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Infection of metazoans by eukaryotic pathogens is a major source of disease, including in
humans. These pathogens range from single-celled protozoans to multicellular worms, cover-
ing over a billion years of evolution. Parasites exhibit striking changes in morphology as they
progress through their complex life cycles and the varied environmental niches they inhabit.
These waves of proliferation and differentiation are powered by the regulation of gene expres-
sion. Understanding parasite biology through the lens of gene regulation is fundamental for
translation to therapeutics, including approaches for directly targeting the RNA as well as the
essential enzymes responsible for their synthesis and turnover.

The advent of microarrays in the late 1990s heralded the age of transcriptomics in model
systems. Twenty years ago, in a landmark paper published in the first issue of PLOS Biology
[1], Bozdech, Llinas, and colleagues described the first acquisition of the transcriptome of the
intraerythrocytic developmental cycle (IDC) of the apicomplexan malaria parasite Plasmo-
dium falciparum, which still infects over 250 million people and kills about 500,000 people
each year. This work was monumental, particularly considering that the P. falciparum genome
had only been published a year earlier in 2002 [2]. The prompt public availability of the
sequences allowed the expedient design of 70-bp oligonucleotide arrays corresponding to
every gene in the P. falciparum genome [3]. The investigators leveraged the ability to culture
this parasite at scale to prepare RNA at different time points within the IDC for quantitative
assessment on an oligonucleotide-based microarray. This approach resulted in the first visuali-
zation of the once-a-cycle just-in-time transcription of the majority of genes within the malaria
parasite, resembling the cascades of a viral-like life cycle. Strikingly, it provided a catalogue of
all the expressed genes in the IDC at a genomic level, a quantum leap in scale beyond the tradi-
tional methods of northern blotting and quantitative reverse transcription PCR (qQRT-PCR)
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Fig 1. The evolution of parasite transcriptomics. The advent of the expression microarray was a transformative event that for the first time revealed dynamic,
genome-wide expression changes. Over time, in the postgenomic era, this has become more refined in spatiotemporal resolution. The next wave of systems
biology requires new computational tools that are expected to reveal new aspects of parasite biology for translation. Adapted from [1]. Al artificial intelligence;
EST, expressed sequence tag; ML, machine learning; qRT-PCR, quantitative reverse transcription PCR; ribo-seq, ribosome sequencing; RNA-Seq, RNA
sequencing; SAGE, Serial Analysis of Gene Expression; scRNA-seq, single-cell RNA sequencing; SNV, single-nucleotide variation; UMAP, Uniform Manifold
Approximation and Projection.

https://doi.org/10.1371/journal.pbio.3001997.9001

(Fig 1). The quantitative data obtained in the early days were originally received with some
degree of skepticism by the field but have clearly stood the test of time, and this paper [1] is
now one of the most highly cited in the field (Google Scholar: 1,844 citations at the time of this
publication).

The oligonucleotide arrays were particularly useful for comparing different transcriptomes.
The printing of the arrays was inexpensive, making them available for numerous applications.
In addition to the fine resolution of the different stages of the IDC, the arrays were used to
assess perturbations to in vitro cultures, including the addition of drugs and inhibitors to
assess molecular mechanisms [4], and the functional analysis of genetic mutants to identify
specific transcriptional programs [5]. Transcriptomics were used to assess expression-level
polymorphisms between strains, resulting in the identification of a “variantome,” relevant to
virulence gene expression [6]. Finally, hundreds of parasites from endemic populations were
interrogated, revealing transcriptional programs associated with distinct transmission strate-
gies [7]. In a parallel approach, the Affymetrix platform was similarly used for the analysis of
the P. falciparum transcriptome over the parasite developmental cycle [8], revealing expression
of specific genes at the previously obscure insect and liver stages.

Transcriptomics, trailblazed by these studies in P. falciparum, has transformed the field of
parasitology. The technology has been democratically applied to numerous parasites (other
Plasmodium spp. and other parasites of medical importance), enabling comparative studies
that have revealed species-specific innovations. General challenges have included the need for
synchronization, the presence of transcriptionally active host cells, and the short duration of
the cell cycle (a major challenge for the evolutionarily related apicomplexan Toxoplasma gon-
dii; [9]), as well as the availability of enough material at different stages of the often complex
life cycles of parasites. Nevertheless, transcriptomes are now available for all the major patho-
gens of humans, facilitating numerous studies aimed at understanding the biology of these
pathogens and informing translation for therapeutic development.

Transcriptomics itself evolved from microarrays to the use of next-generation RNA
sequencing (RNA-Seq) technologies that allowed for the simultaneous quantitation and visual-
ization of coding and noncoding mRNAs in bulk populations of parasites (Fig 1). Most
recently, the advent of single-cell approaches, such as scRNA-Seq, scATAC-Seq, and perturb-
Seq, are increasingly adapted and utilized for parasitology studies, pushing this field further
into the domain of “data-intensive sciences.” Indeed, several recent studies have generated
atlases of scRNA-Seq data for a diverse range of parasites and life cycle stages, including for
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malaria parasites [10]. These invaluable data resources, combined with computational models,
provide powerful tools to study gene expression and regulatory events at single-cell resolution.

Critical to the interpretation of the transcriptomic data has been its integration with other
‘omic data sets. For one, the acquisition of the proteomes through the IDC for P. falciparum
clearly demonstrated a lack of concordance between transcripts and proteins [11]. Much effort
is currently being dedicated to the description and understanding of posttranscriptional gene
regulation. The acquisition of multiomic data at multiple levels will feed into the advent of sys-
tems biology approaches to reveal mechanisms in complex host—parasite systems. Of particular
note is the VeuPathDB database, an incredible community resource that is the home of geno-
mic data and analysis tools for eukaryotic pathogens and their vectors.

We anticipate a future where the costs of transcriptomic measurements will go down dra-
matically and accessibility will increase, placing it at the heart of the analysis of parasite biol-
ogy. Advanced algorithms and software packages have been developed for the analysis,
integration, and interpretation of multiomics and single-cell data. However, many challenges
remain unresolved. For instance, computational models are primarily developed for mamma-
lian cells, and several challenges limit their utility for the analysis of parasite data. New
approaches and tools from statistics, computer science, and data engineering are needed to
explicitly model and integrate the unique features of parasite biology. In addition, unlike
model organisms, where extensive information is available on regulatory networks, metabolic
pathways, and posttranslational modifiers, such resources for parasites are limited. Most genes
in parasites are currently functionally uncharacterized, and the parasite genomes are poorly
annotated. These limitations hamper the development of holistic systems biology approaches
to study cellular processes in parasites. However, new datasets on regulatory interactions are
being generated at a rapid pace, such as ChIP-seq [12], enabling the integration of multiple
sources of information and network biology approaches for parasitology applications.

The future is very exciting, with advances in new technologies linking ‘omics data directly
to the cell and organismic biology of the parasite, such as spatial transcriptomics and imaging
mass cytometry. In parallel, advances in the fields of artificial intelligence (AI) and machine
learning have revolutionized the analysis of large-scale datasets, significantly impacting science
and technology, including fields such as cancer research. Large-scale adaptation of these
emerging technologies and Al tools towards parasitology applications in the coming decade
will likely result in a major leap forward in our understanding of the basic biology of the para-
site and its host. However, translating data into biological insight requires novel and creative
approaches in cross-disciplinary collaborative research as well as the training of a new genera-
tion of “multilingual” parasitologists with a broad range of skills and knowledge in both data
sciences and parasite biology.
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