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Abstract

Large brains provide adaptive cognitive benefits but require unusually high, near-constant

energy inputs and become fully functional well after their growth is completed. Conse-

quently, young of most larger-brained endotherms should not be able to independently sup-

port the growth and development of their own brains. This paradox is solved if the evolution

of extended parental provisioning facilitated brain size evolution. Comparative studies

indeed show that extended parental provisioning coevolved with brain size and that it may

improve immature survival. The major role of extended parental provisioning supports the

idea that the ability to sustain the costs of brains limited brain size evolution.

Introduction: Expensive brains

The brain analyzes and integrates the inputs from our senses, regulates our physiology, and

generates the motor commands for our movements. In addition, it is responsible for every-

thing between perception and action, i.e., cognition. Relative to body size, brain size is

extremely variable across vertebrates [1,2]. Mean brain sizes of ectothermic (fishes, amphibi-

ans, and reptiles) and endothermic (birds and mammals) lineages differ about 10-fold, but also

vary considerably within each lineage (Fig 1). In addition, brains have tended to become larger

over evolutionary time [1,2]. Understanding this striking variation and these evolutionary

trends in relative brain size is a major task for comparative biology.

Brain size is generally positively correlated with the amount of sensory information a spe-

cies processes (e.g., electrosensing in mormyroid fishes: [3]; stereoscopic vision in primates:

[4,5]) or the precision of its motor control (e.g., number of legs in lizards: [6]; manipulation

complexity in primates: [7]), suggesting that these enhanced sensorimotor functions alone

may explain brain size changes without reference to greater cognitive abilities [8]. Nonetheless,

comparative studies also show a clear link between relative brain size and more narrowly
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defined cognitive abilities, such as greater capacity for independent or social learning [9–12],

and thus greater domain-general intelligence [13,14] and executive functions, such as self-con-

trol [15,16]. Because sensorimotor capacities do not vary systematically within species, intra-

specific correlations between brain size and domain-general intelligence would provide even

more convincing evidence for an effect of brain size on narrow-sense cognition. Indeed, in

humans, brain size explains a modest, but robust proportion of variation in intelligence

[17,18], a result now replicated in chimpanzees [19] and chestnut-headed thrushes [20].

These 3 sets of abilities (i.e., sensory input, cognitive processing, and motor output) are

expected to coevolve. Having perfect information without sophisticated cognitive processing

and advanced abilities to act upon the world would not be adaptive. Brain size should therefore

also predict behavioral performance in fitness-enhancing activities. Indeed, larger-brained spe-

cies are capable of extractive foraging [21] and tend to be more innovative in the foraging

domain (primates: [22]; birds: [23]). They are also better at avoiding predators (mammals:

Fig 1. Brain size-body size envelopes of the major vertebrate lineages, to illustrate both intra-lineage and inter-lineage variation. The

long-dashed outlines represent the 2 endothermic lineages (birds and mammals), the dotted outlines represent fishes, and the solid outlines the

2 ectothermic tetrapod lineages (amphibians and reptiles). Redrawn after [97].

https://doi.org/10.1371/journal.pbio.3002016.g001
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[24]; birds: [25]) and more likely to survive when introduced into novel areas by humans

(mammals: [26]; birds: [27]; reptiles and amphibians: [28]). These effects could ultimately lead

to correlated evolution between brain size and maximum lifespan. Comparative studies have

confirmed such a correlation for most mammals [29–31], birds [32,33], and frogs [34], though

not for reptiles [35]. An improved ability to form social bonds with conspecifics may also be

linked to larger brain size [36] (but see [37]). A more indirect consequence of improved sur-

vival is that larger-brained species have more stable populations (primates: [38]; birds: [39]),

and hence, a reduced risk of local extinction [40].

All these findings indicate that increasing brain size should very often be adaptive, as con-

firmed by the upward evolutionary trend in brain size [1]. One might therefore expect that,

once controlled for body size differences, brain sizes would be similar across taxa. However,

this is not the case: major differences between closely related lineages exist [41], as do differ-

ences between more distantly related lineages with similar cognitive demands, such as between

social carnivores and anthropoid primates [42]. These differences imply that some brain-size

related costs prevent the evolution of similar brain sizes in particular lineages, despite these

various cognitive benefits [43]. Thus, a comprehensive explanation for the variation in brain

size requires that we incorporate the fitness costs of increased brain (cf. [43]). This is what the

expensive brain hypothesis [30] attempts to do.

Brains are unusually costly organs due to their high energy use per unit weight [44–46] and

especially because energy allocation to the brain cannot not be down-regulated during times of

starvation (brain sparing: [47,48]). Interruption of this constant energy flow to the brain gen-

erally has lasting negative consequences for brain development and cognitive performance

[49–52]. As a result, brain size is presumably limited by the organism’s ability to sustain the

energy turnover needed to grow or maintain the brain in response to cognitive opportunities

in the ecological or social environment. Reduced energy inputs can arise due to ecologically

imposed limitations on overall energy acquisition, in particular, the inability to adequately

deal with periods of unavoidable food scarcity. Alternatively, reduced allocation to other com-

peting costly functions, such as digestion [45] or production (i.e., growth and reproduction

[29–34,53–55]), could enable increases in brain sizes. A recent review [56] found extensive

empirical support for this hypothesis. In sum, the expensive brain hypothesis helps to explain

why brain size does not always correspond to expectations based on the cognitive demands

and opportunities offered by social systems or ecological niches. This conclusion holds even if

controlled for taxonomic variation in neuron densities [57,58].

Because the expensive brain hypothesis focuses on the costs of brain size, it complements

the various hypotheses postulating benefits to larger brain size (Fig 2). The 2 categories of

hypotheses are therefore not exclusive, although the strength of each may vary taxonomically.

The expensive brain: Developmental aspects

Whereas most previous work on the expensive brain hypothesis focused on the consequences

of the high energy costs for adults, here we focus on its developmental aspects (Fig 2). The

high energy demands of growing brains create various problems.

First, brains are unusual organs in that they must acquire their cognitive and motor func-

tions through practice and learning and therefore perform poorly before they are fully grown

and differentiated. In most mammals, brain growth is largely completed around weaning

[59,60], whereas adulthood is postponed until bodily growth is completed. Accordingly, many

species tend to reach adult-level ecological skills such as the recognition of the values of specific

food items and basic processing techniques around weaning [61–63], while they master most

complex skills later: extractive foraging [64] and especially tool use [65]. Birds differ greatly
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from mammals in that both brain and body growth are completed very early [66], well (some-

times years [67]) before reproduction starts. This suggests that the time needed for acquiring

ecological skills (e.g., food processing [62,68] or predator recognition [69,70]) limits the age at

which adulthood is reached. Overall, therefore, immatures in most birds and many mammals

are ecologically less competent than adults, and some undergo a long phase of practice and

learning before reaching adult skill levels (birds: [71,72]; mammals: [61,62]), even after brain

growth has been completed.

Second, immature birds and especially mammals are in a phase of high ecological risk for 2

main reasons. They are less experienced and often smaller, which exposes them to higher risk

of predation or disease [64,70]. They are also generally socially subordinate to adults, and thus

may be peripheralized, either socially or in terms of habitat quality. They consequently face

particularly high mortality risks, especially at higher population densities [73,74]. These 2 pro-

cesses together indicate that the energy bottleneck gets worse as a species’ brain size increases.

Third, immatures have relatively higher brain maintenance costs than adults, at least in

mammals. Not only are juvenile mammals smaller and less experienced, but also they are

more encephalized than adults because brain growth is completed before somatic growth

[59,60,75]. This forces them to allocate a larger proportion of their energy budget on maintain-

ing the brain (see [76] for humans). In addition, they face extra costs. The creation and prun-

ing of numerous synaptic connections means that differentiating brains are more costly per

unit weight than mature brains [46,77].

Finally, in both birds and mammals, proper brain development requires play, which is

often quite vigorous and therefore energetically expensive. Indeed, primate species with more

postnatal brain growth (and thus larger adult brains) play more [78]. We are not aware of simi-

larly extensive comparisons in other mammals or birds (but see [79]).

Fig 2. Categorization of the various hypotheses to explain evolutionary variation in relative brain size among vertebrates. Two complementary clusters of

hypotheses focus on either costs (expensive brain) or benefits (cognitive buffer). The brain size of a given species should reflect the balance between all relevant

processes. In this review, we elaborate the developmental aspects of the expensive brain hypothesis. Key references are provided in superscripts: a: [124] (see

also delayed benefits: [125]; b: [30]; 1: metabolic demands: [126,127]; 2: [45]; 3: [29, 30]; 4: [128,129]; 5: [55] (see also maturational constraints and brain

malnutrition risks: [125]); 5: [83,88,108] (also: maternal energy); 7: [130,131]; 8: [132,133]; 9: [22]; 10: [134].

https://doi.org/10.1371/journal.pbio.3002016.g002
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These various obstacles to brain growth suggest that immature endothermic vertebrates,

with their relatively large adult brain size [1], would face a seemingly insurmountable energy

crunch if they were to grow and differentiate their brains with the energy they can obtain inde-

pendently by themselves. This bootstrapping problem becomes more severe as relative brain

size increases (Fig 3). It can be solved if parents donate the energy needed to grow and develop

larger brains.

Endotherms have both extended parental provisioning and much larger brains than ecto-

therms. Here, we define parental provisioning as the total energetic investment into the young,

directly (in eggs, through gestation, lactation or provisioning of food), or indirectly (by carry-

ing or huddling to keep warm). In most ectothermic vertebrates, parental provisioning is lim-

ited and brief: they simply release (usually small: [80]) eggs. This is the likely ancestral state in

vertebrates ([81]). The immatures of such species thus face these various developmental obsta-

cles on their own. Consequently, these species face limits on brain size evolution, because

larger brains would go hand in hand with unrealistically prolonged developmental periods.

The evolution of extended parental provisioning accompanying the evolution of endothermy

([80,82]), therefore likely facilitated the subsequent evolution of larger brains size. The goal of

this essay is to examine the idea that the evolution of extended parental provisioning has
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Fig 3. The bootstrapping problem for developing brains. In the absence of provisioning, immature animals

developing their brains would likely face a long period of negative energy balance. Before the brain is fully grown and

differentiated, it cannot provide adult-level cognitive benefits and the concomitant energy intake (green curve). The

costs of growing, differentiating, and maintaining the brain (red curve) rise early and may even exceed adult values due

to higher relative brain size of older immatures in mammals and costs of brain differentiation, before cognitive

benefits, with their corresponding net energetic intake, stabilize at adult level. As a result, without parental

provisioning the individual’s energy balance would be positive only after adulthood was reached.

https://doi.org/10.1371/journal.pbio.3002016.g003
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enabled species to overcome the brain’s bootstrapping problem and that brain size and paren-

tal provisioning have subsequently coevolved.

The parental provisioning hypothesis

The parental provisioning hypothesis builds upon, yet greatly extends, Robert Martin’s [83]

maternal energy hypothesis, which was initially based on a very different evolutionary logic,

and perhaps because of this, failed to become widely adopted. It is instructive to trace the his-

tory of this hypothesis and how it gradually morphed into the parental provisioning

hypothesis.

Martin [83] noted that the allometric scaling relationship with body size among placental

mammals has the same exponent for both brain size and basal metabolic rate. This pattern sug-

gested to him that “the resources channeled to the embryo from the mother” acted as a con-

straint on the brain size of a given species. The lower scaling exponent for brain size in birds

and reptiles was attributed to their oviparity, and thus, consistent with this maternal energy

effect. Initial attempts to test its predictions focusing on this allometric scaling were not favor-

able [84]. More direct tests were also not favorable. First, the precocial–altricial contrast in

birds is inconsistent with this model. Precocial species, where young are well developed at

birth and not provisioned after hatching, have smaller relative adult brain size but have much

more developed brains at hatching than altricial ones, where young are poorly developed and

need to be provisioned [85]. Second, maternal metabolic rate does not predict neonatal brain

size or gestation length in a large sample of mammals [86] (but see [87] for a rebuttal).

These negative outcomes reduced the attention garnered by the maternal energy hypothe-

sis, even though Martin [88] subsequently moved away from interspecific scaling. Focusing on

placental mammals, he suggested that the pattern of correlations among “body size, brain size,

basal metabolic rate, and gestation period indicates that the primary link is between maternal

metabolic capacity and the developing brain of the offspring.” Thus, the hypothesis directly

linked gestation length and maternal metabolic rate to neonatal brain size (cf. [89]). Perhaps

the emphasis remained on gestation because Martin [83] had suggested that in primates, most

brain growth is completed at birth. Although this may be correct for the number of neurons

[90], neonatal brains in many species are less than half of adult size (e.g., [53,59]), especially in

great apes and humans [91]. Moreover, brain differentiation (including myelination) is usually

postnatal and among the most expensive aspects of brain development [46,77]. Thus, a proper

test of the maternal energy hypothesis would require the inclusion of postnatal maternal

investment in the form of lactation and (where relevant) provisioning.

Martin [88] also argued that the rate of maternal investment acts as a constraint on brain

size, which, he suggested, leaves no room for variation in investment that produces adaptive

variation in adult brain size (which would be achievable through variation in interbirth inter-

vals or litter size). He argued that any links between a species’ brain size and ecology or social

organization would be “a secondary consequence,” so that “there may be no very tight rela-

tionship between relative brain size and specific behavioral capacities.” Subsequent research

has shown that adaptive explanations are supported for both the links with ecology [37,92],

social organization [36], and cognitive performance [13,14]. This stance effectively reduced

the appeal of the hypothesis.

Martin [87] later expanded the hypothesis’ scope by including lactation, and Martin and

Isler [93] also considered of the overall duration of investment independent of metabolic turn-

over by the mother, reinforcing the conclusion that “development of the brain is heavily

dependent on resources provided by the mother” ([87], p. 54). Unfortunately, these extensions

garnered little attention.
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Numerous comparative analyses have examined the link between adult or neonate brain

size and life-history parameters in various groups, especially mammals (e.g., [29,30,54]; see

also [32] for birds). Many studies found that larger-brained species take longer to reach adult-

hood (e.g., [34,53,55]). Although this points to competition between the growth of the brain

and that of the body [94], consistent with the expensive brain hypothesis, such competition

would also arise in the absence of extended parental provisioning and apparently can only be

reduced by it. Therefore, this negative correlation in itself does not confirm the maternal

energy hypothesis, although Barton and Capellini [55] could relate their findings to the mater-

nal energy hypothesis, because “evolutionary changes in pre- and postnatal brain growth cor-

relate specifically with duration of the relevant phases of maternal investment (gestation and

lactation, respectively)” (see also [95]).

Note that the maternal energy hypothesis, after moving away from allometries, also reduced

its stress on metabolic rates and began to cover the full period of parental investment to explain

interspecific variation in brain size. The parental provisioning hypothesis expands it by includ-

ing all forms of energetic investment and their rate and duration by both mothers, fathers, and

helpers, and by regarding the process as an adaptive strategy (and not a constraint) to achieve

the species’ optimum brain size. It also provides an explicit rationale for the need for extended

parental provisioning.

Testing a major assumption: Provisioning and brain growth rates

The parental provisioning hypothesis is consistent with fundamental brain growth patterns

(Fig 4). Across vertebrates, brain growth rates often show a sharp slowdown after a period of

rapid growth [2,96,97], and this point coincides with the transition from parental provisioning

to independence, i.e., self-sustained growth. In mammals, the initial period of rapid growth of

the brain is generally isometric with that of the body [2,96,98]. In precocial species, born with

relatively large brains [59], its growth slows down after birth, whereas in altricial mammals,

growth continues to be high after birth [99]. In both precocial and altricial mammals, brain

growth is completed by the end of parental provisioning, i.e., weaning [59,90,98], although

subsequent differentiation may continue.

In birds, altricial and precocial species show different patterns of brain growth [85]. In altri-

cials, brain growth is completed by the time offspring fledge [100,101], and thus entirely paid

for by parental provisioning. Precocial birds face more of a bootstrapping problem, because

there is little or no post-hatching provisioning and young must therefore find their own food.

This explains why they have slower post-hatching brain growth than altricial species and

achieve smaller relative brain size among adults (Fig 4).

In most ectothermic vertebrates, parental provisioning is far more limited. In most fishes,

provisioning is entirely through eggs [102], and brain growth is high only during the very brief

period before reserves in the egg are depleted and slows down soon after hatching [97]. How-

ever, since so much of the brain still needs to be developed, the brain growth trajectory

remains steeper than for the endothermic vertebrates, as illustrated in Fig 4, and species with

indeterminate growth retain the same slopes throughout life. The overall pattern is therefore

consistent with the prediction that rates of brain growth are steep during the parental provi-

sioning phase but clearly reduced thereafter.

Testing the predictions of the parental provisioning hypothesis

Two important predictions follow from the hypothesis. First, we expect positive correlated

evolution between extended parental provisioning and relative brain size, given that parents

must be able to muster the energy to pay for their offspring’s brain growth. Second, we expect
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that this correlated evolution has made it possible for lineages with extended parental provi-

sioning to evolve larger brains. Here, we examine the evidence for these predictions.

Provisioning and brain size: Comparative tests

Comparative tests can assess the prediction that variation in the intensity and duration of

parental provisioning shows correlated evolution with adult brain size. To start with birds, pre-

cocial and altricial species differ in brain size, with altricial species having larger brains for

their body size than precocial species [85]. While long known [103], this difference has never

been satisfactorily explained. The parental provisioning hypothesis links it to the amount of

provisioning beyond egg size. In a study of 1,176 bird species, Griesser and colleagues [104]

confirmed that the duration of parental provisioning showed strong correlated evolution with

adult brain size.
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altricial birds

precocial birds

most ectotherms

size at
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Fig 4. Schematic depiction of brain growth relative to body growth in different vertebrates as a function of parental provisioning. The first phase

(parental provisioning) shows the same, steep slope (virtually isometric: 1.0). After the end of parental provisioning, the slope becomes very low (ca 0.2) in

mammals and altricial birds, whereas it become intermediate in precocial birds and ectotherms (ca 0.5) until adulthood is reached, and in most of the latter

continues at the same relative rate after that due to indeterminate growth (sources are provided in the main text).

https://doi.org/10.1371/journal.pbio.3002016.g004
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Around 90% of bird species show biparental provisioning [105], and the modest variation

in the number of caretakers is not correlated with relative brain size [104]. Among mammals,

although over 80% of species have uniparental provisioning by the mother [106], allomaternal

care (provisioning or carrying) is positively correlated with relative brain size, with the effect

of male care being stronger than that of helpers [107], arguably because the male always helps

whereas the number of helpers is highly variable and thus unreliable. These findings are there-

fore fully consistent with the parental provisioning hypothesis.

Turning to the ectotherm–endotherm contrast, extended parental provisioning may con-

tribute to the explanation of the gap in relative brain size that separates them (Fig 1). In most

ectotherms, provisioning stops at egg deposition of their (usually tiny [80]) eggs. In mammals,

it only stops when offspring are weaned at roughly one third of adult size. Altricial birds fledge

their young at close to adult size, whereas in precocial birds, although they do not provision

young post-hatching, the eggs are large relative to those of ectotherms. Among ectotherms,

cartilaginous fishes (Chondrichthyes: sharks, rays, skates, and sawfish) have brain sizes

approaching those of endotherms [1]. Studies of chondrichthyes showed that species with

matrotrophy, i.e., where young are supported beyond the yolk inside the egg, show larger rela-

tive brain size than those without it, at least for species up to 100 kg [108,109]. Although highly

suggestive, the authors consider this support preliminary because the effect does not hold for

the largest species. Lacking so far, are similar studies in the few radiations in ray-finned fishes

(Actinopterygii), amphibians, and reptiles that show sufficient variation in parental provision-

ing. Overall, though, the existing studies of correlated evolution between extended parental

provisioning and relative brain size overall support the parental provisioning hypothesis.

Parental provisioning and the potential for encephalization

Interspecific brain–body allometries have long been explained as reflecting one major process,

such as somatosensory needs or metabolic turnover [1,110], as artifacts of non-adaptive

genetic correlations [111], or even as statistical artifacts [84]. However, none of these explana-

tions is strongly supported [112,113]. Thus, the taxonomic variation in allometric slopes

requires a new explanation, couched in terms of variable selective responses to new challenges

by brain, body, or both.

The parental provisioning hypothesis may make a contribution to this debate. Its logic sug-

gests that lineages with extended parental provisioning may more readily satisfy the precondi-

tions for major evolutionary increases in brain size (encephalization) than those with limited

and briefer parental provisioning, which may therefore remain caught in rather low-cognition

niches. Marsh’s rule, which states that over evolutionary time species tend to become more

encephalized (i.e., brains becoming larger relative to body size [1]), may therefore apply more

strongly to lineages with more extended parental provisioning. Where this process is accompa-

nied by enough adaptive variation in body size within a given lineage, this could produce

steeper slopes of the brain–body relationship (where both are log-transformed) at higher taxo-

nomic levels among extant species, a phenomenon known as the taxon-level effect [112].

One obvious way to test this prediction is to compare the slope of the brain–body allometry

in precocial and altricial bird lineages. In precocial species, which do not provision their young

beyond the resources provided in the egg, the bootstrapping problem may dampen selection

on increased brain size, whereas those in altricial lineages have the opportunity to respond to

it by increasing their provisioning. As a result, we would expect steeper slopes for the brain–

body allometry among altricial birds than among precocial ones.

Earlier results, produced for other purposes, provide a preliminary test. Nealen and Ricklefs

[110] estimated the exponents of the brain–body allometry (i.e., the slopes of the log[brain]-
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log[body] regression) at multiple taxonomic levels. Their results revealed steeper slopes at the

level of orders, families, and even genera among altricial taxa than among precocial ones. A

more recent study [104] replicated this result with a modern phylogeny and a larger sample: A

highly significant interaction effect between body weight and development mode on brain size

revealed that altricial taxa have a far steeper slope. To visualize this effect, Fig 5 (data taken

from [94]) shows the slope differences between altricial and precocial bird orders and families

(based on ordinary least-squares regression).

An even more promising testing ground may be ectothermic vertebrates, which largely lack

any post-hatching parental provisioning, even if some species guard young. Tsuboi and col-

leagues [97] reported that (phylogenetically corrected) brain–body allometry slopes at higher

taxonomic levels are indeed clearly higher for birds (0.57) and mammals (0.59) than for fishes

(0.50 for Actinopterygii and 0.41 for Chondrichthyes) and amphibians (0.46). Reptiles are

closer to endotherms (0.56), but are better able than other ectotherms to maintain high body

Fig 5. Brain–body allometries among altricial and precocial birds. Violin plots of slopes of the brain–body allometries of altricial (gray bars) and

precocial (white bars) orders and families of birds. Data are taken from [104]. Orders or families were included when>5 species were available. Horizontal

bars represent the median, red diamonds the mean, and boxes enclose the central 50% percentile range. The difference at the family level is significant

(t = 2.60, DF = 26.46, p< 0.02). Sample sizes for altricial birds: 15 orders and 38 families; for precocial birds: 8 orders and 17 families.

https://doi.org/10.1371/journal.pbio.3002016.g005
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temperatures during activity through behavioral thermoregulation [114]. Tests at lower taxo-

nomic levels have not been done yet. While these will no doubt soon emerge, this preliminary

survey supports the proposition that lineages with extended parental provisioning are more

likely to experience stronger encephalization, as expected under Marsh’s rule.

Implications

Extending the maternal energy hypothesis, the parental provisioning hypothesis argues that

brain size is not just limited by the ability of adults to avoid starvation, predation, and disease

through cognitive means, but also by their cognitively supported ability to garner the time and

energy to provide their young with the energy needed to construct the brains needed for this.

Comparative work shows a strong correlation between total parental provisioning and brain

size and also suggests that where extensive parental provisioning did not evolve, the evolution-

ary potential for greater encephalization is reduced. It thus attributes the ectotherm–endo-

therm gap in relative brain sizes partly to the evolution of systematic extended parental

provisioning in early endotherms.

If we accept these conclusions, 2 important implications deserve attention. First, the paren-

tal provisioning hypothesis may also plug another gap in our understanding of brain size evo-

lution, linked to immature survival. Second, the importance of parental provisioning for brain

size also invites us to rethink the relationship between the cognitive abilities that produce fit-

ness benefits and those that reduce fitness costs in selection on brain size.

Parental provisioning and immature survival

The comparative tests reviewed above show that increased brain size tends to reduce reproduc-

tive rates and slows down development, which increases generation time. Even though it is

unlikely that a species’ brain size is not adaptive, it may nonetheless be questioned whether the

recorded increase in adult survival outweighs this dual fitness cost. We suggest that extended

parental provisioning, and the concomitant continued protection of young, also provides

another, previously overlooked adaptive advantage to larger brains.

There are currently no published comparative analyses of immature survival in relation to

brain size. However, we recently conducted a preliminary analysis for primates, using pub-

lished information on 18 species in 13 genera for which the relevant information from popula-

tions in undisturbed natural habitats has been published. We found that relative brain size

improves survival until the age at first reproduction, in spite of the longer time needed to

reach this point (unpublished results). Given the delay in the emergence of the various ecologi-

cal skills produced by brains, it is difficult to imagine any other mechanism responsible for this

remarkable pattern than parental provisioning and the associated protection.

Provided future work shows this result generalizes beyond primates, it supports the follow-

ing evolutionary scenario for the evolution of parenting and its role in brain size evolution.

Several forms of postnatal parental care or protection improve offspring survival [81] (and

may also independently correlate with brain size [115]). Parental care may facilitate provision-

ing since this speeds up growth and thus reduces the time in the most vulnerable stage. Once

parental provisioning beyond the egg has evolved, it alleviates the bootstrapping problem and

provides reliable opportunities for practice and learning. These effects facilitate selection on

increased brain size.

Selection and brain size

The importance of parental provisioning for brain size also invites us to rethink how to inte-

grate the various costs and benefits in selection on brain size. We can in principle recognize 4
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sets of cognitive abilities, here defined broadly to also include sensory and motor abilities. A

first set of abilities acts to maintain the adult brain (box A in Fig 6) by guaranteeing the stabil-

ity of its energy supply. A second set enables adequate parental provisioning, and so serves to

construct the adult brain (box B). The third and fourth set of cognitive abilities produce the

cognitive performance that is responsible for the immature and adult survival as well as repro-

duction of its bearer (boxes C and D). Selection will favor an optimum brain size at which fit-

ness is maximized. This optimum size depends on details of the ecological and social

environment, the species’ bauplan, but also critically on the extent to which these 4 sets of cog-

nitive skills overlap.

The cognitive abilities in A and B merely exist to maintain and build the brain, respectively.

In the absence of the cognitive benefits produced by C and D, they would be futile. Thus, if the

cognitive abilities in sets A and B are very different from those in C and D, selection on

increased brain size would face a very high hurdle. This consideration therefore suggests

strong overlap between them and that selection on brain size will be easier when cognitive abil-

ities are not strictly domain specific, such as general intelligence and executive functions

[16,22], because strictly domain-specific cognitive adaptations are less likely to enhance both

the A-B and the C-D sets.

A recent analysis of birds [104] found that, once parental provisioning was controlled for,

the correlations between brain size and the commonly measured indices of cognitive demand,

such as group size, duration of social bonds, or ecological niches practically disappeared from

Fig 6. Brain size and the nature of cognition. Natural selection is expected to optimize brain size, by finding the optimum balance between the cognitive

abilities (in the broad sense) required to pay for the costs of maintaining the adult brain (A) and constructing it during development (B) on the one hand, and

the brain-size-dependent cognitive abilities that are translated into adult performance (C) and immature performance (survival: D) on the other hand. The 4

sets of cognitive abilities no doubt show high overlap, but their nature remains poorly studied. For birds, set A would presumably contain abilities such as

migratory habits, food storing, extractive foraging, and communal roosting; set B abilities like predation avoidance (especially of nest contents), efficient

foraging, habitat and nest site selection, flexibility, coordination ability; set C many of the same abilities as A and B, but also avoidance of predation on adults,

post-independence skill learning, optimal mate choice, and social skills; and set D also nest site selection, nest building, and predation-sensitive provisioning.

https://doi.org/10.1371/journal.pbio.3002016.g006
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the model, apart from ecological behaviors directly affecting energy balance, such as long-dis-

tance migration [116]. This suggests that the 2 sets of variables rely on the same cognitive abili-

ties but parental provisioning is measured more precisely. Alternatively, some of the variables

traditionally thought to affect brain size are perhaps not the main selective pressures, but fea-

ture in analyses merely because they happen to be available for many species.

The fact that the same cognitive abilities may serve to pay for energetic costs and produce

direct fitness benefits raises a methodological problem. Most conventional methods for analyz-

ing comparative data assume a unidirectional flow of causality from various variables repre-

senting fitness costs or benefits to the trait of interest. In the present case, depending on the

stage of lineage evolution, brain size will be involved in a number of feedback loops (cf. Fig 6),

and thus both respond to and drive the surrounding landscape of eco-social and life-history

traits. Modeling evolutionary brain size trajectories that include such feedback loops will

require new methods. These may include models for more robust and accurate estimation of

shifts in the rate of change in variables across large phylogenies [117–119]. Likewise, we need

models that allow for more accurate placement of variables as causes or effects in multivariate

networks of traits, such as structural equation modeling or d-separation path analysis [120].

Promising insights into the evolution of brain sizes will also likely emerge from the ongoing

re-evaluation of the importance of variation in comparative analyses: Methods focusing both

on average patterns as well as the drivers of variance around trends (e.g., heteroscedasticity of

brain–body size allometries observed across vertebrate taxa) are now able to incorporate phy-

logenetic relationships between species [121,122], providing new tools to disentangle the evo-

lutionary history of brain sizes.

Finally, the parental provisioning hypothesis raises the broader question of which cognitive

processes are the target of selection. It suggests that eco-cognitive and parenting skills have

played a major role, with the fitness benefits of social bonds perhaps being derived from the

abilities that evolved to enable parental provisioning, especially in lineages where more indi-

viduals coordinate parental activities [123].
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33. Jiménez-Ortega D, Kolm N, Immler S, Maklakov AA, Gonzalez-Voyer A. Long life evolves in large-

brained bird lineages. Evolution. 2020; 74:2617–2628. https://doi.org/10.1111/evo.14087 PMID:

32840865

34. Yu X, Zhong MJ, Li DY, Jin L, Liao WB, Kotrschal A. Large-brained frogs mature later and live longer.

Evolution. 2018; 72:1174–1183. https://doi.org/10.1111/evo.13478 PMID: 29611630

35. Stark G, Pincheira-Donoso D. The evolution of brain size in ectothermic tetrapods: large brain mass

trades-off with lifespan in reptiles. Evol Biol. 2022. https://doi.org/10.1007/s11692-022-09562-4

36. Dunbar RIM, Shultz S. Evolution in the Social Brain. Science. 1979; 2007(317):1344–1347. https://doi.

org/10.1126/science.1145463 PMID: 17823343

37. DeCasien AR, Williams SA, Higham JP. Primate brain size is predicted by diet but not sociality. Nat

Ecol Evol. 2017; 1:0112. https://doi.org/10.1038/s41559-017-0112 PMID: 28812699

38. Morris WF, Altmann J, Brockman DK, Cords M, Fedigan LM, Pusey AE, et al. Low demographic vari-

ability in wild primate populations: fitness impacts of variation, covariation, and serial correlation in vital

rates. Am Nat. 2011; 177:E14–E28. https://doi.org/10.1086/657443 PMID: 21117962

39. Fristoe TS, Iwaniuk AN, Botero CA. Big brains stabilize populations and facilitate colonization of vari-

able habitats in birds. Nat Ecol Evol. 2017; 1:1706–1715. https://doi.org/10.1038/s41559-017-0316-2

PMID: 28963479

40. Shultz S, Bradbury RB, Evans KL, Gregory RD, Blackburn TM. Brain size and resource specialization

predict long-term population trends in British birds. Proc Biol Sci. 2005; 272:2305–2311. https://doi.

org/10.1098/rspb.2005.3250 PMID: 16191644

41. Isler K. Energetic trade-offs between brain size and offspring production: Marsupials confirm a general

mammalian pattern. Bioessays. 2011; 33:173–179. https://doi.org/10.1002/bies.201000123 PMID:

21254150

42. Holekamp KE. Questioning the social intelligence hypothesis. Trends Cogn Sci. 2007; 11:65–69.

https://doi.org/10.1016/j.tics.2006.11.003 PMID: 17188553

43. Dunbar RIM, Shultz S. Why are there so many explanations for primate brain evolution?. Philos Trans

R Soc Lond B Biol Sci. 2017; 372:20160244. https://doi.org/10.1098/rstb.2016.0244 PMID: 28673920

44. Mink JW, Blumenschine RJ, Adams DB. Ratio of central nervous system to body metabolism in verte-

brates: its constancy and functional basis. Am J Physiol Regul Integr Comp Physiol. 1981; 241:R203–

R212. https://doi.org/10.1152/ajpregu.1981.241.3.R203 PMID: 7282965

45. Aiello LC, Wheeler P. The expensive-tissue hypothesis: the brain and the digestive system in human

and primate evolution. Curr Anthropol. 1995; 36:199–221. https://doi.org/10.1111/evo.13478

46. Bauernfeind AL, Barks SK, Duka T, Grossman LI, Hof PR, Sherwood CC. Aerobic glycolysis in the pri-

mate brain: reconsidering the implications for growth and maintenance. Brain Struct Funct. 2014;

219:1149–1167. https://doi.org/10.1007/s00429-013-0662-z PMID: 24185460

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002016 February 28, 2023 15 / 19

https://doi.org/10.1093/beheco/arq108
https://doi.org/10.1093/beheco/arq108
https://doi.org/10.1098/rsbl.2016.0647
https://doi.org/10.1098/rsbl.2016.0647
http://www.ncbi.nlm.nih.gov/pubmed/27807251
https://doi.org/10.1086/588304
http://www.ncbi.nlm.nih.gov/pubmed/18554145
https://doi.org/10.1073/pnas.0408145102
https://doi.org/10.1073/pnas.0408145102
http://www.ncbi.nlm.nih.gov/pubmed/15784743
https://doi.org/10.1371/journal.pone.0018277
https://doi.org/10.1371/journal.pone.0018277
http://www.ncbi.nlm.nih.gov/pubmed/21494328
https://doi.org/10.1098/rsbl.2008.0621
http://www.ncbi.nlm.nih.gov/pubmed/19049952
https://doi.org/10.1016/j.jhevol.2009.04.009
http://www.ncbi.nlm.nih.gov/pubmed/19732937
https://doi.org/10.1111/evo.13633
http://www.ncbi.nlm.nih.gov/pubmed/30370648
https://doi.org/10.1002/ece3.2961
http://www.ncbi.nlm.nih.gov/pubmed/28515891
https://doi.org/10.1111/evo.14087
http://www.ncbi.nlm.nih.gov/pubmed/32840865
https://doi.org/10.1111/evo.13478
http://www.ncbi.nlm.nih.gov/pubmed/29611630
https://doi.org/10.1007/s11692-022-09562-4
https://doi.org/10.1126/science.1145463
https://doi.org/10.1126/science.1145463
http://www.ncbi.nlm.nih.gov/pubmed/17823343
https://doi.org/10.1038/s41559-017-0112
http://www.ncbi.nlm.nih.gov/pubmed/28812699
https://doi.org/10.1086/657443
http://www.ncbi.nlm.nih.gov/pubmed/21117962
https://doi.org/10.1038/s41559-017-0316-2
http://www.ncbi.nlm.nih.gov/pubmed/28963479
https://doi.org/10.1098/rspb.2005.3250
https://doi.org/10.1098/rspb.2005.3250
http://www.ncbi.nlm.nih.gov/pubmed/16191644
https://doi.org/10.1002/bies.201000123
http://www.ncbi.nlm.nih.gov/pubmed/21254150
https://doi.org/10.1016/j.tics.2006.11.003
http://www.ncbi.nlm.nih.gov/pubmed/17188553
https://doi.org/10.1098/rstb.2016.0244
http://www.ncbi.nlm.nih.gov/pubmed/28673920
https://doi.org/10.1152/ajpregu.1981.241.3.R203
http://www.ncbi.nlm.nih.gov/pubmed/7282965
https://doi.org/10.1111/evo.13478
https://doi.org/10.1007/s00429-013-0662-z
http://www.ncbi.nlm.nih.gov/pubmed/24185460
https://doi.org/10.1371/journal.pbio.3002016


47. Wells JCK. The evolutionary biology of human body fatness: thrift and control. Cambridge University

Press; 2010.

48. Peters A. The selfish brain: competition for energy resources. Am J Hum Biol. 2011; 23:29–34. https://

doi.org/10.1002/ajhb.21106 PMID: 21080380

49. Levitsky DA, Strupp BJ. Malnutrition and the Brain: Changing Concepts. Changing Concerns J Nutr.

1995; 125:2212S–2220S. https://doi.org/10.1093/jn/125.suppl_8.2212S PMID: 7542703

50. Mackes NK, Golm D, Sarkar S, Kumsta R, Rutter M, Fairchild G, et al. Early childhood deprivation is

associated with alterations in adult brain structure despite subsequent environmental enrichment.

Proc Natl Acad Sci U S A. 2020; 117:641–649. https://doi.org/10.1073/pnas.1911264116 PMID:

31907309

51. Winick M, Noble A. Cellular Response in Rats during Malnutrition at Various Ages. J Nutr. 1966;

89:300–306. https://doi.org/10.1093/jn/89.3.300 PMID: 5913937

52. Nowicki S, Searcy W, Peters S. Brain development, song learning and mate choice in birds: a review

and experimental test of the “nutritional stress hypothesis.” J Comp Physiol A. 2002; 188:1003–1014.

https://doi.org/10.1007/s00359-002-0361-3 PMID: 12471497

53. Barrickman NL, Bastian ML, Isler K, van Schaik CP. Life history costs and benefits of encephalization:

a comparative test using data from long-term studies of primates in the wild. J Hum Evol. 2008;

54:568–590. https://doi.org/10.1016/j.jhevol.2007.08.012 PMID: 18068214

54. Gonzalez-Lagos C, Sol D, Reader SM. Large-brained mammals live longer. J Evol Biol. 2010;

23:1064–1074. https://doi.org/10.1111/j.1420-9101.2010.01976.x PMID: 20345813

55. Barton RA, Capellini I. Maternal investment, life histories, and the costs of brain growth in mammals.

Proc Natl Acad Sci U S A. 2011; 108:6169–6174. https://doi.org/10.1073/pnas.1019140108 PMID:

21444808

56. Heldstab SA, Isler K, Graber SM, Schuppli C, van Schaik CP. The economics of brain size evolution in

vertebrates. Curr Biol. 2022; in Press. https://doi.org/10.1016/j.cub.2022.04.096 PMID: 35728555

57. Herculano-Houzel S. Numbers of neurons as biological correlates of cognitive capability. Curr Opin

Behav Sci. 2017; 16:1–7. https://doi.org/10.1016/j.cobeha.2017.02.004
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