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of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada, 11 School of

Computer Science, McGill University, Montreal, Quebec, Canada, 12 Mila—Quebec Artificial Intelligence

Institute, Montreal, Quebec, Canada

* danilo.bzdok@mcgill.ca

Abstract

Alzheimer’s disease is marked by intracellular tau aggregates in the medial temporal lobe

(MTL) and extracellular amyloid aggregates in the default network (DN). Here, we examined

codependent structural variations between the MTL’s most vulnerable structure, the hippo-

campus (HC), and the DN at subregion resolution in individuals with Alzheimer’s disease

and related dementia (ADRD). By leveraging the power of the approximately 40,000 partici-

pants of the UK Biobank cohort, we assessed impacts from the protective APOE ε2 and the

deleterious APOE ε4 Alzheimer’s disease alleles on these structural relationships. We dem-

onstrate ε2 and ε4 genotype effects on the inter-individual expression of HC-DN co-variation

structural patterns at the population level. Across these HC-DN signatures, recurrent devia-

tions in the CA1, CA2/3, molecular layer, fornix’s fimbria, and their cortical partners related

to ADRD risk. Analyses of the rich phenotypic profiles in the UK Biobank cohort further

revealed male-specific HC-DN associations with air pollution and female-specific associa-

tions with cardiovascular traits. We also showed that APOE ε2/2 interacts preferentially with

HC-DN co-variation patterns in estimating social lifestyle in males and physical activity in

females. Our structural, genetic, and phenotypic analyses in this large epidemiological

cohort reinvigorate the often-neglected interplay between APOE ε2 dosage and sex and link

APOE alleles to inter-individual brain structural differences indicative of ADRD familial risk.
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Introduction

Around the globe, >50 million people are living with dementia—a global burden of>1 trillion

USD$ annually [1]. By 2050, an estimated 3-fold increase in affected individuals is projected as

a result of increased longevity [2]. The anticipated explosion in the number of dementia cases

will put a strain on the 82 billion hours of annual informal care provided by caretakers world-

wide [1]. In contrast to this secular trend, the age-specific prevalence of dementia is expected

to decrease in certain high-income countries, which can be attributable to improvement in

underlying health and socioeconomic determinants [2]. A recent authoritative report on

dementia prevention has identified about a dozen potentially modifiable risk factors that could

explain the disparity in Alzheimer’s disease and related dementia (ADRD) incidence [3]. The

disparate risk dimensions include personal habits and lifestyle, physical and mental health, as

well as societal and external factors. New public health policies targeted at reducing mid- to

late-life risk factors (e.g., physical inactivity, social disengagement, loneliness) thus have the

potential to delay dementia onset in the most disadvantaged older adults. As the global preva-

lence of dementia is quickly rising, there is an unprecedented need to characterise the impact

of genetic predisposition (e.g., Apolipoprotein E (APOE) polymorphism [4]) and modifiable

risk factors on ADRD-vulnerable brain structures before the onset of cognitive decline.

Over the past 2 decades, brain-imaging studies have converged on the disruption of a

coherent network of higher association regions that involve key nodes of the default network

(DN) in individuals with ADRD compared to healthy controls [5]. Extensive efforts have

mobilised resting-state functional connectivity analyses to investigate patients with ADRD,

with converging results in the DN [6]. However, delineating a definitive profile of functional

connectivity deviations related to ADRD risk in healthy subjects was plagued with slow prog-

ress. Most such biomarker studies have attempted to identify functional connectivity patterns

that reliably tell apart ε4 carriers from non-carriers. Yet, most other APOE variants have been

largely neglected, perhaps because they occur much more infrequently in the general popula-

tion. The extensive literature on altered DN connectivity in ε4 carriers has yet to reach consen-

sus as reports of both increased [7] and decreased [8] connectivity within nodes of the DN

have repeatedly led to contradictory conclusions. Among the few studies that could investigate

concurrent connectivity alterations in the hippocampus (HC) and regions of the DN in ε4 car-

riers, the HC was typically treated as a monolithic structure [9] rather than appreciating its

functional and structural heterogeneity. That is, it was studied as a single node when interro-

gating its coupling links to other DN nodes [10]. These inconsistencies are probably also due

in part to data acquisition and preprocessing methods for functional connectivity analysis,

which have made some findings in ε4 carriers hard to replicate [11]. Moreover, because of the

overwhelming singular focus on ε4 carriers in the research community, the neural correlates

associated with other APOE variants remain underspecified. Of particular appeal, illuminating

the allegedly opposing effects of APOE ε2 and ε4 on DN and HC integrity could be crucial in

guiding potential treatment avenues, given the ε2-associated protective outcome on brain

structure [12].

A parallel stream of literature has focused on changes in hippocampal microstructure over

the course of ADRD progression, mostly by performing thorough post-mortem autopsy on

patients with probable ADRD. The HC formation is known for subfield-specific vulnerability

to ADRD, at least since the late 1990s [13]. Yet, the HC is still routinely treated as if it was an

anatomically homogeneous structure in common brain-imaging studies [9,14,15]. By exten-

sion, such an analytical approach is blind to the distinct links between HC subregions and DN

subregions. In vivo examinations in the macaque monkey have shown that the HC formation

receives important axon projections from the retrosplenial cortex and posterior cingulate
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cortex in the presubiculum and parasubiculum subregions [16]. Yet, the fornix, which carries

the axons from the CA1 and subiculum subregions, forwards the only hippocampal output sig-

nals that directly go to the ventromedial and orbitofrontal cortex (OFC) of the DN [17,18].

Glossing over these known microanatomical nuances could explain reports of poor predictive

value of hippocampal atrophy in early ADRD stages when measuring the whole HC as a single

unit. In a randomised clinical trial, baseline HC volumes, manually traced and corrected for

inhomogeneity, predicted conversion to ADRD over a 3-year period at 60.4% accuracy [19].

With the advent of ultra-high-resolution atlases and advanced automatic sub-segmentation

techniques, assessment of the subfield-specific vulnerability of both hippocampi to ADRD pro-

gression in an observer-independent fashion is now coming into reach. Instead of relying pri-

marily on post-mortem autopsy from patients to ultimately confirm ADRD status, we will

soon be able to directly, non-invasively, quantify the level of risk of a given patient based on

subfield-level granular information. From the perspective of clinical translation, coming up

with individual profiles of microstructural alterations characteristic of ADRD risk could usher

a principled path toward precision medicine in neurology.

For these reasons, here we opted for structural brain imaging to relate genetic risk to robust

codependence principles between neocortical DN and allocortical HC at subregion granular-

ity. Given the panoply of individual factors that may affect cortical blood flow (e.g., vigilance,

mood, cortisol levels, and coffee intake), functional connectivity would likely paint a more cir-

cumstantial portrait of ADRD vulnerability. We therefore designed an analytical framework

for doubly multivariate decomposition to zoom in on the structural correspondence between

HC and DN subregions at the population level. The two-pronged approach was carefully tai-

lored to derive coherent signatures of HC-DN co-variation sensitive to the subregion-specific

vulnerability of these neural circuits in ADRD. We were able to quantify the level of risk by

looking for structural deviation in individuals with and without family history of ADRD by

deep inspection of concomitant regimes of HC-DN co-variation. Capitalising on the rich phe-

notyping available for 40,000 UK Biobank participants, our study could confront the effects of

APOE ε2 and ε4 on inter-individual expressions of HC-DN co-variation—something out of

reach in traditional brain-imaging studies involving small to medium sample sizes. In doing

so, our study was also uniquely positioned to illuminate possible sex-specific associations

across less prevalent APOE gene variants that previous brain-imaging investigations systemati-

cally ignored.

Results

Rationale

In post-mortem autopsy of patients with ADRD, structural alterations of microanatomically

defined subregions composing the human HC have been described in extenso [20]. Despite

such insights from rigorous invasive studies, the overwhelming majority of existing brain-

imaging studies have treated the HC as a monolithic brain structure. Hence, the specific vul-

nerability of its heterogeneous subregions to ADRD pathology remains largely concealed

today. Advances in automatic segmentation techniques for the HC using ex vivo brain imaging

allow for subject-specific parcellations that respect the diversity of distinct subregions identi-

fied post-mortem. Capitalising on these ultra-high-resolution segmentations, we are now

equipped to assess microstructural alterations of the human HC in a newly detailed way that

scales to the approximately 40,000 UK Biobank (UKB) participants [21]. These advances

enabled us to describe ADRD-related patterns of structural co-variation in 91 DN subregions,

which were in lockstep with 38 fine-grained HC subregions. Working at a population scale

made it possible for us to investigate the effect of rare genotypes on brain structure. This
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approach was especially fruitful for the less common APOE ε2/2 genotype, which has a preva-

lence of<1% among the general population [22]. Given this setup, our investigation was

uniquely positioned to carry out sex-specific examinations across all APOE gene variants that

previous brain-imaging studies systematically ignored. The availability of deep profiling of the

UKB participants further allowed us to chart brain–behaviour associations across the whole

phenome in an impartial data-driven approach.

Population signatures of HC-DN co-variation capture subregion-level

structural ties

We first delineated the structural dependencies in regional grey matter volume between the

subregion atlas of the HC and that of the DN to identify deviations that jointly go hand-in-

hand. We benefitted from canonical correlation analysis (CCA), a doubly multivariate pat-

tern-learning tool (cf. methods), to identify the sources of common population variation

between the full sets of 38 HC subregions and that of 91 DN subregions. This algorithmic

approach finds principled signatures of structural co-variation between 2 sets of variables [23].

Patterns of shared co-variation (canonical variates, cf. methods) embed the effects of HC or

DN subregion sets in a new representational space where the 2 sets were most strongly corre-

lated with each other. Pairs of canonical variates, 1 for the HC and 1 for the DN, are what we

henceforth call modes. By construction, these are ranked by importance; each mode carries

unique information by being uncorrelated from each other. Each mode thus represented a dif-

ferent brain signature that accounted for increasingly less shared variance between the neocor-

tical and allocortical atlas at subregion resolution.

We focused on the leading 25 modes, mode 1 being the most explanatory signature of

HC-DN co-variation under the elected model. The explanatory power of a given mode was

quantified by Pearson’s correlation between inter-individual variation tracked by its associated

HC and DN patterns (canonical correlation, cf. method). The leading signature of HC-DN co-

variation (mode 1) achieved a canonical correlation of rho = 0.51, whereas the second and

third signatures achieved correlations of rho = 0.42 and 0.39, respectively. Canonical correla-

tions accounted for increasingly less joint variation between the HC and DN subregions up to

the last signature (mode 25), which achieved a correlation of rho = 0.06. The full list of correla-

tion coefficients for the remaining modes has been published elsewhere [24] and is openly

accessible online (https://figshare.com/articles/figure/Loneliness_Suppplement_July_22_

docx/15060684). This multivariate decomposition served as the backbone for all subsequent

analyses that aimed to elucidate how individual expressions of HC-DN co-variation varied in

relation to ADRD risk.

Signatures of HC-DN co-variation illuminate concomitant deviations in

ADRD risk

To interrogate the neurobiological manifestations of ADRD family history in our UKB cohort,

we performed a rigorous group difference analysis that highlighted any statistically robust

ADRD-related divergences in each HC-DN population signature. In doing so, we uncovered

the precise subset of anatomical subregions contributing to structural HC-DN co-variation

that systematically diverged in individuals with versus without family history of ADRD. An

HC or DN subregion observed to have a robustly different co-variation expression in individu-

als with and without family history of ADRD is henceforth termed a hit. We observed a total

of 28 HC and 135 DN hits across the leading 25 modes. As a general trend, HC hits were

mainly located in the cornu ammonis (CA) subregions (42.9% of total divergences). Parallel

DN hits were predominantly observed in the prefrontal cortex (dorsomedial prefrontal cortex
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(dmPFC) and ventrolateral prefrontal cortex (vlPFC); 45.9% of total divergences) and poste-

rior midlines structures (posterior cingulate cortex (PCC), precuneus (PCu), and retrospenial

cortex (RSC); 27.4% of total divergences).

In mode 1, we identified 12 HC hits as indicative for family history of ADRD, with the

strongest subregion effects identified in CA1, CA2/3, molecular layer, and granule cell layer of

the dentate gyrus (DG) (66.7% of HC divergences in mode 1). The remaining HC hits for

mode 1 were either located in the parasubiculum, CA4 or HC tail (Fig 1). We revealed 34 con-

comitant DN hits, most of them located in the prefrontal cortex (dmPFC and vlPFC) and pos-

terior midline structures (RSC, PCC, and PCu) that represented 55.9% and 35.3% of total DN

hits in mode 1, respectively. As for mode 2, 80.0% of the 10 identified HC hits were located in

the left hemisphere (S1 Fig). Of those hits, the strongest weights were found in the presubicu-

lum and CA2/3. The remaining HC hits were identified in the CA1, CA4, hippocampal fissure,

and DG. While the majority of the 30 DN divergences for mode 2 were located in the prefron-

tal cortices (dmPFC; 30.0%) and posterior midline structures (PCC and RSC; 26.6%), a sub-

stantial proportion of hits were located in the temporal and posterior cortices. In particular,

Fig 1. Cognitive, environmental, and cardiovascular phenotypes show sex-specific associations with APOE dosage in the context of mode 1. The leftmost

and central panels display structural divergences in the HC and DN, respectively, on mode 1 for the group difference analysis of ADRD family history. We

identified 12 HC hits, mostly located in the CA subfields and molecular layer. We also showed 34 DN hits, most of them located in the prefrontal cortex and

midline structures. In separate analyses for males (N = 17,561) and females (N = 19,730), APOE dosage was regressed on HC and DN co-variation patterns

from mode 1. We then used these sex-specific models to predict APOE dosage based on inter-individual expressions of mode 1. APOE dosage predicted for

each individual was then correlated to 977 UKB phenotypes in separate analyses for males and females. The rightmost panel displays the Miami plot for the

correlations between predicted APOE dosage in the context of mode 1 and UKB traits. The upper and lower part of the Miami plot displays the correlations for

males and females, respectively. The y-axis indicates negative decimal logarithms for the p-values of each correlation represented by a dot. We highlight

important brain–behaviour associations between APOE dosage pooled across subject-specific expressions of mode 1 and verbal-numerical reasoning,

supplemented by male-specific correlations with environmental phenotypes. Females showed a specific profile of brain–behaviour associations with

cardiovascular phenotypes (e.g., systolic and diastolic blood pressure, IGF-1, and urea) that extended beyond physical traits shared with males (e.g.,

cardiorespiratory fitness and ventricular and pulse rate). Data underlying this figure can be found at https://github.com/dblabs-mcgill-mila/HCDMNCOV_

AD/tree/master/Miami_Plots (DOI: 10.5281/zenodo.7126809). ADRD, Alzheimer’s disease and related dementia; APOE, Apolipoprotein E; CA, cornu

ammonis; DG, granule cell layer of the dentate gyrus; dmPFC, dorsomedial prefrontal cortex; DN, default network; FDR, false discovery rate correction; HC,

hippocampus; IPL, inferior parietal lobule; ML, molecular layer; Para, parasubiculum; PCC, posterior cingulate cortex; PCu, precuneus; RSC, retrosplenial

cortex; STG, superior temporal gyrus; vlPFC, ventrolateral prefrontal cortex.

https://doi.org/10.1371/journal.pbio.3001863.g001
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23.3% of DN divergences for mode 2 were located in the temporal cortices (superior temporal

sulcus (STS), middle temporal sulcus (MTS), and temporal pole) compared to 20.0% to the left

posterior cortex (inferior parietal lobule (IPL) and superior parietal lobule (SPL)). Mode 3 in

turn showed 3 statistically relevant HC hits to the fornix’s fimbria and presubiculum, in con-

cordance with 56 DN divergences (Fig 2). Of the DN hits identified for mode 3, 35.7% were

located in the frontal lobe (dmPFC, ventromedial prefrontal cortex (vmPFC), vlPFC, pre-sup-

plementary motor area (pre-SMA), and OFC), 30.3% to posterior midline structures (PCC,

RSC, and PCu), 17.9% to the temporal cortices (STS, MTS, and superior temporal gyrus

(STG)), and 16.1% to the parietal cortices (IPL, SPL, and temporoparietal junction (TPJ)). A

minority of the modes only showed HC hits, either located in the fimbria (mode 8; Fig 3) or in

the hippocampus–amygdala transition area (modes 6 and 10; S2 and S3 Figs) without any con-

comitant DN hits. Inversely, some modes only showed DN divergences in the absence of HC

hits. This was the case for mode 4 for which we identified 4 DN hits in the dmPFC (S4 Fig),

mode 7 for which 9 DN hits were identified in the PFC (dmPFC and OFC; S5 Fig), mode 11

for which 1 DN hit was identified in the PCC (S6 Fig), and mode 13 for which 1 DN hit was

identified in the STS (S7 Fig).

Across HC-DN co-variation signatures, we noted a prominence of HC structural deviation

in the CA1, CA2/3, and fimbria for the group analysis of ADRD risk. As for the DN

Fig 2. APOE associations for mode 3 revealed a prominence of cognitive and environmental phenotypes in males. Shown here are ADRD-related

subregion divergences for mode 3 for the HC (leftmost panel) and DN (central panel). We identified focalized hits to the fimbria and presubiculum with

corresponding grey matter differences across the whole DN. In males and females separately, we regressed APOE dosage on HC and DN co-variation patterns

from mode 3. We then used these sex-specific models to predict APOE dosage based on inter-individual expressions of mode 3. The rightmost panel displays

the Miami plot for the correlations between APOE scores in the context of mode 3 and the portfolio of UKB phenotypes for males (upper half) and females

(lower half). We highlighted significant associations with environmental phenotypes that were again more prominent in males than females. We additionally

showed significant correlations with the fluid intelligence battery that were male specific. Data underlying this figure can be found at https://github.com/

dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI: 10.5281/zenodo.7126809). ADRD, Alzheimer’s disease and related dementia; APOE,

Apolipoprotein E; dmPFC, dorsomedial prefrontal cortex; FDR, false discovery rate correction; IPL, inferior parietal lobe; MTS, middle temporal sulcus; OFC,

orbitofrontal cortex; PCC, posterior cingulate cortex; Pre-SMA, pre-supplementary motor area; PrS, presubiculum; PCu, precuneus; RSC, retrosplenial cortex;

STG, superior temporal gyrus; STS, superior temporal sulcus; TPJ, temporoparietal junction; vlPFC, ventrolateral prefrontal cortex; vmPFC, ventromedial

prefrontal cortex.

https://doi.org/10.1371/journal.pbio.3001863.g002
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divergences, we highlighted a constellation of structural deviations involving the prefrontal

cortices and posterior midline structures. Modes 1 and 2 showed the highest relative numbers

of HC divergences (i.e., 12 and 10 hits, respectively) as compared to any other modes. While

the third signature of HC-DN co-variation only showed 3 statistically relevant HC hits, it

showed the highest relative number of DN divergences. Together with mode 8, the focalized

divergences found in the fimbria for mode 3 highlighted the importance of the fornix in

ADRD risk. We further uncovered concomitant structural divergences in HC and DN subre-

gions with known direct anatomical connections in macaque monkeys, such as the presubicu-

lum with RSC [16] and molecular layer with OFC/vmPFC [17]. Ultimately, we revealed an

intertwined collection of structural divergences in highly coupled HC and DN subregions that

have been linked to ADRD risk and progression by previous research, such as the CA1, CA2/3,

presubiculum, and the fornix’s fimbria [13,25–28], as well as the dlPFC, OFC, PCC, and PCu

[29–32].

Phenome-wide fingerprints of brain–behaviour associations uncover sex-

specificity in ADRD risk

We next conducted a phenome-wide analysis to systematise domains of UKB traits in terms of

their association with HC-DN signatures and ADRD risk. To quantify genetic risk, we created

a bivariate dosage scale that tested for the opposing effects of APOE ε2, often suspected to con-

fer protective benefits [33], and ε4, classically believed to escalate dementia risk [4]. We fitted

linear regression models to relate inter-individual expressions of HC-DN co-variation from

Fig 3. APOE associations for mode 8 linked lipid metabolism to deviation of the fimbria. Shown here are ADRD-related subregion divergences for mode 8

for the HC (leftmost panel) and DN (central panel). We identified a focalized divergence to the fimbria with no corresponding DN hits. In males and females

separately, we regressed APOE dosage on HC and DN co-variation patterns from mode 8. We then used these sex-specific models to predict APOE dosage

based on inter-individual expressions of mode 8. The rightmost panel displays the Miami plot for the correlations between APOE scores in the context of mode

8 and the portfolio of UKB phenotypes for males (upper half) and females (lower half). We show associations with phenotypes related to lipid metabolism and

height, supplemented by male-specific associations with the fluid intelligence battery. Data underlying this figure can be found at https://github.com/dblabs-

mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI: 10.5281/zenodo.7126809). ADRD, Alzheimer’s disease and related dementia; APOE,

Apolipoprotein E; DN, default network; FDR, false discovery rate correction; HC, hippocampus.

https://doi.org/10.1371/journal.pbio.3001863.g003
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the 25 signatures to subject-level APOE ε2 versus ε4 dosage. Subject-level APOE dosage was

predicted from a collection of HC-DN signatures using these linear models and subsequently

tested against 977 curated UKB phenotypes in a phenome-wide assay conducted separately in

males and females. Only the top 3 modes with the most brain–behaviour associations across

sexes, i.e., modes 1, 3, and 8, are presented below (Figs 1–3). The phenome-wide profiles for

each of the remaining modes with statistically defensible deviations with respect to family his-

tory of ADRD are available as part of the online Supporting information (S1–S7 Figs).

The phenome-wide profile for mode 1 highlighted brain–behaviour associations with cog-

nitive traits in addition to male-specific correlations with environmental phenotypes (Fig 1).

After carrying out Bonferroni’s correction for multiple comparisons, APOE dosage pooled

across subject-specific expressions of mode 1 yielded 31 and 13 significant associations in

males and females, respectively. Cognitive traits represented 35.5% of significant mode–trait

associations in males and 53.8% of those identified in females. Baseline cognitive performance

on the fluid intelligence battery accounted for most of the cognitive associations, with 7 ques-

tions yielding significant associations in males compared to 6 in females. Significant associa-

tions with baseline prospective memory were also identified for both sexes, measured as the

correct recalling of the object previously shown to participants on the screen. The phenome-

wide profiles for both sexes also included ventricular rate on electrocardiogram measured at

rest, the completion status of electrocardiogram during exercise, and bipolar and major

depression status. At the more lenient false discovery rate (FDR) correction, we observed addi-

tional phenotypes linked with erythrocytes count for both sexes. The second most dominant

sets of associations for mode 1 centred on environmental phenotypes, such as NO2 exposure,

natural environment, and greenspace, representing 29.0% of significant mode–trait correla-

tions identified in males. Other male-specific associations included lifestyle (time spent watch-

ing television and difficulty waking up in the morning) and physiological (hand grip strength,

arm mass, and height) phenotypes. At the more lenient FDR correction, males showed addi-

tional brain–behaviour associations including exposure to particulate matter of 2.5 μm and

10 μm or less in diameter (PM2.5 and PM10). After applying Bonferroni’s correction, females

showed unique associations with diastolic blood pressure and hematocrit percentage. When

applying FDR correction, additional cardiovascular phenotypes showed significant associa-

tions in females, such as a paternal history of heart attack, systolic blood pressure, insulin-like

growth factor 1 (IGF-1), and haemoglobin concentration. In sum, our phenotypical profiling

assay highlighted important phenome-wide associations between APOE dosage pooled across

subject-specific expressions of mode 1 and verbal-numerical reasoning, supplemented by

male-specific correlations with environmental phenotypes. Females instead showed a specific

profile of brain–behaviour associations with cardiovascular phenotypes that extended beyond

physical traits shared with males.

In the phenome-wide profile for mode 3, we uncovered brain–behaviour associations with

cognitive and environmental phenotypes, again more prominent in males than females (Fig

2). After Bonferroni’s correction, APOE dosage in the context of mode 3 expressions yielded

19 and 6 significant mode–trait associations in males and females, respectively. Environmental

phenotypes represented 52.6% of significant associations in males and 83.3% of those identi-

fied in females. Significant associations with NO2 exposure and home area population density

were observed for both sexes. Males also showed significant associations with baseline cogni-

tive performance on 6 questions from the fluid intelligence battery as well as with baseline pro-

spective memory. Females did not show significant associations beyond those shared with

males, with the exception of home location. At the more lenient FDR correction, females

showed additional associations with prospective memory and baseline cognitive performance

on 5 questions from the fluid intelligence battery. As such, APOE dosage pooled across
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subject-specific expressions of mode 3 allowed us to uncover a rich portfolio of associations

with environmental and cognitive phenotypes that were more robust in males than females.

In comparison to the overlapping portfolio of brain–behaviour associations derived from

modes 1 and 3, the phenome-wide profile for mode 8 emphasised a unique set of physiological

phenotypes (Fig 3). After Bonferroni’s correction, APOE dosage pooled across subject-specific

expressions of mode 8 yielded 11 and 15 significant mode–trait associations in males and

females, respectively. Physical phenotypes related to body mass and height represented 55.5%

of significant correlations in males and 80.0% of those identified in females. After Bonferroni’s

correction, males showed significant associations with cognitive performance on 3 questions

from the fluid intelligence battery assessed in the online follow-up. At the more lenient FDR

correction, males showed further associations with cognitive performance on 2 additional

questions from the fluid intelligence battery and with the maximum number of digits remem-

bered correctly on the numeric memory test, both assessed in the online follow-up. After Bon-

ferroni’s correction, females showed significant associations with trunk fat mass and heel bone

mineral density. In sum, we highlighted important phenome-wide associations between APOE
dosage pooled across subject-specific expressions of mode 8 and proxies of cardiovascular

health, supplemented by male-specific correlations with cognitive phenotypes. A formal

assessment of the difference in associations between males and females for the 3 modes with

the most brain-phenotypic associations across sexes (i.e., modes 1, 3, and 8) is presented in the

Supporting information (S8–S10 Figs) and serves as a complement to their respective Miami

plots (Figs 1–3) (cf. methods). The phenome-wide profiles derived across these 3 concomitant

regimes of HC-DN co-variation emphasised sex differences in ADRD risk, with recurring

associations with air pollution and verbal-numerical reasoning that were more prominent in

males than females.

APOE gene variants are associated with distinct clusters of risk-anatomy

links

We next examined ADRD-specific clusters of risk-anatomy links across each unique APOE
gene variant (i.e., ε2/2, ε2/3, ε3/3, ε2/4, ε3/4, and ε4/4). We computed the interactions

between the subject-specific expressions of HC-DN co-variation modes (canonical variates)

and each APOE genotype (encoded as binary variables, such that participants who do not

carry a given genotype were zeroed out). In doing so, we obtained 6 new population-wide indi-

ces, 1 for each distinct APOE genotype that we correlated, using Spearman’s coefficient, with

63 curated ADRD risk factors (a phenotype collection used previously [34]). We then per-

formed an agglomerative clustering analysis that consisted of a nested merging of correlation

coefficients with similar variance until all observations merged in a single cluster. The ensuing

dendrograms indicated the distance between each cluster identified when retaining 3 levels of

branching (Fig 4). A formal metric of statistical agreement between cluster models was pro-

vided as part of supplementary analyses (S11 Fig).

Our integrated analysis of risk-anatomy links showed the relatively early branching of social

engagement phenotypes for ε2/2 (e.g., being a full- or part-time student and doing unpaid or

voluntary work), ε2/3 (e.g., number of full siblings, looking after one’s home or family, family

relationship satisfaction, and number of people in household), ε3/4 (e.g., number of full sib-

lings), and ε4/4 (e.g., being a full- or part-time student, attending adult education classes,

retirement, family relationship satisfaction, lack of social support, and friendships satisfaction)

genotypes. The relevance of social engagement phenotypes across most APOE gene variants

suggests that the contribution of social behaviours to risk-anatomy links transcend genetic

risk. ε3 carriership was characterised by the early branching of socioeconomic determinants as
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shown on the dendrograms for ε2/3 (e.g., past tobacco smoking frequency, time spent watch-

ing television, paid employment, average household income, and the number of vehicles in the

household), ε3/4 (e.g., past tobacco smoking frequency, alcohol intake frequency, time spent

watching television, and education score), and ε3/3 (time spent watching television, education

score, past and current tobacco smoking frequency, alcohol consumption on a typical drinking

day and alcohol intake frequency; see S12 Fig). We noted the early emergence of a personality

cluster in ε2 carriers that comprised self-reported traits related to neuroticism as shown on the

dendrograms for ε2/2 (e.g., irritability, miserableness, mood swings), ε2/3 (e.g., being wor-

ried/anxious and easily hurt), and ε2/4 (e.g., being worried/anxious, mood swings, and misera-

bleness; see S12 Fig). All these personality traits have been identified as neurotic behaviour

domains and are part of the neuroticism battery of the UKB (UKB data field 20127). We thus

uncovered that neuroticism, which is known to be closely linked to loneliness [35], is a person-

ality trait that shows distinct patterns of association with HC-DN co-variation expressions in

ε2 carriers.

Fig 4. Neuroticism-related phenotypes show unique risk-anatomy links in ε2 carriers. To test for risk-anatomy links, we computed the Spearman’s

correlations between the population-wide HC and DN co-variation patterns, multiplied by each of the 6 APOE genotypes and the 63 preselected Alzheimer’s

disease risk factors [34]. We performed an agglomerative clustering analysis on these Spearman’s correlations, which consists of repeatedly merging

Spearman’s correlations with similar variance until all observations are merged into a single cluster. Here are shown the dendrograms that indicate the distance

between each cluster identified when retaining 3 levels of branching for APOE ε2/2 (upper left; N = 217), ε2/3 (lower left; N = 4,625), ε4/4 (upper right;

N = 822), ε3/4 (lower right;N = 8,613). The dendrograms for ε3/3 and ε2/4 can be found in the Supporting information (S12 Fig). We showed the early

emergence of social engagement phenotypes (e.g., doing unpaid or voluntary work, attending adult education classes, family relationship satisfaction, number

of people in household, and number of full siblings) across the different APOE gene variants suggesting that the contribution of social behaviours to risk-

anatomy links transcend genetic risk. ε3 carriership was characterised by the early branching of socioeconomic determinants (e.g., paid employment, average

household income, number of vehicles in the household, time spent watching TV, and education score) as shown on the dendrograms for ε2/3, ε3/4, and ε3/3

(S12 Fig). While clusters of social engagement and socioeconomic determinants were shared across different APOE genotypes, we found that neuroticism was

uniquely associated with ε2 carriership. Indeed, the dendrogram for ε2/2, ε2/3, and ε2/4 (S12 Fig) showed an early emerging cluster of neuroticism-related

phenotypes (e.g., irritability, miserableness, being worried/anxious). This personality cluster was especially apparent for ε2 homozygotes, as reflected by the

relatively high Euclidean distance of the first branching that split the neuroticism-related phenotypes from the rest of the risk factors. Data underlying this

figure can be found at https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/clustering_analysis (DOI: 10.5281/zenodo.7126809). APOE,

Apolipoprotein E; DN, default network; HC, hippocampus.

https://doi.org/10.1371/journal.pbio.3001863.g004

PLOS BIOLOGY APOE and hippocampus-default network co-variation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001863 December 13, 2022 10 / 46

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/clustering_analysis
https://doi.org/10.5281/zenodo.7126809
https://doi.org/10.1371/journal.pbio.3001863.g004
https://doi.org/10.1371/journal.pbio.3001863


Sex-specific dependencies between APOE gene variants and signatures of

HC-DN co-variation explain ADRD risk

We next directed attention to sex-specific interactions between HC-DN co-variation regimes

and APOE genotype status that would explain inter-individual differences in ADRD risk. To

this end, we tested whether HC-DN signatures systematically interacted with specific APOE
genotypes in explaining variation in a collection of 63 ADRD risk factors (cf. above). More for-

mally, each risk factor was individually regressed on the subject-specific expressions of HC

and DN patterns for each of the 25 modes. This analysis step hence supplied 50 estimated lin-

ear models per target risk factor. Each model took as input variables the main effect of the HC

or DN pattern expressions, the main effects of the 6 APOE genotypes, and the interaction

between each APOE genotype with the HC or DN pattern, controlling for age. Separate analy-

ses were carried out in the male (Fig 5, leftmost panels) and female (Fig 5, rightmost panels)

subgroups of our UKB cohort. To ascertain the robustness of our findings, we compared each

coefficient estimate against empirically data-derived null distributions obtained through a rig-

orous permutation procedure (i.e., label shuffling permutation). We only interpreted the

model coefficients that emerged as statistically relevant based on the respective null distribu-

tions at 95% confidence.

Fig 5. Brain-APOE ε2/2 interaction explains variance in social lifestyle in males and physical activity in females. We tested whether HC-DN signatures

interacted with APOE genotypes in explaining variance on the 63 preselected ADRD risk factors. Separate analyses were run for males (leftmost plots) and

females (rightmost plots). Each column on the heat maps represents the coefficients for a single linear regression model. The first 25 columns show the

coefficients for HC patterns, whereas the last 25 columns show the coefficients for DN patterns. We assessed the robustness of our findings by comparing each

coefficient to empirically built null distributions obtained through permutation testing. Only the coefficients that were statistically different from their

respective null distributions 95% of the time are presented. We displayed the modifiable risk factors for which the strongest brain-APOE interactions were

observed. In the top panels, we show that APOE ε2/2 preferentially interacts with HC and DN canonical variates in estimating doing unpaid or voluntary work

in males. In the bottom panels, we show that APOE ε2/2 interacts with selective HC and DN canonical variates in estimating engaging in strenuous sport in

females. We have thus shown that APOE ε2/2 interacts preferentially with HC-DN co-variation patterns in estimating social lifestyle in males and physical

activity in females. These interactions profiles suggest that ε2, and not ε4, is driving most of the brain–APOE interactions in healthy individuals at risk of

developing ADRD with a substantial level of sex-specificity. Data underlying this figure can be found at https://github.com/dblabs-mcgill-mila/HCDMNCOV_

AD/tree/master/fig_5 (DOI: 10.5281/zenodo.7126809). ADRD, Alzheimer’s disease and related dementia; APOE, Apolipoprotein E; DN, default network; HC,

hippocampus.

https://doi.org/10.1371/journal.pbio.3001863.g005
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In a comprehensive set of analyses across 63 ADRD risk factors, we identified the strongest

nonlinear interaction effects in homozygote ε2 carriers. Notably, brain-APOE interactions

accounted for more variance in several modifiable social and cardiovascular risk factors than

did the main effects of APOE ε2 and ε4. Male ε2 homozygotes showed strong interactions

with HC and DN pattern expressions for doing unpaid or voluntary work. In parallel, female

ε2 homozygotes showed strong interactions with HC-DN pattern expressions for engagement

in strenuous sports. Across the different domains of risk factors investigated, we singled out

brain-APOE interactions specific to ε2 homozygotes that were not identifiable in heterozy-

gotes and non-carriers. While we observed no appreciable sex effect for the interaction of

APOE ε4/4 and HC-DN co-variation expressions, we found defensible sex-specificity for the

role of APOE ε2/2. More precisely, we showed strong interactions between APOE ε2/2 and

HC-DN co-variation patterns for social lifestyle factors in males and physical activity factors in

females. Through our analyses of a variety of risk factors, we have thus isolated brain-APOE
interactions unique to ε2 carriers that depend on sex.

After examining target risk factors, we next put to the test whether expressions of

HC-DN signatures bear relations with APOE genotypes in explaining ADRD risk. In dedi-

cated analyses for males (Fig 6, upper panels) and females (Fig 6, lower panels), family his-

tory of ADRD was regressed on a single HC or DN pattern, resulting in 50 different linear

models per sex. Each such model was fed as input variables the main effect of the HC or

DN pattern, the main effects of the APOE genotypes, and the interactions between each

APOE genotype and the HC or DN pattern, controlling for age. We assessed the robustness

of our findings by comparing each coefficient to empirically built null distributions

obtained through permutation testing (cf. above). We focused interpretation on the model

coefficients that were statistically robust against their respective null distributions at 95%

confidence. We found no statistically relevant main effect of APOE ε2/2 on ADRD risk

among males. For APOE ε2/3 and ε3/3 carriers, we found similar effects on ADRD risk in

males, lowering the odds of ADRD family history by approximately 30% across the differ-

ent models investigated. Likewise, APOE ε2/4 and ε3/4 carriers showed similar effects in

tracking ADRD risk in males, elevating the odds of ADRD family history by more than

20% on average. As expected from the literature, APOE ε4/4 increased the odds of ADRD

family history by more than 56% in males across the different models investigated. In

females, APOE ε2/2 status decreased the odds of ADRD family history by 50% on average,

while ε2/3 and ε3/3 status led to decreases of approximately 25% and 17%, respectively. In

contrast, APOE ε3/4 and ε4/4 status lifted the odds of ADRD family history by approxi-

mately 35% and 86%, respectively. Among females, APOE ε2/4 carriers were associated

with dampened ADRD risk relative to APOE ε3/4 carriers. The odds of ADRD family his-

tory associated with APOE ε2/4 were only increased by 24% in females. This approximately

10% reduction in ADRD risk, uniquely observed among females, could be taken to suggest

that ε2 can still be protective against ADRD risk in the presence of an ε4 allele. Females

also showed some strong brain-APOE interactions above and beyond the well-established

risk and protective effects associated with each APOE genotype. Notably, the interaction of

mode 9 DN pattern expressions with APOE ε2/2 status was associated with a 2-fold

increase in ADRD risk. It was considerably stronger than the main risk effect conferred by

APOE ε4/4. This strong interaction effect can be taken to suggest that HC-DN co-variation

plays a chief role in ADRD risk, which might have been overlooked by previous analyses

restricted to genetic data. In sum, we identified and annotated sex-specificity in the oppos-

ing effects of ε2 and ε4 on ADRD risk, with demonstrably stronger brain-APOE interac-

tions among females.
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Dominant principles of brain–behaviour associations uncovered a male-

specific link with neuroticism

In a final suite of analyses, we conducted an exploratory principal component analysis (PCA)

to disentangle the major sources of brain–behaviour variation in our UKB cohort. We first

computed Pearson’s correlations between the 25 pairs of expressions (i.e., canonical variates)

Fig 6. The protectiveness of ε2 is sex-dependent and modulated by HC-DN co-variation patterns. In separate analyses for males and females, we tested

whether HC-DN signatures interacted with APOE genotypes in explaining variance in family history of ADRD. Separate analyses were run for males (higher

plots) and females (lower plots). Each column on the heat maps represents the coefficients for a single linear regression model. The first 25 columns show the

coefficients for HC patterns, whereas the last 25 columns show the coefficients for DN patterns. We assessed the robustness of our findings by comparing each

coefficient to empirically built null distributions obtained through permutation testing. Only the coefficients that were statistically different from their

respective null distributions 95% of the time are presented. We found that the main effect of APOE ε2/2 against ADRD risk was only statistically robust in

females. We also showed a spectrum in the opposing effects of ε2 and ε4 among females, such that ε2/4 was associated with a lower increase in ADRD risk than

did APOE ε3/4, which in turn was associated with lesser risk than ε4/4. We further found that the protectiveness of APOE ε2/2 interacts with brain structure

and can even lead to an increase in ADRD risk among females with a strong expression of mode 9. These interactions profiles suggest that the protectiveness of

ε2/2 is not only sex-specific but also modulated by HC-DN co-variation expressions. Data underlying this figure can be found at https://github.com/dblabs-

mcgill-mila/HCDMNCOV_AD/tree/master/fig_6 (DOI: 10.5281/zenodo.7126809). ADRD, Alzheimer’s disease and related dementia; APOE, Apolipoprotein

E; DN, default network; HC, hippocampus.

https://doi.org/10.1371/journal.pbio.3001863.g006
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from the HC and those from the DN patterns and the 63 preselected ADRD risk factors. This

step yielded 3,150 distinct coefficients represented by a risk by canonical variates matrix

(X63 × 50). We then carried out a PCA to reduce the dimensionality to 3 major axes of brain-

behaviour variation. These explained approximately 13.8%, approximately 9.6%, and approxi-

mately 8.2% of the total variance in the cross-correlation matrix, respectively (S13 Fig).

The leading axis of variation highlighted social phenotypes previously singled out in the

clustering analysis (e.g., attending religious groups, attending adult education classes, and the

number of people in the household). We also observed a strong expression of socioeconomic

determinants among the first axis of brain–behaviour associations (e.g., age completed high

school education, average household income, paid employment, and the number of vehicles in

the household). The second most important axis mainly emphasised health-related phenotypes

(e.g., stroke, hypertension, and diabetes) and lifestyle factors (e.g., alcohol intake frequency,

difficulty getting up in the morning, being a morning person, and sleeplessness). The third

most explanatory axis tracked neuroticism and its associated personality trait indicators (being

worried/anxious, being easily hurt, and worrying too long after embarrassment) from the rest

of the risk factors. We again emphasised the importance of social factors on HC-DN co-varia-

tion expressions along with other socioeconomic and lifestyle behaviours.

To certify the robustness of our findings, we performed a split-half reliability assessment of

our principal component solution across 1,000 bootstrap iterations. At each iteration, we drew

37,291 participants with replacements to simulate random participant samples that we could

have pulled from the same population. We then randomly split the sample in half to create 2

analogous subsets. We computed the Pearson’s correlation between possible pairs of the 50

canonical variates and 63 phenotypes across participants for each random subset. We then

estimated 2 PCA models in parallel, 1 for each random half subset, on the z-scored correlation

coefficients matrices (63 phenotypes × 50 canonical variates). We showed the average projec-

tion of each Pearson’s correlation coefficient on the 3 principal axes of brain–behaviour associ-

ations across the 1,000 iterations. We found that the projections of the risk-anatomy link on

component 1 were robust. While of lesser strength than the first axis of brain–behaviour asso-

ciations, the projections for components 2 and 3 are reminiscent of the original analysis. In

particular, neuroticism-related personality traits are distinctly expressed on the third axis of

brain–behaviour associations, as was found in our original analysis (S14 Fig). A formal

account of statistical agreement between both subsets was provided as part of the Supporting

information (S15 Fig).

We then repeated the identical pattern-learning workflow sex-stratifying in males and

females separately. The top 3 principal components explained approximately 12.1%, approxi-

mately 9.9%, and approximately 9.0% of the total variance in males, and approximately 13.1%,

approximately 9.5%, and approximately 7.3% of the total variance in females (S16 Fig). The

first axis of brain–behaviour associations was roughly the same in males and females as in our

original analysis. In fact, the same set of social phenotypes was emphasised on component 1

(e.g., attending religious groups, attending adult education classes, and the number of people

in the household) for both sexes. In contrast, component 2 separated neuroticism-related

items (e.g., miserableness, fed-up feelings, mood swings, and being worrier/anxious) from the

rest of the risk factors in males only. The fact that the neuroticism-related component was the

second most important axis of brain–behaviour associations in males but was found in third

place on the whole population-derived PCA suggests that the association between neuroti-

cism-related phenotypes and HC-DN co-variation expressions was most important in males.

Lastly, the third axis of brain–behaviour associations emphasised different categories of risk

factors in males and females. The male-derived component 3 emphasised socioeconomic

determinants (e.g., education score and the number of vehicles in the household). In contrast,
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the female-derived one emphasised lifestyle risk factors (e.g., alcohol intake frequency, alcohol

consumption on a typical drinking day, and past tobacco smoking frequency). Our sex-specific

analysis hence revealed that the first and most robust axis of brain–behaviour associations was

shared across sexes, whereas the second and third axis emphasised sexually dimorphic groups

of risk factors.

We performed a bootstrap analysis of the sex-specific PCA solutions to assess the robust-

ness of our findings. Across 1,000 bootstrap iterations, we drew 17,561 males and 19,730

females with replacements to simulate random participant samples that we could have gotten.

At each iteration, we computed the Pearson’s correlation between possible pairs of the 50

canonical variates and the remaining 62 phenotypes (as sex was used for grouping) across

males and females separately. We then estimated 2 PCA models in parallel, 1 for each sex, on

the z-scored correlation coefficients matrices (62 phenotypes × 50 canonical variates). A for-

mal assessment of statistical agreement in the PCA solutions between both sexes was per-

formed (S17 Fig). We observed a low agreement between the male- and female-derived PCA

solutions, thus emphasising the sex-specificity of our derived brain–behaviour axes.

External validation

To externally validate our discovered associations between HC-DN co-variation signatures

and ADRD risk factors, we have investigated whether our UKB-derived population signatures

of HC-DN co-variation successfully track ADRD-related variation in unseen participants from

an independent sample. We capitalised on the openly available PResymptomatic EValuation

of Experimental or Novel Treatments for Alzheimer’s disease (AD) (PREVENT-AD) dataset,

one of the largest single-site prospective cohorts of pre-symptomatic individuals with a family

history of Alzheimer’s disease. Our final sample included image-derived phenotypes of grey

matter morphology and APOE SNP genotyping from 318 participants, totaling data from 799

visits. For each visit, we computed the level of expression of each of the 25 HC-DN co-varia-

tion signatures, from the UKB, for a participant from PREVENT-AD (cf. methods). To test

whether distinct derived modes of HC-DN co-variation track distinct aspects of ADRD-related

behaviours in unseen participants, we correlated the individual expressions of the 25 modes,

represented by pairs of latent expressions of the UKB-derived brain signatures for the HC and

DN sides, with a collection of 157 widely established indicators of ADRD progression (e.g.,

cerebrospinal fluid and blood biochemistry, cognitive and neurosensory evaluations, and

health and demographic profile). We assessed the Pearson’s correlations through permutation

testing. We reported only the coefficients that were robustly different from the derived empiri-

cal null distribution in at least 95% of the 1,000 permutation iterations (S18 Fig).

We found that the several categories of risk factors that emerged in the phenome-wide pro-

filing in the UKB dataset were also flagged in the PREVENT-AD dataset. For example, we

have corroborated a link between individual expressions of mode 1 in PREVENT-AD partici-

pants and depression, a phenotype that emerged as statistically significant in the phenome-

wide profiling for mode 1 for males and females in the UKB. Similarly, we have replicated asso-

ciations between mode 2 and verbal-numerical reasoning by linking mode 2 expressions in

PREVENT-AD participants to several measures of language fluency and working memory

highlighted by the Montreal Cognitive Assessment (MoCA) and Repeatable Battery for Assess-

ment of Neuropsychological Status (RBANS), respectively. The MoCA is a cognitive screening

tool specially designed to track mild cognitive impairment [35]. Performance on the MoCA

has previously been associated with grey matter volumes in subregions of the HC, including

the HATA, in middle-aged patients with diabetes [36]. Looking at the individual expressions

of mode 6 in PREVENT-AD subjects, we found robust ties of several sub-items of the MoCa
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(e.g., attention, subtraction, and language fluency) with the same HC-DN population signature

that also showed HATA-specific divergence in the UKB participants.

The phenome-wide profiling for mode 6 further highlighted several indicators of vascular

integrity (e.g., carotid intima-media thickness)—a cue to cardiovascular system implication

that also emerged in PREVENT-AD participants as reflected by a correlation between mode 6

(on the HC side) and atrial fibrillation. Similarly, the phenome-wide profiling for mode 8 in

the UKB highlighted several phenotypes related to body mass, while the expression of mode 8

in PREVENT-AD participants was related to arthritis, a joint disorder worsened by age and

weight. In addition to replicating the UKB findings, we found complementarity in the associa-

tions between the HC-DN signatures and PREVENT-AD phenotypes such that distinct modes

track different domains of ADRD risk. For example, DN variation captured by modes 6 and 8

tracks several global indices of the RBANS, a cognitive battery designed to monitor cognitive

decline over time. Notably, only mode 6 tracked the visuospatial dimension of the test, as

reflected by correlation with sub-items of the figure drawing tests. Further, only individual

expressions of mode 6 in PREVENT-AD participants were also correlated to cognitive perfor-

mance on the MoCA. These patterns of associations, specific to mode 6, reflect a sensitivity to

general cognitive ability in PREVENT-AD participants, who all have a family history of

ADRD. We found similar patterns of robust associations to PREVENT-AD phenotypes up to

the 25th and last mode of HC-DN co-variation that showed noticeable associations with tau

CSF levels on the HC side and cardiovascular factors (e.g., systolic blood pressure, pulse, and

APOE ε4/4 genotype) on the DN side. We have thus shown that HC-DN signatures robustly

track different aspects of ADRD risk in a cohort fully independent from the one in which the

co-variation patterns have originally been derived. We have thus corroborated and extended

the characterisation of our population-derived limbic-neocortical co-variation signatures by

linking them with several known indicators of ADRD risk based on new data.

Discussion

Longstanding research has insisted on the alteration of the DN and HC in early ADRD devel-

opment (see, for example, [14]). However, brain-imaging investigations seldom had the

opportunity to incorporate rare genotypes such as APOE ε2/2. At the same time, common epi-

demiological studies that have reported the protective effect of carrying an ε2 allele are not typ-

ically equipped to perform an adequately powered brain-imaging examination at a scale of

thousands of people. We overcame several shortcomings by capitalising on APOE genotyping

and structural brain scans from approximately 40,000 UK Biobank participants. Our mission-

tailored analytical framework was specially designed for disentangling ADRD-specific differ-

ences in brain structure at the population level. Revisiting ADRD through this lens, we uncov-

ered sex-specific associations between rarely investigated APOE gene variants and

microstructurally defined HC-DN signatures hardly ever discerned in a prospective human

cohort. Our collective findings paint a more concrete picture of the antagonistic effects of

APOE ε2 and ε4 on population-wide HC-DN signatures, along with their interlocking diver-

gences between men and women.

Epidemiological studies, without access to brain-imaging assessments, have provided evi-

dence suggesting that an ε2 allele typically acts to protect against late-onset Alzheimer’s disease

[22,33] and against Aβ accumulation [37–42]. Aβ accumulation in ε2 carriers could be delayed

by 30 to 50 years compared to ε4 carriers, who start showing Aβ positivity in their early 40s

[12,40,43]. The protective qualities of ε2 status have been noted even in the presence of an ε4

allele [12]. Nonetheless, the sex-specific impact of APOE, especially its ε2 gene variants, on

brain structure could seldom be investigated at the population level. By deriving an envelope
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of distinct HC-DN signatures at a fine-grained resolution among thousands of healthy adults,

we were able to uncover brain-APOE interactions systematically overlooked by traditional

brain-imaging studies. Stratifying our population cohort by sex and APOE gene variants, we

were in a position to conclude that the protective effect of APOE ε2/2 on ADRD risk was not

statistically robust among males, even in a sample of approximately 20,000 participants. In

contrast, we demonstrated a spectrum of ε2 and ε4 effects among females such that APOE ε2/

4 was associated with milder ADRD risk than ε3/4, which in turn was associated with milder

ADRD risk than ε4/4. Resilience towards cognitive decline generally observed among ε2 carri-

ers could arise from relatively higher baseline APOE steady-state levels in regions including

the HC and frontal cortex as compared to ε4 carriers and ε3 homozygotes [44–47]. Isoform-

specific effects related to the APOE protein could be further enhanced by microglia-driven

homeostatic responses to Aβ accumulation [48,49]. In fact, ε2 carriers are biologically more

efficient at scavenging Aβ [50]. As a result, Aβ positivity in ε2 carriers with normal cognition

is generally detected in much older age (approximately 95 years) as in ε4 carriers (40 to 55

years) [40]. Older ε2 carriers with amyloid pathology are likewise less likely to be diagnosed

with dementia than ε3 homozygotes of the same age [51]. Cell proliferation and survival in the

HC are thought to be particularly modulated by estrogens [52–54] that could have a down-

stream impact on microglial and astrocytic APOE synthesis [55]. The presence of an estrogen-

dependent enhancer in the promoter region of the APOE gene is thus bound to favour female

ε2 carriers [56]. These previous elements of evidence are in line with our present finding sug-

gesting that the protective effect of APOE ε2 on ADRD risk is sex specific and also unique to

particular HC-DN co-variation patterns. Notably, we found that female ε2 homozygotes with

a high expression of mode 9 had twice the odds of having a family history of ADRD. We have

thus shed light on important nuances in the predominant genetic account of ADRD by ques-

tioning the protectiveness of ε2 when placed in relation to sex and brain structure.

We expanded upon the discovered sex differences in ADRD risk by highlighting a female-

specific constellation of brain–behaviour associations with cardiovascular traits. As the neuro-

protective effect of estrogen weakens with older age, women become more vulnerable to neu-

rovascular disorders that can ultimately lead to dementia [57]. Cardiovascular risk factors that

are exacerbated in females following menopause, such as trunk fat mass, have been associated

with chronic neuroinflammation and microstructural alteration of the fornix [58,59]—the

main output tract from the HC that carries direct neural signals toward partner regions of the

midline DN [60]. Building on existing literature, we identified ADRD-related divergences in

the fimbria of the fornix in healthy participants for mode 8 that we have linked to selective

brain–behaviour associations with proxies of cardiovascular health (e.g., water mass, fat-free

mass, and weight). For the same HC-DN signature, we found a female-specific association

with trunk fat mass, a correlate of estrogen declines [61]. This observation supports a link

between cardiovascular health, female sex, and microstructural alteration of the fornix. Despite

the protective effect of APOE ε2 against ADRD previously discussed, carrying an ε2 allele has

been associated with elevated risks for cardio- and neurovascular disorders [62–66]. APOE ε2

is indeed limited in its ability to mediate the vascular clearance of cholesterol metabolites and

triglycerides that could in turn precipitate the risks of cholesterol pathologies such as hyperli-

poproteinemia and cardiovascular sequelae [67]. The variability of the protective effect of

physical activity on dementia risk when stratifying participants by ε4 status might be taken to

suggest that APOE ε2 is driving the relationship between physical activity and cognitive per-

formance [68–72]. Hypothetically, engaging in physical activity could be particularly beneficial

to older female ε2 carriers in counteracting the rising risk of neurovascular complications

resulting from the combined effect of APOE ε2 and decreased estrogen levels. Bringing sup-

port for this claim, we have shown specific interactions between HC-DN signatures and APOE

PLOS BIOLOGY APOE and hippocampus-default network co-variation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001863 December 13, 2022 17 / 46

https://doi.org/10.1371/journal.pbio.3001863


ε2/2 genotype in explaining variation in physical activity—an effect that we found exclusive to

females. The specificity of this effect to ε2 homozygotes is consistent with previous findings

that have associated ε2 with increased longevity in centenarians [73]. Given that almost 90% of

centenarians are females, the sex-specificity of our results is consistent with a genotype-driven

behaviour that favours longevity via exercise in female ε2 homozygotes.

Epidemiological studies have provided evidence that traffic-related air pollution and resi-

dence near major roadways are associated with decreased cognitive abilities [74–82] and a

higher risk of developing dementia [83–92]. The detrimental effect of air pollution on cogni-

tion could even be exacerbated in APOE ε4 carriers [82,85]. Our phenome-wide assay tied

mode 1 expressions to blood markers (e.g., erythrocytes, haemoglobin, and haematocrit) and

air pollution. This phenome-wide profiling supports an interplay between environmental

stressors, vascular integrity, and dementia. Mode 1 also showed 19 DN hits in the PFC—a sub-

region in which vascular and perivascular white matter damage has been specifically observed

in humans and canines chronically exposed to high levels of air pollutants [93]. Accumulation

of nanoscale particulate matter in endothelium cells, basement membranes, axons, and den-

drites coincided with prefrontal white matter damage, which is in line with deficits in the

blood–brain barrier [93]. Such pollution-driven prefrontal white matter damage is thought to

be intensified in APOE ε4 carriers [94]. Autopsy samples from patients with Alzheimer’s dis-

ease have further shown reduced pericyte coverage in CA1 and PFC (Brodmann area 9/10).

These were 2 subregions in which we showed ADRD-related structural divergences in mode 1,

as compared to healthy blood vessels in controls [95]. Evidence suggests that alteration of peri-

cytes in cortex and hippocampus subregions could be modulated by ε4 carriership [96]. We

have thus identified subregions that are consistent with early vascular leakage in the aging

brain, such as CA1 and PFC, as manifesting ADRD-related structural deviation in the same

HC-DN signature associated with air pollution in our phenome-wide analysis pooled across

APOE genotypes. In doing so, we extend the alleged role of vascular integrity in protecting the

brain from environmental stressors that might precipitate ADRD onset in APOE ε4 carriers.

In a similar vein, in vitro analyses have suggested that exposure to air pollution can trigger

microglial activation, which in turn can cause oxidative stress [97,98]. Pollution-triggered oxi-

dative stress could be particularly detrimental to males as they are thought to display lower

expression of antioxidant enzymes responsible for scavenging reactive oxygen species

[99,100]. As a result, male mice show up to 4-fold higher rates of oxidative toxicity in astro-

cytes, neurons, and mitochondria compared to female mice [99,101]. Our results suggest that

the association between HC-DN co-variation and air pollution is male specific, building on

experimental findings primarily from rodent species. Parts of the DN are thought to be among

the earliest sites of Aβ accumulation [29] and consume some of the highest oxygen levels in the

entire brain [102]. As such, the DN sticks out as a hotspot for both oxidative stress and ADRD

pathology. A previous study has indeed found widespread glucose hypometabolism in the DN

of ADRD patients that was associated with increased levels of CSF lactate, a marker of mito-

chondrial damage, in the OFC and mPFC as compared to cognitively healthy controls [103].

Recent evidence suggests that Aβ1–42 acts on reactive oxygen species to induce glucose hypo-

metabolism [104]. One could argue that the combined effect of air pollution and amyloid

pathology could be particularly detrimental in exacerbating ADRD risk among males. In line

with an effect on escalating ADRD risk, specifically in males, we have linked ADRD-related

structural deviation in the OFC and mPFC with a profile of associations with environmental

phenotypes for mode 3. As was the case for mode 1, these associations were more prominent

in males than females. In addition to emphasising a male-specific vulnerability to neurotoxic-

ity, our phenome-wide analysis pointed towards a female-specific resilience to pollution-medi-

ated impairment and subsequent neuronal death. For example, our phenome-wide profile for
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mode 1, derived for females, did not show statistically relevant associations with air pollutants

but displayed a significant correlation with IGF-1. Estrogen and IGF-1 are thought to exert

synergetic, non-additive effects on neurite outgrowth and survival, presumably by acting on a

single neuroendocrine pathway [105]. IGF-1 is secreted by neurons and glia and possibly acts

as a neurotrophic factor regulating neuroendocrine function in the central nervous system

[105]. Subcutaneous injection of IGF-1 has previously been associated with increased neuro-

genesis in the adult rat brain [106,107]. In mode 1, in addition to a female-specific association

with IGF-1, we have shown HC hits in the granule cell layer of the DG and in CA4, which are

2 subfields in which neurogenesis has been observed in rodents [106,108,109] and primates

[110]. Together with its associated divergences in HC-DN co-variation expressions, the phe-

nome-wide profile for mode 1 shed light on a female-specific resilience towards pollution-

induced impairment and subsequent neuronal death. While scarcely reported in human sub-

jects, these sex-specific divergences in vulnerability to neurotoxicity—observed here for both

modes 1 and 3—are hence in accordance with experimental findings from animal models.

Building on the knowledge that ADRD and verbal-numerical reasoning overlap in underly-

ing genetic architecture [111], we showed significant brain–behaviour associations between

ADRD risk and baseline cognitive performance on the fluid intelligence battery for top modes

1, 2, and 3. While previous investigations of fluid intelligence and ADRD in the UKB were

often limited to genetic evidence [111–114], we highlighted distinct HC-DN signatures related

to verbal-numerical reasoning at the population level. In doing so, we found prominent

ADRD-related structural divergences in the left CA1, CA2/3, presubiculum, and fimbria,

which are among the first and notorious regions to be affected by ADRD pathology [13,25–

27]. Some authors have claimed that white matter disruption may trigger grey matter degrada-

tion in the HC and higher-order neocortex by activating a maladaptive neuroinflammatory

response [115]. Changes in fornix microstructure have indeed been reported in individuals at

risk of ADRD before the onset of clinical symptoms [26] and subsequently identified as an

accurate predictor of progression from mild cognitive impairment to ADRD [27]. Consistent

with the early involvement of the fornix in ADRD-associated cognitive deficits, we showed

structural divergence in the fornix’s fimbria and 56 DN regions for mode 3, which were

accompanied by a profile of associations with questions from the fluid intelligence battery.

Recent brain-imaging evidence has extended the concept of a hippocampally mediated cog-

nitive map to interpersonal relationships by highlighting the involvement of the DN, and

hence the fornix, in schematic representations of the self and others. Notably, fMRI results

from Tavares and colleagues suggest that the HC tracks how we represent others in a social

hierarchy while the PCC/PCu, key hubs of the DN, tracks the social distance between ourselves

and others [116]. Consistent with a reliance on the HC-DN pathway for human-defining

aspects of spatiotemporal processing, we found a brain–behaviour association with navigating

family relationships, a subtest of the fluid intelligence battery, that was significant in males for

mode 3. We have thus provided a plausible link between verbal-numerical reasoning and

ADRD risk that was accompanied by alterations in HC and DN subregion co-variation

regimes involved in episodic processing.

By exploring risk-anatomy links across the different APOE gene variants, we have tied

social engagement measures to subject-specific expressions of HC-DN co-variation signatures.

Notably, we found that the contribution of social behaviours to risk-anatomy links went

beyond genetic risk and was prominent across the different APOE genotypes. In older age, a

decrease in social activity possibly related to unemployment and/or retirement could increase

feelings of loneliness and consequently escalate the risk of cognitive decline and ADRD [117].

Social disengagement has indeed been associated with the incidence of cognitive decline

among older adults [118–120]. In contrast, engaging in social activities has been linked with
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up to a 40% decrease in ADRD risk [68,118,121]. While social support has been associated

with a dampened stress response [122], loneliness is thought to affect not only neuroendocrine

but also immune functions [123,124]. Volunteering and having student status, 2 social engage-

ments that have repeatedly been flagged in our analyses, could possibly downplay the patho-

logical stress response observed in lonely older adults. Our study has thus uncovered risk-

anatomy links that are consistent with the involvement of social factors as potentially prevent-

ing or exacerbating ADRD risk.

Our clustering analyses also uncovered that neurotic behaviours show unique ties to HC-DN

co-variation expressions in ε2 carriers. Neuroticism, which is intimately related to loneliness

[125], could predispose individuals to ADRD by weakening strong social support ties and increas-

ing chronic stress through dysregulation of the hypothalamus–pituitary–adrenal (HPA) axis

[123,126]. In fact, the HC subiculum, presubiculum, and parasubiculum are believed to have direct

connections to the hypothalamus via the fornix [127]. These connections could possibly provide a

pathway through which the subjective appraisal of one’s relationships, which can in turn result in

loneliness or neuroticism if social needs are unfulfilled, is conveyed to the HPA to affect the stress

response. Prospective cohort studies have indeed linked neuroticism to higher risks of developing

cognitive impairments [128] and dementia [129–131]. Yet, no effects of ε4 dosage on cognitive

decline have been observed in neurotic individuals in these previous reports [128,130]. The

absence of a relationship between APOE and neurotic traits reported by previous studies might

arise from restricting analyses to ε4 carriers [128,130]. Indeed, the combined analysis of ε4 and

the K variant of BCHE, another genetic risk factor associated with ADRD, revealed an intriguing

association between the combined risk alleles, increased basal levels of serum glucocorticoids, cog-

nitive performance, and lower self-esteem in older adults [132]. The ramifications of neuroticism

for ADRD risk, which might be underscored byAPOE ε2, have been overlooked in all these stud-

ies. Recent evidence has also shown that having a positive outlook on aging, such as a sense of pur-

pose, amplified the protective effect of APOE ε2 against cognitive decline [133]. The protective

effect ofAPOE ε2 on cognition was enhanced for individuals with positive beliefs about aging and

reduced for those with negative beliefs to the point where ε2 carriers no longer showed a signifi-

cant cognitive advantage [133]. Our results add elements to this literature by suggesting that hav-

ing a negative outcome on life, which is characteristic of a neurotic personality type, is especially

detrimental to ε2 carriers as reflected by unique patterns of brain–behaviours associations with

specific HC and DN subregions. The opposing health effects of neuroticism and social activity are

possibly reflected in the brain, as social and neurotic phenotypes were divided into 2 main groups

when clustered based on their correlation with HC-DN co-variation regimes for ε2 homozygotes.

Our study thus reinforces the detrimental effect of neuroticism on ADRD risk and characterised

its unique interplay with HC-DN co-variation expressions in ε2 homozygotes.

In sum, the typically protective benefits conferred by APOE ε2 regarding ADRD risk have

mainly been discussed in epidemiological cohorts that were not designed to incorporate inter-

individual differences in high-resolution brain structure assessments. In contrast, neuroimag-

ing investigations of healthy participants before the onset of ADRD-associated clinical symp-

toms have focused on characterising the functional correlates of ε4 carriership. Our present

study has reconciled these 2 research streams by contrasting profiles of brain–behaviours asso-

ciations characteristic of APOE ε2 and ε4 in a large epidemiological cohort of approximately

40,000 participants. In doing so, we were uniquely positioned to illuminate sex-specific associ-

ations with modifiable risk factors that were unique to ε2 and ε4 homozygotes. Key risk factors

relevant to ε2 carriers included neuroticism, social disengagement, and physical inactivity. In

contrast, environmental phenotypes that repeatedly emerged in our results as being linked to

ADRD risk could be especially detrimental to ε4 carriers. These distinct risk factors could

guide potential clinical interventions and governmental policies.
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Methods

Population data source

The UK Biobank (UKB) is a large-scale data-collection initiative that offers in-depth informa-

tion on approximately 500,000 participants recruited from across Great Britain (https://www.

ukbiobank.ac.uk/). This rich epidemiological cohort comprises a wide variety of resources,

including physical and cognitive assessments, as well as demographic and health records. In

addition to the availability of genetic data for most participants through a genotyping array

(and more recently through whole-exome sequencing), the UKB provides multimodal imaging

scans that are routinely augmented and will extend to approximately 100,000 participants by

the end of 2022. The present study was based on the data release from February/March 2020.

To ensure reproducibility, we adopted the uniform preprocessing pipelines designed and car-

ried out by FMRIB, Oxford University, United Kingdom [134]. Building on a uniform quality

control workflow enables a better comparison to other and future UKB research. At the time

of data release, expert-curated image-derived phenotypes of grey matter morphology

(T1-weighted magnetic resonance imaging) were available for 38,292 participants. Grey matter

phenotypes from these participants were used to compute dominant regimes of structural cor-

respondence between the hippocampus (HC) and default network (DN) and identify anatomi-

cal subregions that systematically differentiate individuals with and without a family history of

ADRD. As for all subsequent analysis steps, we focused on the 37,291 participants with both

APOE single-nucleotide polymorphisms (SNPs) genotyping (rs429358 and rs7412) and brain-

imaging measures (47% men and 53% women). When recruited, these participants were aged

40 to 70 years (mean age 54.8, standard deviation [SD] 7.5 years). The demographic informa-

tion for the UKB participants included in the present study, grouped per APOE genotypes, can

be found in Table 1. The present analyses were conducted under UK Biobank application

number 25163. UK Biobank participants gave written, informed consent for the study, which

Table 1. UK Biobank demographic information.

ε3/3 ε3/4 ε2/3 ε2/4 ε4/4 ε2/2

N (%) 22,129 (59.3) 8,613 (23.1) 4,625 (12.4) 885 (2.4) 822 (2.2) 217 (0.6)

Age, Mean ± SD 54.9 ± 7.5 54.5 ± 7.4 55.0 ± 7.5 55.0 ± 7.5 54.3 ± 7.3 54.6 ± 7.5

Sex, n (%)

Females 11,579 (52.3) 4,634 (53.8) 2,464 (53.3) 489 (55.3) 447 (54.4) 117 (53.9)

Males 10,550 (47.7) 3,979 (46.2) 2,161 (46.7) 396 (44.7) 375 (45.6) 100 (46.1)

Family history of ADRD, n (%)

Maternal 3,516 (15.9) 1,972 (22.9) 695 (15.0) 204 (23.1) 227 (27.6) 27 (12.4)

Paternal 1,871 (8.5) 1,078 (12.5) 382 (8.3) 100 (11.3) 136 (16.5) 18 (8.3)

Both 328 (1.5) 235 (2.7) 77 (1.7) 20 (2.3) 39 (4.7) 2 (0.9)

Household income, n (%)

Less than 18,000 £ 2,786 (12.6) 1,077 (12.5) 570 (12.3) 110 (12.4) 103 (12.5) 24 (11.1)

18,000 to 30,999 £ 4,980 (22.5) 1,851 (21.5) 1,067 (23.1) 206 (23.3) 168 (20.4) 43 (19.8)

31,000 to 51,999 £ 6,602 (29.8) 2,639 (30.6) 1,379 (29.8) 262 (29.6) 245 (29.8) 72 (33.2)

52,000 to 100,000 £ 6,086 (27.5) 2,413 (28.0) 1,314 (28.4) 238 (26.9) 240 (29.2) 63 (29.0)

Greater than 100,000 £ 1,675 (7.5) 633 (7.3) 278 (6.4) 69 (7.7) 66 (8.0) 15 (6.9)

Age completed full-time education, Mean ± SD 17.0 ± 2.4 17.0 ± 2.4 17.0 ± 2.4 16.9 ± 2.4 16.8 ± 2.5 16.9 ± 2.0

Fluid intelligence score, Mean ± SD 6.2 ± 2.2 6.2 ± 2.1 6.2 ± 2.2 6.3 ± 2.3 6.2 ± 2.2 6.1 ± 2.2

Distribution of the demographic information from the UK Biobank participants included in the present study grouped per APOE genotypes.

ADRD, Alzheimer’s disease and related dementia; SD, standard deviation.

https://doi.org/10.1371/journal.pbio.3001863.t001
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was approved by the Research Ethics Committee under application 11/NW/0382. Further

information on the consent procedure can be found elsewhere (http://biobank.ctsu.ox.ac.uk/

crystal/field.cgi?id=200).

Target phenotype for ADRD risk

We used the self-reported family history of ADRD as a simple but accurately measurable esti-

mate of ADRD risk. ADRD is the terminology adopted and recommended by the National

Institute on Aging, one of the US Federal Government’s National Institutes of Health, to char-

acterise the umbrella of symptoms, diagnoses, and risk factors characteristic of Alzheimer’s

disease (https://www.nia.nih.gov/health/alzheimers). The acronym “ADRD” acknowledges the

known heterogeneity of clinical diagnoses of dementia. Additionally, one can only ultimately

confirm Alzheimer’s disease at the highest degree of certainty based on post-mortem tissue

analysis. In the UKB resource, maternal (UKB data field 20110) and paternal (UKB data field

20107) history of ADRD was ascertained as part of the initial assessment (2006 to 2010). As

per UKB protocol, participants were asked, “Has/did your mother ever suffer from Alzhei-

mer’s disease or dementia?” and “Has/did your father ever suffer from Alzheimer’s disease or

dementia?”. This exact phenotype has been successfully treated as a reliable estimate of mater-

nal/paternal history of late-onset Alzheimer’s disease by previously published genome-wide

association studies conducted in the UKB cohort that successfully recovered well-known

genetic risk loci for this diagnosis [135–137]. There were a total of 9,776 (25.5%) participants

with self-reported parental history of ADRD within the brain-imaging cohort of 38,292 partici-

pants. Of those with family risk, 6,820 UKB participants reported an occurrence of ADRD on

their mother’s side and 3,675 participants on their father’s side. A minority of participants

reported both maternal and paternal history of ADRD (719 individuals).

Most genome-wide association studies have adopted a case-control framework that focused

on the difference in allele frequency between patients with ADRD and healthy controls

[138,139]. While useful in identifying risk loci associated with clinical diagnosis, this approach

might not be best suited to derive a reliable estimate of ADRD liability in the general popula-

tion. When dealing with late-onset diseases, such as ADRD, using “proxy cases,” i.e., the rela-

tives of affected individuals, could allow for a more complete characterisation of disease risk

among individuals before the onset of clinical symptoms [136]. It was a key advantage that

working with proxy cases also allowed us to boost the sample size and, thus, the statistical

power of our quantitative analyses to identify more suitable effects. In particular, self-report of

family history of ADRD in the UKB, precisely the same phenotype at the core of the present

investigation, was found to replicate established risk loci from case-control investigations as

well as identify novel loci [136,137].

Brain-imaging and preprocessing procedures

Magnetic resonance imaging (MRI) scanners (3T Siemens Skyra) were matched at several dedi-

cated data collection sites with the same acquisition protocols and standard Siemens 32-channel

radiofrequency receiver head coils. Brain-imaging data were defaced, and any sensitive meta-infor-

mation was removed to protect the anonymity of the study participants. Automated processing

and quality control pipelines were deployed [134,140]. Noise was removed utilising 190 sensitivity

features to improve the homogeneity of the imaging data. This approach allowed for the reliable

identification and exclusion of problematic brain scans, such as due to excessive head motion.

The structural MRI data were acquired as high-resolution T1-weighted images of brain

anatomy using a 3D MPRAGE sequence at 1 mm isotropic resolution. Preprocessing included

gradient distortion correction (GDC), field of view reduction using the Brain Extraction Tool
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[141] and FLIRT [142,143], as well as nonlinear registration to MNI152 standard space at 1

mm resolution using FNIRT [144]. All image transformations were estimated, combined, and

applied by a single interpolation step to avoid unnecessary interpolation. Tissue-type segmen-

tation into cerebrospinal fluid, grey matter, and white matter was applied using FAST

(FMRIB’s Automated Segmentation Tool, [145]) to generate full bias-field-corrected images.

In turn, SIENAX [146] was used to derive volumetric measures normalised for head sizes.

Parcellation of the DN was anatomically guided by the Schaefer-Yeo reference atlas [147].

We extracted a total of 400 parcels among the 7 canonical networks, 91 of which were defined

as belonging to the DN. Volume extraction for 38 HC subregions was conducted using Free-

surfer automatic sub-segmentation [21], which drew on an ultra-high-resolution (approxi-

mately 0.1 mm isotropic) probabilistic atlas. As part of the Freesurfer 7.0 suite, HC sub-

segmentation was refined by carefully considering surrounding anatomical structures.

As a preliminary procedure, these MRI-derived measures were cleaned to remove inter-

individual variation in brain region volumes that could be explained by nuisance variables.

Building on previous UK Biobank research [148,149], we regressed out the following variables

of no interest from each brain-derived volume measure: body mass index, head size, head

motion during task-related brain scans, head motion during task-unrelated brain scans, head

position and receiver coil in the scanner (x, y, and z), position of scanner table, as well as the

data acquisition site, in addition to age, age2, sex, sex�age, and sex�age2. Sex was acquired from

the National Health Service (NHS) central registry and updated by the participant if incorrect

(UKB data field 31). The nuisance-cleaned volumetric measures served as the basis of our pri-

mary co-decomposition analysis—seeking to quantify how the 91 DN subregions co-deviate

with the 38 HC subregions in the context of ADRD risk.

Population co-variation between hippocampus subregions and default-

network subregions

At the heart of our analysis workflow, we derived dominant regimes of structural correspon-

dence that provide insights into how structural variation among the finely segregated HC can

track structural variation among the finely segregated DN. We employed canonical correlation

analysis (CCA), a doubly multivariate statistical technique, to identify population “signatures”

of HC-DN co-variation. CCA was a natural choice of method as it is specially designed to dis-

entangle patterns of joint correlation between 2 high-dimensional variable sets [23,150,151].

The first variable set, X, was constructed from subject-level grey matter volume in DN subre-

gions (number of participants × 91 DN parcels matrix). The second variable set, Y, was con-

structed from HC subregion volumes (number of participants × 38 HC parcels matrix). The 2

variable sets can be formally described as follows:

X 2 Rn�p

Y 2 Rn�q;

where n denotes the number of observations or UKB participants, p is the number of DN sub-

regions, and q is the number of HC subregions. Subregion volumes from both variable sets

were z-scored across participants to zero mean (i.e., centering) and unit variance (i.e., rescal-

ing). CCA then addressed the problem of maximising the linear correlation between low-rank

projections from 2 variable sets or data matrices [23]. The 2 sets of linear combinations of the

original variables are obtained by optimising the following target function:

LX ¼ XV LY ¼ YU
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lX;l ¼ Xvl lY;l ¼ Yul

corrðlX;l; lY;lÞ / l
T
X;llY;l ¼ max;

where V and U denote the respective contributions of X and Y, LX and LY denote the respective

latent “modes” expression of joint variation (i.e., canonical variates) based on patterns derived

from X and patterns derived from Y, lX,l is the lth column of LX, and lY,l is the lth column of LY.

Our CCA application thus sought to identify linear combinations of X and Y that optimise

their low-rank projections in the derived latent embedding. Such an approach resulted in pairs

of latent vectors with subject-specific expressions lX,l and lY,l (i.e., canonical variates) with max-

imised joint correlation. Corresponding pairs of latent vectors were found by iteratively

decomposing the data matrices X and Y into k components, where k denotes the number of

modes given the model specification. In other words, CCA searched for the canonical vectors

u and v that maximise the symmetric relationship between the data matrices of DN subregion

volumes (X) and HC subregion volumes (Y). In doing so, CCA identified the 2 concomitant

projections Xvl and Yul that optimised the correspondence between structural variation in the

segregated DN and HC.

Put differently, each principled signature of HC-DN co-variation, or mode, represents the

cross-correlation between a constellation of within-DN volumetric variation and a constella-

tion of within-HC volumetric variation that co-occurred in conjunction with each other. The

set of kmodes are mutually uncorrelated by construction (orthogonality) [23]. They are also

naturally rank-ordered based on the amount of variance explained between the embedded

allocortical and neocortical volume sets [23]. The first and strongest mode, therefore,

explained the largest fraction of joint variation between (linear) combinations of HC subre-

gions and (linear) combinations of DN subregions. Each ensuing cross-correlation signature

captured a fraction of structural variation that is not explained by one of the k−1 other modes.

The Pearson’s correlation between a pair of canonical variates (i.e., canonical correlation) is

commonly used to quantify the linear correspondence between HC subregions and DN subre-

gions for a given mode. The 2 variable sets were entered into CCA after a confound-removal

procedure based on previous UK Biobank research (cf. above).

Group difference analysis

After constructing population signatures of conjoint HC-DN co-variation, we performed a rig-

orous group difference analysis to single out microstructural divergences in specific anatomi-

cal subregions with respect to ADRD family history. For each of the derived modes of HC-DN

co-variation, we aimed to isolate anatomical subregions that show statistically defensible devia-

tion in individuals with and without a family history of ADRD. To do so, we carried out a prin-

cipled test that assessed any statistically relevant differences in the solution vector obtained

from the CCA (i.e., canonical vectors, cf. above) of individuals at ADRD risk compared to the

control group without ADRD family history (cf. above for target phenotype).

Following previous UK Biobank research [24,152], we robustly characterised the difference

between individuals with and without a family history of ADRD by carrying out a bootstrap

difference test of the CCA solution at hand [153]. This approach aimed to identify consistent

patterns of deviation that differentiate subjects with and without a family history of ADRD.

We first proceeded by constructing several alternative datasets that we could have gotten (with

the same sample size), which capture the underlying population variation. For each of the 100

bootstrap iterations, these alternative datasets were built by randomly pulling participant
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samples with replacements. In each such bootstrap iteration, we estimated 2 CCA models in

parallel by fitting 1 separate model to each of the 2 groups. In doing so, we carried out 2 � 100

separate model estimations of the doubly multivariate correspondence between HC subregions

and DN subregions.

To compare the CCA solution in individuals with and without a family history of ADRD,

we matched corresponding modes based on sign invariance and mode rank order. Canonical

vectors of a given mode that carried opposite signs were aligned by multiplying 1 with −1. The

importance rank of the CCA modes was adjusted by sorting Pearson’s correlation coefficients

between pairs of corresponding canonical vectors (i.e., canonical correlations) from strongest

to weakest. To estimate a quantity of group difference in relation to ADRD risk, we performed

the elementwise subtraction of the corresponding canonical vector entries of a given mode k
between the 2 groups. Pooling outcomes across the 100 bootstrap iterations, we thus aggre-

gated the difference estimate for each canonical vector entry, thereby quantifying the uncer-

tainty deviation for each particular HC or DN subregion.

By probing the underlying population variation, we were able to quantify the degree of

uncertainty within each of our derived modes of HC-DN co-variation. For each identified

population signature, we therefore isolated statistically defensible group differences in microa-

natomically defined HC and DN subregions. ADRD-related structural divergences were deter-

mined by whether the two-sided confidence interval included zero or not according to the 10/

90% bootstrap-derived distribution of difference estimates [149]. In doing so, we obtained a

nonparametric estimate of how ADRD risk is manifested in specific subregions for each of the

25 examined HC-DN signatures.

SNP genotyping: 6 variants of APOE gene

We capitalised on our large sample size to demystify the HC-DN co-variation expressions

associated with ε2 allele and ε4 allele homozygotes compared to their heterozygous counter-

parts for the ε2, ε3, or ε4 alleles. Genotype-level sampling and quality control procedures for

the UKB are available online (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=263).

APOE genotypes were determined based on 2 SNPs: rs429358 and rs7412. APOE ε4 was deter-

mined as the combination of rs429358(C) and rs7412(C). APOE ε2 was determined as the

combination of rs429358(T) and rs7412(T). APOE ε3 was determined based on rs429358(T)

and rs7412(C). A total of 37,291 participants had both APOE genotyping and brain-imaging-

derived measures. Among those participants, 9,525 (25.5%) reported a family history of

ADRD. We observed 6 different APOE gene variants in our population sample: ε3/3 (59.3%),

ε3/4 (23.1%), ε2/3 (12.4%), ε2/4 (2.4%), ε4/4 (2.2%), and ε2/2 (0.6%), which correspond to

frequencies expected from a population primarily composed of people from European decent

[22]. Contrasting the effect of ε2 versus ε4 allele dosage on inter-individual expressions of

HC-DN co-variation enabled us to quantify the degree to which distinct APOE allelic combi-

nations are characteristic of ADRD risk (cf. next section). In doing so, we aimed to interrogate

gradual dosage effects in brain-APOE associations rather than simply look at ε4 carrier versus

non-carrier status.

Phenome-wide analysis of brain–behaviour associations in relation to ε2

versus ε4 dosage

We performed a rich annotation of the HC-DN co-variation signatures by means of their phe-

nome-wide association with UKB traits. We were interested in how ε2 versus ε4 allele dosage

is manifested in inter-individual expressions of HC-DN co-variation and how these manifesta-

tions, in turn, relate to UKB traits among a variety of predefined risk categories. We benefited
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from a rich portfolio of phenotypes encompassing lifestyle, cognitive, mental, and physical

health assessments to ascribe profiles of brain–behaviour associations to each of the 25 modes

of HC-DN co-variation.

We started with a raw collection of approximately 15,000 phenotypes that we fed into the

FMRIB UKB Normalisation, Parsing And Cleaning Kit (FUNPACK version 2.5.0; https://

zenodo.org/record/4762700#.YQrpui2caJ8). FUNPACK was used to extract phenotype infor-

mation covering 11 major categories, including cognitive and physiological assessments, phys-

ical and mental health records, blood assays, as well as sociodemographic and lifestyle factors.

We removed any brain-imaging-derived information. The diet category was additionally

excluded from downstream analyses as it contained only 4 phenotypes. FUNPACK was

designed to perform automatic refinement on the UKB data, which included removing “do

not know” responses and filling the blank left by unanswered sub-questions. For example, the

amount of alcohol drunk on a typical drinking day for a participant who indicated not drink-

ing would be scored as zero drinks, even though this sub-question was not actually asked at

assessments. FUNPACK’s output consisted of a collection of 3,330 curated phenotypes which

were then fed into PHEnome Scan ANalysis Tool (PHESANT [154], https://github.com/

MRCIEU/PHESANT) for further refinement. In addition to data cleaning and normalisation,

PHESANT categorised the data as belonging to 1 of 4 datatypes: categorical ordered, categori-

cal unordered, binary, and numerical. Categorical unordered variables were one-hot encoded,

such that each possible response was represented by a binary column (true or false). The final

curated inventory comprised 977 phenotypes spanning 11 FUNPACK-defined categories.

We next checked for statistically robust associations between HC-DN signatures and the

portfolio of 977 extracted phenotypes with respect to ADRD genetic risk. We used a one-step

stacking strategy [155,156] to predict genetic risk as a function of individual expressions of

HC-DN co-variation. Data stacking consists of using a “base” model, often linear regression

[156], to express an input vector in a lower-dimensional space. The output of the base model,

which often consists of a single variable, can then be used as a single predictor in a new “stack-

ing” model. Therefore, data stacking addressed the problem of selecting a single best predictor

out of a combination of highly correlating input variables—which in our case were the corre-

sponding HC and DN co-variation patterns. Such an approach allowed us to re-express a

whole signature of HC-DN co-variation in terms of the degree it tracked the associated risk

conferred by APOE. We formed a single continuous number representing how much a given

HC-DN signature reflects ε2 versus ε4 dosage for a given individual. Investigations of APOE
ε4 dosage effects have been prevalent in brain imaging research [114,157,158].

The Alzheimer’s disease research community has widely endorsed encoding ε4 dosage in a

stepwise fashion, i.e., based on the number of allele copies carried by a given patient

[112,114,157,158]. By adopting such target variable representation, Lyall and colleagues have

found a significant interaction between APOE genotype dosage and coronary artery disease in

estimating verbal-numerical scores from the fluid intelligence battery in the UK Biobank

[112]. Lyall and colleagues, however, missed looking at ε2 dosage despite the well-established

association between the ε2 allele and neurovascular diseases [62,63]. More recently, APOE ε4

dosage, stepwise encoded as 0, 1, or 2, was shown to be significantly associated with right hip-

pocampal volume and white matter intensity in the UK Biobank [114]. The authors, however,

did not benefit from investigating HC anatomical segmentations besides the standard head/

body/tail subdivision [114]. Again, APOE ε2 dosage was not considered in this previous work

even though neuroimaging evidence has lent support for a dose-dependent increase in hippo-

campal volume of 769.3 mm3 per copy of the ε2 allele, on average [158].

Consequently, the present study builds on the widely shared belief that the ε2 and ε4 alleles

have largely opposing effects on Alzheimer’s risk and pathophysiology [38,159,160]. We
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sought an analogous composite dosage scale that readily captures opposite effects in modelling

the HC and DN volume variation dependent on the copy number of ε2 and ε4 alleles. We thus

created a bivariate dosage scale by summing up positive “ε2” and negative “ε4” alleles, such

that a homozygous individual carrying APOE ε2/2 would have a score of +2 and one carrying

APOE ε4/4 a score of −2. The neutral APOE ε3 allele, usually considered as a baseline risk in

epidemiological studies [22], was scored as 0. Using a bivariate dosage scale made it possible to

investigate the antagonistic effects of ε2 and ε4 in a single model. In doing so, we stayed faith-

ful to our overarching goal of unravelling their adversarial impact on HC-DN co-variation.

Aiming to capture possible sex-specific effects, we regressed the ε2 versus ε4 dosage on

inter-individual expressions of a given mode in males and females separately. We thus esti-

mated 2 � 25 different base models, 1 for each HC-DN signature and each sex, that each had 2

parameters: the pair of co-variation expressions (i.e., canonical vectors, cf. above) associated

with the HC and DN patterns. We used these 25 regression models to explain the subject-level

ε2 versus ε4 dosage as a function of HC-DN co-variation expressions. For each subject and

mode combination, we asked what would the expected ε2 versus ε4 dosage be given this sub-

ject’s specific expression of HC-DN co-variation? For each subject, we hence used the regres-

sion model to explain a range from −2 to +2 for each mode, which represented the ε2 versus

ε4 dosage associated with their individual expression of HC-DN co-variation. For each mode,

we selected the 5th and top 95th percentiles to identify the top 5% and lower 5% of individuals

who were more versus less likely to develop ADRD based on the derived ε2 versus ε4 dosage

risk. We focused on the extreme of the dosage distribution to target the brain-APOE associa-

tions especially linked to ε2 and ε4. The analogous approach is widely adopted in genome-

wide analyses to remove associations not directly linked to the target genotype [161,162].

For each sex separately and for a given mode, the designated participants were put to a test

of association with the 977 curated UKB phenotypes, with appropriate correction for multiple

comparisons. The Pearson’s correlation between a phenotype and genetic risk predicted based

on a specific HC-DN signature revealed both the association strength and accompanying sta-

tistical significance of the given mode-trait association. For each HC-DN signature, 2 widely

used procedures were carried out to adjust for the multitude of associations being assessed.

First, we adjusted for the number of tested phenotypes by using Bonferroni’s correction for

multiple comparisons (0.05/977 = 5.11 × 10−5). Second, we used the FDR, another popular

adjustment, although less stringent than Bonferroni’s correction. The FDR [163] was set as 5%

[140,164,165] and computed for each HC-DN signature in accordance with standard practice

[166]. For the sake of visualisation, we used Miami plots to compare the profiles of brain–

behaviour associations derived from males and females. For visualisation purposes, pheno-

types in Miami plots were coloured and grouped according to the category membership

defined by FUNPACK.

Clustering of risk factors based on their correlation with HC-DN co-

variation expressions

We next systematically explored nonlinear associations between established ADRD risk phe-

notypes and HC-DN co-variation expressions across the different APOE gene variants. Our

goal was to probe for clusters of risk factors that are interrelated with the derived patterns of

HC and DN co-variation. To this end, we used a hierarchical clustering approach that allowed

us to assess the relative importance of ensuing clusters in each of the different APOE genotypes

to explore gradual APOE dosage effects on risk-anatomy links.

We adopted a targeted approach by focusing on a set of 63 risk factors (collection of pheno-

types used previously [34]), including classical cardiovascular and demographic traits, as well
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as social richness indicators recently linked to ADRD in the UKB cohort. The first step of the

clustering analysis consisted of multiplying the z-scored canonical variates by each of the 6

one-hot encoded APOE genotypes (i.e., ε2/2, ε2/3, ε3/3, ε2/4, ε3/4, and ε4/4) such that partic-

ipants without a given genotype were zeroed out. The 6 ensuing matrices (number of partici-

pants × 50 canonical variates) represented the individual expressions of HC-DN co-variation

signatures for participants with a given APOE genotype, whereas other participants were

scored as 0s. We then computed Spearman’s correlation between these 6 genotype-specific

matrices and the z-scored risk factor matrix (37,291 participants × 63 risk factors) to investi-

gate risk-anatomy links. Spearman’s correlation is a nonparametric measure of statistical

dependence between the rankings of 2 variables that can be used to capture monotonic nonlin-

ear phenomena. The Spearman’s correlation coefficients reduce to the Pearson’s correlation

between the rank values of 2 variables and hence range from −1 (inversely proportional associ-

ation) to +1 (proportional association). We obtained a new cross-association matrix X2R63 x

50 which represented the Spearman’s correlation between the 63 risk factors and the 50 canoni-

cal variates for each of the 6 APOE genotypes. The obtained Spearman’s correlation coeffi-

cients thus carried the nonlinear association strength of a given risk-anatomy link for a

particular APOE genotype.

For each of the 6 APOE genotypes, we performed an agglomerative hierarchical clustering

analysis on X to regroup risk factors based on their 50 associations with HC-DN co-variation

pattern expressions. We used Ward’s minimum variance method [167] to compute the linkage

matrix between the Spearman’s correlation coefficients of each risk-anatomy link in Euclidian

space. Ward’s minimum variance criterion consists in minimising the total within-cluster vari-

ance defined as the error sum of squares:

dij ¼ dðfXig; fXjgÞ ¼ jjXi � Xjjj
2
;

where dij represents the squared Euclidean distance between 2 points (or cluster of points) i
and j. At each step, the pair of coefficients or preceding candidate clusters that give the mini-

mum increase in within-cluster variance is selected for merging. The procedure was performed

recursively until all coefficients were merged into a single cluster. For each of the 6 APOE
genotypes, we could thus create a dendrogram that represented the distance in Euclidian space

between the clusters retained after 3 levels of branching. The level of branching refers to the

number of divisions from the final merge. The dendrograms allowed us to visualise the cluster-

ing results for each of the 6 APOE genotypes at the same level of branching and identify mean-

ingful clusters of risk-anatomy links that are shared or unique. To provide a more direct

assessment of the degree of dissimilarity, we have compared the spread between nodes in the

analogous dendrograms for each APOE genotype. We used Pearson’s correlation to examine

the Euclidean distance between the 2 descendent links across corresponding hierarchical

merging steps in the 6 genotype-specific cluster models.

Regression of ADRD risk on HC-DN signatures and APOE gene variants

We next tested whether specific APOE genotypes showed interaction effects with signatures of

HC-DN co-variation in explaining inter-individual differences in ADRD risk. As our goal was

to highlight previously overlooked sex effects, we conducted our interaction analyses in males

and females separately. In doing so, we aimed to characterise brain-APOE interactions in rela-

tion to their sex-specific impact on ADRD risk.

A first series of analyses consisted in regressing each of the previously investigated ADRD

risk factors on APOE genotypes, co-variation patterns from the HC and DN sides (i.e., canoni-

cal variates), and the interaction between APOE genotypes and co-variation patterns,
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controlling for age. Aiming to capture possible sex-specific effects, we conducted separate anal-

yses on males and females. We, therefore, looked at 61 ADRD risk factors, while age was used

as a covariate and sex was the grouping factor for stratification. Each of the 25 modes of

HC-DN co-variation was represented by 2 regression models: 1 for its HC pattern and 1 for its

DN pattern. We thus formed 50 univariate regression models, in males and females, for each

of the 61 risk factors. In each of these models, a given risk factor was regressed on 1 HC or DN

canonical variate, the 6 APOE genotypes (ε2/2, ε2/3, ε3/3, ε2/4, ε3/4, and ε4/4), and 6 interac-

tion terms capturing the nonlinear association between each of the 6 APOE genotypes and the

given HC or DN pattern, controlling for age. Each regression model thus aimed at explaining

variance in one of the 61 risk factors for a given sex based on these 14 parameters.

As a conjoint analysis across the regression models, we performed a rigorous permutation

analysis to assess the robustness of each of the 14 regression coefficients. In as many as 61,000

iterations (i.e., 61 risk factors � 1,000 iterations), we randomly shuffled the outcome variable

(i.e., a given risk) across participants. We recomputed the otherwise identical regression

model based on the data with randomised outcomes. We recorded the regression coefficients

from each of the 61,000 iterations and used them to build empirical null distributions on

which we performed two-tail statistical tests. We considered statistically relevant coefficients

that differ from their respective null distributions in at least 95% of the iterations, which

ensured that we were at least 5% certain that the effect was robustly different from zero. This

threshold remains arbitrary as our post hoc interaction analyses were merely descriptive and

designed to provide a coarse portrait of gene–brain interactions rather than claiming statistical

significance. For that reason, we have made publicly available masked permutations plots at

the 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.95 percentiles for the coefficient estimates of

each regression model for males (https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/

tree/master/fig_5/permutation_analysis/males/masked_plots) and females (https://github.

com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/fig_5/permutation_analysis/females/

masked_plots).

A second series of analyses consisted in regressing the family history of ADRD on a set of

explanatory input variables including (i) APOE genotypes; (ii) co-variation patterns from the

HC and DN sides (i.e., canonical variates); and (iii) the interaction between APOE genotypes

and co-variation patterns, controlling for age. For each sex, we built separate logistic models

for each of the 25 HC and 25 DN canonical variates, for a total of 50 models per sex. In each

model, the family history of ADRD (encoded as 0 for no and 1 for yes) was regressed on 1 HC

or DN canonical variate, the 6 APOE genotypes (ε2/2, ε2/3, ε3/3, ε2/4, ε3/4, and ε4/4), and 6

interaction terms capturing the nonlinear association between each of the 6 APOE genotypes

and the given HC or DN pattern, controlling for age. We thus obtained a total of 100 logistic

models that sought to explain variance in the family history of ADRD as a function of these 14

parameters. We performed the analogous permutation analysis (described above) to assess the

robustness of each of the 14 regression coefficients derived from these 100 logistic models. We

have made publicly available the permutation distributions at the 0.0001, 0.001, 0.01, 0.05, 0.1,

0.2, 0.5, 0.8, 0.95 percentiles for the coefficients of each regression model (https://github.com/

dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/fig_6/permutation_analyses).

Latent factor analysis of brain–behaviour associations

To finally distill latent factor embeddings of brain–behaviour associations from our HC-DN

population signatures, we used the classical linear dimensionality reduction method PCA

[168]. PCA was a natural choice of method to uncover linearly independent groupings of risk

factors with similar relatedness to HC-DN co-variation patterns. Latent factors uncovered by
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the PCA are naturally ordered from most to least important which allows us to select candidate

principles of brain–behaviour association that account for the most inter-individual variance.

We started by computing the Pearson’s correlation between the z-scored canonical variate

matrix (number of participants × 50 canonical variates) and the z-scored risk factor matrix

(number of participants × 63 risk factors). We obtained a new matrixM2R63 x 50, which repre-

sented the Pearson’s correlation coefficients between the 63 risk factors and the 50 canonical

variates. We next decomposedM into latent factor groupings by using singular value decom-

position (SVD). Every correlation coefficient inM had already been z-scored to abide by zero

mean and unit variance prior to computing the SVD, as per common practice [169]. More for-

mally, solving the SVD problem took the following form:

M ¼ U S VT;

Where U is a 63 × 63 orthonormal matrix, S is a 63 × 50 diagonal matrix carrying the singular

values, and V is a 50 × 50 orthonormal matrix carrying singular vectors.

We retained the top 3 singular vectors and expressed our correlation matrix in terms of the

dot product US2R63 x 3 to be able to represent the latent-factor projections ofM onto the new

3D latent space. In doing so, we obtained the distinct expression levels of the 63 risk factors for

each of the top 3 brain–behaviour association axes (i.e., principal component expressions).

These 3 axes are by construction orthonormal and rank-ordered, representing an uncorrelated

partition of the overall variance in brain–behaviour association. The leading axis captured the

largest fraction of variance and was, therefore, the most explanatory, as reflected by its associ-

ated singular value.

We then conducted an acid test of the robustness of the PCA solution by performing a rig-

orous split-half reliability assessment across 1,000 bootstrap iterations. At each iteration, we

drew 37,291 participants with replacements to simulate random participant samples that we

could have pulled from the same population. We then derived 2 random subsets of equal size

(N = 18,645) from the original sample and re-computed the Pearson’s correlation matrixM
for each random subset separately. SVD was then performed on both matrices in parallel

according to the procedure described above. We retained the same number of top 3 singular

vectors and expressed each correlation matrix in terms of its projection onto its corresponding

latent space. In doing so, we were able to compare the expression levels of each risk factor

along the 3 main axes of brain–behaviour associations derived from each random subset. If the

PCA solution is robust, similar groups of risk factors should be emphasised along correspond-

ing dimensions, which, in turn, should explain similar fractions of the total variance. We also

provided a more formal assessment of statistical agreement between both random subsets by

computing the Pearson’s correlation between the weights of the 3 first principal components

for random subsets 1 and 2 across the 1,000 iterations. Higher Pearson’s correlations are indic-

ative of a substantial degree of agreement between both subsets, which in turn attests to the

robustness of the original PCA solution.

Based on the desire to audit our cohort analysis for sex-specific associations, we computed

the Pearson’s correlation matrixM in males and females separately and repeated the PCA pro-

cedure described above for each group. Once more, we retained the top 3 singular vectors and

expressed the correlation matrices in terms of their projection onto their corresponding latent

embedding. We compared the expression levels of the risk factors along corresponding latent

dimensions to highlight sex-specific brain–behaviour associations. In the absence of major sex

differences, similar groups of risk factors should be emphasised along analogous dimensions,

which should correspondingly explain similar fractions of the total variance.
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We performed a similar bootstrap analysis of the sex-specific PCA solutions to formally

assess the robustness of our findings. Across 1,000 bootstrap iterations, we drew 17,561 males

and 19,730 females with replacements to simulate random participant samples that we could

have gotten from the original population. At each iteration, re-computed the Pearson’s correla-

tion matrix for each random subset separately and repeated the analogous SVD decomposition.

As for the split-half reliability assessment, we Pearson’s correlated the weights of the 3 first prin-

cipal components for male- and female-derived solutions in each of the 1,000 iterations. Lower

Pearson’s correlations would suggest a higher degree of sex-specificity in the PCA solutions.

External validation

Using the openly available PREVENT-AD (PResymptomatic EValuation of Experimental or

Novel Treatments for Alzheimer’s disease (AD); [170]) cohort, we have performed a rigorous

test of the external validation for our HC-DN co-variations signatures derived from the UKB

cohort. The PREVENT-AD cohort is composed of older individuals with a known family his-

tory of Alzheimer’s disease that were cognitively unimpaired at the time of enrollment from

2011 to 2017 (mean age 63, SD 5 years) [170]. Participants of the PREVENT-AD initiative

have undergone extensive annual health and cognitive assessments for up to 5 years. This

resource creates a unique opportunity to monitor longitudinal trajectories of brain-imaging

assessments, cerebral fluid biochemistry, neurosensory capacities, and medical charts in pre-

symptomatic individuals at Alzheimer’s risk. Our independent PREVENT-AD sample con-

sisted of 386 participants (27% men, 73% women) with the following APOE genotype distribu-

tion: ε3/3 (51.2%), ε3/4 (33.1%), ε2/3 (10.5%), ε2/4 (3.0%), ε4/4 (2.1%). Further information

on the PREVENT-AD cohort and access to the open data inventory can be found online

(https://prevent-alzheimer.net).

The PREVENT-AD resources provide structural brain-imaging scanning (T1-weighted

images of brain anatomy) for up to 4 years of follow-up for 362 participants, totaling 980 par-

ticipant assessment visits. For the brain-imaging data from each participant visit, we first per-

formed a full FreeSurfer reconstruction followed by subcortical volumetric sub-segmentation

of the 38 hippocampal subfields, analogous to the UKB brain-imaging preprocessing pipeline.

We next parsed the structural brain scans according to the Schaefer-Yeo parcellation (400 par-

cels, 7 networks) to obtain the analogous 91 parcels defined as belonging to the DN (https://

github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/

Schaefer2018_LocalGlobal/Parcellations/project_to_individual). Age, age2, sex, sex�age, and

sex�age2 were regressed out from each brain-derived grey matter volume measure as part of

the deconfounding procedure. The final brain-imaging sample consisted of 344 participants

with a total of 916 individual visits (64 visits were excluded based on errors in the preprocess-

ing pipeline). Of the remaining visits, 117 came from participants without APOE SNP geno-

typing and were hence excluded.

In so doing, we extracted the same collection of brain-image-derived phenotypes of grey

matter morphology as in the UKB. We were thus in a position to compute the expression of

the 25 UKB-derived modes of HC-DN co-variation based on grey matter measurements for

the 91 DN and 38 HC subregions in PREVENT-AD participants. For each visit, we obtained

25 pairs of subject-specific expressions of each of the 25 brain signatures of HC-DN structural

co-variation (i.e., canonical variates), which served as a basis for our external validation analy-

ses in unseen subjects.

Across MRI visits, we tested whether 25 different signatures of HC-DN co-variations are

associated with different subsets among the rich palette of PREVENT-AD phenotypes

designed to track ADRD progression in pre-symptomatic individuals.
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To do so, using Pearson’s correlation, we computed the association strength between the

individual expressions of the 25 modes of HC-DN co-variation and 157 PREVENT-AD phe-

notypes that spanned CSF and blood samples, comprehensive cognitive and functional assess-

ments, as well as demographic and health records. To assess the robustness of the correlation

coefficients, we randomly permuted the PREVENT-AD phenotypes across participants in

1,000 iterations and recomputed the Pearson’s correlation coefficients. Recording the results

from these 1,000 iterations, we built an empirical null distribution for each correlation coeffi-

cient. We reported only the coefficients that were robustly different from their respective

empirical null distributions in at least 95% of the 1,000 permutation iterations.

Supporting information

S1 Fig. ADRD-related divergences in HC and DN subregions for mode 2 and the associated

phenome-wide profile. Shown here are ADRD-related subregion divergences for mode 2 for

the HC (leftmost panel) and DN (central panel). We identified 10 HC hits, most of them located

in the left hemisphere. The strongest HC divergences were observed for the presubiculum, hip-

pocampal fissure, and CA2/3. We found corresponding DN hits in posterior midline structure

(posterior cingulate cortex and restrosplenial cortex), the dorsomedial prefrontal cortex, and

the posterior and temporal cortices. In males and females separately, we regressed APOE dosage

on HC and DN co-variation patterns from mode 2. We then used these sex-specific models to

predict APOE dosage based on inter-individual expressions of mode 2. The right panel displays

the Miami plot for the correlations between APOE scores in the context of mode 2 and the port-

folio of UKB phenotypes for males (upper half) and females (lower half). We found significant

associations with the fluid intelligence battery that were unique to males. Data underlying this

figure can be found at https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/

Miami_Plots (DOI: 10.5281/zenodo.7126809). ADRD, Alzheimer’s disease and related demen-

tia; CA, cornu amonis; DG, granule cell layer of the dentate gyrus; dmPFC, dorsomedial pre-

frontal cortex; DN, default network; FDR, false discovery rate correction; HC, hippocampus;

IPL, inferior parietal lobule; MTS, middle temporal sulcus; PrS, presubiculum; PCC, posterior

cingulate cortex; RSC, retrosplenial cortex; STS, superior temporal sulcus.

(TIFF)

S2 Fig. ADRD-related divergences in HC and DN subregions for mode 6 and the associated

phenome-wide profile. Shown here are ADRD-related subregion divergences for mode 6 for

the HC (leftmost panel) and DN (central panel). We identified 1 HC hit to the hippocampus–

amygdala transition area with no concurrent DN divergences. In males and females separately,

we regressed APOE dosage on HC and DN co-variation patterns from mode 6. We then used

these sex-specific models to predict APOE dosage based on inter-individual expressions of

mode 6. The right panel displays the Miami plot for the correlations between APOE scores in

the context of mode 6 and the portfolio of UKB phenotypes for males (upper half) and females

(lower half). We found significant associations with physical phenotypes and blood assays that

were unique to females. Data underlying this figure can be found at https://github.com/

dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI: 10.5281/zenodo.

7126809). ADRD, Alzheimer’s disease and related dementia; DN, default network; FDR, false

discovery rate correction; HATA, hippocampus–amygdala transition area; HC, hippocampus;

IMT, intima-medial thickness.

(TIFF)

S3 Fig. ADRD-related divergences in HC and DN subregions for mode 10 and the associ-

ated phenome-wide profile. Shown here are ADRD-related subregion divergences for mode
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10 for the HC (leftmost panel) and DN (central panel). We identified 1 HC hit to the hippo-

campus–amygdala transition area with no concurrent DN divergences. In males and females

separately, we regressed APOE dosage on HC and DN co-variation patterns from mode 10.

We then used these sex-specific models to predict APOE dosage based on inter-individual

expressions of mode 10. The right panel displays the Miami plot for the correlations between

APOE scores in the context of mode 10 and the portfolio of UKB phenotypes for males (upper

half) and females (lower half). We found 1 significant association with sitting height unique to

males. Data underlying this figure can be found at https://github.com/dblabs-mcgill-mila/

HCDMNCOV_AD/tree/master/Miami_Plots (DOI: 10.5281/zenodo.7126809). ADRD, Alz-

heimer’s disease and related dementia; DN, default network; FDR, false discovery rate correc-

tion; HATA, hippocampus–amygdala transition area; HC, hippocampus.

(TIFF)

S4 Fig. ADRD-related divergences in HC and DN subregions for mode 4 and the associated

phenome-wide profile. Shown here are ADRD-related subregion divergences for mode 4 for

the HC (leftmost panel) and DN (central panel). We identified 4 DN hits to the dorsomedial

prefrontal cortex with no concurrent HC divergences. In males and females separately, we

regressed APOE dosage on HC and DN co-variation patterns from mode 4. We then used

these sex-specific models to predict APOE dosage based on inter-individual expressions of

mode 4. The right panel displays the Miami plot for the correlations between APOE scores in

the context of mode 4 and the portfolio of UKB phenotypes for males (upper half) and females

(lower half). We found 1 significant association with receiving an attendance, disability or

mobility allowance that was unique to females. Data underlying this figure can be found at

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI:

10.5281/zenodo.7126809). ADRD, Alzheimer’s disease and related dementia; dmPFC, dor-

somedial prefrontal cortex; DN, default network; FDR, false discovery rate correction; HC,

hippocampus.

(TIFF)

S5 Fig. ADRD-related divergences in HC and DN subregions for mode 7 and the associated

phenome-wide profile. Shown here are ADRD-related subregion divergences for mode 7 for

the HC (leftmost panel) and DN (central panel). We identified 9 DN hits to the frontal lobe

with no concurrent HC divergences. In males and females separately, we regressed APOE dos-

age on HC and DN co-variation patterns from mode 7. We then used these sex-specific models

to predict APOE dosage based on inter-individual expressions of mode 7. The right panel dis-

plays the Miami plot for the correlations between APOE scores in the context of mode 7 and

the portfolio of UKB phenotypes for males (upper half) and females (lower half). We found 1

significant association with diastolic blood pressure that was unique to females. Data underly-

ing this figure can be found at https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/

tree/master/Miami_Plots (DOI: 10.5281/zenodo.7126809). ADRD, Alzheimer’s disease and

related dementia; dmPFC, dorsomedial prefrontal cortex; DN, default network; FDR, false dis-

covery rate correction; HC, hippocampus; OFC, orbitofrontal cortex.

(TIFF)

S6 Fig. ADRD-related divergences in HC and DN subregions for mode 11 and the associ-

ated phenome-wide profile. Shown here are ADRD-related subregion divergences for mode

11 for the HC (leftmost panel) and DN (central panel). We identified 1 DN hit to the posterior

cingulate cortex with no concurrent HC divergences. In males and females separately, we

regressed APOE dosage on HC and DN co-variation patterns from mode 11. We then used

these sex-specific models to predict APOE dosage based on inter-individual expressions of
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mode 11. The right panel displays the Miami plot for the correlations between APOE scores in

the context of mode 11 and the portfolio of UKB phenotypes for males (upper half) and

females (lower half). We found 1 significant association with the standing height that was

unique to females. Data underlying this figure can be found at https://github.com/dblabs-

mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI: 10.5281/zenodo.7126809).

ADRD, Alzheimer’s disease and related dementia; DN, default network; FDR, false discovery

rate correction; HC, hippocampus; PCC, posterior cingulate cortex.

(TIFF)

S7 Fig. ADRD-related divergences in HC and DN subregions for mode 13 and the associ-

ated phenome-wide profile. Shown here are ADRD-related subregion divergences for mode

13 for the HC (leftmost panel) and DN (central panel). We identified 1 DN hit to the superior

temporal sulcus with no concurrent HC divergences. In males and females separately, we

regressed APOE dosage on HC and DN co-variation patterns from mode 13. We then used

these sex-specific models to predict APOE dosage based on inter-individual expressions of

mode 13. The right panel displays the Miami plot for the correlations between APOE scores in

the context of mode 13 and the portfolio of UKB phenotypes for males (upper half) and

females (lower half). We found significant associations with physical measurements related to

height as well as feelings of guilt that were unique to females. Data underlying this figure can

be found at https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_

Plots (DOI: 10.5281/zenodo.7126809). ADRD, Alzheimer’s disease and related dementia; DN,

default network; FDR, false discovery rate correction; HC, hippocampus; STS, superior tempo-

ral sulcus.

(TIFF)

S8 Fig. Difference in associations between males and females for the phenome-wide profil-

ing of mode 1. Absolute difference in p-values for the 33 brain-phenotype associations that

passed the Bonferroni correction for multiple comparisons in either males or females in the

original phenome-wide profiling of mode 1. Data underlying this figure can be found at

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI:

10.5281/zenodo.7126809).

(PNG)

S9 Fig. Difference in associations between males and females for the phenome-wide profil-

ing of mode 3. Absolute difference in p-values for the 20 brain-phenotype associations that

passed the Bonferroni correction for multiple comparisons in either males or females in the

original phenome-wide profiling of mode 3. Data underlying this figure can be found at

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI:

10.5281/zenodo.7126809).

(PNG)

S10 Fig. Difference in associations between males and females for the phenome-wide pro-

filing of mode 8. Absolute difference in p-values for the 18 brain-phenotype associations that

passed the Bonferroni correction for multiple comparisons in either males or females in the

original phenome-wide profiling of mode 8. Data underlying this figure can be found at

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI:

10.5281/zenodo.7126809).

(PNG)

S11 Fig. Similarity between the 6 genotype-specific clustering models. We computed Pear-

son’s correlation of the distance between the 2 descendent links of corresponding hierarchical
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merging steps among the cluster analyses for the 6 APOE genotypes (i.e., ε2/2, ε2/3, ε3/3, ε2/

4, ε3/4, and ε4/4). These derived distances made it possible to formally compare the cluster

nodes of analogous dendrograms for each genotype-specific cluster model. We show that ε2

carriers are most similar to each other, as reflected by an agglomeration of strong Pearson’s

correlation coefficients in the top left corner of the heat map. The most dissimilar cluster mod-

els were ε2/4 and ε3/4, followed by ε2/4 and ε3/3, and lastly by ε3/3 and ε4/4. Data underlying

this figure can be found at https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/

master/clustering_analysis (DOI: 10.5281/zenodo.7126809).

(TIFF)

S12 Fig. ε3 carriership shows risk-anatomy links with socioeconomic determinants, while

ε2 carriership is associated with neuroticism. We multiplied the population-wide HC and

DN co-variation patterns by APOE genotypes ε3/3 (N = 22,129) and ε2/4 (N = 885) such that

participants who do not carry a given genotype were zeroed out. We then computed the Spear-

man’s correlations between these 2 new vectors and the 63 preselected Alzheimer’s disease risk

factors to test for risk-anatomy links. We performed an agglomerative clustering analysis on

these Spearman’s correlations, which consists in repeatedly merging Spearman’s correlations

with similar variance together until all observations are merged into a single cluster. Here are

shown the dendrograms, which indicate the distance between each cluster identified when

retaining 3 levels of branching for APOE ε3/3 (leftmost panel) and ε2/4 (rightmost panel). We

found the early branching of socioeconomic determinants ε3/3 (time spent watching televi-

sion, education score, past and current tobacco smoking frequency, alcohol consumption on a

typical drinking day, and alcohol intake frequency) in the clustering model for ε3/3. For ε2/4,

we found that neuroticism-related behaviours (e.g., being worried/anxious, mood swings, and

miserableness) were singled out from the other risk-anatomy links at the first branching, as

was observed for other ε2 carriers. We thus confirm the association between ε3 carriership

and socioeconomic determinants and between ε2 carriership and neurotic personality traits.

Data underlying this figure can be found at https://github.com/dblabs-mcgill-mila/

HCDMNCOV_AD/tree/master/clustering_analysis (DOI: 10.5281/zenodo.7126809).

(TIFF)

S13 Fig. Latent factors of brain–behaviour associations emphasise satisfaction with social

relationships, socioeconomic status, and neuroticism-related traits. We conducted an

exploratory PCA to disentangle latent factor of brain–behaviour association in our UK Bio-

bank sample. We first computed the Pearson’s correlations between the 25 pairs of co-varia-

tion patterns from the HC and DN sides and the 63 preselected ADRD risk factors. We then

ran singular value decomposition on the risk by canonical variates matrix (X63 × 50) and

retained the 3 first PCs that explained approximately 13.8%, approximately 9.6%, and approxi-

mately 8.2% of the total variance in the data, respectively. The upper plot displays the projec-

tions of the Pearson’s correlations onto each of the 3 main axes of brain–behaviour

associations. The lower plot displays the eigenvectors for the top 10 HC and DN co-variation

patterns. The first axis of brain–behaviour associations emphasises phenotypes from the social

cluster previously identified on the clustering analysis of risk-anatomy links (Fig 4), e.g.,

attending religious group, attending adult education classes, and number of people in house-

hold. The second axis rather accented health-related phenotypes and lifestyle factors. Lastly,

the third axis of brain–behaviour associations separated neuroticism-related items (being wor-

ried/anxious, being easily hurt, and worrying too long after embarrassment) from the rest of

the risk factors. Data underlying this figure can be found at https://github.com/dblabs-mcgill-

mila/HCDMNCOV_AD/blob/master/PCA (DOI: 10.5281/zenodo.7126809). ADRD, Alzhei-

mer’s disease and related dementia; DN, default network; HC, hippocampus; PCA, principal
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component analysis.

(TIFF)

S14 Fig. Reliability assessment of the principal component solution. We assessed the

robustness of the derived brain–behaviour association axes by performing a split-half reliabil-

ity assessment of our principal component solution across 1,000 bootstrap iterations. At each

iteration, we drew 37,291 participants with replacements to simulate random participant sam-

ples that we could have pulled from the same population. We then derived 2 random subsets

of equal size (N = 18,645) from the original sample. For each subset, we re-computed the Pear-

son’s correlation between all possible combinations of the 50 canonical variates and 63 target

indicators. We then estimated 2 PCA models in parallel, one for each random half subset, on

the z-scored correlation coefficients matrices. We show the average projections of the Pear-

son’s correlation coefficients on the 3 first axes of brain–behaviour associations. We found

that the projections on component 1 were robust and consistent across subsets. The projec-

tions on the first axis of brain–behaviour associations accurately depicted those of the original

PCA solution, with the same set of social phenotypes (e.g., attending religious group, attending

adult education classes, and the number of people in the household) and socioeconomic deter-

minants (e.g., age completed high school education, average household income, and the num-

ber of vehicles in the household) emphasised. Data underlying this figure can be found at

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/blob/master/PCA (DOI: 10.5281/

zenodo.7126809).

(TIFF)

S15 Fig. Statistical agreement between the PCA solutions for random subsets 1 and 2. We

computed the Pearson’s correlation between the weights of the 3 first principal components

for random subsets 1 and 2 across 1,000 bootstrap iterations. The weights of the first 2 compo-

nents were robust, as reflected by a substantial degree of agreement between both subsets on

components 1 (mean Pearson’s rho: 0.59, 90% CI: [0.38, 0.74]) and 2 (mean Pearson’s rho:

0.51, 90% CI: [0.15, 0.77]). In contrast, we showed volatility in the weights associated with

component 3, as reflected by a wider and right-skewed distribution (mean Pearson’s rho: 0.25,

90% CI: [0.02, 0.56]). Data underlying this figure can be found at https://github.com/dblabs-

mcgill-mila/HCDMNCOV_AD/blob/master/PCA (DOI: 10.5281/zenodo.7126809).

(TIFF)

S16 Fig. Neuroticism-related items expressed distinctive brain–behaviour associations in

males and females. We repeated the PCA in males (left; N = 17,561) and females right;

N = 19,730) separately. In each sex, we first computed the Pearson’s correlations between the

25 pairs of co-variation patterns from the HC and DN sides and the 63 preselected ADRD risk

factors. We then ran singular value decomposition on the risk by canonical variates matrix

(X63 × 50) and retained the 3 first PCs. The PCs obtained from males had explained variance of

approximately 14.6%, approximately 11.9%, and approximately 9.6%, respectively. The PCs

obtained from females had explained variance of approximately 14.6%, approximately 11.9%,

and approximately 7.4%, respectively. The upper plots display the projections of the Pearson’s

correlations onto each of the 3 axes of brain–behaviour associations for the 2 sexes. The lower

plots display the eigenvectors for the top 10 HC and DN co-variation patterns. The projections

of the Pearson’s correlations onto the 2 first axes of brain–behaviour association were roughly

the same in males and females. In contrast, neuroticism-related items were only emphasised

on the third axis of brain–behaviour association in males. We thus supplemented our popula-

tion analysis by showing that the relationship between neuroticism and patterns of HC-DN

co-variation was mainly male specific. Data underlying this figure can be found at https://
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github.com/dblabs-mcgill-mila/HCDMNCOV_AD/blob/master/PCA (DOI: 10.5281/zenodo.

7126809). ADRD, Alzheimer’s disease and related dementia; DN, default network; HC, hippo-

campus; PCA, principal component analysis.

(TIFF)

S17 Fig. Statistical agreement between the PCA solutions for males and females. We com-

puted the Pearson’s correlation between the weights of the first 3 principal components for the

sex-specific PCA solutions across 1,000 bootstrap iterations. We observed a low agreement

between the male- and female-derived PCA solutions on all 3 components, as reflected by the

widespread of the distributions and small average values. Data underlying this figure can be

found at https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/blob/master/PCA (DOI:

10.5281/zenodo.7126809).

(TIFF)

S18 Fig. HC-DN signatures tracked different aspects of ADRD risk in independent PRE-

VENT-AD participants. We externally validated our UKB-derived population signatures of

HC-DN co-variation by investigating their mapping to ADRD-related risk factors in an

unseen, independent participant sample. We tracked subject-specific expressions of the 25

modes of HC-DN co-variation in PREVENT-AD participants to a collection of 157 widely

established indicators of ADRD progression. We computed the Pearson’s correlation between

the HC and DN pattern expressions and the PREVENT-AD phenotypes for each mode. Only

the Pearson’s correlation coefficients that were statistically different from their respective null

distributions 95% of the time are present. We replicated several phenotypic associations

highlighted in the UKB, such as with mode 1 and depression, mode 2 and verbal-numerical

reasoning, and mode 6 and vascular integrity. We also showed that our modes of HC-DN co-

variation track meaningful aspects of ADRD progression up to the 25th and last signature, for

which we found associations with tau CSF levels on the HC side and cardiovascular factors

(e.g., systolic blood pressure, pulse, and APOE ε4/4 genotype) on the DN side. We thus showed

that HC-DN signatures robustly link to different aspects of ADRD risk in a completely inde-

pendent cohort from the one in which the co-variation patterns have originally been derived.

Data underlying this figure can be found at https://github.com/dblabs-mcgill-mila/

HCDMNCOV_AD/blob/master/external_validation (DOI: 10.5281/zenodo.7126809). ADRD,

Alzheimer’s disease and related dementia; DN, default network; HC, hippocampus.

(TIFF)
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