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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:We saccade 3 to 5 times per second when reading. However, little is known about the neuronal

mechanisms coordinating the oculomotor and visual systems during such rapid processing.

Here, we ask if brain oscillations play a role in the temporal coordination of the visuomotor inte-

gration. We simultaneously acquired MEG and eye-tracking data while participants read sen-

tences silently. Every sentence was embedded with a target word of either high or low lexical

frequency. Our key finding demonstrated that saccade onsets were locked to the phase of

alpha oscillations (8 to 13 Hz), and in particular, for saccades towards low frequency words.

Source modelling demonstrated that the alpha oscillations to which the saccades were locked,

were generated in the right-visual motor cortex (BA 7). Our findings suggest that the alpha

oscillations serve to time the processing between the oculomotor and visual systems during

natural reading, and that this coordination becomes more pronounced for demanding words.

Introduction

Reading is a uniquely human skill, which relies on language comprehension as well as visual

attention. During reading, we saccade around 4 times per second to place the to-be-read word

in the fovea [1]. Although the visual acuity in the parafovea is relatively low, information can

still be extracted [2]. Eye movement studies have found robust evidence of parafoveal process-

ing on the sub-lexical level but have difficulties finding it on the lexical level (for a comprehen-

sive review, please see [3]). During the intersaccadic interval that lasts around 250 ms, our

brain needs to process the fixated word while also planning the next saccade. It takes at least

140 ms to identify the meaning of a visually presented word and 100 ms to initiate and execute

a saccade [4]. Therefore, we argue that the oculomotor and visual systems must be intimately

coordinated to support the rapid visual processing required for fluent reading.

Oscillatory activity in the alpha band (9 to 13Hz) dominates the posterior brain regions and

has long been thought to reflect a brain state of rest or idling [5]. However, more recent studies

show that alpha oscillations reflect the deployment of neural resources in a region-specific

manner not only associated with visual processing [6–8] but also with higher-level cognitive

tasks such as language processing [9]. Further work has converged on the idea that alpha oscil-

lations might support the temporal coordination of information processing by functionally

inhibiting brain regions in a phasic manner [10,11]. Recent studies found that alpha
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oscillations might be more intimately related to saccadic activity than previously appreciated

[12–14]. For example, the lateralization of alpha power relates to the direction of attention-

driven gaze biases during fixation [12], even in the absence of micro-saccades towards the

cued location. In addition, coherent alpha activity between different recording sites in monkey

V4 was found to reflect the remapping of receptive fields before and after saccades [14]. These

findings point to a functional role of alpha oscillations in oculomotor control [15].

There is a need for the oculomotor system to structure the information flow within the

visual hierarchy during the short-lasting fixations, in which neurons have limited time to fire.

Thus, precise spiking timing is essential for optimising neuronal processing [16]. Many studies

found that the phase of neural oscillations was aligned after saccade onset [17–21]. As such,

the saccade onsets might modulate the excitability of the visual cortex to ensure that incoming

visual stimuli arrive at the optimal phase. When monkeys freely viewed natural scenes, the sac-

cades initiation signal modulated the V1 neuronal excitability and synchronised the visually

evoked spikes afterwards on a trial-by-trial basis [17]. This saccade-related spike synchrony

might result in neural amplification, i.e., fixations aligned the phase of neuronal oscillations

and thus increased the impact of neural activity in the visual cortex [18]. Saccades were also

found to synchronise the phase of neural oscillations downstream in the visual hierarchy, e.g.,

the superior temporal sulcus, when monkeys actively viewed objects [19]. The saccade-related

phase resetting of ongoing oscillations may affect memory encoding. In a study where mon-

keys actively viewed images, hippocampal activity at 3 to 12 Hz became more synchronised

after saccades when exploring images that were later remembered [20].

The phase of ongoing oscillations before saccade onset might also play an important role in

visual processing. Staudigl and colleagues applied a visual exploration task and found that the

phase of alpha oscillations in the occipital and medial temporal lobe aligned across trials before

saccades onset. Importantly, images with stronger pre-saccadic phase-locking during explora-

tion would be remembered during a later recall [22]. This pre-saccadic phase-locking strongly

suggests that the phase of the alpha oscillations controls the initiation of eye movements dur-

ing visual exploration. Likewise, the phase of alpha oscillation determines saccadic reaction

times [23], the perception of near-threshold visual stimuli [24], and the awareness of visual tar-

gets [25]. This pre-stimulus phase in slow frequency oscillations was also found to play an

important role in parsing continuous sensory input, determining whether to integrate or seg-

regate 2 stimuli over time [26]. Behavioural performance of a similar temporal binding task

was found to vary with phase-locking to saccades, indicating an oscillatory relationship

between the saccadic eye movements and the timing of visual processing [27].

Here, we ask how the oculomotor and visual systems are coordinated to support reading.

We hypothesised that the phase of ongoing alpha oscillations supports this coordination. We

re-analysed a MEG dataset of a natural reading task (Fig 1A) where brain activity and eye

movements were recorded simultaneously [28]. Each sentence was embedded with a low or a

high lexical frequency target word. First, spectral analysis was conducted to show that the

power of the alpha oscillations was strong during reading. Next, a phase-locking analysis

revealed that the phase of the alpha oscillations aligned before saccade onset and was modu-

lated by the processing demands of the parafoveal word. Finally, the neuronal sources account-

ing for the alpha phase-locking effect were localised to the visual cortex.

Results

No lexical previewing effect in fixation duration for lexicality

The eye movements from the eye tracker were parsed into events of fixations and saccades (for

parameters, see Materials and methods). “First fixation duration” refers to the time of the first
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Fig 1. The natural reading paradigm and eye movement metrics. (A) Eye positions and brain activity were recorded

simultaneously when participants (N = 38) read 228 one-line sentence. All sentences were plausible with unpredicted

target words of either low or high lexical frequency (the dashed rectangle is for illustration only). One-quarter of the

sentences were followed by a comprehension question about the just presented sentence to ensure careful reading. (B)
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fixation when the eye lands on the word (Fig 1B). Here, we compared the first fixation dura-

tions for pre-target and target words under the conditions of low and high frequency target

words. We found a significant difference for the target words (t(37) = 7.10, P = 2.10 × 10−8,

d = 2.30, two-tailed pairwise t test) but not for the pre-target words (t(37) = 0.05, P = 0.96,

d = 0.02, two-tailed pairwise t test, Fig 1C). This finding demonstrates that the lexicality of the

parafoveal target word does not impact the fixation durations of the pre-target word. Consistent

with the literature [3,29], this suggests that eye-tracking data alone do not provide support for lexi-

cal parafoveal processing. In order to ensure that the phase modulation was not biased by any eye

movement related signals, we compared the duration and amplitude of the saccades towards the

target words with low and high lexical frequency. As shown in Fig 1D, no significant difference

was observed for either saccade duration (t(37) = −0.77, P = 0.45, d = 0.13, two-tailed pairwise t
test) or saccade amplitude (t(37) = −1.35, P = 0.19, d = 0.22, two-tailed pairwise t test).

Alpha oscillations prevail during natural reading

We performed a time-frequency analysis for raw power aligned with saccade onsets toward

the target word (Fig 2A; for the baseline corrected time-frequency representation, please see S1

Fig). The raw power was first averaged across sensors and then across all participants to obtain

the grand average. We also applied the FOOOF analysis [30] to separate the aperiodic compo-

nent (1/f distribution) and the oscillatory component from the power spectrum, which showed

a clear peak around the alpha frequency band (Fig 2B). Fig 2C shows the topography of the

alpha power in the −0.2 to 0 s pre-target interval. This 0.2 s time window was the average dura-

tion for pre-target words as observed in Fig 1C, within which the percentage of saccades

showed no significant difference between conditions (t(37) = 0.94, P = 0.35, pairwise t test, two-

sided). Alpha oscillations have long been thought to be depressed (or blocked) when process-

ing visual stimuli [31]; however, this notion stems mainly from paradigms where visual stimuli

are presented one by one on the screen. Here, we show that alpha oscillations remain strong

over parietal and occipital regions when processing words during natural reading. This points

to the importance of using naturalistic situations to study the functional role of alpha

oscillations.

Stronger phase-locking in the alpha band before saccades to lower lexical

frequency words

The phase locking index (PLI) quantifies how consistent the oscillatory phase is over trials [32]

(illustrated in S2 Fig). To uncover the role of the alpha phase during reading, we calculated PLI

in the pre-target interval aligned with saccade onset to target words. Averaged duration of the

pre-target interval was 0.2 s, which was used as the time window for the later permutation test.

We found that the PLI in the alpha band was modulated by the lexical frequency of the parafo-

veal target word. Fig 3A shows the topography highlighting clusters of sensors from a permuta-

tion test supporting a significant effect (N = 38, Pcluster = 0.006, d = 0.94; see Materials and

methods). Fig 3B shows the averaged PLI difference when executing saccades towards low ver-

sus high lexical frequency words over the sensor clusters in Fig 3A (PLIlow−PLIhigh; for the raw

Horizontal eye movement trace of a given sentence was aligned with saccade onsets toward the target word “weird.”

The vertical dashed lines indicated saccade and fixation onset to the target word. (C) The first fixation durations were

significantly longer for target words with low (blue) relative to high (red) lexical frequency (���P = 2.1 × 10−8, N = 38,

two-sided pairwise t test). The lexical frequency of the target word did not affect the first fixation durations of the pre-

target words (P = 0.96, N = 38, two-sided pairwise t test). n.s., not statistically significant. (D) Duration (left panel) and

amplitude (right panel) of the saccades towards the low and high frequency target words. The data in panel (C) and

(D) in the figure can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3001968.g001
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PLI for each condition please see S3 Fig). The alpha phase-locking during the pre-target inter-

val was significantly stronger when previewing words with lower lexical frequency in the paraf-

ovea. Although the alpha phase before making saccades is more consistent over trials when

previewing a low frequency compared to a high frequency word, the actual preferred alpha

phase in each condition is not consistent across participants (S4B Fig). This is likely because

the underlying cortical dipolar generators of the alpha activity have different orientations with

respect to the MEG sensors across participants. The variability in dipole orientation results in

different absolute phases of the alpha oscillations in the MEG sensors. Also, we did not find a

systematic difference in absolute preferred phase when comparing saccades towards low and

high frequency words (see S4F Fig). We conclude that the strength of alpha phase locking dif-

fered between conditions but not the actual preferred phase. This absence of phase-difference

is consistent with a mechanism in which saccades typically are locked to the same phase of the

alpha oscillations, but this locking can be stronger or weaker. Future studies based on intracra-

nial recordings in human or nonhuman primates would allow for estimating the absolute

oscillatory phase to which saccades are locked.

We conducted a control analysis to compare the PLI difference when aligned with fixation

onset rather than saccade onset. The same cluster-based permutation test as in Fig 3A was per-

formed for epochs that were aligned with fixation onset towards the target words. No robust

effects were found (N = 38, Pcluster = 0.26, d = 0.37) and the averaged PLI difference over the

sensor cluster from Fig 3A is shown in Fig 3C. To test the specificity of the alpha frequency

band, we did the same PLI analysis for the delta (1 to 3 Hz), theta (4 to 8 Hz), and beta (13 to

30 Hz) frequency bands. However, no significant difference between the low and high fre-

quency target lexical conditions was observed (S5 Fig). Together, these results indicate the spe-

cial functional role of alpha oscillations in coordinating the oculomotor and visual systems

during natural reading.

Another control analysis was conducted to test whether the PLI difference found before sac-

cades to the targets was confounded by power. For the pre-target intervals (−0.2 to 0 s aligned

with saccade onset towards target words), alpha power from 9 to 13 Hz was averaged over the

same sensor clusters as shown in Fig 3A. No significant alpha power difference was found

between low and high lexical target conditions (S6 Fig, t(37) = −1.19, P = 0.24, d = 0.39, two-

tailed pairwise t test).

Fig 2. Raw time frequency representation during natural reading and the topography of alpha power. (A) Averaged

power over all trials, all planar sensors, and all participants. The time-frequency representation of power was aligned with the

saccade onset towards the target word. The vertical dashed lines indicate the start of the pre-target interval (−0.2 s) and the

saccade onset towards the targets (0 s). The horizontal dashed lines indicate the 9–13 Hz alpha band. (B) The grand averaged

power spectrum of the original data in (A), which was separated into the 1/f component (in grey) and the 1/f-correct

components (in orange). The shaded areas indicate the standard error over participants (n = 38). (C) Topography of the

averaged alpha power during the pre-target fixation interval from Fig 2A. The data in panel (A) and (B) in the figure can be

found in S1 Data.

https://doi.org/10.1371/journal.pbio.3001968.g002
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The alpha PLI effect originates from the visual motor cortex (BA 7)

We used a beamformer technique, linearly constrained minimum variance (LCMV) [33], to

calculate the PLI in the source space in order to localise the generators that produced the PLI

initially observed in the sensors. The spatial filters were applied to the PLI difference in the

alpha band (9 to 13 Hz) in the −0.2 to 0 s pre-target interval aligned with saccade onset towards

target words. The parameters for the frequency band and time window were the same as for

the analysis in the sensor space. The sources of the alpha-band PLI difference (PLIlow−PLIhigh)
were identified in the right-visual motor cortex (Brodmann area 7, Fig 3D).

Discussion

We recorded the ongoing brain activity using MEG in participants reading sentences. Our

core finding was that saccades were locked to the phase of ongoing oscillations. This effect was

particularly pronounced when saccades were made to low compared to high frequency words.

The neuronal sources accounting for this effect were localised in BA7.

Alpha phase coordinates saccades during natural reading

To understand these findings, we first point to previous research that addressed how the inhib-

itory alpha oscillations might coordinate information sampling. Alpha oscillation reflects

rhythmic pulses that occur around 10 times per second [34]. During each alpha cycle, the peak

exerts the strongest inhibition of neuronal firing and the trough exerts the weakest inhibition;

as such neuronal excitability is modulated by the alpha phase [35–38]. Given this “clocking” by

Fig 3. PLI for the pre-target interval aligned with saccade onset to target words. AU : AnabbreviationlisthasbeencompiledforthoseusedinFig3:Pleaseverifythatallentriesarecorrect:(A) Topography of the sensor clusters

that showed a significant PLI difference in alpha band (9 to 13 Hz). The pre-target interval was aligned with the saccade onset

towards target words (N = 38, Pcluster = 0.006, cluster-based permutation test). (B) The averaged PLI difference

(PLIlow−PLIhigh) over the significant sensor clusters in Fig 3A. (C) Using the same sensors as in Fig 3B but aligned with

fixation onset towards the target, no robust effects were observed for the PLI difference during the pre-target interval. (D)

Source localization of the alpha PLI difference during the pre-target interval in Fig 3B. The generator was localised to the

right-visual motor cortex (Brodmann area 7) using an LCMV beamformer. The data in panel (B) and (C) in the figure can be

found in S1 Data. LCMV, linearly constrained minimum variance; PLI, phase locking index.

https://doi.org/10.1371/journal.pbio.3001968.g003
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the alpha rhythm, visual processing would benefit from coordinating saccades with the alpha

phase. As for natural reading, saccade timing in relation to the phase of the alpha oscillations

might be important for the inflow of visual input. When the to-be-saccaded word is more diffi-

cult to process (i.e., lower lexical frequency), the timing of the saccades needs to be optimised

in relation to the alpha phase. This is made possible by more strongly locking the saccades to

the ongoing alpha phase when the upcoming words are rarer (low lexical frequency), as shown

in Fig 3. A related effect has been found during free viewing of images: stronger alpha phase-

locking before saccades during exploration results in stronger memory encoding [22] (for a

systematic review, see [39]). These findings are consistent with the notion that eye movement

related signals modulate the ongoing oscillatory activity in the visual system to ensure better

processing of the post-fixational stimuli [40]. In the current study, we extended this notion to

the language domain by studying natural reading. Together, these findings from processing

images and language suggest a general neural mechanism supporting the coordination

between visual and oculomotor systems across different cognitive domains. However, please

note that the modulation of alpha phase-locking before saccades is based on an association

analysis rather than a causal analysis. Further studies that involve causal manipulation, such as

brain stimulation, are needed to establish a more causal role of phase effects of alpha oscilla-

tions on the processing of lexical information or reading behaviour in general. In the past, it

has been shown that theta burst TMS to the frontal eye fields (FEFs) impair the ability to mod-

ulate alpha oscillations by spatial attention [41]. A similar approach could be applied to caus-

ally establish the role of alpha band oscillations for visuomotor coordination during reading.

In the current study, the interaction between saccades and the alpha phase was localised to

the right-visual motor cortex (Brodmann area 7, Fig 3D). This result indicates that the phase

modulation originated from the dorsal aspect of the parietal region, which is of great func-

tional significance to both oculomotor control and natural reading. First, the parietal cortex is

part of the oculomotor control network that involves the FEFs, motor, and visual cortex [42].

Nonhuman primates’ studies found that the lateral intraparietal (LIP) area codes the motor

coordinates of saccades [43] and is involved in decisions about when to initiate the saccade

and where to look as well as where not to look [44]. Second, the dorsal stream of the parietal

cortex is believed to be implicated in visuospatial attention [45] and damage in the posterior

parietal cortex results in the core deficit of dyslexia [46]. Third, human electrophysiological

studies found that alpha oscillations play a functional role within the oculomotor control net-

work [41,47], linking oculomotor action to cognition [15]. Therefore, in the current study,

alpha oscillation from the dorsal pathway might serve to coordinate the communication within

the oculomotor control network, which is modulated by the previewed information during

reading. Likewise, no significant difference was detected for the pre-target eye movements in

relation to the lexical frequency of the target words (Fig 1C). Thus, the previewed information

from the parafovea prepares the visual system in advance to ensure better processing later. In

addition, this pre-saccadic phase modulation was not driven by power changes, as suggested

by the null finding of the pre-target alpha power difference between conditions (S6 Fig).

Although during natural reading, saccades occur in the frequency range of the theta band,

we would like to stress that saccadic patterns are not oscillatory per se. Fixation times are

determined by the properties of the fixated words, such as its lexical frequency. We have

recently put forward a theoretical framework making explicit how alpha oscillations might

serve to coordinate visual processing during visual exploration and reading [48]. Essentially,

the alpha oscillations serve to organise a pipelining mechanism operating to efficiently coordi-

nate the different stages of word processing through the hierarchy in the ventral visual stream.

Taken together, our study provides evidence that the alpha phase serves to clock informa-

tion sampling by timing the saccades during natural reading. This finding is consistent with

PLOS BIOLOGY Saccades lock to alpha phase during reading

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001968 January 17, 2023 7 / 19

https://doi.org/10.1371/journal.pbio.3001968


the idea that alpha oscillations support an oscillatory pipeline for the processing of foveal and

parafoveal words during reading [48].

Previewed lexical information from the parafovea modulates pre-saccadic

brain activity in the fovea

Numerous studies have failed to provide eye movement-based evidence for lexical parafoveal

processing. Specifically, fixation durations of the foveal word are not modulated by the word

frequency of the parafoveal word [49–52]. Likewise, we did not find evidence for lexical paraf-

oveal processing from the eye movement data alone. However, we did find that the consistency

of the pre-saccadic alpha phase was modulated by the lexical frequency of the parafoveal word

(Fig 3). This indicates that the lexical information from the parafovea affected the neural activ-

ity when processing the current words in the fovea (for further evidence please see [28]).

Alpha power gates attention during natural reading

It has been proposed that natural reading relies on the fast modulation of spatial visual atten-

tion, but how do these processes relate to neuronal oscillations? The hemispheric lateralization

of alpha activity has been thought to index the deployment of visual attention [6,53]. In the

scenario of reading sentences, visual attention shifts continuously through saccades, which

was supported by the fact that the alpha activity remained strong during reading (Fig 2A). Sim-

ilar alpha activity and hemispheric lateralization have been found in another natural reading

task where eye movements were allowed [54]. Therefore, the stage is now set to further investi-

gate how alpha activity during natural reading shapes the visual information flow in relation to

hemisphere power modulation and saccades. In a recent MEG study, Acunzo and Melcher dis-

tinguished the neural mechanisms underlying visual and non-visual processing around sac-

cades, where occipital alpha power changes were related to the visually evoked responses [55].

Thus, the observed strong alpha power during natural reading may indicate the visual-driven

responses of word processing rather than the non-visual-driven responses of oculomotor.

Therefore, as in the visuospatial attention studies, alpha activity during natural reading plays

an important role in shaping the visual information flow through saccades. Our results point

to the importance of investigating visual processing in naturalistic scenarios rather than using

a passive viewing paradigm. Now the methodological problems of doing so can be overcome

[56] and naturalistic experiments have huge potential to reconceptualize the nature of human

visual processing both on the level of behaviour and neural mechanisms [57].

Active vision from saccades during natural reading

Why was the alpha phase aligned with saccade onset rather than fixation onset towards the tar-

get words? First, this is consistent with other work showing that the phase of ongoing neural

activity is more related to saccade onset rather than fixation onset [17,58]. Second, saccade-

related phase synchronisation might provide a more precise temporal template for active

vision (for a detailed review see [59]). Since saccade initiation occurs before the visual stimuli

land on our retina, the timing of neural activity in the visual cortex can be optimised to maxi-

mise the processing of the post-saccadic information. This predictive adjustment of saccadic

timing is also in line with our finding that saccades were locked stronger to the alpha phase

when previewing a word of lower lexical frequency. Please note that the detection of saccade

onsets is better defined and relatively easier than the detection of saccade offsets (i.e., fixation

onsets). This could somehow bias the estimation of the phase-locking index to be stronger for

saccade onsets than fixation onsets. Third, saccadic eye movements partition the visual infor-

mation flow into discrete chunks, which is consistent with the notion of active sensing [60].
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Natural reading requires active sampling of visual input by saccades, which relies heavily on

the interaction between the oculomotor and visual systems. Good coordination between these

2 systems enables fluent reading.

Our study highlights the importance to study “perception from action” [61]. Passive view-

ing paradigms are dominating the research field on vision. However, emerging evidence sug-

gests that neural mechanisms underlying active vision are fundamentally different from

passive vision [59,62–64]. Furthermore, studies that involved eye movements found that sac-

cades had a functional role in memory formation [20,22,39], social stimuli processing [65],

and temporal binding [26,27]. The stage is now set to further uncover the role of alpha oscilla-

tions in reading. In particular, it would be important to uncover how the alpha oscillations

might be controlling the flow of information through the ventral stream. It would also be

important to uncover the exact mechanisms by which the neuronal alpha generators interact

with the saccadic motor system.

Materials and methods

Experimental design

We used a natural reading task (Fig 1A), where participants (N = 38) read 228 one-line sen-

tences silently. The experimental design here was within-subject, participants read an equal

number of sentences containing low and high frequency target words randomly.

The background colour of the presentation screen was middle-grey (RGB = [128, 128,128]).

For each trial, first, a fixation cross was presented in the centre of the screen and participants

were instructed to gaze at the cross. The duration for the cross was randomly selected from a

uniform distribution of 1.2 to 1.6 s. Then, a 0.5 visual degree long, white-coloured square

showed up 2 visual degrees to the right of the middle of the screen’s left edge. A gaze that lasted

for at least 0.2 s on this square triggered the onset of sentence presentation. The accepted gaze

range on the square was 1 visual degree from the square centre. Every sentence was presented

in the vertical centre on the grey screen and horizontally started from 2 visual degrees to the

left edge of the screen. Words were presented in black with an equal-spaced Courier New font

of the size 22, which occupied 0.35 visual degrees at a distance between participants and the

screen as 145 cm. The horizontal range for sentence presentation was 27 visual degrees. After

participants read the sentence from the left to right silently, another gaze of at least 0.2 s on a

white square 3 visual degrees below the screen centre triggered the offset of the sentence pre-

sentation. Randomly, one-fourth of the sentences were followed by a comprehension question

that asked for simple facts about the just-read sentence. Participants made button presses to

answer yes or no. Since all participants showed high accuracy for these questions (95.4% ±
4.7%, mean ± SD), which indicates a good comprehension of all the sentences, all trials were

included in further analyses. The sentences were divided into 7 blocks almost evenly. Each

lasted around 7 min with a rest of at least 1 min afterwards. The whole study took no longer

than 70 min for all participants. The study was approved by the University of Birmingham

Ethics Committee.

Participants

We recruited 43 native speakers of British English (28 females), 18 to 35 years old (22 ± 2.6,

mean ± SD), right-handed, with normal or corrected-to-normal vision, and without any read-

ing disorders or neurological history. Five participants were excluded from the analyses due to

falling asleep during the recordings (N = 2), poor eye tracking (N = 2), or too few trials (N = 1),

which left us with 38 participants (24 females). All participants signed an informed consent

form and received either money or course credits for their participation.
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Stimuli

We used 228 sentences from 2 sentence sets (see S1 Table for the characteristics of words).

Each sentence contained 1 or 2 target words somewhere in the middle. The lexical frequency

of the target words was measured in terms of the total CELEX frequency per million [66]. Low

lexical frequency words were defined as those with a CELEX frequency lower than 10 and the

high lexical frequency words as higher than 30. Word length of the target words within a pair

was kept the same. We conducted 2 pre-tests to make sure that the sentences were plausible

and that participants did not predict the target words (see S1 Text for details of the pre-tests).

Two sentence sets. Stimuli were created using Psychotoolbox-3 [67] and were presented

by a PROPixx DLP LED projector (VPixx Technologies, Canada). The refresh rate of this pro-

jector was as high as 1,440 Hz to achieve the mode of rapid frequency invisible frequency tag-

ging, which was not the focus of analysis here (for analysis details of the rapid invisible

frequency tagging of this dataset, please see [28]).

We constructed the first sentence set and got the second set from one published study [52] after

removing sentences that contained the same pre-target or target words as in the first set. For a full

list of sentences used in this study, please see Supplementary Information in [28]. We carried out 2

behavioural pre-tests for the first sentence set to make sure that all sentences were plausible with

unpredictable target words. For the pre-test results for the second sentence set, please see [52].

The first sentence set consisted of 142 sentences with 71 pairs of target words. The sentence struc-

ture of pre-target, target, and post-target words was adjective, noun, and verb. For each pair, the tar-

get words were of the same word length but with opposite lexical frequency. For example, the pair

of waltz/music, where waltz was the low lexical target and music was the high lexical target. Each tar-

get pair was embedded into 2 different but exchangeable sentence frames, and each participant read

1 version of the sentences. For the example shown below, 1 participant read version A, while another

participant read version B (the target words are in bold for illustration purposes only).

A. Mike thought this difficult waltz received lots of criticism.

It was obvious that the beautiful music captured her attention.

B. Mike thought this difficult music received lots of criticism.

It was obvious that the beautiful waltz captured her attention.

Overall, all target pairs were read only once. To balance the sequence of sentences, we circu-

larly shifted the first and second half of sentences in version B. For both versions, no more

than 3 successive sentences were from the same condition of target lexical frequency.

The second sentence set consisted of 86 sentences, where each sentence was embedded with

2 target words of the same lexical frequency condition. For the example shown below, sentence

A contained 2 target words of low lexical frequency, while sentence B contained 2 target words

of high lexical frequency.

A. I felt quite bleak after discussing that really risky subject with Paul.

B. I felt quite weird after discussing that really nasty subject with Paul.

Each sentence frame was read once with either low or high lexical target words. In total,

participants read 86 high lexical target words and 86 low lexical target words. The same control

of sentence sequence was performed as in the first sentence set.

Data acquisition

Eye movement data. An EyeLink 1000 Plus eye tracker (SR Research, Canada) was used

to acquire the eye movement data continuously throughout the experiment. We placed the eye
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tracker on a table in front of the participant. The height of the eye tracker was the same as

the bottom edge of the projector screen. The distance between the eye tracker camera and the

participants’ eyes was 90 cm. The x and y position of the left eye and the pupil size were acquired

at a sampling rate of 1,000 Hz. A 9-point calibration and validation test were performed twice

during the experiment, one was at the beginning and the other was in the middle. The accepted

eye-tracking error was 1 visual degree both horizontally and vertically. We also carried out a

one-point drift checking every 3 trials to correct for the linear drifting. If the participant failed

to trigger the onset of the sentence through the gaze on the starting square, the drift checking

test was conducted again immediately and when necessary, participants were re-calibrated.

MEG data. We used a MEGIN system to collect the neuromagnetic signals from 306 sen-

sors, of which 204 were orthogonal planar gradiometers and 102 were magnetometers (Elekta,

Finland). For the preparations, we first placed 4 head-position indicator (HPI) coils on the par-

ticipant’s head: 2 were on the forehead with more than 3 cm distance in between, and the

other 2 were on the left and right mastoid bone behind the ears. Then, we used the Polhemus

Fastrack electromagnetic digitizer system (Polhemus, United States of America) to digitise the

head position by 3 fiducial anatomical markers (the nasion, left and right preauricular points).

Next, we digitised the 4 HPI coils. For the final step, we digitised at least 200 points on the

scalp to obtain the whole shape of the head. With the help of head digitalization, the MEG

head position can be spatially co-registered with the individual structural MRI images for the

source modelling analysis.

Afterwards, participants walked to a dimly lit room and sat in the MEG gantry (60 degrees

upright position). The distance between the participant and the projector screen was 145 cm,

which yielded 1 visual degree from 35 pixels. The MEG data were sampled at 1,000 Hz after

the application of an anti-aliasing 0.1 to 330 Hz band-pass filter.

MRI data. We used a 3-Tesla Siemens PRISMA scanner to acquire the structural T1 MRI

images. The MRI session was carried out a few days after the MEG session. The scanning

parameters were as follows: TR = 2,000 ms, TE = 2.01 ms, TI = 880 ms, flip angle = 8 degrees,

FOV = 256 × 256 × 208 mm, 1 mm isotropic voxel. We acquired MRI data from only 36 partic-

ipants due to the dropout of 3 participants, for whom the MNI template brain (Montreal, Que-

bec, 452 Canada) was used in the later source modelling analysis.

Eye movement data analyses

Extraction of eye movement events. The parser data type for each sample was set as gaze.

According to the EyeLink 1000 User Manual, a conservative saccadic threshold is better for

reading research. Thus, we set the following 3 thresholds to detect saccades onset during the

experiment: the motion threshold as 0.1 degrees, the velocity threshold as 30 degrees/sec, and

the acceleration threshold as 8,000 degrees/sec2. These settings serve to prevent false saccade

reports and reduce the number of micro-saccades and lengthen fixation durations. A fixation

onset (or saccade offset) was detected if all these parameters were below the thresholds and the

pupil was not missing; the latter case was defined as blinks. We disabled the fixation updates

function by setting the fixation updates interval to zero so that the monitoring of the eye move-

ments was as precise as the 1,000 Hz sampling rate of the eye tracker.

MEG data analyses

Pre-processing. First, the raw MEG data were band-pass filtered from 0.5 to 100 Hz using

phase preserving, two-pass, fourth order Butterworth filters. Also, the data were detrended

during the pre-processing. After excluding the bad sensors (0 to 2 sensors per participant), the

data were decomposed into different components using the independent component analysis
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(ICA, [68]). We set the maximum number of ICA steps to 100. The number of independent

components was as many as the number of sensors. Components that were related to cardiac

and oculomotor artefacts (e.g., eye blinks and saccades) were rejected. All data were then

inspected on a trial-by-trial basis to remove artefacts that were not identified using the ICA

rejection procedure.

Next, we parsed the fixation events from the eye tracker, which included the time points of fix-

ation onset and offset, fixation duration, and the x and y coordinates. An eye position was consid-

ered a word-fixation if its x coordinate was in the range of the width of this word including the

left space as well as the y coordinate was in the range of the height of this word including 2 visual

degrees above and below. Fixations that landed on non-word positions were discarded. Fixations

with durations less than 0.08 s or longer than 1 s were also discarded. The fixation events were

aligned with the MEG data through the triggers that were sent to both systems simultaneously

during the data acquisition (both systems had a 1,000 Hz sampling rate). In this way, every time

point of the MEG data was assigned with fixations related to gazing at specific words. We con-

structed 2 types of epochs: segments were aligned with the saccade onset to the target words (i.e.,

the fixation offset of the pre-target words), or data were aligned with fixation onset on the target

words. These 1-s epochs were centred according to saccade or fixation onsets, respectively. Finally,

we visually inspected all epochs to discard those contaminated by excessive oculomotor or muscle

artefacts. In further analyses, only planar gradiometer sensors were used.

Time-frequency representations of power. All MEG data analyses were carried out using

MATLAB (R2020a) and Fieldtrip toolbox (version 20200220 for all analyses except FOOOF

analysis with version 20220208) [69].

We estimated the power for the epochs aligned with the saccade onset to target words.

First, data were band-pass filtered from 4 to 30 Hz in steps of 1 Hz using Butterworth band-

pass filters (two-pass, phase preserving, fourth order) following the applications of a hamming

taper. The spectral smoothing was 0.3 times the centre frequency. For example, the smoothing

of the band-pass filter for 10 Hz ranged from 7 to 13 Hz. For filtered data in each frequency

band, a Hilbert transformation was performed to obtain the analytic signal, which then was

used to estimate the power of the individual trial:

powð j; f ; tÞ ¼ jmð j; f ; tÞj2 ð1Þ

where j is the trial number, f is the centre frequency, t is the time point, and m(j,f,t) is the com-

plex value from Hilbert transformation. We estimated the raw power for each MEG planar

sensor by averaging the power over trials. Then, we obtained the combined power for each pla-

nar sensor pair by taking the square root of the power from the horizontal and vertical gradi-

ents (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pow2

h þ Pow2
v

p
). The combined power was first averaged over all sensor pairs and then

over all participants to obtain the grand average of power as shown in Fig 2.

Phase locking index (PLI). PLI measures the phase consistency over trials [32] as shown

in S2 Fig. We calculated the PLI for epochs that aligned with either saccade or fixation onset to

target words. The epoch data were band-pass filtered from 4 to 30 Hz as for the power analysis

above. For each participant, the same number of trials from both conditions entered the PLI

analysis to avoid any bias from the trial number. For the condition that had more trials than

the other, a random subsampling was carried out. Then, a Hilbert transformation was per-

formed on the filtered data to obtain the time-varying analytic signal, which was to estimate

the PLI:

PLIð f ; tÞ ¼
1

n

Xn

j¼1

mð j; f ; tÞ
jmð j; f ; tÞj

�
�
�
�

�
�
�
�; ð2Þ
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where n is the number of trials, m(j,f,t) is the analytic signal for trial j at the frequency point f,
and time point t. PLI value for a combined planar sensor pair was the square root of the sum

of the PLI values from the horizontal and vertical planar sensor (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PLI2

h þ PLI2
v

p
). A cluster-

based permutation test was performed on the group level to find sensor clusters that showed

significant PLI differences between conditions [70]. We had a strong hypothesis on the effect

being in the alpha band [22], so the permutation test was constrained to 9 to 13 Hz. Because

the averaged fixation duration of words in this study was around 200 ms (see Fig 1C), the time

window for the permutation test was constrained to −0.2 to 0 s when epochs were aligned with

saccade onset, and 0 to 0.2 s when epochs were aligned with fixation onset. During each per-

mutation loop, the condition labels of PLI values were randomised over participants (N = 38).

For each MEG sensor, a pairwise t test was conducted for the shuffled PLI. With a threshold of

p< = 0.05 (two-sided), clusters were constructed in the sensor space. The t-values within each

cluster were summed, and the maximum t-value was selected to construct the null distribution.

After 5,000 permutations, all t-values were sorted from minimum to maximum, both the 25th

position (PLIlow<PLIhigh) and 975th position (PLIlow>PLIhigh) were set as the critical values for

a significance level of 0.05 (two-sided). The multiple comparisons problem over MEG sensors

was controlled by this cluster-based permutation test [70].

Source analysis. In order to localise the PLI difference observed in the sensor space, we

used the LCMV beamformer technique [33] and reconstructed the time series of PLI in the

source space. Based on the sensor level result, we constrained the source level analysis to the 9

to 13 Hz frequency band and the −0.2 to 0 s interval for the epochs aligning with the saccade

onset to target words.

First, we prepared head models for each participant. The individual anatomical MRI images

and MEG data were co-registered spatially through the fiducial markers from the head digiti-

zation during the MEG pre-preparations. For 3 participants who dropped out of the MRI ses-

sion, the MNI standard template [71] was used. The aligned MRI data were segmented into a

grid, where each voxel of the MRI data was assigned to a tissue class. The segmented MRI data

were used to construct a single-shell head model, where spherical harmonic functions were

used to fit the brain surface [72].

Second, we constructed leadfield matrices for each participant according to the forward

model. A 5-mm spaced isotropic grid in the MNI normalised space was selected from the tem-

plate folder of Fieldtrip. Then, each individual MRI data was warped to the normalised MRI

data to obtain the transformation matrix. The inverse of this warp matrix was multiplied with

the normalised grid to get the individual grid. The individual grid was not isotropic anymore,

but of which the homologous points across participants were located at the same location in

the normalised space. This approach allowed for the signals in the source space to be directly

averaged across participants on the group level without any distortions.

Third, LCMV filters were built for each grid point in the source model using the epoch data

for each participant. The epoch data were band-pass filtered in the 9 to 13Hz range (phase pre-

serving, two-pass, Butterworth filters with fourth order). Then, the covariance matrix was cal-

culated for the −0.5 to 0 s interval of the filtered alpha band data over all trials regardless of

conditions (please note that the estimation of covariance matrix over short periods of time is

numerically challenging, so here we selected a longer time window than −0.2 to 0 s, although

both time windows gave the nearly identical result, see S7 Fig). The common LCMV filters

were created using this covariance matrix and the source model. We specified the LCMV fil-

ters to have a fixed dipole orientation at each source grid point, which was the optimal orienta-

tion that had the most variance. Thus, the source orientations did not vary over time. The

covariance matrix was regularised with a 5% smoothing parameter. Next, in the sensor space,
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we applied the Hilbert transformation to the 9 to 13 Hz filtered data to estimate the signals in

the alpha band for each trial. The weight matrix from the common LCMV filters were applied

to these band-pass filtered signals in the −0.2 to 0 s interval to estimate the signals in the source

space (for methodological details, please see [73]). Finally, we applied Eq (2) to the source

space data to estimate the PLI time series in the source space, which were then averaged across

time to obtain the average PLI value for each condition.

Statistical analysis. First fixation duration (i.e., the duration of the first fixation on a

word) was used as the eye movement measure in the current study. All the Student’s t tests in

this study were two-sided and pair-wised, carried out by R (version 4.1.0) [74]. Effect size of

the difference was measured with Cohen’s d value [75].

Supporting information

S1 Data. Data used for the generation of main figures and supplementary figures.

(XLSX)

S1 Text. Two behavioural pre-tests of the sentences.

(DOCX)

S1 Table. Characteristics of words used in the current study. Note. Position refers to the

word location in a sentence where the pre-target, target, or post-target words is presented,

with the unit of words. Word length means the number of letters in a given word, with the

unit of letters. Lexical frequency is measured in terms of total CELEX frequency per million,

where the frequency is lower than 10 for the low lexical frequency target words and higher

than 30 for the high lexical frequency target words. All values in the table are mean values with

standard deviations in the parentheses (mean ± SD).

(DOCX)

S1 Fig. The corrected time-frequency representation during natural reading. First, we aver-

aged the power over all trials, all planar sensors, and all participants to obtain the grand aver-

age raw power. The “baseline power” was estimated by averaging the raw power over the

whole temporal window. We then subtracted this baseline power from the raw power at each

frequency. The vertical dashed lines indicate the start of the pre-target interval and the saccade

onset (t = 0 s) to the target words. The data in the figure can be found in S1 Data.

(EPS)

S2 Fig. Schematic diagram of the phase locking index analysis. Alpha phase in the

pre-target intervals (shaded in grey) were aligned with the saccade onset towards the target

words. The averaged phase vector (radial lines in the circles) over all trials indicated the phase

consistency.

(EPS)

S3 Fig. Raw phase locking index for the pre-target interval aligned to saccade onset to the

low and high lexical target words. (A) Topography of the phase locking index with respect to

low lexical target words averaged over the pre-target interval (−0.2 to 0 s) and the alpha fre-

quency band (9–13 Hz). The black stars indicate the sensor from the cluster in Fig 3 (B). (B)

Averaged PLI over the sensors in the cluster aligned with the onset of the saccade (zero time

point) to the low lexical target words. The graph on the right is a zoom-in on the PLI from

−0.2 to 0 s, 8 to 30 Hz. (C) and (D) are the same as (A) and (B) but for the condition of high

lexical target words. The data in panel (B) and (D) in the figure can be found in S1 Data.

(EPS)
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S4 Fig. The absolute preferred alpha phase during the pre-target intervals. We selected the

planar sensor that showed the strongest phase-locking difference between conditions in Fig 3

(B) and plotted the phase locking index at 10 Hz before saccade onset (zero time point) to the

target words with low word frequency (A) and high word frequency (C). The preferred alpha

phase angles over all participants (n = 38) under the low and high target condition were shown

in (B) and (D) separately. (E) The distribution of the preferred alpha phase angles at −0.1 s

over participants for low (in blue) and high (in orange) condition. (F) Distribution of differ-

ence of the preferred alpha angle between conditions was not significantly different from a

uniform distribution (Kolmogorov–Smirnov test, p = 0.34). The data in the figure can be

found in S1 Data.

(EPS)

S5 Fig. PLI difference between the low and high target lexical conditions on other fre-

quency bands. We calculated the PLI values in the delta (1–3 Hz) and theta (4–8 Hz) fre-

quency bands during −0.2–0 s before saccades onset to the target words, as well as in the beta

frequency band (13–30 Hz) during 0–0.2 s after saccades onset to the target words. However,

no sensors survived the cluster-based permutation test of the conditional contrast (pairwise,

two-tailed t test).

(EPS)

S6 Fig. Power difference during the pre-target interval between low and high lexical target

conditions. (A) Averaged raw power difference over the significant sensor cluster (in Fig 3A)

during the pre-target interval (low–high). The epoch was aligned with saccade onset towards

target words. (B) T test of the alpha power difference for the −0.2–0 s pre-target interval

between low (blue) and high (orange) lexical frequency target words. No significant difference

was found (P = 0.242, N = 38, two-sided pairwise t test). n.s., not statistically significant. The

data in the figure can be found in S1 Data.

(EPS)

S7 Fig. Source localization of the PLI effect with a covariance estimation time window of

−0.2 to 0 s. The covariance matrix in the alpha frequency band (9–13 Hz) was derived from

the 0.2-s time window where the PLI difference was significant in the sensor space. Please note

that the source localization result was nearly identical as in the main text using a −0.5–0-s time

window. The difference of localised Brodmann areas was within the error of MEG recording.

(EPS)
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