding space [25]. Coverage of mesial cortex in our

dataset was limited, precluding a direct comparison. However, the striking separation between

auditory and prefrontal cortex in embedding space shown here indicate that the current results

align well with the previous report. This separation places auditory and frontal regions at

opposite ends of a cortical hierarchy, linked by ventral and dorsal processing streams [38–40].

Mesoscale: Network hubs

Hubs in brain networks play a critical role in integrating distributed neural activity [91,131].

In the present analysis, global hubs were characterized by their central location within embed-

ding space (Fig 5). In the gamma band, these hubs included STGA and MTGA, both compo-

nents of the ATL. Previous reports indicate that ATL serves as a network hub, transforming

sensory domain-specific to domain-general representations [21,132,133] and playing a central

role in semantic processing and social memory [21,123,134]. MTGM also appears as a global

hub, even though it is anatomically distinct from the ATL. Interestingly, patients with semantic

dementia have ATL degeneration [135,136], but the damage is often more widespread and can

include MTGM [137].

Cingulate cortical ROIs (CingM, ACC) and insula were identified as hubs in lower fre-

quency bands. CingM and ACC are active during a wide array of emotional and cognitive
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processes [138,139], both consistent with their previous characterization as network hubs

[131]. The identification of hubs specific to each frequency band supports the model in which

the temporal scale of communication in the brain supports distinct functional networks [82–

84,140]. Also consistent with this model is the frequency band-specific correspondence

between iEEG and fMRI connectivity observed here (Fig 7D) and in previous reports [82,96].

Strong correspondence between BOLD fMRI connectivity and higher frequency band enve-

lope correlations in iEEG are observed, while the correspondence for theta and alpha bands is

usually still positive but lower in magnitude. Of note, this frequency dependence of connectiv-

ity is distinct from previous observations of a frequency-dependent correspondence between

iEEG power and BOLD fMRI signal magnitude [141]. This relationship for connectivity also

depends on brain location [82]. Because we did analyze the relationship between fMRI and

iEEG in a region-specific manner, the results presented here represent an average analysis over

all sampled brain regions.

Unlike other ATL structures, TP does not present as a global hub in any frequency band

(Fig 5C). The close association of TP with limbic structures in embedding space suggests that

TP mediates interactions between integration centers in the ATL and structures subserving

memory functions. More broadly, the heterogeneity of ATL ROIs in terms of their global hub-

like connectivity profiles conforms to the observation that the terminal fields of white matter

tracts converging in the ATL only partially overlap [21,142,143].

Macroscale: Hemispheric lateralization

Although speech and language networks are classically described as highly lateralized, imaging

studies have demonstrated widespread bilateral activation during speech and language tasks

[52–54]. Indeed, a recent fMRI study showed RS connectivity patterns in lateral temporal cor-

tex that were comparable between left and right hemispheres [6]. We found evidence for hemi-

spheric differences in RS cortical functional organization based on analysis of all sampled

brain regions, with inter-ROI distances being systematically greater in embedding space for

the language-dominant hemisphere (Fig 6B). This is consistent with greater interregional het-

erogeneity in that hemisphere compared to the nondominant side. Importantly, the observed

asymmetry could not be attributed specifically to ROIs involved in speech and language pro-

cessing (Fig 6B), nor was the difference in position in embedding space related to auditory

responsiveness (Fig 6A).

Recent studies that identified hemispheric differences in RS connectivity for the STS [22]

and semantic networks more broadly [144] may reflect the general asymmetry observed here.

This asymmetry may relate as well to the dichotomy between domain-specific (e.g., sensory

processing) and domain-general (e.g., attention, working memory) cortical systems. In partic-

ular, studies have emphasized that domain-general systems also exhibit hemispheric laterality

[145,146], suggesting that the asymmetry observed here may reflect this broader organization

feature. This does not exclude the possibility of asymmetries specific to auditory regions

emerging during sensory tasks, for example, reflecting hemispheric biases in spectral and tem-

poral processing [39,42].

Caveats and limitations

A key concern regarding all human iEEG studies is that participants may not be representative

of a healthy population. In the present study, results were consistent across participants despite

differences in seizure disorder histories, medications, and seizure foci and aligned with results

obtained previously in healthy participants [25]. Another caveat is that our dataset, however

extensive, did not sample the entire brain, and it was not possible to infer connectivity with

PLOS BIOLOGY Auditory cortical resting state networks

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002239 August 31, 2023 22 / 44

https://doi.org/10.1371/journal.pbio.3002239


unsampled regions. To address this, we applied DME analysis to fMRI data to establish that

the organization of ROIs in embedding space was robust to the exclusion of unsampled ROIs.

Although there was a greater effect of sparse, nonuniform sampling within an ROI, there was

still considerable similarity in functional organization to embeddings derived from averages

across the entire ROI.

While subcortical structures (e.g., thalamus) that link sensory and higher-order networks

[147] were not sampled, the functional organization presented here was likely influenced indi-

rectly by thalamo-cortical pathways [29,148]. Previous fMRI studies of RS networks focused

exclusively on cortical ROIs and did not consider the role of the thalamus and other subcorti-

cal structures. Despite this limitation, these studies have yielded valuable insights into the func-

tional organization of the human cortical networks [1,149].

Finally, we note that while most of the analyses presented here were data driven, the initial

step of assignment of recording sites to specific ROIs was not. Unlike noninvasive neuroimag-

ing methods such as fMRI, intracranial electrode recording sites sample activity discontinuously

and at discrete locations. In addition, in order to pool data across participants, we were con-

strained by variable electrode coverage across participants. Thus, we were unable to consider

structure at the finest scales due to these limits in sampling. Instead, we investigated higher lev-

els of organization of brain regions. Our results provide insights into the relationship between

network structure and function that can inform future studies with more uniform sampling.

Concluding remarks and future directions

This study extends the DME approach to characterize functional relationships between cortical

regions investigated using iEEG recordings. These data help resolve several outstanding issues

regarding the functional organization of human auditory cortical networks and stress the

importance of a limbic pathway complementary to the dorsal and ventral streams. These

results lay the foundation for future work investigating network organization during active

speech and language processing. The superior time resolution of electrophysiological data

allows for dynamic connectivity analysis on time scales relevant to this processing. An impor-

tant next step for this work is to adapt this analysis to scalp EEG recordings, which offer con-

siderable advantages over fMRI in terms of accessibility and cost. While the current work

focused on auditory cortical networks, this approach can be readily generalized to advance our

understanding of changes in brain organization during sleep and anesthesia, disorders of con-

sciousness, as well as reorganization of cortical functional geometry secondary to lesions.

Materials and methods

Ethics statement

Research protocols aligned with best practices recently aggregated in [150] and were approved

by the University of Iowa Institutional Review Board (protocols #201911084 “Research of

Physiology of Human Brain” and #200112047 “Human Brain Physiology Research”) and the

National Institutes of Health (grant #R01-DC04290); written informed consent was obtained

from all participants. Research participation did not interfere with acquisition of clinically nec-

essary data, and participants could rescind consent for research without interrupting their clin-

ical management.

Participants

The study was carried out in 49 neurosurgical patients (22 females) diagnosed with medically

refractory epilepsy. The patients were undergoing chronic invasive electrophysiological
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monitoring to identify seizure foci prior to resection surgery (S1 Table). All participants except

two were native English speakers. The participants were predominantly right-handed (42 out

of 49); 6 participants were left-handed, and one had bilateral handedness. The majority of par-

ticipants (35 out of 49) were left language-dominant, as determined by Wada test. Two partici-

pants were right hemisphere-dominant, and one had bilateral language dominance. The

remaining 11 participants were not evaluated for language dominance; 9 of them were right-

handed and thus were assumed left language-dominant for the purposes of the analysis of lat-

eralization (see below). The participant with bilateral dominance, and the remaining 2 partici-

pants who did not undergo Wada test and who were left-handed were not included in the

analysis of hemispheric asymmetry in Fig 6. All participants underwent audiological and

neuropsychological assessment prior to electrode implantation, and none had auditory or cog-

nitive deficits that would impact the results of this study. The participants were tapered off

their antiepileptic drugs during chronic monitoring when RS data were collected.

Experimental procedures

Preimplantation neuroimaging

All participants underwent whole-brain high-resolution T1-weighted structural MRI scans

before electrode implantation. In a subset of 10 participants (S2 Table), RS-fMRI data were

used for estimates of functional connectivity. The scanner was a 3T GE Discovery MR750W

with a 32-channel head coil. The pre-electrode implantation anatomical T1 scan (3D FSPGR

BRAVO sequence) was obtained with the following parameters: FOV = 25.6 cm, flip

angle = 12 deg., TR = 8.50 ms, TE = 3.29 ms, inversion time = 450 ms, voxel

size = 1.0 × 1.0 × 0.8 mm. For RS-fMRI, 5 blocks of 5-minute gradient-echo EPI runs (650 vol-

umes) were collected with the following parameters: FOV = 22.0 cm, TR = 2260 ms, TE = 30

ms, flip angle = 80 deg., voxel size = 3.45 × 3.45 × 4.0 mm. In some cases, fewer RS acquisition

sequences were used in the final analysis due to movement artifact or because the full scanning

session was not completed. For each participant, RS-fMRI runs were acquired in the same ses-

sion but noncontiguously (dispersed within an imaging session to avoid habituation). Partici-

pants were asked to keep their eyes open, and a fixation cross was presented through a

projector.

iEEG recordings

iEEG recordings were obtained using either subdural and depth electrodes or depth electrodes

alone, based on clinical indications. Electrode arrays were manufactured by Ad-Tech Medical

(Racine, WI). Subdural arrays, implanted in 36 participants out of 49, consisted of platinum-

iridium discs (2.3 mm diameter, 5 to 10 mm inter-electrode distance), embedded in a silicon

membrane. Stereotactically implanted depth arrays included between 4 and 12 cylindrical con-

tacts along the electrode shaft, with 5 to 10 mm inter-electrode distance. A subgaleal electrode,

placed over the cranial vertex near midline, was used as a reference in all participants. All elec-

trodes were placed solely on the basis of clinical requirements, as determined by the team of

epileptologists and neurosurgeons [151].

No-task RS data were recorded in the dedicated, electrically shielded suite in The University

of Iowa Clinical Research Unit while the participants lay in the hospital bed. RS data were col-

lected 6.4 +/− 3.5 days (mean ± standard deviation; range 1.5 to 20.9) after electrode implanta-

tion surgery. In the first 15 participants (L275 through L362), data were recorded using a TDT

RZ2 real-time processor (Tucker-Davis Technologies, Alachua, FL). In the remaining 34 par-

ticipants (R369 through L634), data acquisition was performed using a Neuralynx Atlas System

(NeuralynxAU : PleasenotethatasperPLOSstyle; donotuseInc:; Ltd:; etc:exceptasappropriateintheaffiliations:Hence; }Inc:}hasbeenremovedfromallinstancesof }Neuralynx}throughoutthetext:, Bozeman, MT). Recorded data were amplified, filtered (0.7 to 800 Hz bandpass, 5
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dB/octave rolloff for TDT-recorded data; 0.1 to 500 Hz bandpass, 12 dB/octave rolloff for

Neuralynx-recorded data), and digitized at a sampling rate of 2,034.5 Hz (TDT) or 2,000 Hz

(Neuralynx). In all but 2 participants, recording durations were between 10 and 18 minutes,

the median was 10; in 1 participant, duration was 6 minutes, and in 1 participant, the duration

was 81 minutes.

Data analysis

Anatomical reconstruction and ROI parcellation

Localization of recording sites and their assignment to ROIs relied on post-implantation

T1-weighted anatomical MRI and post-implantation computed tomography (CT). All images

were initially aligned with preoperative T1 scans using linear coregistration implemented in

FSL (FLIRT) [152]. Electrodes were identified in the post-implantation MRI as magnetic sus-

ceptibility artifacts and in the CT as metallic hyperdensities. Electrode locations were further

refined within the space of the preoperative MRI using three-dimensional nonlinear thin-plate

spline warping [153], which corrected for postoperative brain shift and distortion. The warp-

ing was constrained with 50 to 100 control points, manually selected throughout the brain,

which were visually aligned to landmarks in the pre- and post-implantation MRI.

Electrode locations were mapped into a common anatomical template space using a combi-

nation of surface-based and volumetric coregistration. Automated identification and parcella-

tion of the cortical surface within T1-weighted images were carried out with FreeSurfer

[154,155]. Electrodes were assigned anatomical labels within the parcellation scheme of Des-

trieux and colleaguesAU : Pleasenotethatallinstancesof }etal:}inthemaintexthavebeenchangedto}andcolleagues; }asperPLOSstyle:[156,157], according to the label of the nearest vertex (within the T1

image space) of the cortical surface mesh generated by FreeSurfer. Labeling was visually

inspected and corrected whenever the automated parcellation did not conform to expected

gyral boundaries. Volumetric mapping of T1 images to the MNI-152 space relied on auto-

mated linear coregistration implemented in the fsl_anat pipeline of the FSL toolbox [158].

Electrode coordinates in MNI-152 space were obtained by applying the resulting transforma-

tion to the coordinates from the T1 image space. The MNI coregistration was verified with a

visual comparison of the transformed T1 with the template brain. Importantly, the MNI coor-

dinates were only used for plotting the recording sites from multiple participants (Fig 1) to

illustrate the overall extent of electrode coverage. MNI coordinates were not used for assigning

sites to ROIs, nor were they used in any analyses presented in the study.

To pool data across participants, the dimensionality of connectivity matrices was reduced

by assigning electrodes to one of 58 ROIs organized into 6 ROI groups (see Fig 1; S2 and S3

Tables) based upon anatomical reconstructions of electrode locations in each participant. For

subdural arrays, ROI assignment was informed by automated parcellation of cortical gyri

[156,157] as implemented in the FreeSurfer software package. For depth arrays, ROI assign-

ment was informed by MRI sections along sagittal, coronal, and axial planes. For recording

sites in Heschl’s gyrus, delineation of the border between core auditory cortex and adjacent

non-core areas (HGPM and HGAL, respectively) was performed in each participant using

physiological criteria [159,160]. Specifically, recording sites were assigned to HGPM if they

exhibited phase-locked (frequency-following) responses to 100 Hz click trains and if the aver-

aged evoked potentials to these stimuli featured short latency (<20 ms) peaks. Such response

features are characteristic for HGPM and are not present within HGAL [159]. Additionally,

correlation coefficients between average evoked potential waveforms recorded from adjacent

sites were examined to identify discontinuities in response profiles along Heschl’s gyrus that

could be interpreted as reflecting a transition from HGPM to HGAL. STG was subdivided into

posterior and middle non-core auditory cortex ROIs (STGP and STGM), and auditory-related
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anterior ROI (STGA) using the transverse temporal sulcus and ascending ramus of the Sylvian

fissure as macroanatomical boundaries. The insula was subdivided into posterior and anterior

ROIs, with the former considered within the auditory-related ROI group [32]. Middle and

inferior temporal gyrus were each divided into posterior, middle, and anterior ROIs by diving

the gyrus into 3 approximately equal-length thirds. Angular gyrus was divided into posterior

and anterior ROIs using the angular sulcus as a macroanatomical boundary. Anterior cingu-

late cortex was identified by automatic parcellation in FreeSurfer and was considered as part of

the prefrontal ROI group, separately from the rest of the cingulate gyrus. Postcentral and pre-

central gyri were each divided into ventral and dorsal portions using the zMNI coordinate (see

below) of 40 mm as a boundary. Recording sites identified as seizure foci or characterized by

excessive noise, or outside brain, were excluded from analyses and are not listed in S2 Table.

Depth electrode contacts localized to the white matter were also excluded. Location within cor-

tical white matter was determined based on visual inspection of anatomical reconstruction

data (MRI sections along sagittal, coronal, and axial planes) as done in our previous studies

(e.g., [62]). Electrode coverage was largely restricted to a single hemisphere in individual par-

ticipants, and contacts on the contralateral hemisphere were excluded from analysis (and are

not listed in S2 Table) such that all connections represent intrahemisphere functional

connectivity.

Preprocessing of fMRI data

Standard preprocessing was applied to the RS-fMRI data acquired in the pre-implantation

scan using FSL’s FEAT pipeline, including spatial alignment and nuisance regression. White

matter, cerebrospinal fluid, and global ROIs were created using deep white matter, lateral ven-

tricles, and a whole brain mask, respectively. Regression was performed using the time series

of these 3 nuisance ROIs as well as 6 motion parameters (3 rotations and 3 translations) and

their derivatives, detrended with second-order polynomials. Temporal bandpass filtering was

0.008 to 0.08 Hz. Spatial smoothing was applied with a Gaussian kernel (6 mm full-width at

half maximum). The first 2 images from each run were discarded. Frame censoring was

applied when the Euclidean norm of derivatives of motion parameters exceeded 0.5 mm [161].

All runs were processed in native EPI space and then the residual data were transformed to

MNI152 and concatenated.

Preprocessing of iEEG data

Analysis of iEEG data was performed using custom software written in MATLAB Version

2020a programming environment (MathWorks, Natick, MA, USA). After initial rejection of

recording sites identified as seizure foci, several automated steps were taken to exclude record-

ing channels and time intervals contaminated by noise. First, channels were excluded if aver-

age power in any frequency band [broadband, delta (1 to 4 Hz), theta (4 to 8 Hz), alpha (8 to

13Hz), beta (13 to 30 Hz), gamma (30 to 50 Hz), or high gamma (70 to 110 Hz); see below]

exceeded 3.5 standard deviations of the average power across all channels for that participant.

Next, transient artifacts were detected by identifying voltage deflections exceeding 10 standard

deviations on a given channel. A time window was identified extending before and after the

detected artifact until the voltage returned to the zero-mean baseline plus an additional 100 ms

buffer before and after. High-frequency artifacts were also removed by masking segments of

data with high gamma power exceeding 5 standard deviations of the mean across all segments.

Only time bins free of these artifact masks were considered in subsequent analyses. Artifact

rejection was applied across all channels simultaneously so that all connectivity measures were

derived from the same time windows. Occasionally, particular channels survived the initial
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average power criteria yet had frequent artifacts that led to loss of data across all the other

channels. There is a tradeoff in rejecting artifacts (losing time across all channels) and rejecting

channels (losing all data for that channel). If artifacts occur on many channels, there is little

benefit to excluding any one channel. However, if frequent artifacts occur on one or simulta-

neously on up to a few channels, omitting these can save more data from other channels than

those channels contribute at all other times. We chose to optimize the total data retained,

channels × time windows, and omitted some channels when necessary.

On occasion, noise from in-room clinical equipment and muscle artifacts appeared in the

data as shared signals across channels. These types of noise were typically broadband and

could be detected via analysis of frequencies higher than those of interest here. To remove

these signals, data from retained channels were high-pass filtered above 200 Hz, and a spatial

filter was derived from the singular value decomposition omitting the first singular vector.

This spatial filter was then applied to the broadband signal to remove the common signal. This

procedure was implemented as follows.

For the array yHP of N samples of high-pass filtered data from M recording sites, and the

covariance matrix CM�M ¼ SðyT
HPyHPÞS; where

S ¼

1=s1 0 . . .

0 . .
. ..

.

..

.
0 1=sM
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5
;

and σi = standard deviation of high-passed filtered signal from the ith recording site, yHP,i, the

singular value decomposition of CM×M is obtained as

CM�M ¼ ½u1; u2; . . . ; uM�

l1 0 . . .

0 . .
.

0
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.
0 lM

2
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½u1; u2; . . . ; uM�

T
;

where ui are eigenvectors, and λi are eigenvalues of CM×M. The spatial filter is defined as

WSVD ¼ SðIM�M � u1u
T
1
ÞS� 1;

where IM×M is the identity matrix. The spatial filter is applied to the unfiltered data, y, as

ySVD ¼ yWSVD:

The purpose of the initial high-pass filtering in computing the spatial filter, WSVD, is to min-

imize the influence of long-range physiological correlations, which tend to be associated with

low frequency oscillations [162], on CM×M, while preserving zero-lag correlations arising from

reference contamination and other potential artifactual sources.

Connectivity analysis

For RS-fMRI data, BOLD signals were averaged across voxel groupings and functional connec-

tivity was calculated as Pearson correlation coefficients. Voxel groupings were either based on

the Schaefer–Yeo 400 parcellation scheme [90] in MNI-152 space or were based on iEEG elec-

trode location in participant space (see Fig 1). For the latter, fMRI voxels were chosen to repre-

sent comparable regions of the brain recorded by iEEG electrodes. For each electrode, the

anatomical coordinates of the recording site were mapped to the closest valid MRI voxel, E,

and a sphere of 25 voxels (25 mm3) centered on E used as the corresponding recording site.
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This process was repeated for all N electrodes in the same ROI, and a single time series com-

puted as the average of the fMRI BOLD signal in these N × 25 voxels. These averages were

used to compute an ROI-by-ROI connectivity matrix for RS-fMRI data. For comparisons

between iEEG and fMRI embeddings, voxels were processed in participant space and ROI

labels from the parcellation scheme illustrated in Fig 1 and S2 Table were applied to the fMRI

data. For comparisons between fMRI embeddings derived from all cortical ROIs versus fMRI

embeddings derived from just ROIs sampled in the iEEG experiments, electrode locations

were transformed from participant space to MNI-152 space and then assigned to ROIs within

the Schaefer–Yeo 400 scheme.

Connectivity was measured for iEEG data using orthogonalized band power envelope correla-

tion [68]. This measure avoids artifacts due to volume conduction by discounting connectivity

near zero phase lag. Data were divided into 60-second segments, pairwise connectivity estimated

in each segment, and then connectivity estimates averaged across all segments for that subject.

Power envelope correlations were calculated using a method similar to [68], except time-fre-

quency decomposition was performed using the demodulated band transform [163] rather than

wavelets. For each frequency band (theta, alpha, beta, gamma; high gamma), the power at each

time bin was calculated as the average (across frequencies) log of the squared amplitude. For each

pair of signals X and Y, one was orthogonalized to the other by taking the magnitude of the imagi-

nary component of the product of one signal with the normalized complex conjugate of the other:

Yorth ¼ jImfY � X∗=jXjgj

Both signals were bandpass filtered (0.2 to 1 Hz), and the Pearson correlation calculated

between signals. The process was repeated by orthogonalizing in the other direction and the

overall envelope correlation for a pair of recording sites was the average of the 2 Pearson corre-

lations. Lastly, correlations were averaged across segments.

Results for envelope correlations were compared to those derived from the debiased wPLI

[70], a measure of phase synchronization. This measure also avoids artifacts due to volume

conduction by discounting connectivity near zero phase lag. wPLI was estimated for each

60-second data segment and every recording site pair from the sign of the imaginary part of

the cross-spectrum at each frequency and averaged across frequencies within each band of

interest (theta: 4 to 8 Hz, alpha: 8 to 13 Hz, beta: 13 to 30 Hz). The cross spectrum was calcu-

lated from the demodulated band transform as described previously [62].

Connectivity matrices were thresholded prior to DME to reduce the contribution of spuri-

ous connections to the analysis. We balanced our desire to minimize noisy connections while

maintaining a connected graph (i.e., that that there are no isolated nodes; required by DME

[59]) by saving at least the top third (rounded up) connections for every row, as well as their

corresponding columns (to preserve symmetry). To ensure that the graph was connected after

thresholding, we also included any connections making up the minimum spanning tree of the

graph represented by the elementwise reciprocal of the connectivity matrix to ensure the

graph is connected.

ROI-based connectivity analysis

Connectivity between ROIs was computed as the average envelope correlation between all

pairs of recording sites in the 2 ROIs. For analyses in which connectivity was summarized

across participants (Figs 3–8), we used only a subset of ROIs such that every possible pair of

included ROIs was represented in at least 2 participants (S2 Table). This list of ROIs was

obtained by iteratively removing ROIs with the worst cross-coverage with other ROIs until

every ROI remaining had sufficient coverage with all remaining ROIs.
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Diffusion map embedding

See the S1 Text for details about DME. In brief, the functional connectivity is transformed by

applying cosine similarity [25] to yield the similarity matrix K = [k(i,j)]. This matrix is then

normalized by degree to yield a matrix P = D−1K, where D is the degree matrix, i.e., the diago-

nal elements of D =
PM

j¼1
kði; jÞ, where M is the number of recording sites, and the off-diagonal

elements of D are zero. If the recording sites are conceptualized as nodes on a graph with

edges defined by K, then P can be understood as the transition probability matrix for a “ran-

dom walk” or a “diffusion” on the graph (see S1 Text; [59,60]). DME consists of mapping the

recording sites into an embedding space using an eigendecomposition of P,

C
ðtÞ
ðxiÞ ¼ ½l1

t
c1ðxiÞ; l2

t
c2ðxiÞ; . . . ; lM

t
cMðxiÞ�

T

where ψj are the eigenvectors of P.

The parameter t corresponds to the number of steps in the diffusion process (random walk

on the graph). The coordinates of the data in embedding space are scaled according to λi
t,

where λi is the eigenvalue of the ith dimension being scaled. Thus, the value of t sets the spatial

scale of the analysis, with higher values de-emphasizing smaller eigenvalues. Because |λi|<1 8

i, at higher values of t each dimension will be scaled down (‘collapse’), with the dimension cor-

responding to max(|λi|) (i.e., λ1) scaled the least. A “multiscale” DME analysis, in which all val-

ues of t are considered simultaneously (and thus the analysis no longer depends on a specific

values of t) has been implemented as well [69]. Because we wished to explore the structure of

the data over multiple dimensions of embedding space, we restricted our analyses to smaller

values of t. Here, we present data for t = 1 but compare our key results to those obtained using

multiscale DME.

DME can be implemented alternatively based on a symmetric version of diffusion matrix

Psymm = D−0.5KD−0.5. Basing DME on Psymm has the advantage that the eigenvectors of Psymm

form an orthogonal basis set (unlike the eigenvectors of P), providing some additional conve-

nience mathematically that is beyond the scope of this paper [60]. Additionally, the eigenvalues

of P and Psymm are identical.

In 2 sets of analyses presented here, pairs of embeddings were compared to each other: in

the analysis of lateralization of speech and language networks, and in the comparison between

iEEG and fMRI data. To do that, we used a change of basis operator to map embeddings into a

common embedding space using the method described in Coifman and colleagues [60].

Dimensionality reduction via low rank approximations to Psymm

DME offers an opportunity to reduce the dimensionality of the underlying data by considering

only those dimensions that contribute importantly to the structure of the data, as manifested in

the structure of the transition probability matrix P, or, equivalently, of the diffusion matrix

Psymm. We used the eigenvalue spectrum of Psymm to determine its ideal low rank approxima-

tion, balancing dimensionality reduction and information loss. The basis for this is most easily

understood in terms of the eigenvalue spectrum of P, whose spectrum is identical to that of

Psymm [60]. Because P is real and symmetric, the magnitude of the eigenvalues is identical to the

singular values of P. The singular values tell us about the fidelity of low rank approximations to

P. Specifically, if P has a set of singular values σ1�σ2�. . .� σn, then for any integer k� 1,

min
~Pk
kP � ~Pkk2

¼ skþ1;

where ~Pk is the rank-k approximation to P. Thus, the magnitude of the eigenvalues corresponds

to the fidelity of the lower dimensional approximation, and the difference in the magnitude of
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successive eigenvalues represents the improvement in that approximation as the dimensionality

increases. The spectrum of P invariably has an inflection point (“elbow”) at i = kinfl, separating 2

sets of eigenvalues λi: those whose magnitude decreases more quickly with increasing i until the

inflection point, and those beyond the inflection point whose magnitude decreases more slowly

with increasing i. The inflection point thus delineates the number of dimensions that are most

important for approximating P or Psymm. The inflection point kinfl was identified algorithmi-

cally [164], and the number of dimensions retained set equal to kinfl− 1.

Comparing distances in embedding space

The relative distance between points in embedding space provides insight into the underlying

functional geometry. In several analyses presented here, 2 embeddings of identical sets of ROIs

were compared as ROI distances within the 2 embeddings. After mapping to a common space

and reducing dimensionality as described above, the 2 embeddings A and B were used to cre-

ate the pairwise distance matrices A‘and B‘. The Pearson correlation coefficient r was then

computed between the upper triangles (excluding the diagonal) of the corresponding elements

in the distance matrices. To compare anatomical distance and distance in embedding space,

inter-ROI anatomical distances were calculated for each participant by computing the centroid

of each ROI in MNI space, then calculating Euclidean distances between centroids, followed

by averaging distances across participants.

Signal-to-noise (SNR) characteristics

To measure the robustness of the embedding analysis to variability over time, an SNR was

computed as follows. For each participant, a channel × channel Psymm matrix was calculated

for each 60-second segment of data. For each segment, DME analysis was applied and a

channel × channel distance matrix calculated. These distance matrices were averaged across

segments. The “signal” of interest was defined as the variability (standard deviation) of this

averaged distance matrix (ignoring the diagonals). The “noise” was defined as the variability

across time, estimated for each element of the distance matrix as the standard deviation across

segments, then averaged across the elements of the matrix. The SNR for functional connectiv-

ity itself was computed in an analogous manner, using the original channel × channel connec-

tivity matrix rather than the matrix of embedding distances.

Estimating precision in position and distances in embedding space

To obtain error estimates for both ROI locations in embedding space and embedding distance

between ROIs, average ROI × ROI adjacency matrices were calculated. Our data are hierarchi-

cal/multilevel, in that we sampled participants in whom there are multiple recording sites.

Nonparametric bootstrap sampling at the highest level (“cluster bootstrap” [165]; here, the

word “cluster” refers to the hierarchical/multilevel structure of the data, with multiple record-

ing sites within participants, rather than algorithmic clustering) is the preferred approach for

hierarchical data when groups (here, participants) are sampled and observations (here, record-

ing sites) occur within those groups [166], with fewer necessary assumptions than multilevel

(mixed-effects) modelling (e.g., subject effects are not assumed to be linear). Using this

approach, participants were resampled with replacement, connectivity averaged across the

bootstrapped samples, and DME performed for 100,000 such adjacency matrices. For locations

in embedding space, these embeddings were then mapped via the change of basis procedure

described above to the original group average embedding space. For each ROI, the mapped

bootstrap iterations produced a cloud of locations in embedding space that were summarized

by the standard deviation in each dimension. For embedding distances, no change of basis was
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necessary because distances are preserved across bases. As the bootstrapping procedure was

applied at the participant level, the variance estimates are most comparable to those of a model

accounting for random effects of participant, i.e., they represent estimates accounting for par-

ticipant-level variation in the sample rather than recording site-level estimates, with or without

correcting for correlations within levels.

To compare the positions of STSL versus STSU relative to canonical auditory cortical ROIs

(HGPM, HGAL, PT, PP, STGP, and STGM) or ROIs involved in semantic processing (STGA,

MTGA, MTGP, ITGA, ITGP, TP, AGA, AGP, SMG, IFGop, IFGtr, IFGor; [21,78–80]), we cal-

culated the average pairwise distance from STSL or STSU to each such ROI. The difference

between these averages was compared to a null distribution obtained by Monte Carlo sampling

of the equivalent statistic obtained by randomly exchanging STSL/STSU labels by participant.

The specific comparisons performed were chosen a priori to constrain the number of possible

hypotheses to test; pairwise comparisons of all possible ROI pairs (let alone comparisons of all

higher-order groupings) would not have had sufficient statistical power under appropriate cor-

rections for multiple comparisons. Though different choices could have been made for inclu-

sion in the “semantic processing” category, exchanging 1 or 2 of these ROIs would not

strongly influence the average distance in a group of 12 ROIs.

Hierarchical clustering

Agglomerative hierarchical clustering was done using the linkage function in MATLAB, with

Euclidean distance as the distance metric and Ward’s linkage (minimum variance algorithm)

as the linkage method. The ordering of ROIs along the vertical axis in the dendrogram was

determined using the optimalleaforder function in MATLAB, with the optimization criterion

set to “group.”

Nonparametric bootstrapping at the participant level, as described above, was used to evalu-

ate the robustness of clustering results both overall and at the level of individual clusters. We

compared the original cluster results obtained with the full dataset to the result obtained with

each bootstrap sample and then summarized those results across iterations.

Overall stability of the cluster results was evaluated using the median normalized Fowlkes–

Mallows index [85] across cluster bootstrap iterations, noted as Bk for k clusters (see S2 Text).

Normalizing to the expected value E(Bk) (see S2 Text) results in an index where 0 represents

average random (chance) clustering and 1 represents perfectly identical clustering.

Cluster-wise stability was calculated by the membership of each cluster at each iteration to

the corresponding cluster obtained with the full dataset using the maximum Jaccard coefficient

for each reference cluster [86]. The Jaccard coefficient varies from 0 (no overlap in cluster

membership) to 1 (identical membership) and is defined as the ratio of the size of the set con-

taining intersection of the 2 clusters divided by the size of the set containing their union. We

then subtracted from this coefficient a bias estimate calculated by randomly permuting the

cluster assignments on each bootstrap iteration.

Auditory responsiveness

In a subset of 37 participants, auditory responsiveness was evaluated as percentage of sites

within each ROI that exhibited high gamma responses to monosyllabic word stimuli. The sti-

muli were monosyllabic words (“cat,” “dog,” “five,” “ten,” “red,” “white”), obtained from

TIMIT (https://doi.org/10.35111/17gk-bn40) and LibriVox (http://librivox.org/) databases.

The words were presented in semantic categorization (animals and numbers target categories)

and tone target detection tasks as described previously [23,87–89]. A total of 20 unique exem-

plars of each word were presented in each task: 14 spoken by different male and 6 by different
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female speakers. The stimuli were delivered via insert earphones (ER4B, Etymotic Research,

Elk Grove Village, IL) integrated into custom-fit earmolds. All stimuli had a duration of 300

ms, were root-mean-square amplitude-normalized, and were delivered in random order. The

interstimulus interval was chosen randomly within a Gaussian distribution (mean 2 s; SD = 10

ms). The task was to push a response button whenever the participant heard a target sound.

The hand ipsilateral to the hemisphere in which the majority of electrodes were implanted was

used to make the behavioral response. There was no visual component to the task, and the par-

ticipants did not receive any specific instructions other than to respond to target auditory sti-

muli by pressing a button. Mean high gamma (70 to 110 Hz) power within early (50 to 350

ms) and late (350 to 650 ms) poststimulus time windows was compared with that in a presti-

mulus window (−200 to −100 ms). Both nontarget and target trials were included in the analy-

sis to maximize its sensitivity. Significance of high gamma responses was established at a α =

0.05 level using one-tailed Mann–Whitney U tests with FDR correction.

Comparing language dominant/nondominant hemispheres

To test for differences in functional geometry between language dominant and nondominant

hemispheres, 2 measures were considered: differences in the location of individual ROIs in

embedding space, and different pairwise distances between ROIs in embedding space. To cal-

culate differences in location of individual ROIs, dominant/nondominant average embeddings

were mapped to a common space (from an embedding using the average across all participants

regardless of language dominance) using the change of basis operator. The language-dominant

location difference for a specific ROI was calculated as the Euclidean distance between the 2

locations of each ROI in this common space. To examine whether there was a consistent rela-

tionship between hemispheric asymmetry in a given ROI’s location in embedding space and

the percentage of either early or late auditory responsive sites within that ROI, two-tailed

Spearman’s rank tests were used. To calculate differences in pairwise distances between ROIs,

Euclidean distances were calculated in embedding space for each hemisphere and then sub-

tracted to obtain a difference matrix. To determine whether the differences in location or pair-

wise distances were larger than expected by chance, random permutations of the dominant/

nondominant labels were used to generate empirical null distributions. Since this approach

produces a p-value for every pair of connections, p-values were adjusted using FDR to account

for multiple comparisons.

Analyses of fMRI connectivity in embedding space

Two sets of analyses were performed using fMRI data. First, iEEG and fMRI data were com-

pared in embedding space. In this analysis, connectivity based on RS-fMRI data from voxels

located at electrode recording sites was compare with the corresponding connectivity matrix

derived from iEEG data. The embedding analysis was applied to the 2 connectivity matrices,

all pairwise inter-ROI distances computed, and iEEG and fMRI data compared using the cor-

relation of the pairwise ROI distances. The second analysis was to compare embeddings

derived from all ROIs in the RS-fMRI scans to those derived from just ROIs sampled with

iEEG electrodes. Here, ROI × ROI connectivity matrices were computed for all ROIs, then

embeddings created from the full matrices or from matrices containing just rows and columns

corresponding to the ROIs sampled with iEEG.

Supporting information

S1 Fig. Embedding plots in participant R376 plotted on the same scale in 4 dimensions.

(TIF)
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S2 Fig. Comparison of signal-to-noise ratio (SNR) for the embedding analysis versus direct

analysis of functional connectivity. Each symbol corresponds to 1 participant. For each par-

ticipant, the SNRs of embedding distances and connectivity were calculated from the recorded

RS block as described in Methods. In most participants, the embedding analysis exhibited

superior SNR characteristics compared to direct analysis of connectivity.

(TIF)

S3 Fig. Average gamma band embedding, plotted on the same scale in the first 4 dimen-

sions.

(TIF)

S4 Fig. Average beta band embedding, plotted on the same scale in the first 4 dimensions.

(TIF)

S5 Fig. Sensitivity of DME results to the choice of threshold, frequency band, and connec-

tivity measure. (a) Comparison of embedding results across thresholds applied to connectivity

matrices. Threshold = 33% was used for the results of the main figures. (b) Comparison of

embedding results across frequency bands and functional connectivity measures. Thresh-

old = 33%. For (a) and (b), data shown are Pearson correlations of inter-ROI distances from

embeddings obtained with the different thresholds, measures, and bands.

(TIF)

S6 Fig. Hierarchical clustering of data in embedding space for all studied bands. (a) theta;

(b) alpha; (c) beta; (d) gamma (same data as in Fig 4); (e) high gamma. Linkages between ROI

groups identified using agglomerative clustering. As in Fig 4, 2 thresholds are shown for each

band, nCluster = 5 and 9 (vertical dashed lines). The number of clusters is the number of lines in

the dendrogram intersected by the threshold line. Clusters consist of all ROIs descending from

the intersected line. The color scheme for ROI labels is set by the gamma parcellation.

(TIF)

S7 Fig. Sensitivity of hierarchical clustering results to threshold and choice of diffusion

parameter t. (a-e) Effect of varying threshold from 10%–50% with t = 1. (f) Clustering results

for embeddings derived using the multiscale approach instead of t = 1. For all panels, linkages

between ROI groups were identified using agglomerative clustering. As in Fig 4, 2 thresholds

are shown, nCluster = 5 and 9 (vertical dashed lines). The number of clusters is the number of

lines in the dendrogram intersected by the threshold line. Clusters consist of all ROIs descend-

ing from the intersected line. The color scheme for ROI labels is set by the gamma parcellation

with threshold 33% and t = 1.

(TIF)

S8 Fig. Stability of cluster results. (a) Stability of overall cluster results shown in Fig 4A and

S6 Fig was evaluated for each frequency band as a function cluster number using the Fowlkes–

Mallows score. (b) Cluster-wise stability for gamma band data as a function of cluster number

was evaluated using the Jaccard index.

(TIF)

S9 Fig. Auditory networks do not differ between hemispheres. Data plotted on the same

scale in the first 4 dimensions of embedding space for all dominant and nondominant partici-

pants (a), just dominant (b), and just nondominant (c).

(TIF)
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S1 Movie. Average gamma band embedding, dimensions 2–4.

(MP4)

S2 Movie. Average gamma band embedding, dimensions 3–5.

(MP4)

S1 Table. Participant demographics and study information.

(XLSX)

S2 Table. ROIs and electrode coverage. Participant and site numbers that were not included

in group averages are denoted in gray italics.

(XLSX)

S3 Table. List of abbreviations.

(XLSX)

S1 Text. Diffusion map embedding details.

(DOCX)

S2 Text. Fowkles–Mallows index.

(DOCX)
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