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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:People of all ages display the ability to detect and learn from patterns in seemingly random sti-

muli. Referred to as statistical learning (SL), this process is particularly critical when learning a

spoken language, helping in the identification of discrete words within a spoken phrase. Here,

by considering individual differences in speech auditory–motor synchronization, we demon-

strate that recruitment of a specific neural network supports behavioral differences in SL from

speech. While independent component analysis (ICA) of fMRI data revealed that a network of

auditory and superior pre/motor regions is universally activated in the process of learning, a

frontoparietal network is additionally and selectively engaged by only some individuals (high

auditory–motor synchronizers). Importantly, activation of this frontoparietal network is related

to a boost in learning performance, and interference with this network via articulatory suppres-

sion (AS; i.e., producing irrelevant speech during learning) normalizes performance across the

entire sample. Our work provides novel insights on SL from speech and reconciles previous

contrasting findings. These findings also highlight a more general need to factor in fundamental

individual differences for a precise characterization of cognitive phenomena.

Introduction

Statistical learning (SL) is the capacity to use distributional information present in the environ-

ment to extract meaningful regularities. SL has been demonstrated across age groups from

birth [1,2], sensory modalities (e.g., audition [3,4], vision [5], and touch [6]), representational
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domains [5] (temporal and spatial), and even species [7,8]. In the domain of speech and lan-

guage processing, statistical word form learning (SWFL) is considered critical in the early

stages of language acquisition as the ability to segment phonological word forms from continu-

ous speech [3,9]. Segmented word forms are readily associated with meanings [10] and can

also be used in subsequent stages to discover grammatical relationships [11]. While regarded

fundamental to language learning by most contemporary theories, the precise neural sub-

strates of this ubiquitous phenomenon are not well understood and remain controversial.

There have been several experimental attempts to pinpoint the neural basis of SWFL, but

the existing literature shows inconsistent results. Some studies report a correlation between

SWFL performance and the activity of the superior temporal gyrus (STG) and dorsal pre/

motor regions [12–15]. Other experiments instead implicate the left inferior frontal gyrus

(IFG) [16] and its interaction with superior temporal areas [15,17]. We hypothesize that the

inconsistency of results in the literature is a consequence of very specific individual differences

in the neural resources allocated for SWFL.

In a recent study, we provided a first glance of how one might capitalize on individual differ-

ences to gain deeper mechanistic insights into SWFL: Individual listeners grouped by their

sAU : Pleasenotethatasperstyle; italicsshouldnotbeusedforemphasis:pontaneous speech auditory–motor synchronization abilities turn out to differ in their SWFL

performance [18]. Specifically, we showed there a behavioral task (the Spontaneous Speech Syn-

chronization test, henceforth “SSS test”) that robustly classifies participants into high and low

speech auditory–motor synchronizers. At the brain level, high synchronizers showed a greater

brain-to-stimulus synchrony in the left IFG during passive speech listening as well as more vol-

ume in the white matter pathways underlying the dorsal language stream (i.e., the arcuate fascicu-

lus) [19]. Critically, the high/low synchronizer distinction was predictive of SWFL performance

(Fig 1A), but the relationship between auditory–motor synchrony, population-level brain differ-

ences, and SWFL remained elusive. Here, we hypothesized that the dorsal language stream,

including the IFG, is not only linked to auditory–motor synchrony as previously reported but

also gives high synchronizers the advantage in SWFL over low synchronizers.

To test this hypothesis, we used independent component analysis (ICA) of fMRI data in com-

bination with a classic behavioral paradigm designed to interfere with the availability of the dorsal

language stream for SWFL [20]. Specifically, the behavioral paradigm employed involves the con-

trast between passive listening (PL) and articulatory suppression (AS) conditions (Fig 1B). AS

requires participants to repeat a nonsense syllable during (word) learning, which hampers SWFL

performance [9]. ICA, on the other hand, is a data-driven neuroimaging approach well suited to

identify spatially independent and temporally coherent brain networks that support specific cog-

nitive processes [21]. Previous work using this approach has related SWFL to a network compris-

ing auditory and superior pre/motor areas [14]. This earlier work, however, did not consider the

high/low synchronizer distinction. In all, in the current experiment we investigate, in both high

and low synchronizers, the brain networks engaged during SWFL under PL and AS conditions as

well as the behavioral consequences of AS for performance (Fig 1). We hypothesize that, if high

synchronizers show better learning—putatively due to a greater reliance on the dorsal language

stream—they should show a greater recruitment of this functional anatomic stream than low syn-

chronizers during learning as well as a greater AS effect.

Results

Behavioral results: AS modulates high but not low synchronizers’ SWFL

performance

An initial cohort (N = 55, 34 females; mean age, 22; age range, 18 to 37) underwent behavioral

testing. Participants completed 4 blocks of statistical word learning in 2 different experimental
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conditions, PL and AS, followed by the SSS test (Methods and Fig 1). In both tasks, the audi-

tory stimuli were presented at a rate of 4.5 syllables per second, corresponding to the mean syl-

lable rate across languages [22–24] and the natural frequency of speech motor regions [25].

The outcome of the SSS test showed the expected [18,26] bimodal distribution, allowing the

classification of participants into high and low synchronizers (Fig 2A). Moreover, the syn-

chrony between perceived and produced syllables in the SSS test was highly correlated with

that in the AS blocks (Fig 2B; N = 55, Spearman correlation coefficient r = 0.75, p< 0.001).

This demonstrates that speech-to-speech synchrony is not only reliable across time, as was pre-

viously demonstrated [18], but also across tasks, confirming that auditory–motor synchrony is

a stable feature of each individual.

A linear mixed-model analysis (N = 55; see Methods) of the learning performance showed a

significant decrement in AS relative to PL (Fig 2C; Main effect of Condition: χ2 = 15.4,

p< 0.001). This result thus replicates previously reported AS effects on SWFL [9]. The analysis

also showed a main effect of Group (Highs > Lows; χ2 = 9.11, p< 0.01) in line with our previ-

ous work [18] and, importantly, a significant interaction between the 2 factors

Fig 1. Previous work motivating the hypothesis. (A) During the SSS test, participants listen to an isochronous stream of random syllables (rate 4.5 syllables/

sec) while concurrently whispering the syllable “tah.” Left panel: example of the perceived (upper panel) and produced (lower panel) signals. Green line, band-

pass filtered envelope used to compute input-output synchrony. Middle panel: Synchrony between perceived and produced syllables yields a bimodal

distribution, allowing the classification of participants into low (blue) and high (orange) synchronizers. While some participants spontaneously align the

produced syllabic rate to the perceived one (high synchronizers), others show no modification of the produced rate due to the presence of the external rhythm

(low synchronizers). Right panel: High synchronizers outperformed lows in a statistical word learning task. They also showed enhanced brain-to-speech

synchronization over left frontal regions and a greater volume in the white-matter pathways connecting temporal and frontal areas [18]. (B) The word learning

task consists of a learning phase wherein 4 trisyllabic pseudo-words are presented in a continuous stream. Learning is assessed post exposure. Left panel:

Participants are instructed to repeat a nonsense syllable (AS condition) or to passively listen (PL condition) during the entire learning phase. Middle panel:

predicted performance decreases due to AS [9]. Right panel: differences between high and low synchronizers are hypothesized at the cognitive and brain levels.

AAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1 � 5:Pleaseverifythatallentriesarecorrect:S, articulatory suppression; PL, passive listening.

https://doi.org/10.1371/journal.pbio.3001712.g001
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(Condition�Group; χ2 = 4.22, p< 0.05). Critically, when the sample was next split into high

and low synchronizers by estimating their corresponding marginal means (see Methods), we

observed the AS effect in the population of high synchronizers (Fig 2D; Nhigh = 23, zratio = 3.92,

p< 0.001) but not in the population of low synchronizers (Fig 2D; Nlow = 32, zratio = 1.63,

p = 0.1); that is to say, the performance of low synchronizers was not modulated by the action

of speaking during the learning phase. Additionally, in line with previously reported data [18],

high synchronizers outperformed lows in the PL condition (zratio = 3.02, p< 0.01), but there

was no difference in performance between groups in the AS condition (zratio = 0.64, p = 0.52).

Importantly, for all groups and conditions, learning remained significantly above chance

(signed rank tests against chance level, 2-sided: phigh/AS < 0.001, phigh/PL < 0.001, plow/AS <

0.001, plow/PL < 0.001).

Fig 2. AS modulates only high synchronizers’ performance. (A) SSS test outcome. Histogram of the PLVs (measure

of speech-to-speech synchrony; see Methods) between the envelope of the perceived and produced speech signals,

band-pass filtered at 3.5 to 5.5 Hz. Black line, critical value separating high and low synchronizers (N = 55; see

Methods). (B) Participants’ PLV during AS as a function of the PLV from the SSS test. Red line represents the

correlation of the data. (C) Percentage of correct responses during PL and AS across the entire sample. (D) Percentage

of correct responses during PL and AS for the low (blue) and the high (orange) synchronizers. �p< 0.05, ��p< 0.01,
���p< 0.001 Linear mixed model results. Dots: model predicted group means. Bars: 95% confidence interval. Data for

Fig 2A and 2B can be found in S1 Data. Data for Fig 2C and 2D can be found in S2 Data. AS, articulatory suppression;

PL, passive listening; PLV, phase locking value; SSS test, Spontaneous Speech Synchronization test.

https://doi.org/10.1371/journal.pbio.3001712.g002
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Neuroimaging results (I): High synchronizers activate an additional brain

network during statistical word learning

Having established the expected behavioral differences between high and low synchronizers,

we next acquired fMRI data from a new group of participants (N = 41) while they performed

the same behavioral paradigm (see Methods). The SWFL paradigm was optimized for fMRI

testing. Specifically, we included both a rest block and a speech motor block as control condi-

tions. During the speech motor block, participants were required to repeatedly whisper the syl-

lable “tah” with no concurrent auditory input. The behavioral performance in the scanner

showed the same trend as the learning pattern obtained with the first sample (S1 Fig; Condi-

tion (PL> AS): χ2 = 5.40, p< 0.05; Group (Highs > Lows): χ2 = 3.67, p = 0.055; Condi-

tion�Group: χ2 = 2.74, p = 0.098; Highs (PL> AS): zratio = 2.32, p< 0.05; Lows (PL versus

AS): zratio = 0.08, p = 0.93; Highs versus Lows in PL: zratio = 1.92, p = 0.055; Highs versus

Lows in AS: zratio = 0.05, p = 0.96). Even under notably adverse listening/learning conditions

(i.e., during fMRI scanning), the detrimental effect of the AS condition was restricted to the

high synchronizers.

Using the Group ICA of fMRI Toolbox (GIFT; see Methods) [21], we identified 5 brain net-

works that were significantly recruited during SWFL in the PL and/or the AS condition (S2

and S3 Figs). Critically, a frontoparietal network including bilateral inferior and middle frontal

gyri, inferior parietal cortex, and the supplementary motor area distinguished between high

and low synchronizers during the PL condition (Fig 2A; Nhigh = 18, Nlow = 20, Mann–Whit-

ney–Wilcoxon test, 2-sided p = 0.038, false discovery rate [FDR] corrected). Moreover, while

the activity of this network during PL was statistically significant for high synchronizers, it was

not for the lows (Mann–Whitney–Wilcoxon test, 2-sided phigh < 0.005 and plow = 0.9, respec-

tively, FDR corrected). Moreover, we found moderate evidence in favor of the null hypothesis

that the network was not activated during PL for the lows (Bayes Factor BF01 = 4).

Similarly, during AS, only high synchronizers significantly engaged the frontoparietal net-

work (Fig 3A; Mann–Whitney–Wilcoxon test, 2-sided phigh < 0.005 and plow = 0.42, FDR cor-

rected), again with moderate evidence in favor of the null hypothesis for the lows (BF01 = 4.1).

In this condition, however, the network’s activity did not differentiate between the groups.

Given that groups were defined by their speech auditory–motor synchrony, we then correlated

the engagement of the frontoparietal network with the synchronization (phase locking value,

PLV) between the perceived and produced syllables during AS. Indeed, these measures were

positively correlated in the entire sample as well as in the high synchronizers only (Fig 3B;

Spearman correlation coefficient rall = 0.41 and rhigh = 0.56, pall = 0.009 and phigh = 0.012), sug-

gesting a link between spontaneous auditory–motor synchrony and frontoparietal network

engagement.

Neuroimaging results (II): The interplay between networks boosts learning

Next, we assessed whether the activity of any of the networks significantly engaged during the

PL condition was predictive of SWFL. Replicating previous results [14,27], we found a network

comprising mainly bilateral auditory regions and a small superior pre/motor cluster (hence-

forth, auditory network) whose activity positively correlated with learning performance in the

whole sample (Fig 4A; Spearman correlation coefficient r = 0.42 and p = 0.032, FDR cor-

rected). We found no significant correlations between learning and network activity in the AS

condition. Since during PL (i) highs behaviorally outperformed lows; (ii) the frontoparietal

network was only activated by high synchronizers; and (iii) the auditory network was related

to learning performance, we next examined whether the learning benefit of high synchronizers

over lows in SWFL was related to the interaction between the 2 networks (auditory and
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frontoparietal). Specifically, we explored the relationship between the time courses of these 2

networks at the individual listener level and the learning benefit. As illustrated in Fig 4B, high

synchronizers with a greater learning benefit (defined as PL minus AS) appeared to show a dis-

tinct pattern with interweaving time courses between the auditory and frontoparietal net-

works. To quantify this observation, we employed an analysis typically used in electronics:

XOR. Applied to our signals, this logical operation assigns a single value per time point: one

Fig 3. High synchronizers activate an additional brain network during statistical word learning. (A) In red/yellow,

the frontoparietal network is shown over a canonical template, with MNI coordinates on the lower portion of each

slice. Neurological convention is used. A p< 0.05 FWE-corrected threshold at the cluster level with an auxiliary

p< 0.001 threshold at the voxel is used. This is the only network showing significant differences in activity between

high and low synchronizers during PL (see bar plots on the lower right; � p< 0.05, FDR corrected). (B) Scatterplot

displaying participants’ PLV during AS as a function of the frontoparietal network’s engagement. Black line represents

the correlation of the data. Left panel: all pAU : Pleasenotethatasperstyle; thetermsubject=sshouldnotbeusedforhumanpatient=s:Hence; allinstancesof subject=shavebeenchangedtoparticipant=swhereappropriate:Pleasecheckandcorrectifnecessary:articipants. Right panel: high synchronizers. Data for Fig 3A (top bar plot)

can be found in S7 Data. Data for Fig 3A (bottom bar plot) and for Fig 3B can be found in S3 Data. FDR, false

discovery rate; FWE, family-wise error; MNI, Montreal Neurological Institute; PL, passive listening; PLV, phase

locking value.

https://doi.org/10.1371/journal.pbio.3001712.g003
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[1] when a single network is above baseline activity, or zero (0) otherwise; that is, a one is

assigned when one or the other network (but not both) is active (Fig 4B, lower insets). For

each high synchronizer, we averaged the XOR over time, and correlated this value with their

learning benefit (PL-AS) (note that this analysis would be meaningless for low synchronizers,

given the nonsignificant activation of their frontoparietal network). In line with the observed

pattern, a positive correlation was found (Fig 4C; Spearman correlation coefficient r = 0.65,

p< 0.005). This suggests that the learning benefit shown by high synchronizers over lows is

Fig 4. An interplay between networks boosts learning. (A) The auditory network supports learning during PL.

Upper panel: In red/yellow, the auditory network is shown over a canonical template, with MNI coordinates on the

upper portion of each slice. Neurological convention is used with a p< 0.05 FWE-corrected threshold at the cluster

level, with an auxiliary p< 0.001 threshold at the voxel level. Lower panel: Scatterplot displaying participants’

percentage of correct responses during PL as a function of the auditory network’s engagement. (B) The learning

benefit during PL (correct answers in PLcorrect answers in AS) is related to the interplay between the time courses of

the frontoparietal (red) and the auditory (green) networks. Left/right panel: a representative high synchronizer with a

greater/smaller learning benefit. Lower panels: Time evolution of the XOR analysis. (C) Scatterplot displaying high

synchronizers’ learning benefit as a function of the normalized XOR between the frontoparietal (red) and the auditory

(green) networks. Red line: correlation of the data. Data for Fig 4B and 4C can be found in S4 Data. Data for Fig 4A

can be found in S7 Data. FWE, family-wise error; MNI, Montreal Neurological Institute; PL, passive listening.

https://doi.org/10.1371/journal.pbio.3001712.g004
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related to a specific pattern of activity highlighted by the XOR rather than a perfect correlation

between time courses of the networks.

Discussion

The behavioral and neuroimaging data show that the neural substrates supporting SWFL vary

across individuals in a systematic way. We arrived at this observation by splitting the popula-

tion into 2 groups according to their spontaneous speech auditory–motor synchronization

abilities (Fig 2), a classification that has now been shown to be robust in a number of experi-

ments, both in-lab and online, in different languages, and with different experimental manipu-

lations [18,26]. Specifically, we found 2 distinct networks related to SWFL performance. One

network encompasses mainly auditory regions and a small superior pre/motor cluster (audi-

tory network), appears to be universally or generically recruited, and directly correlates with

learning. Another network, including inferior frontal, inferior parietal and supplementary

motor areas (frontoparietal network), is neither necessary nor sufficient for learning, yet it

boosts learning performance. This latter network, whose activity correlates with spontaneous

auditory–motor synchrony, is exclusively recruited by high auditory–motor synchronizers

during learning. These observations parsimoniously account for the apparently disparate

results in previous SWFL literature and provide a new way to discuss SL in neural terms.

In terms of behavior, we find that the effects of AS are not universal. Typically, the execu-

tion of an AS task leads to performance deficits. We demonstrate—in 2 independent cohorts

—that only the performance of participants with a high degree of auditory–motor synchroni-

zation is affected by AS. Low synchronizers, in contrast, remain unaltered in their word learn-

ing performance. Our results thus indicate that articulatory rehearsal is not necessary for

SWFL but its additional recruitment confers a learning benefit: high synchronizers, who show

robust AS effects, performed better than lows during PL. Note that these results are not discor-

dant with the previous literature [9] since averaging across high and low synchronizers yields

the expected overall AS effects.

At the neural level, we found an important distinction between high and low synchronizers

with respect to the engagement of a frontoparietal network: Only high synchronizers engage

this network during PL. While SWFL performance correlates with the activity of the auditory

network across the entire sample—in line with previous literature [14]—a synergistic relation-

ship between both networks boosts learning performance in the high synchronizer group.

Importantly, the engagement of the frontoparietal network also predicted the degree of sponta-

neous synchronization of produced speech during the AS condition.

A relationship between auditory–motor synchronization and language skills has been previ-

ously reported in the literature [18,28,29]. For example, precision in tapping to a metronome

has been argued to correlate with reading and spelling abilities in children with developmental

dyslexia [30]. Similarly, synchronization to a beat correlates with phonological awareness and

rapid naming in typically developing preschoolers [31]. Despite the cumulative evidence for a

link between auditory–motor synchronization and these various language skills, the existence

of a neural substrate shared among these apparently unrelated cognitive abilities remains an

empirical question. With this question in mind, our results suggest that the reported fronto-

parietal cortical network subserves this shared role: On the one hand, the engagement of this

network during PL confers a benefit in learning; on the other, during AS, the engagement of

this network predicts the degree of speech auditory–motor synchronization.

Insofar as there are differences between high and low synchronizers at a structural level and

differences in synchrony that are stable in time [18], we understand the high/low synchronizer

differences reported in this and previous works as trait differences. We have also theorized on
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how structural connectivity differences can give rise to the synchrony differences between the

groups under particular stimulation conditions (e.g., auditory stimulation within a specific fre-

quency range [32]). Because of this, our reported group differences could also be understood

as state differences, the precise functional significance of which remains an open question.

From a mechanistic and more neurophysiologically motivated perspective, we propose that

enhanced syllable-level segmentation or parsing—a key prerequisite for SWFL—results from the

coordinated activity between auditory and frontoparietal networks, ultimately leading to better

SWFL performance. In line with this conjecture, we previously showed that the frontal—most

component of the frontoparietal network, the IFG, aligns with the onset of passively perceived syl-

lables in high synchronizers. This frontal region has also been shown to send top-down signals to

auditory cortex (the main component of the auditory network) to better align its activity to the

speech input [33,34]. A similar proposal has been advanced in the literature to account for the

enhanced processing of phonology that results from improved auditory timing perception

through auditory–motor training [35]. Broadly speaking, therefore, our results line up with recent

theories of SL, which postulate the works of both learning systems (e.g., comprising auditory

areas in the case of auditory input) and modulatory attentional/control systems (e.g., as supported

by frontoparietal networks) underlying learning performance [36,37]. However, we add to these

current views of SL by specifying the role of these modulatory systems in terms of timing opera-

tions critical to auditory–motor synchronization advantageous to learning.

On the other hand, there exist multiple and distinct frontoparietal networks associated with

attention that overlap with our reported frontoparietal network in high synchronizers. Its ven-

tral frontoparietal component (i.e., inferior prefrontal to inferior parietal cortex), for example,

has been related to stimulus-driven attention [38], which may in turn be related to the salience

network [39]. Note that the stimulus-driven attention network is mostly bilateral (e.g., [40])

but shows different patterns of lateralization, rightward for spatial attention and leftward for

temporal attention [41]. Given the relationship between our frontoparietal network and audi-

tory–motor synchronization (this paper and [18]), a possibility therefore is that high synchro-

nizers’ frontoparietal engagement relates to a temporal attention mechanism.

Another possibility is that frontoparietal activity in high synchronizers relates to a control

network (e.g., [42]) that flexibly interacts with other task-specific networks (e.g., [43,44]). This

is possible given the activity in more dorsal frontal regions that also feature in our frontoparie-

tal network. Interestingly, recent articles (e.g., [45,46]) show that a supra-modal frontoparietal

network entrains to stimulation (sensory and via rhythmic transcranial magnetic stimulation)

in the theta band and that this entrainment (causally) enhances auditory working memory.

This is very similar to our previous [18] and current findings, in which high synchronizers

entrain to theta stimulation (higher behavioral PLV and brain-stimulus PLV during PL) and

show a behavioral advantage over individuals that do not show this entrainment. The extent to

which this and the aforementioned frontoparietal networks are one same network or different

networks that interact for high synchronizers during the SL task cannot be answered by our

current data and so remains an empirical question. However, our analysis (ICA for fMRI)

indicates that, at the very least, these frontoparietal regions’ time-courses cohere in time.

There are also reasons to distinguish these frontoparietal networks from the dorsal network

for goal-directed attention [47], despite a similar involvement of dorsal prefrontal regions. In

contrast to research showing SL benefits from interfering with this network (e.g., [48,49]), we

show that AS hinders learning. Moreover, frontoparietal involvement, which correlates with

auditory–motor synchronization, confers a learning benefit during PL. It is therefore likely

that the dorsal prefrontal regions we report, which are shown to cohere in time with other

frontoparietal regions, perform a role different from goal-oriented attention within the context

of our tasks. This is in line with the idea that the same region can undertake different roles
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depending on its interactions with other regions. It was not possible to determine the precise

role of prefrontal regions alone from our data. On the other hand, we also show that the learn-

ing benefit relates to the way the frontoparietal network interacts with the auditory network.

Another possibility, therefore, is that different kinds of dorsal prefrontal involvement during

learning incur in either learning benefits or hindrance.

A possible reason for the lateralization discrepancies with Assaneo and colleagues [18]

(bilateral engagement versus left lateralization) is the use of radically different measures and

analyses (ICA of the BOLD signal versus a phase-locking value between an auditory stimulus

and the MEG signals). Thus, although bilateral frontal and parietal regions may work together

for synchrony (and learning benefits) in high synchronizers, as reflected in the ICA for fMRI

analysis, each region may perform different computations to achieve that goal that are not cap-

tured by the PLV analysis, with entrainment in theta occurring only in left frontal regions. We

similarly hypothesize that small structural differences (as those reported in [18], as captured by

a particular method (diffusion-weighted MRI in that case) can give rise to large functional dif-

ferences as appears to be the case in high synchronizers [32].

In sum, by considering individual differences in auditory–motor synchronization skills,

our work sheds light onto the neural substrates of the SL of phonological word forms and

shows that what appeared to be disparate results in the existing literature stems from pooling

together fundamentally distinct populations. More specifically, we reveal that, beyond a uni-

versally recruited network for SWFL, an additional frontoparietal network that enables audi-

tory–motor synchronization is selectively engaged by some individuals to produce a benefit in

learning. The auditory–motor SSS test we use thus emerges, once more, as a useful tool to

achieve a more nuanced characterization of speech related phenomena. This work, therefore,

not only highlights the importance of considering individual differences in SL [41] but also

sounds a note of caution about assuming the existence of monolithic mechanisms underlying

such cognitive tasks.

Methods

Participants

A first cohort of 65 participants completed the behavioral protocol. Ten participants were

removed because they spoke loudly instead of whispering or because they stopped whispering

for longer than 4 sec (during the SSS test and/or the AS blocks). The data from 55 participants

(34 females; mean age: 22; age range: 18 to 37) were analyzed.

A second cohort comprising 22 low and 22 high synchronizers participated in the fMRI

protocol. Participants were selected from a larger group of 388 individuals, which completed

the SSS test in the context of a previous study [18] (S1A Fig). Three participants were initially

removed due to recording measurement error or problems completing the learning task (e.g.,

participant fell asleep, responses not recorded) and were removed from the fMRI sample. The

final dataset thus comprised 41 individuals (23 females; mean age: 28; age range: 20 to 54; 19

high synchronizers and 22 low).

All participants were fluent English speakers with self-reported no neurological deficits and

normal hearing. They provided written informed consent and were paid for taking part in the

study. The local Institutional Review Board (New York University’s Committee on Activities

Involving Human Subjects) approved all protocols.

Overall experimental design

The behavioral protocol consisted of 4 blocks of statistical word-form learning performed

under 2 different conditions (PL and AS), followed by the SSS test (see Fig 5A). Four pseudo-
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languages were generated, and their order was randomized across participants. In the SL

blocks, participants were instructed to pay attention to the audio stream to be able to answer

post-exposure questions about the perceived sounds. During the PL condition, participants

passively listened to 2 of the pseudo-languages. During AS, participants repeatedly whispered

the syllable “tah” while listening to the remaining 2 pseudo-languages. As in the SSS test, par-

ticipants were not instructed to synchronize their speech to the auditory stimulus. Instead,

they were told that the point of the whispering was to make the listening task more challeng-

ing. In line with the previous literature [9,20], we assumed that the effects of AS on SL would

be due to an interference with the articulatory loop rather than to a higher executive load,

which would be very unlikely given the highly automatized nature of the articulation subtask.

PL and AS conditions were interleaved, and the 2 possible orders (PL–AS–PL–AS or AS–PL–

AS–PL) were randomized across participants. After listening to each pseudo-language, learn-

ing was tested on a 2-alternative forced choice test.

The behavioral protocol was modified for fMRI acquisition. First, we divided the protocol

into 2 experimental runs with one AS and one PL block each. In addition, 1 minute of rest was

introduced before each statistical word learning block (PL or AS) and 2 minutes of speech pro-

duction without auditory input (speech motor condition) were introduced at the end of each

run (see Fig 5A). Specifically, the speech motor condition consisted in repeatedly whispering

the syllable “tah” with no auditory input. The SSS test was not included in the fMRI session.

Participants’ speech synchronization abilities were assessed in a previous study [18].

Importantly, participants’ whispered articulation was recorded during every AS block for

both the behavioral and fMRI versions of the experiment (for the latter, we used an MRI com-

patible noise canceling microphone; OAU : PleaseprovidethemanufacturerlocationforOptoAcousticsFOMRIinthesentenceImportantly; participantswhisperedarticulationwas::::ptoAcoustics FOMRI, Or Yehuda, Israel).

Stimuli

For the SSS test and the word learning task, we created 4 pseudo-languages (L1 to L4) each

containing 12 distinct sets of syllables (unique consonant-vowel combinations) handpicked to

maximize both between and within set variability. The syllables in each pseudo-language were

combined to form 4 distinct trisyllabic pseudo-words (henceforth, words). The words were rel-

atively balanced on English word-average bi-phoneme and positional probabilities according

to The Irvine Phonotactic Online Dictionary (IPhOD version 2.0; http://www.IPhOD.com), to

maximize their learnability. Words were concatenated in pseudorandom order to form audi-

tory speech streams with no gaps between words, lasting 2 minutes each. An equal number of

nonconsecutive repetitions per word was ensured. For the learning test after each pseudo-lan-

guage exposure, we created part-words by the concatenation of a word’s final syllable and the

first 2 syllables of another word of the same pseudo-language. A minute-long random syllable

stream for the SSS test was created by the random combination of a set of 12 syllables different

from those used for the pseudo-languages. The stream of syllables contained no pauses

between them and no consecutive repetitions. Words, part-words and streams were converted

to.wav files using the American Male Voice diphone database (US2) of the MBROLA text-to-

speech synthesizer [50] at 16 kHz. All phonemes were equal in duration (111ms)—satisfying a

constant syllable presentation rate of 4.5Hz, pitch (200Hz), and pitch rise and fall (with the

maximum in the middle of the phoneme).

Statistical word learning task

The statistical word learning task for each pseudo-language consisted of a learning phase, dur-

ing which participants listened to the 2-minute-long streams containing the 4 words of the

pseudo-language (L1 to L4); and a test phase, where each word of the pseudo-language was
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presented against 4 part-words (randomly selected from the pool of 12 possible part-words) in

a 2-alternative forced choice (see Fig 5B). During each test, words and selected part-words

were presented twice each, within nonrepeating pairs, making this a total of 8 test trials. Test

items were presented auditorily and in their written forms (left and right of the screen). Partic-

ipants were required, for each test pair, to indicate their choice by pressing “1”/left or a “2”/

right according to the order of auditory presentation and location on the screen. The presenta-

tion of the pseudo-languages was counterbalanced between participants. In order to select the

best phonology to orthography matching for the visual presentation, the written renderings of

all words and part-words with the highest convergence among 5 independent native speakers

were selected.

SSS test

Participants in a sound isolated booth and seated in front of a computer with a microphone

placed close to their mouth, listened to a rhythmic stream of syllables while whispering the

Fig 5. Overall experimental design. (A) The behavioral protocol consisted in 4 blocks of statistical word-form

learning (each comprised a different pseudo-language) followed by the SSS test. The statistical word learning blocks

were completed under 2 different conditions: PL, wherein participants passively listened to the pseudo-languages and

AS, where participants concurrently, and repeatedly, whispered the syllable “tah”. Conditions were interleaved and the

order (AS–PL–AS–PL or PL–AS–PL–AS) was counterbalanced across participants. Lower panel: for the fMRI session,

2 speech motor and 4 rest blocks were added to the behavioral protocol. (B) Schematic representation of a statistical

word learning block. Left panel: learning phase. Participants listened to the 2-minute-long auditory stream containing

the 4 words of the pseudo-language. Right panel: test phase. Learning was assessed after each pseudo-language

exposure by an 8 trial 2-alternative forced choice test contrasting a word, upper line, and a part-word, lower line. AS,

articulatory suppression; PL, passive listening; SSS test, Spontaneous Speech Synchronization test.

https://doi.org/10.1371/journal.pbio.3001712.g005
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syllable “tah” concurrently and repeatedly for 1 minute. Next, they listened to isolated syllables

and had to indicate for each one whether they were present in the stream. Participants were

not explicitly instructed to synchronize their speech to the external audio; instead, the instruc-

tion was to correctly recall the syllables. Before performing this task, participants were primed

to repeatedly whisper “tah” at a rate of 4.5 syllables/sec; the same rate at which the external syl-

lables were presented. For further details about the test, see [18,51].

Speech synchronization measurement

The degree of synchronization was measured by the PLV between the envelope of the pro-

duced speech and the cochlear envelope [23,52] of the rhythmic syllable stream or the pseudo-

language. The PLV was computed using the following formula:

PLV ¼
1

T
j
PT

t¼1
eiðy1ðtÞ� y2ðtÞÞj;

where t is the discretized time, T is the total number of time points, and θ1 and θ2 the phase of

the first and the second signals (i.e., of the envelopes of the auditory and produced speech sig-

nals). The PLV was computed for windows of 5 seconds length with an overlap of 2 seconds.

The results for all time windows were averaged within each stimulus presentation, providing 1

PLV per block.

Envelopes were resampled at 100 Hz, filtered between 3.5 and 5.5 Hz, and their phases were

extracted by means of the Hilbert transform.

Definition of high and low synchronizers

Each participant was classified as a low or a high synchronizer according to their correspond-

ing speech synchronization value (Whisper to Audio PLV) obtained during the SSS test. A

threshold value was estimated from a previous dataset [18] comprising 388 PLVs obtained

with different versions of the SSS test (S1A Fig). We applied a k-means clustering algorithm

[53], using a squared Euclidean distance metric with 2 clusters, and computed the midpoint

between the clusters’ centers (PLVthreshold = 0.49). Participants with a PLV below/above this

value were classified as low/high synchronizers.

Scanning parameters

All fMRI scans took place at the NYU Center for Brain Imaging using a 3T scanner (Siemens

Prisma 3T MRI scanner) and a 64-channel phased-array head coil. For the statistical word

learning fMRI task, 2 runs of at least 400 (note that the test is self-paced and total timings vary

between participants) sequential whole-brain multi-echo echo-planar imaging (EPI) volumes

were acquired (TR = 1,500 ms, TE = 45 ms, flip angle = 77˚, voxel size = 2.0 × 2.0 × 2.0 mm3,

64 axial slices, acquisition size = 104×104). A high-resolution T1 MPRAGE image was also

acquired (TR = 2,400 ms, TE = 2.24 ms, flip angle = 8˚, voxel size = 0.80 × 0.80 × 0.80 mm3,

256 sagittal slices, acquisition matrix = 320 × 300).

fMRI and ICA preprocessing

Data were preprocessed using MATLAB R2018a and the Statistical Parameter Mapping soft-

ware (SPM12, Wellcome Trust Centre for Neuroimaging, University College, London, United

Kingdom, www.fil.ion.ucl.ac.uk/spm). For each participant, we first realigned the 2 word

learning runs to the mean image of all EPIs. The T1 was then co-registered to this mean func-

tional image and segmented using Unified Segmentation [54]. The deformation fields obtained
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during the segmentation step were used to spatially normalize all functional images from each

run to the Montreal Neurological Institute (MAU : PleasenotethatMNIhasbeendefinedasMontrealNeurologicalInstituteinthesentenceThedeformationfieldsobtainedduringthe::::Pleasecheckandcorrectifnecessary:NI) template included in SPM12 (we maintained

the original acquisition voxel size of 2.0 × 2.0 × 2.0 mm3). Images were finally spatially

smoothed with a 6 mm FWHM kernel.

We used the GIFT [21] (v4.0b; http://mialab.mrn.org/software/gift) to apply group spatial

ICA to the previously preprocessed fMRI data. Based on previous research in clinical and

healthy populations [14,55,56], the number of independent components to be extracted was

set to 20. Note that this is a purely data-driven approach. Data were intensity normalized,

concatenated and, using principal component analysis, reduced to 20 temporal dimensions.

Then, this preprocessed data were fed to the infomax algorithm [57]. The intensities of the spa-

tial maps were in percentage of signal change after the intensity normalization, and thus no

scaling was used.

To assess which of the 20 ICA networks retrieved were related to the different conditions of

interest (PL and AS), both spatial and temporal classification methods were employed. First,

for all participants, the spatial map of each individual ICA network was submitted to a second-

level analysis using a 1-sample t test under SPM12 [58]. We then obtained, for each network, a

group map of activity that was thresholded using a p< 0.05 family-wise error (FAU : PleasenotethatFWEhasbeendefinedasfamily � wiseerrorinthesentenceWethenobtained; foreachnetwork::::Pleasecheckandcorrectifnecessary:WE)-corrected

threshold at the cluster level, with an auxiliary p< 0.001 threshold at the voxel level. Clusters

with fewer than 50 voxels were not included in the analyses. We visually inspected these thre-

sholded networks and 8 were discarded as they reflected artifacts related to movement or the

presence of ventricles or blood vessels [14, 56].

Using GIFT, for the remaining 12 networks, we calculated a multiple regression that fitted

each participant’s network time-course to a model. The model was created using SPM12 by

convolving the timing of both the main (AS and PL) and control (Rest and Speech motor) con-

ditions with a canonical hemodynamic response. To control for motion artifacts, the model

included 6 movement regressors obtained from the realignment step. The test phase was also

included in the generalized linear model (GAU : PleasenotethatGLMhasbeendefinedasgeneralizedlinearmodelinthesentenceThetestphasewasalso::::Pleasecheckandcorrectifnecessary:LM) model as a separate nuisance condition.

Therefore, the beta values for the AS and PL conditions were computed from the part of the

fMRI signal pertaining to the listening blocks (i.e., without the testing phase, which was mod-

eled separately). By fitting a multiple regression between this model and each network’s time-

course, we obtained, for each condition, beta values that represented network engagement. For

PL beta values, we used the rest condition as a baseline. For AS we used both the rest and the

speech motor control conditions as baseline to capture the activity related to the learning pro-

cess during AS itself and not to the motor activity related to the whispering. For any compari-

son using beta values, participants exceeding 2 SD were excluded from the analysis.

For the group spatial maps of each network, maxima and all coordinates are reported in

MNI space. Anatomical and cytoarchitectonical areas were identified using the Automated

Anatomical Labeling [59] and the Talairach Daemon [60] database atlases included in the

xjView toolbox (http://www.alivelearn.net/xjview).

Statistical analyses

Group analyses were performed on the proportion of correct responses averaged across same-

type conditions (PL and AS). To test for differences between learning conditions and groups,

we performed generalized linear mixed modeling in R (version 4.0.2) and RStudio (version

1.3.959) using the lme4 package [61]. The dependent variable (responses to the learning tests)

was assumed to have a binomial distribution and a logit link function was applied. An initial

model included Condition (AS, PL), Group (High, Low) and their interaction as predictors.

This model also included participants as a random effects factor to allow for varying intercepts
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between participants. This was compared to alternative models with additional random effects

factors Order, Language, and Trial number. These factors were removed, keeping the initial

model, because the increase in variance explained by these more complex models was in all

cases negligible. Akaike information criterion (AIC) was used for this assessment, thus select-

ing the model with the best balance between goodness of fit and complexity. The effects of the

different predictors and their interactions on learning performance were assessed by means of

likelihood ratio tests using the afex package [62] in R. These tests were based on Type 3 sums

of squares. Following a significant interaction between Group and Condition, we estimated

marginal means, using the emmeans package in R, of participants’ performance within each

group (Highs, Lows) for the PL and AS conditions. Where specified, we additionally used non-

parametric Mann–Whitney–Wilcoxon and Wilcoxon signed-rank tests for between and

within participant comparisons, respectively. Multiple comparisons were controlled using a

FDR correction. Nonparametric Spearman rank correlations were used to assess the relation-

ship between variables. Bayes factors (BF01), which reflect how likely data are to arise from the

null model (i.e., the probability of the data given H0 relative to H1), were also computed with

the software JASP using default priors [63–65].

Supporting information

S1 Fig. Behavioral performance in the scanner. (A) SSS test outcome. Histogram of 388

PLVs obtained in a previous work1 with 2 different versions of the SSS test. Black dots repre-

sent the participants selected to complete the fMRI protocol. Black line represents the thresh-

old value adopted in this work to separate high and low synchronizers: PLVthreshold = 0.49. A

k-means clustering algorithm using a squared Euclidean distance metric was applied over this

distribution (N = 388). The threshold value is the midpoint between the 2 clusters’ centers. (B)

Scatterplot displaying participants’ PLV during AS inside the scanner as a function of the PLV

from the SSS test. Red line represents the correlation of the data. The correlation is displayed

for visualization purposes, to emphasize that the synchronization of low synchronizers is con-

sistently worse than that of highs during the AS block. The correlation within groups remains

significant only for high synchronizers (rHIGH = 0.45 pHIGH = 0.044; rLOW = 0.21 pLOW = 0.31).

(C) Percentage of correct responses for the statistical word learning task during PL and AS

conditions inside the scanner on the entire sample. (D) Percentage of correct responses for the

statistical word learning task during PL and AS conditions inside the scanner for the low (blue

color) and the high (orange color) synchronizers. The mixed-model analysis of this dataset

yielded a significant difference between conditions (main effect of Condition (PL> AS),

χ2 = 5.40, p< 0.05)), and a main effect of group close to significance (Highs > Lows;

χ2 = 3.67, p = 0.055), and a trending Condition�Group interaction (χ2 = 2.74, p = 0.098). Dots:

model predicted group means. Bars: 95% confidence interval. Data for S1A and S1B Fig can be

found in S5 Data. Data for S1C and S1D Fig can be found in S6 Data. AS, articulatory suppres-

sion; PL, passive listening; PLV, phase locking value; SSS test, Spontaneous Speech Synchroni-

zation test.

(DOCX)

S2 Fig. Brain networks significantly activated during PL. The different networks are shown

over a canonical template with MNI coordinates on the upper portion of each slice. Neurologi-

cal convention is used with a p< 0.05 FWE-corrected threshold at the cluster level and an aux-

iliary p< 0.001 threshold at the voxel level. In addition to the auditory (green) and

frontoparietal (red) networks described in the main manuscript, a sensorimotor (magenta)

and a right lateralized fronto-temporo-parietal (yellow) networks were also activated during

PL. All these networks were significantly activated during PL for both high and low
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synchronizers, except the frontoparietal, which was only active for the high. �p< 0.05 Mann–

Whitney–Wilcoxon between-group comparison, FDR corrected. Data for S2 Fig (plots) can be

found in S7 Data. FDR, false discovery rate; FWE, family-wise error; MNI, Montreal Neuro-

logical Institute; PL, passive listening.

(DOCX)

S3 Fig. Brain networks significantly activated during AS. The different networks are shown

over a canonical template with MNI coordinates on the upper portion of each slice. Neurologi-

cal convention is used with a p< 0.05 FWE-corrected threshold at the cluster level and an aux-

iliary p< 0.001 threshold at the voxel level. In addition to the auditory (green) and

frontoparietal (red) networks described in the main manuscript, a left (light blue) and a right

(yellow) lateralized fronto-temporo-parietal network were also activated during AS. All net-

works were significantly activated during AS for both high and low synchronizers, except for

the frontoparietal, which was only active for the high and the auditory, which was marginally

significant for the lows (punc = 0.03). Data for S3 Fig (plots) can be found in S3 Data. AS, artic-

ulatory suppression; FWE, family-wise error; MNI, Montreal Neurological Institute.
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S3 Data. Data for Fig 3A (bottom bar plot), Fig 3B, and S3 Fig (all plots).

(CSV)

S4 Data. Data for Fig 4B and 4C.
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51. Lizcano-Cortés F, Gómez-Varela I, Mares C, Wallisch P, Orpella J, Poeppel D, et al. Speech-to-Speech

Synchronization protocol to classify human participants as high or low auditory-motor synchronizers.

STAR Protoc. 2022; 3(2):101248. https://doi.org/10.1016/j.xpro.2022.101248 PMID: 35310080

52. Chi T. SS. NSL Matlab Toolbox. Md Neural Syst Lab Univ Md.

53. Arthur D, Vassilvitskii S. k-means++: The Advantages of Careful Seeding. Proc Eighteenth Annu ACM-

SIAM Symp Discrete Algorithms 2007;1–11.

54. Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005; 26(3):839–851. https://doi.org/10.

1016/j.neuroimage.2005.02.018 PMID: 15955494
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