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Abstract

Our current food production systems are unsustainable, driven in part through the applica-

tion of chemically fixed nitrogen. We need alternatives to empower farmers to maximise

their productivity sustainably. Therefore, we explore the potential for transferring the root

nodule symbiosis from legumes to other crops. Studies over the last decades have shown

that preexisting developmental and signal transduction processes were recruited during the

evolution of legume nodulation. This allows us to utilise these preexisting processes to engi-

neer nitrogen fixation in target crops. Here, we highlight our understanding of legume nodu-

lation and future research directions that might help to overcome the barrier of achieving

self-fertilising crops.

Introduction

The availability of reactive sources of Nitrogen (N) is one of the major limiting factors for crop

production [1]. Since the onset of the Green Revolution [2], this limitation has been overcome

with the application of inorganic fertilisers, leading to massive improvements in agricultural

output. This agricultural revolution impacted farmers in high- and middle-income countries,

but for some small-holder farmers in low-income countries, these expensive interventions are

out of reach, leading to sizable yield gaps [1,3,4]. Agriculture and deforestation are responsible

for about 19% of all greenhouse gas emissions [5], and chemical nitrogen fertiliser usage

accounts for a significant proportion of the greenhouse gas emissions derived from agriculture

[6], because of the massive energy usage required for its production and denitrification that

results from its application [7,8]. Additionally, chemical nitrogen fertiliser usage is the princi-

pal source of agricultural pollution, with detrimental impacts on biodiversity in nearby terres-

trial ecosystems and distant aquatic ecosystems [6,9]. Addressing the dependence on inorganic

fertilisers goes to the heart of tackling sustainability and equity in global food production.

Nitrogen itself is not limiting: Much of our atmosphere is molecular dinitrogen, an

extremely inert form of this element that is inaccessible to most organisms. Diazotrophic bac-

teria are the only organisms on the planet able to undergo biological nitrogen fixation, the con-

version of nonreactive dinitrogen to the reactive form ammonia. The enzyme that facilitates

this conversion, nitrogenase, is competitively inhibited by oxygen. Here lies a paradox: The

process of nitrogen fixation is extremely energy demanding and as such requires aerobic
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respiration, yet the enzyme can only function when oxygen is restricted. Throughout evolu-

tion, bacteria have found inventive ways of solving this paradox, one of which is to associate

with plants that supply the energy required for the reaction and create an oxygen-regulated

environment. Legumes are one such group of plants that form specialised root nodules, whose

cells are packed full of internalised bacteria, living in an environment optimised for nitrogen

fixation. In this root nodule symbiosis (RNS), the plant delivers carbohydrates derived from

photosynthesis, while the bacteria fulfil the totality of the plants’ nitrogen needs, creating bene-

fits for both partners.

The RNS already contributes significantly to sustainable food production: We and our

domestic animals consume billions of tonnes of legume seeds, produced without nitrogenous

fertilisers. However, the existence of the RNS has inspired scientists for many decades as a

route to deliver free, sustainable, and low-polluting sources of reactive nitrogen to a much

broader array of crops, especially our staple cereal crops, which are hungry fertiliser consum-

ers. There are multiple possible biological routes to solving the nitrogen problem in agricul-

ture, and these are extremely active areas of current research: enhancing the utility of free-

living diazotrophic interactions with cereal roots [10,11]; engineering the bacterial nitrogenase

enzyme directly into plant cells [12–14]; and transferring the RNS from legumes to cereal

crops. This latter approach has a prototype in the legumes that has already delivered the total-

ity of the plants’ nitrogen needs, and it is here where we focus our attention in this article. The

last few decades have seen major advancements in our understanding of the RNS that we

argue brings within reach a sustainable and equitable solution for global food production. The

world’s population continues to expand and will do so over a period of profound global cli-

mate change. Therefore, we need this solution now more than ever, and we will attempt to out-

line the extent of our knowledge in the RNS and the gaps that might limit the development of

this technology over the following decades.

The root nodule symbiosis

Diazotrophic bacteria that form symbioses with legumes are referred to as rhizobia, and their

presence in soils is widespread across the planet. Establishing the symbiotic relationship

requires the plant root and bacteria to find each other in the soil, involving a molecular dialogue

between host plant roots and rhizobia, which, in turn, induces host and bacterial processes asso-

ciated with bacterial infection and nodule organogenesis. We suggest four principal steps in this

process that usefully define the critical areas to consider when striving to transfer nitrogen fixa-

tion: signal perception, bacterial infection, nodule organogenesis, and the establishment of the

environment for nitrogen fixation. How nodulation has evolved remains an ongoing discussion,

but the latest work proposes a single origin in the evolution of nodulation, followed by multiple

losses [15,16]. Associated with the multiple losses has been a consistent loss of only a very few

genes: the Nod factor (NF) receptor NFP associated with rhizobial recognition; the master regu-

lator of the root nodule symbiosis NIN and RPG, which is required for bacterial infection. This

highlights a theme that runs throughout this review: Evolution of nodulation is not associated

with massive increases in new genetic components; rather, a few key regulators allow novel net-

working of preexisting processes. These key regulators, which may be defined by those genes

lost with loss of nodulation, match the processes we outline below.

I. How do plants perceive nitrogen-fixing bacteria?

The dialogue between legumes and rhizobia is initiated by the secretion of (iso)flavonoids and

betaines from the legume roots to attract rhizobia and activate the transcription of rhizobial

nodulation (nod) genes, involved in the biosynthesis of NFs [17]. NFs are decorated
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lipochitooligosaccharides (LCOs) [18], which serve as rhizobial signals to the host plant and

are recognised by a receptor complex at the root surface, principally made of lysine motif

(LysM)-containing receptor-like kinases and a leucine-rich repeat receptor-like kinase [19–21]

(Fig 1). Receptor activation triggers the common symbiosis signalling pathway, shown to be

active in root epidermal cells at the point of bacterial recognition [22] (Fig 1). Central to sym-

biosis signalling is the activation of calcium oscillations within the nucleus and nuclear-associ-

ated cytoplasm that is coordinated by an array of cation channels located on the nuclear

membranes [23–25]. It remains unclear precisely how receptor activation at the plasma mem-

brane is able to promote calcium oscillations; however, a suite of receptor-interacting proteins

have been identified that may act to induce secondary messengers to promote the channels on

the nuclear membranes [26] (Fig 1). The nuclear calcium oscillations are decoded by a calcium

signalling complex made up of a calcium and calmodulin-dependent protein kinase (CCaMK)

[27,28], coupled to a transcription factor (CYCLOPS) [29,30], phosphorylation of which pro-

motes symbiosis-associated gene expression (Fig 1).

Symbiosis signalling is not limited to legumes; rather, this signalling pathway appeared at

the dawn of plant evolution and has been used repeatedly across the plant kingdom to facilitate

intracellular interactions with beneficial microorganisms [31]. Notably among such interac-

tions is that between plants and arbuscular mycorrhizal fungi (Box 1), which appears to be the

earliest of all beneficial microbial associations with plants and the founding interaction that

facilitated the evolution of symbiosis signalling [32]. Considering this early emergence in the

evolution of plants, symbiosis signalling is present in most plant species, in particular, our

most important cereal crops: rice, wheat, and maize [33–35]. The utilisation of this signalling

pathway for recognition of rhizobial bacteria in legumes does not appear to be associated with

a change in the nature of the signalling pathway, since homologous genes in cereals can com-

plement mutants in their legume counterparts, allowing interactions with nitrogen-fixing rhi-

zobia [36–38]. What does appear to have changed is the stringency of signal recognition

through the receptor complex that, in legumes, allows a very stringent perception of specifi-

cally decorated LCOs produced by their rhizobial symbiont [35]. In contrast, cereals show little

to no discrepancy for decorations around the LCO backbone and show equal activation of

symbiosis signalling by simple chitooligosaccharides, whose receptor CERK1 appears to play

an important role, alongside the LCO receptors, for initiating the arbuscular mycorrhizal sym-

biosis [33,34,39,40]. The presence of symbiosis signalling in cereals provides an excellent foun-

dation for engineering cereal crops for associations with nitrogen-fixing bacteria, with

engineering focusing on the stringent recognition of decorated LCOs produced by rhizobia

and the specific mode of downstream activation of cellular and developmental processes asso-

ciated with accommodating nitrogen-fixing bacteria.

Box 1. Arbuscular mycorrhizal fungi

Arbuscular mycorrhizal fungi are mutualistic symbiotic soil microorganisms that colo-

nise the roots of most land plants. The fungi increase nutrient availability for their host

plants and are especially important for the uptake of phosphate and nitrogen, but they

also provide water and micronutrients. Mycorrhizal fungi invade the root through epi-

dermal cells and intracellularly colonise root cortical cells, establishing highly branched

hyphae, known as arbuscules, which provide an interface for nutrient exchange between

the plant and the fungus. In return for these nutrient services, the plant provides all of

the carbon the fungus needs, mostly in the form of lipids derived from photosynthetic

carbon capture.
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Fig 1. NF perception and the common symbiosis signalling pathway. Flavonoid exudates from legume roots act as signals to relevant rhizobia in the soil, activating

production of NF. A receptor complex at the root surface allows NF recognition, through binding to LysM receptor kinases LYK3 (also known as NFR1) and NFP (also

known as NFR5), coupled to the LRR-containing receptor kinase SYMRK (also known as DMI2) that activates downstream signalling. A number of RIPs have been

identified that may facilitate downstream signal transduction including ROP-GTPases and GEFs, which are particularly associated with rhizobial infection; a group of

receptor-like cytoplasmic kinases, which includes SYMRK INTERACTING PROTEINS and the NFR5-INTERACTING CYTOPLASMIC KINASE4 that can activate

phosphorylation cascades; and a HMGR, which interacts with SYMRK and induces the production of mevalonate. The action of one or many of these RIPs may produce a

secondary messenger that links receptor activation at the plasma membrane to induction of cation channels on the nuclear envelope. The cyclic nucleotide-gated channels

CNGC15s release calcium from the nuclear envelope lumen into the nucleus, while other cation channels are required for symbiotic calcium spiking, CASTOR and

POLLUX (also known as DMI1): DMI1 interacts with CNGC15 and appears to coordinate the release of calcium from this channel. The calcium ATPase MCA8 pumps

calcium back into the nuclear envelope to maintain nuclear calcium homeostasis. Components of the nuclear pore complex, like NUP85, NUP133, and NENA, are also

required for symbiosis signalling, and these are thought to direct the necessary channels onto the inner nuclear envelope. The coordinated action of the channels and

pumps creates nuclear calcium oscillations that promote the CCaMK (also known as DMI3). CCamK/DMI3 phosphorylates CYCLOPS/IPD3, which, in turn, promotes

symbiotic transcription, such as the induction of NIN. Gain-of-functions in NFR1, NFR5, SYMRK, DMI1, CCaMK, and CYCLOPs, all autoactivate nodulation,

demonstrating that activation at any point in this pathway is necessary and sufficient for nodule initiation. Created with BioRender.com. CaM, calmodulin; CCaMK,

calcium and CaM-dependent serine/threonine protein kinase; DMI2, DOES NOT MAKE INFECTIONS 2; GEF, Guanine-nucleotide Exchange Factor; HMGR,

3-hydroxy-3-methylglutaryl-CoA reductase; IPD3, INTERACTING PROTEIN OF DMI3; Lj, Lotus japonicus; LysM, lysine motif; Mt, Medicago truncatula; NF, Nod

factor; NIN, NODULE INCEPTION; NUP, NUCLEAR PORE COM-PLEX PROTEIN; RIP, receptor-interacting protein; ROP-GTPase, Rho of plants–guanosine

triphosphatase.

https://doi.org/10.1371/journal.pbio.3001982.g001
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Unsolved mystery 1: What are the transduction mechanisms that allow a

rhizobium-specific output when activating the generic symbiosis signalling

pathway?

Legumes appear to have evolved very stringent recognition of rhizobial-produced LCOs,

which likely emerged following a whole genome duplication and further expansion of the

LysM receptor-like kinase class [41]. Recent work has demonstrated the precise residues in the

legume receptors that not only define an LCO-receptor, but also allow stringent recognition of

specifically decorated LCOs [42], providing the framework for engineering such receptors in

cereals. Activation of symbiosis signalling in legumes is sufficient to induce nodulation

[27,28,43,44], something that does not appear to happen in cereals. Mycorrhizal activation of

symbiosis signalling induces the expression of a mycorrhizal-specific transcription factor,

REDUCED ARBUSCULARMYCORRHIZA1 (RAM1), through the action of a transcriptional

complex made up of CCaMK-CYCLOPS-DELLA proteins [45]. Similarly, the expression of

the rhizobial-specific transcription factor NODULE INCEPTION (NIN) [30] is also activated

through a similar CCaMK-CYCLOPS-DELLA complex [45]. How do legumes utilise the same

signalling to promote quite different transcriptional outputs, and how is this specificity linked

to the precise recognition of nitrogen-fixing bacteria? This question sits at the heart of utilising

the preexisting signalling capabilities present in cereals, to allow the engineering of rhizobial

recognition and the regulation of the relevant cellular and developmental processes to allow

accommodation of bacteria in engineered cereals.

Unsolved mystery 2: How does the NF-ndependent symbiosis work?

The perception of NFs plays an essential role in selecting the suitable symbiont for the legume

host. However, some rhizobia can bypass this process and induce nodulation in a discrete

number of legume species, in an NF-independent manner [46–51]. This does not negate sym-

biosis signalling; rather, an alternative mechanism to activate this signalling pathway appears

to exist, and at least in one situation, this is the function of a bacterial effector delivered

through the type III secretion system [51,52]. Understanding this NF-independent mechanism

for activation of symbiosis signalling could provide an alternative approach to engineering the

receptors in cereals to drive appropriate induction of symbiosis signalling, upon rhizobial

contact.

II. How do plants control the bacterial infection process?

NF signalling sets in motion two processes: the activation of nodule primordia in inner root

tissues and the entrapment of rhizobial bacteria at the root surface, with the initiation of an

infection process that delivers bacteria to the developing nodule. The initiation of both infec-

tion and nodulation is controlled by the master regulator NIN [22,53]. In all cases, the associa-

tion results in intracellular bacteria inside the cells of the nodule. However, the routes to this

can be either through intercellular infection, i.e., bacteria dividing in the intercellular spaces of

the root or intracellular infection through tubular invaginations of the root cells called infec-

tion threads (Fig 2A and 2B). The principal mode of infection in the legume genetic model

species is intracellular; thus, this is the area where most knowledge currently exists. However,

recent discoveries are beginning to give insights into the genetic components that underpin

intercellular infection, and we cover both below.

Analogous to what has been shown for symbiosis signalling, some of the plant components

associated with the bacterial infection process are derived from the association with arbuscular

mycorrhizal fungi, in particular, the processes associated with the extension of the infection
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thread that is closely analogous to a fungal hypha invading a plant cell. However, whereas

fungi have the ability to create a closed compartment at the surface of the plant that allows

them to create a pressurised system to push against the turgor of the plant cell [54], bacteria

lack this ability, meaning the initiation steps of the infection thread appear quite different to

fungal infection mechanisms, and the commonalities occur only at the stage of the progression

of the infection structures. From the perspective of engineering RNS into cereals, the key is to

differentiate the novelty in the bacterial infection mechanisms compared to the conserved pro-

cesses already present to support the arbuscular mycorrhizal symbiosis.

Intracellular infection

The perception of NFs induces root hair tip growth reinitiation and curling, which encloses rhi-

zobia and forms an infection chamber, also known as an infection pocket. The cell wall sur-

rounding the infection chamber is degraded, which allows rhizobia to enter the root hair cell via

plasma membrane invaginations. The continuous fusion of membrane vesicles at the infection

site extends the membrane invagination and forms an intracellular tube, named the infection

thread. The infection thread continuously elongates and branches through the root cortex,

growing towards the nodule primordium. Once the infection thread reaches the nodule, “infec-

tion droplets” containing rhizobia are released into the nodule cells, resulting in membrane-

bound symbiosomes, the organelle-like structures where nitrogen fixation occurs (Fig 2A).

Facilitating intracellular bacterial infection carries risks for the host plant because multiple

different rhizobia present in the soil might also enter the plant tissues, including poor nitrogen

fixers or potential pathogens. Therefore, mechanisms of selecting efficient symbiotic nitrogen-

fixing bacteria strains are required for host plants to overcome this dilemma. During root hair

infection, generally, single bacteria are entrapped, creating a clonal population of bacteria

within the infection thread [55]. Subsequently, host plants can also apply conditional sanctions

to inhibit the growth of underperforming nodules that are colonised by ineffective nitrogen fix-

ers [56]. Notably, all these processes require the host plant to have the ability to recognise and

distinguish specific rhizobia. Therefore, additional levels of stringency are attached to the recog-

nition of bacteria before the infection is activated. Multiple studies demonstrate the importance

of NF perception for the initiation of infection threads, and in some species, this stage requires a

much higher degree of specificity for NF recognition [41,57]. Alternatively/in addition, other

bacterial signals appear to play a role, with plant perception of exopolysaccharides on the

Fig 2. Rhizobial infection. Rhizobia can enter the root immediately through a process of intracellular infection (A) or through differing

levels of intercellular infection (B). Whichever route is taken, bacteria always end up intracellularly accommodated. (C) Initiation of

intracellular accommodation starts with receptor activation through the stringent perception of NFs or exopolysaccharides. ROPs, which

interact with the NF receptors, activate RBOHs, which regulate reactive oxygen species, which can coordinate multiple aspects of cell

functionality and signalling. The SCAR/WAVE complex, which governs the ARP2/3 complex coordinating actin dynamics for infection

thread initiation. Actin dynamics alongside two scaffold proteins, FLOT4 and the remorin protein SYMREM1, facilitate the formation of a

nanodomain and reduce the mobility of the NF receptors, a process vital for rhizobial infection. Coordinating the microtubule organisation

with cell wall and plasma membrane dynamics is in part fulfilled by SYFO1. NPL, which plays a critical role in cell wall remodelling for

infection thread development, is stimulated and accumulates in the infection pocket in response to NFs. The infectosome, which is made up

of VPY, the E3 ligase LIN/CERBERUS, RPG, and the exocyst complex EXOCYST subunit H4 (EXO70 H4), is located at the tip of infection

threads and regulates polar development by controlling vesicle membrane fusion. Perfect synchronisation of infection and nodule production

is required for effective nodulation, which is regulated by NIN and ERN1. NIN regulates rhizobial infection in epidermal cells by up-

regulating NPL. On the other hand, in epidermal cells, NIN competes with ERN1 to limit the production of ENOD11 and probably other

genes. At the same time, NIN promotes the transfer of an unknown mobile signal, perhaps cytokinin, from the epidermis to the cortex to

initiate cell divisions in cortical cells, leading to the formation of the nodule meristem. Created with BioRender.com. ARP2/3, actin-related

protein 2/3; ENOD11, EARLY NODULIN 11; ERN1, Ethylene Response Factor Required for Nodulation 1; FLOT4, FLOTILLIN 4; LIN,

LUMPY INFECTION; NF, Nod factor; NIN, NODULE INCEPTION; NPL, NODULE PECTATE LYASE; RBOH, Respiratory Burst Oxidase

Homolog; ROP, Rho of plants; RPG, RHIZOBIUM-DIRECTED POLAR GROWTH; SCAR/WAVE, Suppressor of cAMP receptor defect/

WASP family verpolin homologous protein; SYFO1, SYMBIOTIC FORMIN 1; VPY, VAPYRIN.

https://doi.org/10.1371/journal.pbio.3001982.g002
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surface of the rhizobia providing an additional level of stringency in bacterial recognition at this

infection stage [58]. Two scaffold proteins, FLOTILLIN 4 (FLOT4) and the remorin protein

SYMREM1, facilitate the formation of membrane nanodomains, reducing the mobility of the

NF receptors, and this appears vital for appropriate rhizobial infection [59]. While the symbiosis

signalling pathway is important for infection, there is little evidence that this transduction path-

way is the primary link between receptor activation and the initiation of infection threads.

Rather, a single calcium transient across the plasma membrane [60] that correlates with a burst

of reactive oxygen species [61–63], appears associated with infection. Receptor-associated ROPs

[64,65] activate Respiratory Burst Oxidase Homologs (RBOHs), and this is a likely mechanism

for provoking cytoskeletal remodelling [66], initiating the infection thread [67] and regulating

the dynamics and assembly of actin needed to redirect root hair polar growth [66,68]. ROPs

also modulate actin dynamics via the SCAR/WAVE (Suppressor of cAMP receptor defect/

WASP family verpolin homologous protein) complex [69–71], which allows actin nucleation,

required for infection thread initiation [71–75] (details in Fig 2). Translating an activated

microdomain of receptors at the site of bacterial attachment into an invagination of the plasma

membrane requires physical changes to the membrane, and the first indicators of how this

might happen has come with the description of a SYMBIOTIC FORMIN 1 (SYFO1) that pro-

vides a cell wall-plasma membrane-cytoskeleton continuum [76] (Fig 2) that can perhaps pro-

vide the initial scaffold to invaginate the membrane.

A mature cell wall is a barrier to the redirection of polar cell growth, and to achieve cell wall

remodelling, the plasticity of the cell wall needs to be altered. Precisely, localised cell wall deg-

radation at the site of the infection pocket is facilitated by directed secretion of NODULE PEC-

TATE LYASE (NPL), which is transcriptionally induced by NFs and accumulates at the site of

the infection pocket [53,77]. NPL degrades pectin, reinstating plasticity to the cell wall, which,

in part, allows the formation of new sites for polar growth [78,79]. Analogous to an infection

thread is the invasion of plant cells by mycorrhizal fungal hyphae. It has been demonstrated

that during the formation of an arbuscule (Box 1), all vesicle transport is redirected to the sites

of fungal penetration. As such, any secreted protein that is expressed during this time is tar-

geted to the peri-arbuscular space [80]. Although not proven, an analogous situation could eas-

ily explain the unique proteins that are delivered to the growing bacterial infection thread: Any

protein expressed at a time of infection thread growth, such as NPL, will, by default, be tar-

geted to the tip of the growing infection thread [79].

Once initiated, progression of the infection thread appears to function in a manner analo-

gous to the invasion of the plant cell by mycorrhizal fungal hyphae. Similar cellular structures

have been reported during colonisation by both organisms [81,82], with the nucleus lining up

to the site of infection and cytoplasmic bridges becoming apparent between the infection site

and the nucleus, predicting the path of the infection structures. Beyond these commonalities

in cellular structures are also commonalities in the genetic components or homologous genetic

components required for the extension of both mycorrhizal fungal and rhizobial infection

structures. These genetic components make up a protein complex, the infectosome, which

forms at the tip of infection threads regulating exocytosis and is composed of VAPYRIN

(VPY), the E3 ligase LUMPY INFECTION (LIN)/CERBERUS, and EXOCYST subunit H4

(EXO70 H4) [83–85]. The infectosome governs polar growth of infection threads by regulating

the fusion of vesicles (Fig 2). In addition, the coiled-coil protein RHIZOBIUM-DIRECTED

POLAR GROWTH (RPG) [15,86], which is essential for rhizobial infection, is located at both

the perinuclear cytoplasm and the tip of the growing infection thread [79], providing a tanta-

lising link to the nucleus that appears to guide the growth of the infection thread. Note that

RPG is one of the few genes shown to be lost with the loss of nodulation, highlighting the cen-

tral role it appears to play in allowing the existence of the RNS [15,16].
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Intercellular infection

Intercellular rhizobial infection is observed in approximately 25% of legume species [87,88].

Here, the rhizobia enter the root tissue by degrading the middle lamella and primary cell wall

and progressing through the intercellular space between epidermal and cortical cells (Fig 2B).

In some interactions, rhizobia proliferate in the intercellular spaces and only become intracel-

lular at the point of colonising the cells of the nodule [89,90]. In other cases, rhizobia induce

cell death to form intercellular infection pockets in dead or collapsed cells, from which intra-

cellular infection pegs or threads are initiated [89,90].

Unsolved mystery 3: What genetic adaptations allowed rhizobia to infect

plant cells intercellularly?

Intercellular infection appears simpler than intracellular infection through infection threads

and thus is an attractive target for engineering, when considering transferring RNS to other

crops. Since intercellular infection has been observed in the nitrogen-fixing lineages across the

nitrogen-fixing clade: Fabales; Fagales; Cucurbitales; and Rosales, intercellular infection is con-

sidered a more ancient pathway for flowering plants that established a nitrogen-fixing symbio-

sis with bacteria [90], which likely evolved from intercellular diazotrophic endophytes [91,92].

Interestingly, recent studies have shown that Fabales and Fagales are sister clades [93,94], and

the root hair–based intracellular infection likely evolved before their diversification because

several reports indicate that the basal clades in Fabaceae [95,96] and several nodulating acti-

norhizal lineages in Fagales utilise intracellular infection mechanisms [97,98]. Therefore, the

most recent common ancestor of Fabales and Fagales that accepted rhizobium as a microsym-

biont might already have had the genetic framework to allow root hair–based intracellular

infection [99]. Consequently, intercellular infection observed within legume lineages is cur-

rently considered a derived trait in Fabales. Most of these host plants in Cucurbitales and

Rosales that show such alternative infection strategies are challenging genetic systems, making

understanding this intercellular infection mode difficult. However, recent advances in study-

ing species in Fabales and Fagales are changing this situation. The discovery of situations

whereby the model legume Lotus japonicus undergoes intercellular rather than intracellular

infection [100] has allowed a genetic dissection of this infection route [101], and the develop-

ment of Aeschynomene evenia as a genetic model is also allowing the dissection of alternative

means of rhizobial infection [48,49]. To date, these studies have only shown the importance of

genetic components already known to be important for intracellular infection, but these plat-

forms should soon allow novel genetic components to be discovered with specific functions in

intercellular infection. Compared with intracellular infection, our understanding of intercellu-

lar infection is still relatively limited. It remains unclear whether intercellular infection will be

easier to engineer, although it logically appears that way. Further studies and knowledge of

these intercellular colonisation systems could provide a potential alternative path for crop

engineering. This information might be precious, especially when our engineering target crop

species are monocots, like maize, rice, and wheat, which are distantly related to the nitrogen-

fixing clade of plants.

III. How do plants regulate nodule organogenesis?

A nodule must form below the site where rhizobia make contact with the root surface, and as

such, unlike lateral roots, nodule development cannot be predisposed to a discrete group of

cells. Rather, a nodule initiation has to occur de novo, in cortical and pericycle cells that are

fully differentiated and ordinarily would not undergo further cell divisions. The site of nodule

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001982 March 14, 2023 9 / 24

https://doi.org/10.1371/journal.pbio.3001982


initiation, whether from the outer or inner root cortex, differs between legume species and is

associated with two nodule types, indeterminate and determinate, which differ in the mainte-

nance of an apical meristem (Fig 3) [102–105]. In all situations, the transcription factor NIN is

the master regulator of integrating the developmental processes necessary to accommodate

nitrogen-fixing bacteria: activating infection threads in epidermal cells and simultaneously

triggering nodule primordia formation in the root cortex. NIN promotes an unknown mobile

signal, potentially cytokinin, which links the developmental changes in the epidermis to the

root cortex [22]. Cytokinin and NIN form a feedforward loop in the root cortex, with cytokinin

signalling activating NIN expression [106], and NIN activating expression of the nodulation-

associated cytokinin receptor CRE1 [22] (Figs 2C, 3A). This creates a signalling centre within a

discrete group of cortical cells, which is sufficient to promote nodule organogenesis [107].

Such cytokinin induction of a root organogenesis program appears unique to legumes; indeed,

in other plant species, the presence of cytokinin suppresses root organogenesis [107].

Unsolved mystery 4: What is the signal moving from the epidermis to the

cortex and pericycle to activate cytokinin signalling and nodule

primordium formation?

Nodule development must be temporally and spatially coordinated with bacterial infection,

and underpinning this coordination is cell-to-cell communication linking activation of the

symbiosis signalling pathway in the root epidermis to the promotion of cell divisions in the

root cortex and pericycle [22,108]. NFs themselves seem unable to diffuse into the deeper cor-

tical cell layers [109], and evidence supports the notion that a product of NIN in the epidermis

may act as the mobile signal [22]. This could be cytokinin, and, indeed, genes involved in cyto-

kinin biosynthesis and accumulation are induced in epidermal cells upon NF perception

[110,111] (Fig 2C). However, recent work has demonstrated that infection by mycorrhizal

fungi and treatments with elicitors from mycorrhizal fungi promote cell divisions in the cortex

and the emergence of lateral roots in both legumes and cereals [81,112]. This suggests that the

cell-to-cell communication linking symbiosis signalling at the root surface to the induction of

root organogenesis may be another mechanism in nodulation derived from the more ancient

mycorrhizal symbiosis. If correct, this places the novelty for nodulation being defined by the

ability to amplify this signal and drive a novel aspect of development. Whether cytokinin or a

component derived from the mycorrhizal symbiosis, the nature of this diffusible signal linking

root tissues during nodule development, is both interesting and strategically important.

The unique ability of legumes to respond to cytokinin with the promotion of nodule initia-

tion appears to be defined by the cytokinin regulation of NIN, which, in turn, recruits LAT-
ERAL ORGAN BOUNDARIES DOMAIN 16 (LBD16), a central regulator of lateral root

development, to facilitate nodule organogenesis [113,114]. LBD16 coordinates the accumula-

tion of a local auxin maximum, through the regulated expression of SHORT-INTERNODES/
STYLISH (SHI/STY) transcription factors that, in turn, initiate expression of the YUCCAs,

rate-limiting enzymes involved in auxin biosynthesis [113]. NIN also promotes the expression

of Nuclear Factor-Y (NF-Y) subunit genes, such as NF-YA1 and NF-YB1 [115–121], which, in

both plants and animals, play vital roles in the regulation of the cell cycle and cell proliferation

[122,123]. These genes have also been demonstrated to further promote auxin biosynthesis

during nodulation via up-regulation of SHI/STY [116,117,119] (Fig 3). The local accumulation

of auxin at the site of nodule formation is further facilitated by the suppression of polar auxin

transport [124,125], allowing accumulation of auxin within the local site of NIN induction (Fig

3). Auxin accumulation appears to be further promoted by auxin activation of LBD16 expres-

sion, creating a feedforward loop. These multiple avenues for NIN regulation of auxin

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001982 March 14, 2023 10 / 24

https://doi.org/10.1371/journal.pbio.3001982


Fig 3. Nodule organogenesis. (A) The regulatory network underpinning nodule development. In cortical cells, activation of the cytokinin receptor CRE1/

LHK1 induces NIN expression. In return, NIN promotes the transcription of CRE1, creating a feedforward loop that can increase cytokinin signalling and NIN

accumulation. NIN controls the expression of LBD16, an auxin-responsive transcription factor that activates the auxin symbiosis pathway via SHI/STY
transcription factors, which, in turn, promote expression of YUCCAs, rate-limiting enzymes in auxin biosynthesis. The expression and distribution of auxin
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accumulation allow the amplification of a local cytokinin signal into an auxin “hub,” creating a

new developmental centre for de novo meristem formation.

While initiation of a nodule converges on multiple aspects of lateral root development

[113,114], what emerges from a nodule meristem is quite different to a lateral root; in particular,

nodules of legumes possess peripheral vascular strands and contain many cells able to harbour

intracellular bacteria. The demonstration of a single origin for the evolution of nodules [15,16]

suggests that the structure of nodules in non-legumes, so called actinorhizal species, may repre-

sent the primitive state of nodules: Such nodules possess a centralised vasculature [97,126],

implying that the peripheral vasculature observed in legume nodules, probably evolved from an

intermediary structure more analogous to a lateral root. This, alongside the genetic dissection of

nodulation, suggests that lateral root development underpins the formation of a nodule, but this

dictates the need for developmental regulators that impart a nodule identity onto the cells of the

nodule primordia. NODULE ROOTs (NOOTs), orthologs of the BLADE-ON-PETIOLE1/2
(AtBOP1/2) genes encoding ankyrin repeat and BTB/POZ domain-containing cotranscriptional

regulators in A. thaliana, are essential for maintaining nodule identity, after initiation: In their

absence, nodules revert back to a lateral root [127,128] (Fig 3), with lateral roots emerging from

nodules of noot mutants. This implies that NOOTs are required to maintain the identity of the

nodule; however, the regulators that initially drive this nodule identity have yet to be defined.

Unsolved mystery 5: What is the mechanism that dictates nodule identity?

Several reports have indicated that rice and Brachypodium can initiate nodule-like structures

upon auxin treatment [129–131] but do not do so following treatments with cytokinins [132].

This supports the notion that NIN induction, as a function of cytokinin [106], is one of the key

aspects of novelty within legumes. NIN promotes the initiation of a meristem, with many par-

allels to a lateral root, yet what emerges is developmentally quite different. We do not yet know

the regulators that allow specific aspects of nodule development to emerge from a lateral root

meristemic program. NOOTs are clearly a component of this nodule identity, but their princi-

pal function appears to be maintaining nodule identity, rather than activating it. There must

be a developmental regulator, likely promoted by NIN, which acts in parallel to LBD16, to

drive the novel development we see in a nodule. This novel regulator likely controls the expres-

sion of NOOTs. Understanding these regulator(s) is central to our ability to engineer this novel

mode of root development into our target cereal crops.

IV. How do plants create an appropriate environment for nitrogen-

fixation?

The novelty of nodule development is the ability for cells within the nodule to accommodate

intracellular bacteria and the activation of processes that create a suitable environment for

transporters, PINs and LAXs, are precisely regulated during different stages of nodule development to control the dynamics of the accumulating auxin

maximum. NIN also induces NF-YA1 expression, which further enhances STY/SHI expression, as well as likely contributing to other aspects of the nodule

meristem and bacterial infection. We propose the existence of an unknown component that dictates nodule identity, which, in turn, likely affects expression of

NOOT genes that are necessary to maintain nodule identity. NIN also controls the nodule maturation process to transition into the nitrogen-fixing state. The

DNF1 signal peptidase complex cleaves the NIN protein and generates a C-terminal NIN fragment, which activates genes involved in bacteroid differentiation

and nitrogen fixation, including NCRs, GRPs, and leghemoglobin. (B, C) The developmental patterns of indeterminate and determinate legume nodules at

initiation and maturation stages. (B) For indeterminate nodules, the initial cell divisions forming the nodule primordia occur in inner cortical cells, while in

determinate nodules, this occurs in the outer cortical cells (C). Despite their anatomical differences, cell divisions in the pericycle have been observed in both

nodule types. (B) Mature indeterminate nodules contain a persistent meristem at the tip of the nodule, which is commonly observed in M. truncatula and

Pisum sativum. (C) Mature determinate nodules form without having a persistent meristem, which is often seen in L. japonicus, Phaseolus vulgaris, and Glycine
max. Created with BioRender.com. DNF1, DEFECTIVE IN NITROGEN FIXATION1; GRP, glycine-rich peptide; LBD16, LATERAL ORGAN BOUNDARIES
DOMAIN 16; NCR, nodule-specific cysteine-rich peptides; NIN, NODULE INCEPTION; NOOT, NODULE ROOT; SHI/STY, SHORT-INTERNODES/
STYLISH.

https://doi.org/10.1371/journal.pbio.3001982.g003
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nitrogen fixation. Understanding these processes is central to the engineering of the nitrogen

fixation state. Multiple legumes and all actinorhizal nodulators have “fixation threads” that

contain either filamentous Frankia bacteria or single-celled rhizobia, within a continuous

infection thread that proliferates within the cells of the nodule, showing strong parallels to an

arbuscule in the mycorrhizal symbiosis. Many species of legumes have taken this process a step

further, with release of rhizobia into membrane-bound compartments contained within the

cells of the nodule, so-called symbiosomes. Recent work suggests this innovation may have

allowed an evolutionarily stabilising effect for nitrogen fixation in legumes, perhaps by provid-

ing much greater host-control of the bacterial symbionts [96]. A further step in host-control of

symbionts observed in some legumes is the terminal differentiation of rhizobia into bacteroids,

a state that cannot be reversed to free-living bacteria [96,126]. While these latter processes

probably aid in the avoidance of cheaters and increase the efficiency of nitrogen fixation and

its delivery, they are not essential, since plant species exist that fix nitrogen without either sym-

biosomes or bacteroids (Fig 4). While these latter stages may have desirable benefits, when

considering the engineering of nitrogen fixation, they appear unessential. Thus, at least at this

stage in the engineering process, they should not be the focus. What is critical for engineering

nitrogen fixation is an understanding of the cellular state that allows intracellular colonisation

by bacteria and the processes that facilitate the maturation of a nodule into a nitrogen-fixing

structure, able to efficiently deliver fixed nitrogen to the host plant.

Alongside the activation of nodulation, the master regulator NIN with its close homologue

NLP2 controls the latter stages of nodule maturation, transitioning the nodule into the nitro-

gen-fixing state [133,134]. This late stage of NIN functionality involves the cleavage of NIN,

liberating the C-terminal domain of NIN to directly activate late-stage genes associated with

nitrogen fixation [133]. Alongside the induction of peptides that drive bacteroid differentiation

[135] is the induction of leghemoglobins, which buffer oxygen to create a hypoxic environ-

ment for nitrogenase [134]. In parallel to these processes, tight control of metabolites needs to

be engendered on the membrane that surrounds the bacteria, allowing exchange of a carbon

supply, alongside elements essential for nitrogen fixation, in exchange for ammonia derived

from nitrogenase action [136–138].

Unsolved mystery 6: How do plant cells accommodate bacteria

intracellularly?

Intracellular accommodation of bacteria provides a stable environment for nitrogen fixation.

To accommodate the rhizobia, defence responses need to be suppressed, and the regulation of

the cell cycle appears critical [104,139]. NIN suppresses the defence responses by regulating sev-

eral genes that appear to function in the regulation of plant defences in the nodule: Defective in
Nitrogen Fixation 2 (DNF2), Nodules with Activated Defence 1 (NAD1), and Symbiotic Cysteine-
rich Receptor Kinase (SymCRK) [140–142]. The genetic characterisation of these genes implies a

pathway functioning in the nodule associated with the regulation of plant defences, but the

detailed mechanisms of how this pathway functions are unknown. Controlling endoreduplica-

tion in nodule meristematic cells has been shown to be essential for accommodating and main-

taining rhizobia, with CCS52A playing a vital role in this control of the cell cycle and the

production of polyploid cells [143]. It remains to be shown whether the polyploid nature of

nodule cells and the down-regulation of plant defences alone are sufficient to allow intracellular

bacterial accommodation. We need to know whether additional processes are essential for this

accommodating state of nodule cells. Further, we need to understand the exact regulators that

function in this late-stage maturation of a nodule, if that is more than NIN alone, to coordinate

these processes, if we are to transfer this stable accommodation of nitrogen-fixing bacteria.
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Transporting fixed nitrogen from the bacteria to the peribacteroid space may occur via dif-

fusion or through protein channels [137]. An H+-ATPase on the symbiosome membrane

pumps H+ into the peribacteroid space creating an acidic environment, which traps ammo-

nium by protonating ammonia, producing ammonium cations. The down-regulation of a

Fig 4. Creating an environment for nitrogen fixation and nitrogen delivery. Once the infection thread reaches the nodule primordium, infection threads

release droplets into the cell containing bacteria, always surrounded by a plant-derived membrane. These structures, the so-called symbiosomes, are organelle-

like. Symbiosomes can continue to divide, and the bacteria can differentiate into bacteroids. The DNF1-cleaved N-NCR is delivered into the symbiosome via

membrane vesicle trafficking and induces bacteroid differentiation. DNF1 also proteolytically cleaves the NIN protein and generates a C-NIN, activating genes

involved in terminal differentiation and nitrogen fixation. The nitrogenase enzyme complex in rhizobia converts N2 into ammonia that is released from the

bacteroid via diffusion or unknown channels. The H+-ATPases on the symbiosome membrane create an acidic peribacteroid space, which traps ammonium by

protonating ammonia and producing ammonium cations. Ammonium cations are exported into the cytoplasm of plant cells and then assimilated into Gln and

Glu by GS and by GOGAT, transferring the amide group from Gln to AKG. Depending on legume species and nodule types, Gln and Glu are converted into

Asn or ureides for long-distance transport through the xylem. In the end, the nodule undergoes senescence and bacteroids lyse. Different CPs are highly

expressed in nodules at the senescence stage, especially a papain peptidase (CP6) and a VPE, which are controlled by a transcription factor NAC969. Created

with BioRender.com. AKG, α-ketoglutarate; Asn, Asparagine; C-NIN, C-terminal NIN peptide fragment; CP, cysteine proteinase; Gln, glutamine; Glu,

glutamate; GOGAT, glutamate synthase; GS, glutamine synthetase; NAC, NAM/ATAF/CUC; NAC969, NAC-encoding 969; NIN, NODULE INCEPTION;

N-NCR, N-terminal signal peptide of NCRs; UPS, Ureide Permease; VPE, vacuolar processing enzyme.

https://doi.org/10.1371/journal.pbio.3001982.g004
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rhizobial ammonium transporter, AMT, might be a mechanism to prevent ammonium from

flowing back into the bacteroid [144]. Ammonia and ammonium cations are then exported to

the plant cytoplasm via two transporters on the symbiosome membrane: a voltage-activated

monovalent cation channel [145] and nodulin 26 (NOD26) [146]. The cation channel is non-

selective and can transport NH4
+, K+, and Na+. Whether NH4

+ specific channels are also

located on this membrane is currently unknown. NOD26 is an aquaglyceroporin and can

transport H2O and NH3 [146] and associates with glutamine synthetase (GS), which rapidly

assimilates NH3 into glutamine (Gln), creating a sink for NH3 transport. Exported ammonia

or ammonium cations can also be assimilated into glutamate (Glu) by glutamate synthase,

transferring the amide group from Gln to α-ketoglutarate. Depending on the legume species

and nodule types, Gln and Glu are converted into Asparagine (Asn) or Ureides for long-dis-

tance transport through the xylem [138]. Ureide Permeases in Phaseolus vulgaris [147] and in

Glycine max [148] have been demonstrated on membranes of nodule cortical cells and vascular

cells, and ship ureides into the xylem (Fig 4).

The last stage of nodule organogenesis is senescence, which plays a vital role in regulating

the nodule nitrogen fixation function in response to ageing or environmental signals [149–

151]. Nodule senescence leads to the disintegration of bacteroids and host plant cells and ends

this symbiotic association. One of the most critical aspects of this senescence process is a rise

in proteolytic activity. Previous studies have shown that different cysteine proteinases (CPs)

are highly expressed in nodules at the senescence stage, especially a papain peptidase (CP6)

and a vacuolar processing enzyme (VPE) [152]. Both their expressions and activities are

increased during nodule senescence induced by abiotic stress or age [150–152]. The early

expression of CP6 and VPE promotes senescence and serves as a marker for nodule senescence

(Fig 4).

Unsolved mystery 7: What controls nodule senescence?

Though progress has been made, detailed mechanisms and critical regulators involved in nod-

ule senescence are not fully understood. One crucial aspect of nodule senescence is regulating

CPs, which are controlled by a transcription factor NAM/ATAF/CUC (NAC)-encoding 969

(NAC969) [153] (Fig 4). Understanding the detailed mechanism of nodule senescence is

important, since it allows the control of this association, ensuring it delivers benefits to the

plant.

Conclusions and future perspectives

Our understanding of the nitrogen-fixing symbiosis of legumes has advanced dramatically

over the last few decades. This has provided us with detailed frameworks for how rhizobial

bacteria are recognised, how bacterial infection is initiated, the developmental programs

underpinning nodulation, and the processes that allow these structures to support nitrogen

fixation and deliver its products to the plant. There appear to be very few novelties in the rhizo-

bial symbiosis of legumes, with many genes underpinning this process being derived from the

preexisting symbiosis with arbuscular mycorrhizal fungi and from root development. Rather

than novel emergence of new genes, the evolution of nodulation appears to have involved the

renetworking of preexisting processes, principally controlled by the master regulator NIN.

This transcription factor appears at all stages of the development of the nitrogen-fixing nodule,

and perhaps more than anything, we need to understand not only that this transcription factor

can control all of these steps, but how it is able to activate such diverse development in differ-

ent cell types. Key to this question is a high degree of cellular resolution of the developmental

processes associated with nodulation. The emergence of spatial omics, such as single-cell
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sequencing, as well as spatial transcriptomics [154] will facilitate such resolution. The concept

of renetworking preexisting processes creates a realistic challenge for transferring nitrogen fix-

ation: consider this over building entire signal transduction pathways or developmental pro-

cesses from scratch. Even so, this remains a significant challenge. However, if the field

continues to advance at the pace it has in the last two decades, then we hope a solution that

delivers secure, sustainable, and affordable food will be in reach within the next decade.
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genetic diversity and gene synthesis to identify superior nitrogenase NifH protein variants to engineer

N2-fixation in plants. Commun Biol. 2021:4. https://doi.org/10.1038/s42003-020-01536-6 PMID:

33398015
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49. Quilbé J, Lamy L, Brottier L, Leleux P, Fardoux J, Rivallan R, et al. Genetics of nodulation in Aeschy-

nomene evenia uncovers mechanisms of the rhizobium–legume symbiosis. Nat Commun. 2021:12.

https://doi.org/10.1038/s41467-021-21094-7 PMID: 33547303

50. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre J-C, et al. Legumes Symbioses: Absence of

Nod Genes in Photosynthetic Bradyrhizobia. Science (1979). 2007; 316:1307–1312. https://doi.org/

10.1126/science.1139548 PMID: 17540897

51. Teulet A, Busset N, Fardoux J, Gully D, Chaintreuil C, Cartieaux F, et al. The rhizobial type III effector

ErnA confers the ability to form nodules in legumes. Proc Natl Acad Sci U S A. 2019; 116:21758–

21768. https://doi.org/10.1073/pnas.1904456116 PMID: 31591240

52. Okazaki S, Kaneko T, Sato S, Saeki K. Hijacking of leguminous nodulation signaling by the rhizobial

type III secretion system. Proc Natl Acad Sci U S A. 2013; 110:17131–17136. https://doi.org/10.1073/

pnas.1302360110 PMID: 24082124

53. Liu CW, Breakspear A, Guan D, Cerri MR, Jackson K, Jiang S, et al. NIN acts as a network hub con-

trolling a growth module required for rhizobial infection. Plant Physiol. 2019; 179:1704–1722. https://

doi.org/10.1104/pp.18.01572 PMID: 30710053

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001982 March 14, 2023 18 / 24

https://doi.org/10.1038/s41467-022-33908-3
https://doi.org/10.1038/s41467-022-33908-3
http://www.ncbi.nlm.nih.gov/pubmed/36307431
https://doi.org/10.1094/MPMI-19-0495
http://www.ncbi.nlm.nih.gov/pubmed/16673936
https://doi.org/10.1104/pp.107.109876
http://www.ncbi.nlm.nih.gov/pubmed/17965173
https://doi.org/10.1111/tpj.12723
http://www.ncbi.nlm.nih.gov/pubmed/25399831
https://doi.org/10.1093/pcp/pcu129
http://www.ncbi.nlm.nih.gov/pubmed/25231970
https://doi.org/10.1104/pp.115.2.351
http://www.ncbi.nlm.nih.gov/pubmed/12223813
https://doi.org/10.1126/science.abb3377
https://doi.org/10.1126/science.abb3377
http://www.ncbi.nlm.nih.gov/pubmed/32764065
https://doi.org/10.7554/eLife.03891
http://www.ncbi.nlm.nih.gov/pubmed/25422918
https://doi.org/10.1073/pnas.2205920119
https://doi.org/10.1073/pnas.2205920119
http://www.ncbi.nlm.nih.gov/pubmed/35972963
https://doi.org/10.1016/j.cub.2016.01.069
http://www.ncbi.nlm.nih.gov/pubmed/27020747
https://doi.org/10.1038/s41598-018-29301-0
http://www.ncbi.nlm.nih.gov/pubmed/30026595
https://doi.org/10.1038/s41598-021-00480-7
http://www.ncbi.nlm.nih.gov/pubmed/34686745
https://doi.org/10.1104/pp.15.01134
http://www.ncbi.nlm.nih.gov/pubmed/26446590
https://doi.org/10.1038/s41467-021-21094-7
http://www.ncbi.nlm.nih.gov/pubmed/33547303
https://doi.org/10.1126/science.1139548
https://doi.org/10.1126/science.1139548
http://www.ncbi.nlm.nih.gov/pubmed/17540897
https://doi.org/10.1073/pnas.1904456116
http://www.ncbi.nlm.nih.gov/pubmed/31591240
https://doi.org/10.1073/pnas.1302360110
https://doi.org/10.1073/pnas.1302360110
http://www.ncbi.nlm.nih.gov/pubmed/24082124
https://doi.org/10.1104/pp.18.01572
https://doi.org/10.1104/pp.18.01572
http://www.ncbi.nlm.nih.gov/pubmed/30710053
https://doi.org/10.1371/journal.pbio.3001982


54. Thilini Chethana KW, Jayawardena RS, Chen YJ, Konta S, Tibpromma S, Abeywickrama PD, et al.

Diversity and function of appressoria. Pathogens. 2021; 10:746. https://doi.org/10.3390/

pathogens10060746 PMID: 34204815

55. Gage DJ. Analysis of infection thread development using Gfp-and DsRed-expressing Sinorhizobium

meliloti. J Bacteriol. 2002; 184:7042–7046. https://doi.org/10.1128/JB.184.24.7042-7046.2002 PMID:

12446653

56. Westhoek A, Clark LJ, Culbert M, Dalchau N, Griffiths M, Jorrin B, et al. Conditional sanctioning in a

legume–Rhizobium mutualism. Proc Natl Acad Sci. 2021; 118:e2025760118. https://doi.org/10.1073/

pnas.2025760118 PMID: 33941672
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112. Chiu CH, Roszak P, Orvošová M, Paszkowski U. Arbuscular mycorrhizal fungi induce lateral root

development in angiosperms via a conserved set of MAMP receptors. Curr Biol. 2022. https://doi.org/

10.1016/j.cub.2022.08.069 PMID: 36115339

113. Schiessl K, Lilley JLS, Lee T, Tamvakis I, Kohlen W, Bailey PC, et al. NODULE INCEPTION Recruits

the Lateral Root Developmental Program for Symbiotic Nodule Organogenesis in Medicago trunca-

tula. Curr Biol. 2019; 29:3657–3668.e5. https://doi.org/10.1016/j.cub.2019.09.005 PMID: 31543454

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001982 March 14, 2023 21 / 24

https://doi.org/10.1111/nph.16290
https://doi.org/10.1111/nph.16290
http://www.ncbi.nlm.nih.gov/pubmed/31665814
https://doi.org/10.1371/journal.pone.0049520
http://www.ncbi.nlm.nih.gov/pubmed/23185349
https://doi.org/10.1111/nph.18321
http://www.ncbi.nlm.nih.gov/pubmed/35901264
https://doi.org/10.1016/j.pbi.2014.03.001
https://doi.org/10.1016/j.pbi.2014.03.001
http://www.ncbi.nlm.nih.gov/pubmed/24691197
https://doi.org/10.1094/MPMI-23-6-0740
http://www.ncbi.nlm.nih.gov/pubmed/20459313
https://doi.org/10.1016/j.xplc.2019.100019
http://www.ncbi.nlm.nih.gov/pubmed/33404552
https://doi.org/10.1038/ncomms1009
http://www.ncbi.nlm.nih.gov/pubmed/20975672
https://doi.org/10.1093/plphys/kiaa049
http://www.ncbi.nlm.nih.gov/pubmed/33793909
https://doi.org/10.1016/j.xplc.2020.100104
http://www.ncbi.nlm.nih.gov/pubmed/33367261
https://doi.org/10.1016/j.pbi.2020.102000
http://www.ncbi.nlm.nih.gov/pubmed/33454544
https://doi.org/10.1111/jipb.13207
http://www.ncbi.nlm.nih.gov/pubmed/34962095
https://doi.org/10.1007/s10886-014-0472-7
http://www.ncbi.nlm.nih.gov/pubmed/25052910
https://doi.org/10.1105/tpc.18.00478
http://www.ncbi.nlm.nih.gov/pubmed/30610167
https://doi.org/10.1126/science.1132397
http://www.ncbi.nlm.nih.gov/pubmed/17110537
https://doi.org/10.1111/tpj.12374
http://www.ncbi.nlm.nih.gov/pubmed/24329948
https://doi.org/10.1046/j.1365-313x.2000.00656.x
http://www.ncbi.nlm.nih.gov/pubmed/10652156
https://doi.org/10.1016/j.molp.2015.03.010
http://www.ncbi.nlm.nih.gov/pubmed/25804975
https://doi.org/10.1104/pp.16.00711
http://www.ncbi.nlm.nih.gov/pubmed/27217496
https://doi.org/10.1016/j.cub.2022.08.069
https://doi.org/10.1016/j.cub.2022.08.069
http://www.ncbi.nlm.nih.gov/pubmed/36115339
https://doi.org/10.1016/j.cub.2019.09.005
http://www.ncbi.nlm.nih.gov/pubmed/31543454
https://doi.org/10.1371/journal.pbio.3001982


114. Soyano T, Shimoda Y, Kawaguchi M, Hayashi M. A shared gene drives lateral root development and

root nodule symbiosis pathways in Lotus. Science (1979). 2019; 366:1021–1023. https://doi.org/10.

1126/science.aax2153 PMID: 31754003

115. Baudin M, Laloum T, Lepage A, Rı́podas C, Ariel F, Frances L, et al. A phylogenetically conserved

group of nuclear factor-Y transcription factors interact to control nodulation in legumes. Plant Physiol.

2015; 169:2761–2773. https://doi.org/10.1104/pp.15.01144 PMID: 26432878

116. Shrestha A, Zhong S, Therrien J, Huebert T, Sato S, Mun T, et al. Lotus japonicus Nuclear Factor

YA1, a nodule emergence stage-specific regulator of auxin signalling. New Phytologist. 2020. https://

doi.org/10.1111/nph.16950 PMID: 32978812

117. Soyano T, Kouchi H, Hirota A, Hayashi M. NODULE INCEPTION Directly Targets NF-Y Subunit

Genes to Regulate Essential Processes of Root Nodule Development in Lotus japonicus. PLoS

Genet. 2013:9. https://doi.org/10.1371/journal.pgen.1003352 PMID: 23555278

118. Rey T, Laporte P, Bonhomme M, Jardinaud MF, Huguet S, Balzergue S, et al. MtNF-YA1, a central

transcriptional regulator of symbiotic nodule development, is also a determinant of medicago trunca-

tula susceptibility toward a root pathogen. Front Plant Sci. 2016:7. https://doi.org/10.3389/fpls.2016.

01837 PMID: 27994614

119. Hossain MS, Shrestha A, Zhong S, Miri M, Austin RS, Sato S, et al. Lotus japonicus NF-YA1 plays an

essential role during nodule differentiation and targets members of the SHI/STY gene family. Mol

Plant Microbe Interact. 2016; 29:950–964. https://doi.org/10.1094/MPMI-10-16-0206-R PMID:

27929718

120. Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, et al. MtHAP2-1 is a key tran-

scriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago trunca-

tula. Genes Dev. 2006; 20:3084–3088. https://doi.org/10.1101/gad.402806 PMID: 17114582

121. Combier JP, de Billy F, Gamas P, Niebel A, Rivas S. Trans-regulation of the expression of the tran-

scription factor MtHAP2-1 by a uORF controls root nodule development. Genes Dev. 2008; 22:1549–

1559. https://doi.org/10.1101/gad.461808 PMID: 18519645

122. Laloum T, de Mita S, Gamas P, Baudin M, Niebel A. CCAAT-box binding transcription factors in plants:

Y so many? Trends Plant Sci. 2013; 18:157–166. https://doi.org/10.1016/j.tplants.2012.07.004 PMID:

22939172

123. Ly LL, Yoshida H, Yamaguchi M. Nuclear transcription factor Y and its roles in cellular processes

related to human disease. Am J Cancer Res. 2013; 3:339–346. PMID: 23977444
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140. Domonkos Á, Kovács S, Gombár A, Kiss E, Horváth B, Kováts GZ, et al. NAD1 controls defense-like

responses in Medicago truncatula symbiotic nitrogen fixing nodules following rhizobial colonization in

a BacA-independent manner. Genes (Basel). 2017:8. https://doi.org/10.3390/genes8120387 PMID:

29240711

141. Bourcy M, Brocard L, Pislariu CI, Cosson V, Mergaert P, Tadege M, et al. Medicago truncatula DNF2

is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early

senescence and defense-like reactions. New Phytologist. 2013; 197:1250–1261. https://doi.org/10.

1111/nph.12091 PMID: 23278348

142. Liu J, Rasing M, Zeng T, Klein J, Kulikova O, Bisseling T. NIN is essential for development of symbio-

somes, suppression of defence and premature senescence in Medicago truncatula nodules. New Phy-

tologist. 2021; 230:290–303. https://doi.org/10.1111/nph.17215 PMID: 33471433

143. Vinardell JM, Fedorova E, Cebolla A, Kevei Z, Horvath G, Kelemen Z, et al. Endoreduplication medi-

ated by the anaphase-promoting complex activator CCS52A is required for symbiotic cell differentia-

tion in Medicago truncatula nodules. Plant Cell. 2003; 15:2093–2105. https://doi.org/10.1105/tpc.

014373 PMID: 12953113

144. Patriarca EJ, TatèR, Iaccarino M. Key Role of Bacterial NH4+ Metabolism in Rhizobium-Plant Symbi-

osis. Microbiology and Molecular Biology Reviews. 2002; 66:203–222. https://doi.org/10.1128/MMBR.

66.2.203-222.2002 PMID: 12040124

145. Roberts DM, Tyerman SD. Voltage-Dependent Cation Channels Permeable to NH4 +, K+, and Ca2+

in the Symbiosome Membrane of the Model Legume Lotus japonicus. Plant Physiol. 2002; 128:370–

378. https://doi.org/10.1104/pp.010568 PMID: 11842141

146. Niemietz CM, Tyerman SD. Channel-mediated permeation of ammonia gas through the peribacteroid

membrane of soybean nodules. FEBS Lett. 2000; 465:110–114. https://doi.org/10.1016/s0014-5793

(99)01729-9 PMID: 10631315

147. Pélissier HC, Frerich A, Desimone M, Schumacher K, Tegeder M. PvUPS1, an Allantoin Transporter

in Nodulated Roots of French Bean. Plant Physiol. 2004; 134:664–675. https://doi.org/10.1104/pp.

103.033365 PMID: 14764906

148. Collier R, Tegeder M. Soybean ureide transporters play a critical role in nodule development, function

and nitrogen export. Plant J. 2012; 72:355–367. https://doi.org/10.1111/j.1365-313X.2012.05086.x

PMID: 22725647

149. van de Velde W, Guerra JCP, de Keyser A, de Rycke R, Rombauts S, Maunoury N, et al. Aging in

legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol.

2006; 141:711–720. https://doi.org/10.1104/pp.106.078691 PMID: 16648219

150. Dhanushkodi R, Matthew C, McManus MT, Dijkwel PP. Drought-induced senescence of Medicago

truncatula nodules involves serpin and ferritin to control proteolytic activity and iron levels. New Phytol-

ogist. 2018; 220:196–208. https://doi.org/10.1111/nph.15298 PMID: 29974467

151. Guerra JCP, Coussens G, de Keyser A, de Rycke R, de Bodt S, van de Velde W, et al. Comparison of

developmental and stress-induced nodule senescence in Medicago truncatula. Plant Physiol. 2010;

152:1574–1584. https://doi.org/10.1104/pp.109.151399 PMID: 20081044

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001982 March 14, 2023 23 / 24

https://doi.org/10.1126/science.abg2804
https://doi.org/10.1126/science.abg2804
http://www.ncbi.nlm.nih.gov/pubmed/34709900
https://doi.org/10.1126/science.abg5945
https://doi.org/10.1126/science.abg5945
http://www.ncbi.nlm.nih.gov/pubmed/34709882
https://doi.org/10.3389/fpls.2018.01026
http://www.ncbi.nlm.nih.gov/pubmed/30065740
https://doi.org/10.1093/plphys/kiab280
https://doi.org/10.1093/plphys/kiab280
http://www.ncbi.nlm.nih.gov/pubmed/34618047
https://doi.org/10.1146/annurev-arplant-050312-120235
http://www.ncbi.nlm.nih.gov/pubmed/23451778
https://doi.org/10.3389/fpls.2018.01860
https://doi.org/10.3389/fpls.2018.01860
http://www.ncbi.nlm.nih.gov/pubmed/30619423
https://doi.org/10.1038/nature22009
http://www.ncbi.nlm.nih.gov/pubmed/28300100
https://doi.org/10.3390/genes8120387
http://www.ncbi.nlm.nih.gov/pubmed/29240711
https://doi.org/10.1111/nph.12091
https://doi.org/10.1111/nph.12091
http://www.ncbi.nlm.nih.gov/pubmed/23278348
https://doi.org/10.1111/nph.17215
http://www.ncbi.nlm.nih.gov/pubmed/33471433
https://doi.org/10.1105/tpc.014373
https://doi.org/10.1105/tpc.014373
http://www.ncbi.nlm.nih.gov/pubmed/12953113
https://doi.org/10.1128/MMBR.66.2.203-222.2002
https://doi.org/10.1128/MMBR.66.2.203-222.2002
http://www.ncbi.nlm.nih.gov/pubmed/12040124
https://doi.org/10.1104/pp.010568
http://www.ncbi.nlm.nih.gov/pubmed/11842141
https://doi.org/10.1016/s0014-5793%2899%2901729-9
https://doi.org/10.1016/s0014-5793%2899%2901729-9
http://www.ncbi.nlm.nih.gov/pubmed/10631315
https://doi.org/10.1104/pp.103.033365
https://doi.org/10.1104/pp.103.033365
http://www.ncbi.nlm.nih.gov/pubmed/14764906
https://doi.org/10.1111/j.1365-313X.2012.05086.x
http://www.ncbi.nlm.nih.gov/pubmed/22725647
https://doi.org/10.1104/pp.106.078691
http://www.ncbi.nlm.nih.gov/pubmed/16648219
https://doi.org/10.1111/nph.15298
http://www.ncbi.nlm.nih.gov/pubmed/29974467
https://doi.org/10.1104/pp.109.151399
http://www.ncbi.nlm.nih.gov/pubmed/20081044
https://doi.org/10.1371/journal.pbio.3001982


152. Pierre O, Hopkins J, Combier M, Baldacci F, Engler G, Brouquisse R, et al. Involvement of papain and

legumain proteinase in the senescence process of Medicago truncatula nodules. New Phytologist.

2014; 202:849–863. https://doi.org/10.1111/nph.12717 PMID: 24527680
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