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PERSPECTIVE
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Profound advances in protein structure prediction, and our own recent work on exploring
protein fold space, both of which use deep learning methods, got us thinking about something
one of us (PEB) has taught for a long time—the curse of the ribbon. Do some reductionist
models and/or scientific representations, such as the ribbon diagram illustrating protein struc-
ture, facilitate research, only to eventually hinder further insight?

Science Magazine chose [1] the AI-driven software, AlphaFold-2 (AF2) [2], as the 2021
Breakthrough of the Year, as it effectively solved a long-standing challenge in molecular biol-
ogy, namely, predicting a 3D structure of a protein from its 1D sequence. While one can argue
the nuances—(i) AF2 might not be solving the protein folding problem since we don’t know
the exact mechanism by which folding occurs, (ii) it does not determine the exact structure to
the level achieved by experiment for every case, and (iii) at the time it relied upon having
many homologs available, e.g., to build multiple sequence alignments (so it’s not predicting
from 1 sequence alone, though single-sequence structure prediction is a very active area)—it is
still a monumental advance that will influence how we think about protein function, protein
design and much more. In short, AF2 and its developers at DeepMind deserve the accolade.

The question then becomes why did Al succeed where humans have failed? Again, there
are nuances. Humans have not failed exactly. The brilliantly conceived and executed Critical
Assessment of Structure Prediction (CASP), held since 1994 [3], has shown the significant
progress in structure prediction over the years; but, all efforts fell far short of what was
achieved by AF2 and its predecessor, AlphaFold [4], and by other efforts, notably RoseTTA-
Fold [5]. What do these algorithms “see” that a human does not? Part of the answer to that
question is not what is being “seen” but rather how much is being seen. Even the savviest struc-
tural biologist, with an eidetic memory, cannot simultaneously hold the number of features of
proteins in their head, on par with a well-trained neural network. In a sense, this is analogous
to the software engineering principle that “given enough eyeballs, all bugs are shallow” [6]:
With enough protein sequence (input) and structure (output) data, a deep model can “learn” a
solution, mapping input to output. Maybe another part of the answer is that human neural
networks inaccurately (or at least sub optimally) conceive of protein structures as singular,
rigid structures (like the frozen ribbons we see on a page in an article), rather than as the fluid,
physiologically functional entities that they are in reality—and which a deep neural network
can “learn” as an implicit (latent) representation?

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001901 December 12, 2022 1/4


https://orcid.org/0000-0002-7618-7292
https://doi.org/10.1371/journal.pbio.3001901
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001901&domain=pdf&date_stamp=2022-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001901&domain=pdf&date_stamp=2022-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001901&domain=pdf&date_stamp=2022-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001901&domain=pdf&date_stamp=2022-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001901&domain=pdf&date_stamp=2022-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001901&domain=pdf&date_stamp=2022-12-12
https://doi.org/10.1371/journal.pbio.3001901
https://doi.org/10.1371/journal.pbio.3001901
http://creativecommons.org/licenses/by/4.0/

PLOS BIOLOGY

(@)

A protein structure, whether experimental or theoretical, once known, is described by a set
of 3D Cartesian coordinates, where each (x, y, z) coordinate represents the position of an
atom. A standard human-readable text format, either PDB or mmCIF [7], provides a list of all
atoms and other metadata used to represent the protein. Staring at such a list of numerical
data is essentially futile. Early in the history of structural biology, according to Jane Richardson
[8], it was Dick Dickerson who was the first to make a protein schematic and Irving Geis the
first to show successive peptide planes with ribbons tracing the protein backbone. These dia-
grams are now the stuff of legend, as they should be, and they can be found on the walls of lab-
oratories and homes of structural biologists. Jane herself, with husband David, illustrated the
full range of protein structures with a variety of ribbon diagrams in a landmark 1981 article
[9]. That tour de force, from which one of us (PEB) learnt about and became fascinated by, cat-
aloged all 75 protein structures available at the time (there are now 196,979; October 28, 2022).

As is often the case in the biological sciences, comparative analysis proved to be the way for-
ward to understand protein structure. By comparing ribbon diagrams, or similar, initially
hand-drawn sketches (and later generated through a variety of increasingly powerful molecu-
lar graphics programs), similarities between structures started to become apparent; these 3D
spatial “motifs” started to accumulate names like jelly-roll, Greek key, and Rossmann fold as
humans drew comparisons to either known objects and patterns, or to the person who first
spotted the commonality. As the number of structures increased, the reliance on these simpli-
fied visualizations necessarily increased (Fig 1).

With the possible exception of Feynman diagrams, we can’t think of a compact visual repre-
sentation of scientific information, specific to a given field, that has had more impact on our
understanding—in this case, on the relationship between sequence, structure, and function—
than the ribbon diagram and variations thereof. In short, it is a blessing. So why are we saying
it is a curse, too? We would argue that this singular representational style has become too
ingrained in our thinking, to the point non-experts imagine proteins to be really like (static)
ribbons. In gazing at ribbon cartoons on a page, we abandon the physicochemical properties
that underlie the structure; consider dynamics as only variations of the ribbon; and we think
less about solvent, other interacting molecules, cellular location, evolution, and function. In
short, the geometric shape, exemplified by the ribbon, dominates our thinking (and, even
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Fig 1. Cartoon ribbon diagrams as a blessing and a curse. The earliest era of structural biology made clear the necessity of molecular visualization for even
small proteins, such as the 62-amino acid snake venom toxin shown here (PDB ID 3EBX). In this process, (a) atomic coordinates are visually rendered on a
computer display as (b) lines, “sticks,” spheres, etc., thereby creating a representation of the protein’s 3D structure. Though useful for detailed, atomic-scale
analyses, e.g., of enzyme mechanisms, such renditions are too visually cluttered and complicated (incomprehensible, essentially) to enable one to grasp a
protein’s overall architecture and topology. For that purpose, (c) ribbon diagrams are a blessing: these diagrams are powerful abstractions of a single protein
entity, but do they (d) mask other features and relationships.

https://doi.org/10.1371/journal.pbio.3001901.9001
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then, we neglect topography and other geometric features of the surface, e.g., drug-binding
pockets and such). There lies the curse. Perhaps it is time to cut the ribbon? Or at least teach
an understanding of proteins that has students think beyond the ribbon?

Without ribbon representations of proteins, would humans have solved the protein struc-
ture prediction problem? A better question is: has the degree to which we are steeped in think-
ing about proteins as ribbons limited a type of understanding (models, etc.) of proteins that is
necessary to better understand their form and function? There the answer is not so clear. This
is exactly why we encourage students to view proteins as collections of bonded atoms undergo-
ing dynamic sets of interactions with each other and the environment—impossible to concep-
tualize, but the value in opening one’s mind to alternatives would seem important.

Are there other examples where our thinking becomes “locked in”? Taxonomies and ontol-
ogies come to mind. The tree of life, while an evolutionary anchor point, is more accurately
viewed as dynamic and changeable. If Woese and Fox [10] had not thought so, the discovery
of Archaea would have been delayed.

The original anatomy and taxonomy of protein structure [9] was indeed derived partly by a
human visual review of ribbon diagrams. This and later classifications were pivotal in our
progress in understanding protein sequence-structure-function and evolutionary relation-
ships. Then again, is it in some ways too limiting and restrictive to classify entities such as pro-
teins by placing them into mutually exclusive bins, as is done in existing hierarchical schemes?
What if such hierarchical binning has caused us to miss important relationships—for example,
relationships arising as shared structural “themes,” which in turn hint at rather distant evolu-
tionary relationships (and suggest deep homology)?

There has been a long debate as to whether the space of all protein folds is discrete or con-
tinuous [11]. Current thinking would tend to favor a more continuous model. If that’s the
case, the hierarchical binning that occurs in existing classifications might miss important rela-
tionships. We posit that indeed we have missed remote linkages, such as between distinct pro-
tein “superfolds,” and proposed the existence of the Urfold [12]. An Urfold exists when there
is architectural similarity despite topological variability, irrespective of considerations of
(known) homology. Ironically, the evidence that suggested the existence of an Urfold was
obtained from the visual inspection of many perhaps-related proteins, including ribbon views.
More recently, a machine learning study tries to quantitatively “define” the Urfold via learned
embeddings in deep generative models, wherein a protein’s sequence, structure, and physico-
chemical properties can be viewed as being compressed into a lower-dimensional “latent
space” representation [13]; though not readily visualized, like ribbon diagrams, such distilled
feature representations do suggest a new view of protein relationships. Further scrutiny over
time will determine the value of such representations.

What is clear is that machine learning approaches allow us to “look” beyond human digest-
ible metaphors, like the protein ribbon, and will cause us to reevaluate our thinking in many
areas of biology. The curse has been lifted in ways we have yet to fully understand.
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