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Abstract

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic caused by Severe Acute

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) threatens global public health and

economy unprecedentedly, requiring accelerating development of prophylactic and thera-

peutic interventions. Molecular understanding of neutralizing antibodies (NAbs) would

greatly help advance the development of monoclonal antibody (mAb) therapy, as well as the

design of next generation recombinant vaccines. Here, we applied H2L2 transgenic mice

encoding the human immunoglobulin variable regions, together with a state-of-the-art anti-

body discovery platform to immunize and isolate NAbs. From a large panel of isolated anti-

bodies, 25 antibodies showed potent neutralizing activities at sub-nanomolar levels by

engaging the spike receptor-binding domain (RBD). Importantly, one human NAb, termed

PR1077, from the H2L2 platform and 2 humanized NAb, including PR953 and PR961, were

further characterized and subjected for subsequent structural analysis. High-resolution X-

ray crystallography structures unveiled novel epitopes on the receptor-binding motif (RBM)

for PR1077 and PR953, which directly compete with human angiotensin-converting enzyme

2 (hACE2) for binding, and a novel non-blocking epitope on the neighboring site near RBM

for PR961. Moreover, we further tested the antiviral efficiency of PR1077 in the Ad5-hACE2
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transduction mouse model of COVID-19. A single injection provided potent protection

against SARS-CoV-2 infection in either prophylactic or treatment groups. Taken together,

these results shed light on the development of mAb-related therapeutic interventions for

COVID-19.

Introduction

As of March 22, 2021, the Coronavirus Disease 2019 (COVID-19) has already infected over

124 million individuals and resulted in over 2.7 million deaths worldwide, requiring urgent

prophylactic and therapeutic interventions. The etiological agent of COVID-19 is Severe

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [1]. This emerging coronavirus

shares high primary sequence identity with other lineage B coronaviruses and has been catego-

rized into the Betacoronavirus genus. SARS-CoV-2 is an enveloped virus with corona-like

spike protein protruding from the viral particles. Like other type I transmembrane glycopro-

teins, the spike (S) glycoprotein forms homotrimers and is primed via cleavage into S1 and S2

subunits. S1 comprises the receptor-binding domain (RBD) and the N terminal domain

(NTD), which mediate the recognition of and binding to the human receptors, including

human angiotensin-converting enzyme 2 (hACE2) [2] and other potential co-receptors [3].

Tomography image indicated that more than half of the spike trimers adopt the “all close”

state on SARS-CoV-2 particles [4]; interaction with cellular receptor hACE2 requires and

locks the RBD into the “up” conformation, inducing virus–host cell membrane fusion engaged

by the S2 subunit. The SARS-CoV-2 spike protein, especially the RBD region, serves as the pri-

mary target for interfering with the virus entry process [5].

Along with the development of vaccines and small molecule drugs, neutralizing antibodies

(NAbs) against SARS-CoV-2 have also been proven to be an effective countermeasure for both

prophylactic and therapeutic interventions, especially for seniors or individuals at high risk of

viral infection. Many efforts have been devoted to the isolation and validation of SARS-CoV-2

NAbs, mainly from COVID-19 convalescent patients [6–17]. Besides helping in the develop-

ment of monoclonal antibody (mAb) therapy, molecular understanding of NAbs would also

greatly accelerate the design of next generation recombinant vaccines [17,18]. However,

although numerous NAbs have been reported, most fall into several dominant germlines and

recognize similar epitopes. For instance, hACE2-blocking NAbs composed of heavy chains

(HCs) encoded by VH3-53 [1–4] and VH3-66 [1,2,5,6] exhibit a common RBD binding pat-

tern featured by a shorter CDRH3 than the average length in human antibodies. The limited

knowledge concerning more critical epitopes and immunogenic features of SARS-CoV-2 ham-

pers the development of effective antibody-related therapeutics against COVID-19.

Here, we utilized the H2L2 transgenic mice platform, which represents an alternative

source of human antibodies, along with a state-of-art antibody screening platform, to identify

NAbs for SARS-CoV-2. Among the 127 isolated antibodies, 25 RBD-specific antibodies

showed potent neutralizing activities with sub-nanomolar IC50. The atomic-level structural

information provides deep insights into novel epitopes on the RBD, with PR1077 and PR953

binding sites overlapping with the binding site of hACE2, and the hACE2 non-blocker anti-

body PR961 recognizing the neighboring site near RBM. In addition, we further assessed

PR1077 for its potential in vivo efficacy in an animal model, which validated its potent protec-

tion against SARS-CoV-2 infection, both prophylactically and therapeutically.
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Results

Mouse immunization and antibody isolation

The Harbour H2L2 transgenic mouse carries fully human V-region heavy and light chains and

rodent constant regions to allow endogenous affinity maturation and immune effector func-

tion, which features an immune response comparable to normal mice and offers diverse

human V-gene usage [7]. For the rapid generation of high-quality SARS-CoV-2 NAbs, both

Harbour H2L2 transgenic mice and BALB/c mice were immunized with the RBD domain of

SARS-COV-2’s spike protein [8]. Sera were collected before and after each vaccination, and

serum binding to RBD was determined by enzyme-linked immunosorbent assay (ELISA).

After 3 to 4 boosts, the spleen and bone marrow cells were collected from immunized mice

with high serum titers, and plasma B cells were isolated.

Next, plasma B cells were loaded onto the Berkeley Lights Beacon Optofluidic system

mounted with the OptoSelect chip, and assays were run to select single plasma B cells secreting

SARS-CoV-2 RBD protein-specific antibodies [9,10] (Fig 1A, S1 Fig, S1 Table). Antigen-reac-

tive B cells were exported to 96-wells preloaded with lysis buffer, followed by single cell

sequencing designed to extract sequences of the VH (variable region, HC) and VL (variable

region, light chain), which were paired to obtain the antibody sequence.

From 9 single B cell cloning experiments, we identified 105 antibody sequences from Har-

bour H2L2 transgenic mice and 191 from BALB/c mice in total. We synthesized the genes of

these antibodies and transiently expressed them in HEK293T cells in 24-well plates. The super-

natant of transient expression cells was collected and tested for its binding to SARS-CoV-2 S1,

as well as the effect on SARS-CoV-2 RBD binding to the hACE2 protein (Fig 1B and 1C). Pri-

marily based on binding activity in ELISA (OD450 > 0.5), 56 mAbs from Harbour H2L2 trans-

genic mice and 71 mAbs from BALB/c mice were selected for production in HEK293 system,

followed by purification, sequence analysis, and further evaluation (Fig 1D).

Selection and characterization of the purified antibodies

The binding activity to SARS-CoV-2 S1 protein and blocking activity against SARS-CoV-2

RBD binding to hACE2 of the purified antibodies were tested. Meanwhile, cross-reactivity to

SARS S1 and MERS S1 proteins were also assessed by ELISA (Figs 1B, 1C, and 2A–2D). The

EC50 of antibody binding to SARS-CoV-2 S1 was as low as approximately 1.5 ng/mL. Among

the 56 mAbs from Harbour H2L2 transgenic mice and 71 mAbs from BALB/c mice that

bound to SARS-CoV-2 S1 protein, 13 mAbs from H2L2 mice and 23 mAbs from BALB/c mice

could block binding of soluble SARS-CoV-2-RBD to hACE2 protein, with IC50 values ranging

from 74 ng/ml to 338 ng/mL for mAbs from H2L2 mice and from 5.5 ng/mL to 139.8 ng/mL

for mAbs from BALB/c mice (Fig 2D, S1 Table). The binding kinetics of these mAbs were fur-

ther assessed by bio-layer interferometry (BLI) assays, and equilibrium constant (KD) values

were calculated. KD values for SARS-CoV-2 S1 were mostly at the nM or sub-nM level, while

those for SARS-CoV-2-RBD were mostly at sub-nM or better (S1 Table).

The neutralizing activities of all 127 mAbs were further investigated by assessing pseudo-

viruses and authentic viruses in vitro, respectively. Totally, 25 NAbs were identified with IC50 val-

ues from 6.8 ng/mL to 3,071 ng/mL in pseudovirus based neutralization assays and from 14.4 ng/

mL to approximately 1,753 ng/mL in live virus–based neutralization assays (Fig 1B and 1C, S1

Table). PR1077 from H2L2 transgenic mice and PR953 from BALB/C had the most potent neu-

tralizing activities against live SARS-CoV-2 infection of Vero-E6 cells, with IC50 values of 27.9

and 14.4 ng/mL, respectively. Among the antibodies without hACE2-blocking capacity, PR961

was the most potent neutralizing with its IC50 of 570 ng/mL (S2E and S2F and S3 Figs).
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Fig 1. Analysis of plasma responses to SARS-CoV-2 proteins and antibody identification from H2L2 transgenic and BALB/c mice by single cell sequencing. (A)

Schematic diagram of antibody identification from convalescent patients by single cell sequencing. Both Harbour H2L2 transgenic mice and BALB/c mice were

immunized with SARS-CoV-2 RBD protein. SARS-CoV-2 RBD protein binding B cells were isolated from enriched mouse spleen and bone marrow cells with beads

conjugated with biotinylated SARS-CoV-2 RBD protein. Paired VH and VL of each cell were recovered by single B cell sequencing. The sequences were used for

subsequent antibody construction and expression. (B) Antibodies neutralization IC50(y axis) are plotted against SARS-CoV-2 S1 protein binding EC50 (x axis),

PR1077, PR953, and PR961 are shown as triangle, and other antibodies are shown as dot. All the data of this figure can be found in the S1 Data file. (C) Heat map

shows the relative levels of SARS-CoV-2 S1 binding, hACE2 blocking, and live virus neutralization. The depth of color is proportional to the effect of the antibody

(green, S1 binding activity; blue, hACE2 blocking activity; red, neutralizing activity). All the data of this figure can be found in the S2 Data file. (D) Phylogenetic

analysis of the relationship between antibody variable gene segments and germline. The relationships between the heavy and light chain variable regions and the

germlines from H2L2 transgenic (left) and BALB/c (right) mouse antibodies are shown. hACE2, human angiotensin-converting enzyme 2; RBD, receptor-binding

domain; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.

https://doi.org/10.1371/journal.pbio.3001209.g001
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According to ImMunoGeneTics (IMGT) database-based analysis, the germlines of these 25

NAbs were defined. The VH domains of 11 NAbs from H2L2 mice were encoded by 3 differ-

ent germlines, while their VL domains belonged to 4 different germlines. Most of the antibod-

ies from H2L2 mice, including the most potent antibody PR1077, were encoded by the same

germline origin of VH3-33 and VL2-28. Given the high primary sequence similarities between

VH3-33 and VH3-30 germlines, this result is consistent with the previous finding that VH3-33

is one of the most frequently used germlines for NAbs isolated from patients recovering from

SARS-CoV-2 infection [11–13,15,19]. The germlines of BALB/c mouse-derived antibodies

showed a higher diversity. The VH and VL regions of 14 mouse antibodies were assigned to 7

IGHV and 8 IGLV germlines. Notably, the most potent mouse antibody PR953 was assigned

to mVH1-22 and mVK6-15, and the germline encoding the non-blocking NAb PR961 was

mVH1-74 and mVK3_5 (Fig 1C and 1D). These antibodies were then classified into 4 groups

according to the competitive ELISA results (S4 Fig). Subsequently, based on sequence similari-

ties with related human germlines, PR953 and PR961 were engineered as humanized

antibodies.

Fig 2. Characterization of the selected NAbs PR1077, PR953, and PR961. (A) ELISA binding curve of SARS-CoV-2 S1 protein. A commercially available antibody

(8A5, Novoprotein, Shanghai) was applied as a PC. Normal human IgG1 was used as a negative control. All the data of this figure can be found in the S3 Data file. ELISA

binding curves of SARS S1 (B) and MERS S1 (C) proteins. Internally generated antibodies were used as PCs. All the data of these figures can be found in the S4 Data and

S5 Data files. (D) ELISA-based RBA of PR1077, PR953, and PR961 against RBD binding to hACE2. All the data of this figure can be found in the S6 Data file. (E)

PR1077, PR953, and PR961 could effectively neutralize SARS-CoV-2 pseudovirus in vitro. SARS-CoV-2 pseudovirus was incubated with serially diluted antibodies. The

mixture was added to HEK293-hACE2 cells for 48 hours. The neutralization potency of each antibody was evaluated in a luciferase assay system. All the data of this

figure can be found in the S7 Data file. (F) PR1077, PR953, and PR961 showed strong neutralizing potency against live SARS-CoV-2 virus in vitro. The mixture of live

SARS-CoV-2 virus and serially diluted PR1077 were added to Vero E6 cells. After 1 hour, cells were washed and further incubated for 48 hours before detection of

infected cells by an immunofluorescence assay. All the data of this figure can be found in the S8 Data file. ELISA, enzyme-linked immunosorbent assay; NAb,

neutralizing antibody; PC, positive control; RBA, receptor blocking assay; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.

https://doi.org/10.1371/journal.pbio.3001209.g002
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PR1077, PR961, and PR953 recognize novel epitopes of SARS-CoV-2 RBD

To gain further insights into the structural basis of the blocking and neutralizing mechanism,

we selected 2 potent hACE2-blocking antibodies (PR1077 and PR953), alongside 1 non-

blocker PR961, for subsequent structural analysis. The structure of the antibody Fab/Spike-

RBD complex was resolved by X-ray crystallography at the resolutions of 2.5, 2.1, and 2.2 Å,

respectively (Fig 3A, S2 Table). To the best of our knowledge, all 3 mAbs recognized novel epi-

topes of SARS-CoV-2 spike RBD. Overall, PR1077 and PR953 interacted with RBD near the

hACE2 binding site, and hence blocked the binding of the cellular receptor hACE2 (Fig 3B,

Fig 3. Structural analysis of the SARS-CoV-2 RBD-NAbs scFv complex. (A) Overall structures of the PR1077, PR953, and

PR961-Fab-RBD complexes. The PR1077 HC (colored slate blue) and light chain (colored red) are shown. PR953 heavy

(colored green cyan) and light (colored salmon red) chains and PR961 heavy (colored pale green) and light (colored orange)

chains are displayed. The SARS-CoV-2 RBD is colored in gray and displayed in surface representation. (B) The epitopes of

antibodies are shown in surface representation. The CDR loops of NAbs are colored as above. The S477 and F486 residues in

contact with both the heavy and light chains of PR953 are colored in yellow; 3 hydrogen donor residues (R346, K444, and

N450) which contact with both the heavy and light chains of PR961 are colored in yellow. (C) The binding surface of NAbs

with SARS-CoV-2-RBD. The interaction residues of RBD are shown in sticks and labeled accordingly; variable regions’

interaction surfaces of NAbs are colored as above. HC, heavy chain; HCDR, heavy chain complementarity-determining

region; LCDR, light chain complementary-determining region; NAb, neutralizing antibody; RBD, receptor-binding domain;

SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; scFv, single-chain variable fragment.

https://doi.org/10.1371/journal.pbio.3001209.g003
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left and middle panels). In contrast, PR961 recognized RBD a novel epitope that is adjacent to

the receptor-binding motif (RBM), making PR961 a non-blocking NAb for SARS-CoV-2 (Fig

3B, right panel).

Specifically, PR1077 is located directly at the RBM region of SARS-CoV-2 Spike RBD; the

buried surface areas (BSAs) of the heavy and light chains were 873.5 Å2 and 190.8 Å2, respec-

tively, inducing steric hindrance to the binding of receptor hACE2 (Fig 3C, left panel). All the

heavy chain complementarity-determining regions (HCDRs) and light chain complementary-

determining regions (LCDRs) participate in the interaction with SARS-CoV-2 RBD, mainly

contributed by polar interactions and hydrogen bonds. F27, Y31, Y32, W52, Y53, F59, P101,

L103, and F105 of the HCDRs and Y35, Y37, and Y54 of the LCDRs form strong hydrophobic

interactions with the hydrophobic rim constituted by Y449, Y453, L455, F456, F486, Y489,

F490, L492, Y495, and Y505. In addition, interactions were also facilitated by the hydrogen

bond network constituted by Y31, Y32, W52, Y53, D54, S56, N57, R58, G101, G102, R104, and

R106 of the HCDRs and H31, N33, Y35, Y54, Y37, and T99 of the LCDRs. It is worth noting

that water molecules also played an important role in LCDR interactions with SARS-CoV-2

RBD (Fig 4A).

Despite the potent binding, blocking, and neutralizing activities of PR953, its BSA (368.6 Å2

for the HC and 220.2 Å2 for the light chain) was much lower than expected. The complemen-

tarity-determining regions (CDRs) of PR953 formed a deep concave binding pocket and

tightly covered the flexible tip of the RBM region (I472 to F490), partially overlapping with the

hACE2 binding site (Fig 3C, middle panel). The interactions of PR953 were mainly stabilized

by an extensive hydrogen bond network. T33, H35, N52, N55, D57, T59, D99, Y101, and Y105

of the HCDRs recognized the bulge region constituted by Q474, A475, G476, S477, N487, and

Y489. The interactions were further stabilized by electrostatic interactions among Y91, N92,

N93, Y94, and W96 of the LCDRs with S477, S478, N481, and F486 (Fig 4B).

In contrast, PR961 recognized SARS-CoV-2 RBD at the opposite side of PR953; this epitope

was adjacent to the receptor-binding motif and did not induce direct steric hindrance to the

binding of receptor hACE2, in agreement with binding and competition assays. The BSAs of

the heavy and light chains were 550.2 Å2 and 277.3 Å2, respectively, mainly contributed by

electrostatic forces (Fig 3C, right panel). S31, W33, H52, S54, D55, E57, D100, G101, Y102,

and E103 of the HCDRs and S31, Y32, G33, N34, R54, S95, N96, and E97 of the LCDRs formed

strong electrostatic interactions with the novel epitope constituted by T345, R346, F347, N440,

S443, K444, V445, and N450. It is worth noting that 3 hydrogen donor residues, i.e., R346 and

K444, along with N450, protruded at the RBD surface and interacted with both the heavy and

light chains of PR961, playing a critical role in the interactions (Fig 4C).

Characterization of PR1077 as potential therapeutic candidate

Given its unique epitope, high potency of SARS-CoV-2 RBD binding, and neutralizing activity

on live viruses, PR1077 was subsequently selected for further investigation as a potential thera-

peutic candidate against COVID-19.

Recent tomography investigation of SARS-CoV-2 virus particles revealed 54% of the spike

adopt “down” conformation [16]. Most of the identified antibodies could bind to SARS-CoV-

2 spike trimer when RBDs are in the “open form”; in contrast, few antibodies could interact

with spike trimer when all RBDs are in the “closed form” [20], since the antibody binding epi-

tope of on RBM would be partially covered by the neighboring spike protomer for some anti-

bodies. To analyze its potential binding mode on SARS-CoV-2 spike trimer, PR1077 was

superimposed to the spike trimer structure. Interestingly, PR1077 epitope was shown to be

fully accessible in either the open or “all close state” spike trimer (S5 Fig). More structural

PLOS BIOLOGY SARS-CoV-2 neutralizing antibody structures

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001209 May 7, 2021 7 / 22

https://doi.org/10.1371/journal.pbio.3001209


data, such as the CryoEM structure of the spike-PR1077 complex, would further support this

hypothesis.

Next, to test the possibility that some of the evolving mutations might confer antibody resis-

tance, we measured the binding activity of PR1077 with RBD mutants and neutralizing activity

against SARS-CoV-2 mutants by in vitro pseudovirus assays. All the tested clinical mutations

remained sensitive to PR1077, with EC50 values from 2.6 ng/mL to 700 ng/mL in ELISA bind-

ing assays (S5 Fig), and with similar IC50 values ranging from 5.6 ng/mL to 18.6 ng/mL in neu-

tralization assays of pseudoviruses expressing wild-type or mutated spike protein. In

agreement with the potent binding affinity and broad coverage of PR1077 epitopes, these

results indicated the robustness of PR1077 against viral escape.

Another aspect to consider in the development of vaccine and NAb therapies is the poten-

tial risk of antibody-dependent enhancement (ADE) of infection. Although the existence of

ADE in COVID-19 patients remains elusive, the ADE effect in vitro has been reported

recently, and it is of great importance to circumvent this potential risk [17]. Therefore, we

Fig 4. Interactions between the SARS-CoV-2 RBD and CDR loops. (A–C) Detailed analysis of the interfaces of SARS-CoV-2 RBD with

HCDR and LCDR for (A) PR1077, (B) PR953, and (C) PR961. For clarity, only the key residues are labeled: red, oxygen atoms; blue,

nitrogen atoms; yellow dash lines, hydrogen bond interactions. The residues are shown in sticks with identical colors to Fig 3; water

molecules are displayed as red spheres. CDR, complementary-determining region; HCDR, heavy chain complementarity-determining

region; LCDR, light chain complementary-determining region; RBD, receptor-binding domain; SARS-CoV-2, Severe Acute Respiratory

Syndrome Coronavirus 2.

https://doi.org/10.1371/journal.pbio.3001209.g004
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used Raji cells, which represent a FcγRII-bearing human B lymphoblast cell line, to study the

antibody-dependent viral entry as previously reported [18]. The antibody-dependent entry of

SARS-CoV-2 pseudovirus in the presence of PR1077 was measured, and no ADE effect was

detected at various antibody concentrations (S6 Fig).

In vivo efficacy evaluation of PR1077

To facilitate its clinical application, the neutralization activity of PR1077 against SARS-CoV-2

infection in vivo was tested in AdV-hACE2-Transduced IFNAR−/− mice, which show high sus-

ceptibility to SARS-CoV-2 infection [19,20]. First, the mice were intranasally transduced with

4 × 108 TCID50 of Ad5-hACE2 for hACE2 expression in the lungs. Five days post-transduc-

tion, the animals were challenged with 1 × 106 TCID50 of SARS-CoV-2 via the intranasal route

and monitored over a 6-day time course (Fig 5A). For prophylactic treatment, mice were intra-

peritoneally injected with 50 mg/kg of PR1077 or 200 μl PBS at 24 hours before SARS-CoV-2

infection. The mice lost about 15% of the body weight in the first 2 days post-infection (d.p.i.),

and prophylaxis with PR1077 led to almost complete recovery of the body weight loss and sig-

nificantly reduced viral RNA levels in the lungs as determined by quantitative real-time PCR

(qRT-PCR) (Fig 5B). For therapeutic treatment, the mice were treated with PBS or different

doses of PR1077 (50 mg/kg or 25 mg/kg) at 2 hours post-infection (h.p.i.). As shown in Fig 5C,

both PR1077 doses could prevent severe SARS-CoV-2–induced weight loss in infected mice

after 3 d.p.i. and reduce viral RNA levels in the lungs at 6 d.p.i. (Fig 5C).

Hematoxylin–eosin (HE) staining showed that the lung samples from control mice dis-

played severe diffuse alveolar damage (DAD), including thickening of alveolar septa, extensive

fibrosis with exudation of fibrin and protein edema in the alveoli, marked epithelial hyperpla-

sia in the bronchi/bronchioles, and extensive immune infiltration in the alveoli, peri-bronchi

and peri-vessels at 6 d.p.i. By contrast, in mice pretreated with PR1077, most alveolar septa

and cavities were stained normally, and only small amounts of immune cell infiltration around

bronchi/bronchioles and blood vessels were observed (Fig 5D). Similar to the prophylactic

group, mice treated with 50 mg/kg of PR1077 also displayed mild pathological changes. In

mice treated with 25 mg/kg of PR1077, moderate levels of DAD, peri-bronchi and peri-vascu-

lar cuffing, and interstitial inflammation were detected compared with the control group (Fig

5E). Therefore, PR1077 could effectively protect mice against SARS-CoV-2 infection either

prophylactically or therapeutically.

Discussion

Since not every infected individual generates high activity NAbs, mAb therapy would not only

elicit optimized therapeutic potency, but also constitutes an important prophylactic interven-

tion to safeguard the population at high risk of viral infection as complementary to vaccine

approaches. Moreover, the characterization of NAbs, especially molecular understanding of

atomic resolution, would provide valuable information for rational vaccine design [21].

Recently, many efforts have been devoted to the structural investigation of NAbs (S7 Fig).

IGHV 1–2, 1–46, 3–9, 3–30, and 3–53 are among the most frequently used IGHV genes from

convalescent patients [1,2,4,11–13,15,22–24]. Here, we isolated and identified 25 NAbs of sub-

nanomolar IC50 from H2L2 or traditional mice platforms. Among them, 3 potent NAbs with

novel epitopes were well studied by high-resolution structure elucidation, including 2 potent

hACE2-blocking antibodies (PR1077 and PR953) and a non-blocking antibody (PR961). The

variable region of PR953 forms a deep concave binding pocket and facilitates tight binding

with the flexible tip of the RBM region. Despite its relatively small epitope, PR953 presented

potent binding affinity and neutralizing activity by overlapping with the hACE2 binding site.

PLOS BIOLOGY SARS-CoV-2 neutralizing antibody structures

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001209 May 7, 2021 9 / 22

https://doi.org/10.1371/journal.pbio.3001209


Fig 5. Therapeutic efficacy of PR1077 in SARS-CoV-2–infected AdV-hACE2-transduced mice. (A) Experimental design for PR1077 neutralization

activity testing in AdV-hACE2-transduced IFNAR−/− mice. (B, C) Body weight changes and viral copies in the lung of infected mice were monitored. (B)

For prophylactic efficacy testing, mice were intraperitoneally injected with 50 mg/kg of PR1077 or 200 μl PBS (n = 6 per group) at 24 hours before

SARS-CoV-2 infection. All the data of this figure can be found in the S9 Data file. (C) For therapeutic efficacy testing, the animals were treated with PBS, 50

mg/kg, or 25 mg/kg of PR1077 at 2 h p.i. (n = 6 per group). Weight changes were monitored daily, and viral copies in the lungs were measured at 6 d p.i. by

qRT-PCR. All the data of this figure can be found in the S10 Data file. (D, E) Histopathological analyses of PR1077 treated or untreated mice infected with

SARS-CoV-2. Representative images of lung sections stained by HE in the PR1077 prophylactic (D) and treatment (E) groups at 6 d p.i. a. Data are

mean ± SEM. Blue, yellow, and green arrows indicate the pathological changes in the alveoli, bronchi/bronchioles, and blood vessels, respectively. The

images on the right (bars = 1 μm) are enlarged regions in the dashed boxes of the left images (bars = 50 nm). d.p.i., days post-infection; hACE2, human

angiotensin-converting enzyme 2; HE, hematoxylin–eosin; h.p.i., hours post-infection; qRT-PCR, quantitative real-time PCR; SARS-CoV-2, Severe Acute

Respiratory Syndrome Coronavirus 2.

https://doi.org/10.1371/journal.pbio.3001209.g005
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In contrast, PR961 recognizes another novel epitope, which is located at the opposite side of

the PR953 binding site. In consistent with this finding, PR961 do not directly compete with

hACE2 binding based on the binding and blocking assay result. The neutralizing effect of

PR961 may achieved by S1 shielding and conformational locking of spike trimer. Considering

the emergence of new SARS-CoV-2 variants, more investigations on mAb cocktail therapy,

which could present synergistic activity and deploy multiple functions to confer broad neutral-

ization, are urgently needed. PR961 may serve as a hit for the optimization and development

of non-hACE2 competitive NAb.

An interesting feature of PR1077 is the relatively short HCDR3 sequence. The Cα of P100,

P101, and G102 of the HCDR3 is only about 4 Å away from the corresponding RBD residues,

indicating that longer HCDR3 sequence, or the side chains of other amino acids, would clash

with the RBD if they were present at this location. Sequence analysis further revealed that a

high rate of somatic hypermutations is not required for IGHV3-33–derived NAbs (S8 Fig).

Considering that IGHV3-30 and IGHV3-33 share high sequence similarity, and the complex

structures of NAbs derived from IGHV3-33 with SARS-CoV-2 RBD not available, we com-

pared the primary sequence and three-dimensional structure of PR1077 with those of 3 other

NAbs from IGHV3-30 [12,14,25]. To our surprise, despite the high similarity of their HCDRs,

alignment of the three-dimensional complex structures revealed significantly different binding

modes with each antibody binding SARS-CoV-2 RBD at a distinct epitope. Interestingly, C002

and PR1077 engage SARS-CoV-2 RBD in similar regions, but adopt absolute opposite HCDR

and LCDR orientations (S9 Fig). Overall, the molecular understanding of the antibodies pre-

sented here not only provide promising guidance for pairing antibody therapy, but also facili-

tate the rational design of next generation recombinant vaccines.

Notably, PR1077 also displayed broad spectrum of binding affinity against all spike protein

mutants tested, as well as excellent neutralizing activity in pseudovirus assay, including the

currently prevalent variants D614G, V367F, V483A, and G476S. We further demonstrated

that PR1077 displayed no ADE effect and effectively protected mice against SARS-CoV-2

infection, either prophylactically or therapeutically. These results proved that PR1077 may

provide durable protection for the elderly or individuals at high risk of COVID-19 infection.

Overall, the characterizations of these NAbs revealed novel and complementary epitopes on

the SARS-CoV-2 RBD, providing potential pairing strategy for development of mAb cocktails

against viral resistance that might arise under selective pressure by single antibody therapy.

We anticipate that the comprehensive structural and functional characterization of these anti-

bodies would provide a promising starting point for the development of more COVID-19

countermeasures in humans.

Materials and methods

Ethics statement

Mice immunization experiments were approved by the Institutional Animal Care and Use Com-

mittee (IACUC) of Harbour Biomed (Ethics number: AN-2020-E-0708) and conducted within

the animal facility in the HUST-Suzhou Institute for Brainsmatics. The in vivo efficacy experi-

ments were approved by the IACUC of Wuhan Institute of Virology, Chinese Academy of Sci-

ences (Ethics number: WIVA01202001) and conducted within the Animal Biosafety Level 3

(ABSL-3) facility in the National Biosafety Laboratory (Wuhan), Chinese Academy of Sciences.

SARS-CoV-2 spike RBD protein expression and purification

The codon-optimized wild-type cDNA of SARS-CoV-2 RBD (residues 333 to 530) was synthe-

sized. The SARS-CoV-2 RBD with a carboxyl-terminal 8×His tag for purification was cloned
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into pAcgp67 vector with BamHI and NotI restriction sites using the cloning primers. The

sequences of the primers were 50-TCTCCTACATCTACGCCGACGGATCCACCAACCTCTG

CCCTTTCGGT-30 (forward) and 50-TGGTGATGGTGGTGATGATGTGCGGCCGCACTCTT

CTTTGGCCCGCATA-30 (reverse). The accuracy of the inserts was verified by sequencing. The

SARS-CoV-2 RBD was expressed using the Bac-to-Bac baculovirus system. The construct was

transformed into bacterial DH5α component cells, and the extracted bacmid was then transfected

into Sf9 cells using Cellfectin II Reagent (Invitrogen, USA). The low-titer viruses were harvested

and then amplified to generate high-titer virus stock. The viruses and Endo H, Kifunensine, were

coinfected Hi5 cells at a density of 2.0 × 106 cells/ml. The supernatant of cell culture containing

the secreted removal of glycosylated RBD was harvested 72 hours after infection, and the recombi-

nant RBD proteins were purified preliminarily on a Ni-NTA affinity column (GE Healthcare,

USA). The affinity column was washed with 150 mL of wash buffer (25 mM Tris, 200 mM NaCl,

50 mM imidazole, pH 7.0), and the target protein was eluted with elution buffer containing 25

mM Tris, 200 mM NaCl, 500 mM imidazole, pH 7.0. The protein was further purified on a Super-

dex 75 16/60 size-exclusion column (GE Healthcare) equilibrated with 25 mM Tris, 200 mM

NaCl, pH 7.0. SDS-PAGE analysis revealed over 96% purity of the final purified recombinant pro-

tein. Fractions from the single major peak were pooled and concentrated to 30.8 mg/mL.

Harbour H2L2 transgenic mice and BALB/c mice immunization. SARS-CoV-2 spike

RBD protein was used as immunogen for mice immunization. Quality control (QC) includes

concentration, purity, molecular weight measurement, and biological activity test. The SARS--

CoV-2 spike RBD protein immunization used 6- to 8-week-old Harbour H2L2 transgenic

mice and BALB/c mice (raised by Vital River, China). All mice were fed under SPF condition.

The prime immunization was done by injecting 50-μg freshly prepared Complete Freund’s

Adjuvant (CFA) emulsified SARS-CoV-2 spike RBD protein intraperitoneally. Subsequent

boosts were done by injecting 25-μg freshly prepared Ribi adjuvant emulsified SARS-CoV-2

spike RBD protein intraperitoneally. The interval between each immunization is 2 weeks.

Single B cell screening on Beacon Optofluidic system. The Beacon Optofluidic system

(Berkeley Lights, Emeryville, California, United States of America) is an automated biosystem

that could screen thousands of single plasma B cells for antigen-specific antibody-secreting B

cells. Briefly, after approximately 3 to 4 boost, spleen and bone marrow cells were collected

from immunized mice which showed good immune response based on TB test. Subsequent

plasm B cell enrichment was done by using Plasma Cell Isolation Kit II (human, Miltenyi Bio-

tec, USA) and EasySep Human CD138 Positive Selection Kit II (STEMCELL Technologies,

USA). In this study, OptoSelect 14K chip was used following manufacture instruction (Berke-

ley Lights). Enriched plasma B cells were imported into the system and loaded into the nano-

pen on the chip. SARS-CoV-2 spike RBD conjugated beads mixed with anti-rat IgG (Fc)

AF488 secondary antibody (Jackson ImmunoResearch Laboratories, USA) were imported in

channel for antigen binding assay with an image capture iterations every 5 minutes for a total

of 10 iterations, and antigen-specific antibody-secreting plasma B cells were identified. These

antigen-specific antibody-secreting plasma B cells were then exported to 96-well forensic

grade PCR plate (Eppendorf, Germany) containing cell lysis buffer (5 μL of TCL buffer (Qia-

gen, United Kingdom)) supplemented with 5 mM dithiothreitol (Thermo Fisher Scientific,

USA), and 15 μL of mineral oil (Sigma, United Kingdom) was finally added to the top of each

well. Samples were stored at −80˚C until the next step [10].

Single B cell sequencing to determine heavy chain and light chain complementarity-

determining region sequences of H2L2 antibody and CDR domain analysis. Cell lysate

from single B cell screening was undergone RNA purification and reverse transcriptase (RT)

PCR using a modified protocol provided by Berkeley Lights. RNA was purified using Agen-

court RNAClean XP kit and eluted directly into a RT reaction with Maxima RNaseH minus
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RT. A dT primer with adaptor (P1) and a 50 template switching primer (P2) were used in the

RT reaction. The RT reaction product was added to a PCR mix using KAPA HiFi HotStart

Readymix with primer P3 in a reaction, amplifying the complementary DNA (cDNA). The

amplified cDNA was purified using Agencourt AMPure XP Beads, and then was used to

amplify the gamma and kappa chains in separate reactions with primers in the antibody con-

stant regions (CH Primer and CL Primer) and P4 to obtain the specific product for sequenc-

ing. The specific PCR products were sequenced at Genewiz with the corresponding antibody

constant region primers. Sequence analysis was performed using in-house software and

aligned to the international IMGT information system (http://www.imgt.org) database for

germline determination.

Antibody production. Sequences from the unique variable regions were synthesized with

adaptors for cloning at GenScript (China). Cloning was performed using in-house vectors for

expression. Plasmids were transfected into human embryonic kidney 293T cells (ATCC) using

PEI (Sigma, #24885) in a 24-well plate and incubated at 37˚C, 5% CO2 for 3 days before col-

lecting supernatant for subsequent test. Positive clones in supernatant test were transfected

into HEK 293F (Gibco, USA, R79007) or ExpiCHO cells (Thermo Fisher Scientific, A29127)

for small-scale recombinant antibody production. Antibody was purified using Protein A

(AmMag Protein A Magnetic Beads, Genscript, L00695) affinity chromotography, and purity

was measured by both SDS-PAGE (SurePAGE, Bis-Tris, 10 × 8, 4% to 12%, 12 wells, Gen-

script, M00653) and SEC-HPLC (GE Healthcare).

ELISA test for antibody characterization

ELISA was used to test the binding between antibody containing supernatant/purified anti-

bodies and the antigen (recombinant SARS-CoV-2 S1 protein) blocking activity of gener-

ated anti-SARS-CoV-2 S1 RBD antibodies against recombinant SARS-CoV-2 S1 RBD

protein binding to recombinant hACE2 protein and to evaluate the epitope bins of testing

antibodies. Briefly, recombinant SARS-CoV-2 S1 protein (Sino Biological, China,

40591-V08H or Genscript, P9FE001) was coated on a 96-well high binding plate overnight

at 4˚C, washed with PBST 3 times, incubated with blocking buffer (2% Bovine Serum Albu-

min) for 1 hour at 37˚C, washed with PBST 3 times, and incubated with antibody contain-

ing supernatant or purified antibodies at desired dilutions or concentrations for 1 hour at

37˚C. A secondary antibody, anti-human Fc (AHC)-HRP (Jackson ImmunoResearch Labo-

ratories), was used for detection of the targeted antibody. TMB and stopping solution (Huz-

hou InnoReagents, China, TMB-S-003) were used for detection of HRP signal. The HRP

signal was read on a SPECTRAMAX plate reader. Clones from supernatants with positive

signal were selected for further production. For purified antibodies, EC50 was determined

from the ELISA test result.

For competitive ELISA, antibody A was bound to the substrate in a 96-well high binding

plate. Antibody B and biotinylated SARS-CoV-2 S1 protein were mixed and incubated for 30

minutes before adding to the plated. After 1-hour incubation, an Alexa 488 streptavidin was

used to detect the biotinylated SARS-CoV-2 S1 protein bound to antibody A. The percentage

of inhibition was calculated.

For receptor blocking assay, antibodies were initially tested with a BSNAT test kit (Bio-

Hermes, China, COV-S41). After that, recombinant hACE2 protein was bound to the sub-

strate in a 96-well high binding plate at 5 μg/mL overnight at 4˚C. A mouse Fc-tagged

SARS-CoV-2 RBD protein and a testing antibody were added to the plate simultaneously.

After 1 hour incubation, an anti-mouse Fc HRP was used to detect the binding of SARS-CoV-

2 RBD protein to the hACE2 protein bound to the substrate.
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Affinity measurement by Octet

Antibodies were diluted to 6 μg/mL and immobilized to AHC biosensor, and recombinant

SARS-CoV-2 S1 protein/SARS-CoV-2 S1 RBD protein was diluted with 10 X Kinetics buffer, 3

of the following concentration depending on binding activity (800 nM, 400 nM, 200 nM, 100

nM, 50 nM, and 25 nM). Sample loading time is 100 seconds, and disassociation time is 400 to

800 seconds. Then the biosensor was regenerated in 10 mM glycine HCl (pH1.5) for 15 sec-

onds. A simple one to one Langmuir model was chosen to calculate kD (kon and koff) in Octet

Red96 software.

Co-binding test by Octet

SARS-CoV-S1 protein was immobilized, Ab1 was added with saturated concentration, then change

to Ab2 w/ saturated concentration to obtain signal of Ab2 binding to S1-Ab1 complex as Signal 1.

For the control group, Ab1 was replaced with buffer, then change to Ab2 with saturated concentra-

tion to obtain signal of Ab2 binding to S1 only as Signal 2. Binding rate of Ab2 to S1-Ab1 complex

(i.e., binding rate of Ab2 to S1 when co-binding with Ab1) is Signal 1/Signal 2 × 100%.

Pseudovirus neutralization test

The pseudovirus neutralization assay was done at Institute of System Medicine, Chinese Acad-

emy of Science (Suzhou, China). An MLV SARS-CoV-2 S pseudovirus packaged with lucifer-

ase encoded vector was mixed with testing antibody, titrating from 15 μg/ml with 5-fold serial

dilution, and incubated with cultured HEK293 cells overexpressing ACE2. After 48 hours, the

Luciferase Assay Reagent (Promega, USA, E4550) was used as the detection reagent and the

relative luminescence unit (RLU) was measured on a SpectraMax plate reader. The IC50 was

calculated by a 4-parameter fitting in GraphPad Prism.

Live virus neutralization test. All mAbs were 2-fold serially diluted in culture medium

and was mixed and incubated with SARS-CoV-2 (National Virus Resource) for 1 hour at

37˚C. VeroE6 cells (ATCC, CRL-1586, Lot#: 60526234) in 96-well plate were incubated with

the mixture containing virus (100 TCID50 per well) in presence or absence with diluted anti-

bodies for 1 hour, after which the cells were washed and further incubated in medium for 48

hours. Then, the cells were fixed with 4% paraformaldehyde for 15 minutes and permeabilized

with 0.25% Triton X-100 at room temperature, followed by blocking with 5% BSA in PBS at

37˚C for 1 hour. Then cells were incubated with an in-house prepared anti-SARS-CoV-2 NP

rabbit serum (1:1,000 dilution) as the primary antibody and the Goat Anti-Rabbit IgG H&L

(Alexa Fluor 488) (1:500 dilution, Abcam, Cambridge, United Kingdom; ab150077; Lot#:

GR3244688-2) as the secondary antibody according to the manufacturer’s instruction. Cell

nuclei were stained with Hoechst 33258 (Beyotime, Shanghai, China; C1018) for cell counting.

Imaging was done on Operetta CLSTM high throughput system (PerkinElmer, Waltham,

USA), and number of infected cells and total cells in each well were counted. IC50 and IC90

were determined by GraphPad Prism 8.0.

Antibody scFv fragment expression and purification

The single-chain variable fragment (scFv) of PR1077 contains the HC variable domain (VH)

and a light chain variable domain (Vk) of the antibody, with a (GGGGS)3 peptide linker

between VH and Vk. The codon-optimized wild-type cDNA of PR1077 scFv fragment was syn-

thesized, which with a carboxyl-terminal 6×His tag for purification was cloned into pAcGP67

vector with BamHI and NotI restriction sites using the cloning primers. The sequences of the

primers were forward 50-CATCTACGCCGACGGATCCCAGGTGCAGCTGGTGGAGT-30
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and reverse 50-GATGATGTGCGGCCGCTCAGTGGTGGTGGTGGTGGT-30. The antibody

scFv fragment was expressed using the Bac-to-Bac baculovirus system. The resulting recombi-

nant expression plasmid was transformed into DH10Bac component cells, and the extracted

bacmid was then transfected into Sf9 cells using Cellfectin II Reagent (Invitrogen). The low-

titer viruses were harvested and then amplified to generate high-titer virus stock. The viruses

were infected Hi5 cells at a density of 2.0 × 106 cells/ml. The supernatant of cell culture con-

taining the secreted antibody scFv fragment was harvested 60 hours after infection, which was

purified preliminarily on a Ni-NTA affinity column (GE Healthcare). The affinity column was

washed with 200 mL of wash buffer (25 mM Tris, 200 mM NaCl, 50 mM imidazole, pH 7.0),

and the target protein was eluted with elution buffer containing 25 mM Tris, 200 mM NaCl,

1M imidazole, pH 7.0. The protein was further purified on a Superdex 75 16/60 size-exclusion

column (GE Healthcare) equilibrated with 25 mM Tris, 200 mM NaCl, pH 7.0. SDS-PAGE

analysis revealed over 90% purity of the final purified recombinant protein. Fractions from the

single major peak were pooled and concentrated to 10 mg/mL. The scFv of PR953 and PR961

was expressed and purified following the same protocol.

Crystal screening

The SARS-CoV-2 RBD protein and antibody scFv fragment were mixed at a molar ratio of

1.2:1. The mixture was incubated on ice for 2 hours and further purified by Superdex 75 16/60

size-exclusion column (GE Healthcare). Moreover, 4 mg/mL and 8mg/mL of SARS-CoV-2

RBD/antibody scFv fragments were used for crystal screening by vapor-diffusion sitting-drop

method at 16˚C.

The rode-like diffracting crystals of the PR1077-RBD complex appeared after 7 days at the

mother liquid containing 1% w/v Tryptone, 0.001 M Sodium azide, 0.05 M HEPES sodium pH

7.0, 12% w/v Polyethylene glycol 3,350. Crystals were cryo-protected in 30% w/v Polyethylene

glycol 3,350 and cooled in a dry nitrogen stream at 100 K for X-ray data collection.

The pyramidal diffracting crystals of the PR953-RBD appeared after 7 days at the mother

liquid containing 0.8 M Potassium sodium tartrate tetrahydrate, 0.1 M Tris pH 8.5, 0.5% w/v

Polyethylene glycol monomethyl ether 5,000. Crystals were cryo-protected in 4 M Sodium for-

mate and cooled in a dry nitrogen stream at 100 K for X-ray data collection.

The Flaky diffracting crystals of the PR961-RBD appeared after 4 days at the mother liquid

containing 0.2 M Sodium chloride, 0.1 M Tris sodium pH 8.5, 29% w/v Polyethylene glycol

3,350. Crystals were cryo-protected in 4 M Sodium formate and cooled in a dry nitrogen

stream at 100 K for X-ray data collection.

X-ray data collection, processing, and structure determination

Diffraction data were collected at the Beamline PX06SA of the Swiss Light Source, Paul Scher-

rer Institute, Villigen, Switzerland (wavelength, 1Å) at 100K for PR1077 and Shanghai Syn-

chrotron Radiation Facility (SSRF) BL17U1 (wavelength, 0.97915 Å) at 100K for PR953 and

PR961. Data sets were processed using the MOSFLM [24] or HKL3000 package [26]. Struc-

tures were solved by molecular replacement using PHASER [27] with the SARS-CoV-2 RBD

structure (PDB ID: 6M0J) [28] and the structures of the Fab fragment available in the PDB

with the highest sequence identities. The initial model was built into the modified experimen-

tal electron density using COOT [25] and further refined in PHENIX [29]. Model geometry

was verified using the program MolProbity. Structural figures were drawn using the program

PyMOL [30] (http://www.pymol.org). Epitope and paratope residues, as well as their interac-

tions, were identified by accessing PISA (http://www.ebi.ac.uk/pdbe/prot_int/pistart.html) at

the European Bioinformatics Institute.
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In vitro assay to detect antibody-dependent viral entry

In vitro SARS-CoV-2 pseudovirus ADE assays was performed using Raji cells as previously

reported [31]. Briefly, 3 × 104 Raji cells were seeded in each well of 96-well plates coated with

0.01% poly-L-lysine in PBS and cultured for 24 hours. The antibodies were serially diluted 1:2

(maximum concentration, 100μg/ml) in RPMI 1640 for 9 dilutions in total and were incubated

with the SARS-CoV-2 pseudovirus for 30 minutes. The mixture was applied onto the Raji cells

and cultured for 60 hours. The measurement of luciferase activity was performed as described

above using a Firefly Luciferase Assay Kit (Promega). XG005, together with its silenced

mutants XG005-GRLR (G236R and L328R in the Fc receptor-binding site), was used as posi-

tive and negative control, respectively.

Viruses

SARS-CoV-2 strain (nCoV-2019BetaCoV/Wuhan/WIV04/2019) was propagated, stored, and

titrated as previously described [32,33]. Construction and amplification of AdV-hACE2 were

carried out as previously described [34]. All studies on infectious viruses were performed in a

Biosafety Level 3 (BSL-3) laboratory.

Mouse experiments

Eight to 14-week-old IFNAR−/− C57BL/6 mice were inoculated intranasally with 4 × 108

TCID50 of AdV-hCE2. Five days after AdV transduction, mice were inoculated with 1 × 106

TCID50 of SARS-CoV-2 via an intranasal infection route. Weights were monitored daily, and

animals were humanely killed at 6 d.p.i., and tissues were harvested.

qRT-PCR

Tissues were weighted and homogenized with 1 mL TRIzol (Invitrogen), and RNA was

extracted following the manufacturer’s protocol. qRT-PCR were carried out as described pre-

viously [35]. Briefly, cDNA was generated by reverse transcription using PrimerScript RT

reagent Kit with gDNA Eraser (Takara, Japan) from 1 μg RNA, and qRT-PCR was performed

on the StepOne Plus Real-Time PCR System (Applied Biosystems, USA) with TB Green Pre-

mix Ex Taq II (Takara), using the following condition: 95˚C for 5 minutes, followed by 40

cycles at 95˚C for 5 seconds, 54˚C for 30 seconds, and 72˚C for 30 seconds. Primers were

designed to target the RBD of spike gene (RBD-F:50-GCTCCATGGCCTAATATTA-

CAAACTTGTGCC-30, RBD-R:50-TGCTCTAGACTCAAGTGTCTGTGGATCAC-30).

Histochemical staining

The collected lung tissues were fixed in 10% neutral buffered formalin, and the paraffin

embedding and sectioning were carried out routinely. formalin-fixed, paraffin-embedded

(FFPE) tissue blocks were sectioned (3-μm thick) and stained with HE histochemical.

Supporting information

S1 Fig. Selection and characterization of NAbs. (A) Schematic of in-chip assay on Beacon

Optofluidic system to screening for anti-SARS-CoV-2 antibody secreting B cells. Biotinylated

antigen (dark blue) was conjugated to a streptavidin-decorated polystyrene bead (dark gray).

Single plasma B cells (blue/purple) were loaded into individual NanoPens on the OptoSelect

14K chip in Beacon Optofluidic system, followed by import of a fluorescent secondary anti-

body-antigen beads mixture. Antibody secreted by plasma B cells binding to antigen was

detected by fluorescent anti-rat or anti-mouse IgG secondary antibody (green). (B) Bright
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field and fluorescent images of NanoPens with single plasma B cells. The plasma B secreting

anti-SARS-CoV-2 antibody was identified by increasing fluorescence near the opening of the

NanoPen. (C) Representative fluorescent images of an FOV on the OptoSelect 14K chip and

zoom in view of NanoPens with positive plasma B cells. FOV, field of view; NAb, neutralizing

antibody; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.

(TIF)

S2 Fig. Images of Vero E6 cells infected SARS-CoV-2 treated with antibodies of different

concentrations. Immunofluorescent staining of SARS-CoV-2 NP for in vitro neutralization

assays against live SARS-CoV-2 virus in Vero E6 cells. Green (stained SARS-CoV-2 NP) indi-

cates viral infected cells, and blue (Hoechst 33258) represents cell nuclei. SARS-CoV-2, Severe

Acute Respiratory Syndrome Coronavirus 2.

(TIF)

S3 Fig. SARS-CoV-2 live virus neutralization activity test of isolated mAbs. The mixtures of

SARS-CoV-2 and serially diluted antibodies were added to Vero E6 cells. After 4 days incuba-

tion, IC50 were calculated by fitting the CPE from serially diluted antibody to a sigmoidal

dose- response curve. The IC50 were labeled accordingly. (A) SARS-CoV-2 live virus neutrali-

zation activity test of 11 mAbs from H2L2 mice. (B) SARS-CoV-2 live virus neutralization

activity test of 14 mAbs from BALB/c mice. All the data of this figure can be found in the S11

and S12 Data files. mAb, monoclonal antibody; SARS-CoV-2, Severe Acute Respiratory Syn-

drome Coronavirus 2.

(TIF)

S4 Fig. Epitope mapping by competitive ELISA. Coated antibody was bound to the substrate

in a 96-well high binding plate. Competitor antibody and biotinylated SARS-CoV-2 S1 protein

were mixed and incubated for 30 minutes before adding to the plated. After 1-hour incubation,

an Alexa 488 streptavidin was used to detect the biotinylated SARS-CoV-2 S1 protein bound

to coated antibody. The percentage of inhibition was calculated. Blue indicates no competition,

and red indicates competition. The groups 1–4 at the bottom indicates clusters of antibody epi-

topes defined by the competitive ELISA results. All the data of this figure can be found in the

S13 Data file. ELISA, enzyme-linked immunosorbent assay; SARS-CoV-2, Severe Acute Respi-

ratory Syndrome Coronavirus 2.

(TIF)

S5 Fig. Characterization of PR1077 as potential therapeutic candidate. (A) Side or top view

of PR1077 binding epitope (colored red) on SARS-CoV-2 spike trimer in “all open form”

(superimposed to the spike trimer structure, PDB code: 7CAK) or “all RBD closed state”

(superimposed to the spike trimer structure, PDB code: 6ZP0). (B) ELISA binding curves of 22

RBD mutants. PR1077 binds strongly to a wide range of RBD mutants. All the data of this fig-

ure can be found in the S14 Data file. (C) PR1077 can effectively neutralize a range of SARS--

CoV-2 mutant pseudovirus. All the data of this figure can be found in the S15 Data file. ELISA,

enzyme-linked immunosorbent assay; RBD, receptor-binding domain; SARS-CoV-2, Severe

Acute Respiratory Syndrome Coronavirus 2.

(TIF)

S6 Fig. Potential ADE test of PR1077, XG005 (positive control), and XG005-GRLR (nega-

tive control). Raji cells as a FcγRII-bearing human B lymphoblast cell line, to study the anti-

body-dependent viral entry. The antibody-dependent entry of SARS-CoV-2 pseudovirus in

the presence of PR1077, XG005, and XG005-GRLR was measured at various antibody concen-

trations. All the data of this figure can be found in the S16 Data file. ADE, antibody-dependent
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enhancement; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.

(TIF)

S7 Fig. The epitopes of hACE2 and selected NAbs are shown in the surface representation.

The SARS-CoV-2 RBD is colored in gray and displayed in surface representation. The binding

epitope for hACE2 (PDB code: 6M0J), PR1077 (PDB code:7DEO), PR953 (PDB code:7DEU),

PR961 (PDB code:7DET), P4A1 (PDB code:7CJF), CB6 (PDB code: 7C01), BD-629 and BD-

368 (PDB code: 7CHC), REGN10933, and REGN10987(PDB code: 6XDG) are displayed in

different colors. hACE2, human angiotensin-converting enzyme 2; NAb, neutralizing anti-

body; RBD, receptor-binding domain; SARS-CoV-2, Severe Acute Respiratory Syndrome

Coronavirus 2.

(TIF)

S8 Fig. Sequence alignment of PR1077 to other reported antibodies from the IGHV3-30 or

3–33 germline. (A) Alignment of the HC variable domain sequence of PR1077 with C002,

C135, EY6A, REGE10987 and the germline IGHV3-30, IGHV3-33 sequence. (B) Alignment

of the light chain variable domain sequence of PR1077 with the germline IGKV2-28 sequence.

(C) Germline usage comparison of the HC and light chain discussed in this paper. HC, heavy

chain.

(TIF)

S9 Fig. Alignment of selected NAbs derived from VH3-33 and VH3-30 germline. PR1077

(HC: slate blue, light chain: red), C102 (HC: dark blue, light chain: golden yellow), EY6A (yel-

low orange), C135 (cyan), and REGN10987 (limon green) are superimposed. SARS-CoV-2

spike RBD are shown in surface and colored gray. NAb, neutralizing antibody; RBD, receptor-

binding domain.

(TIF)

S1 Table. Summary of NAbs binding, blocking, and neutralization assays. The binding

kinetics of these mAbs were further assessed by BLI assays, and equilibrium constant (KD) val-

ues were calculated. BLI, bio-layer interferometry; mAb, monoclonal antibody; NAb, neutral-

izing antibody.

(XLSX)

S2 Table. Data collection and refinement statistics. �Numbers in the brackets are for the

highest resolution shell. Rmerge = ShSl|Iih-<Ih>|/ShSI <Ih>, where <Ih> is the mean of the

observations Iih of reflection h. Rwork = S (||Fp (obs)|-|Fp (calc)||)/S|Fp (obs)|; Rfree is an R factor

for a preselected subset (5%) of reflections that was not included in refinement.

(XLSX)

S3 Table. Residues contributed to interaction between NAbs/SARS-CoV-2-RBD. (a) The H

and S in parentheses refer to hydrogen bonds and salt bridges, respectively. (b) Light chain res-

idues are listed in italics in square bracelets. NAb, neutralizing antibody; RBD, receptor-bind-

ing domain; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.

(XLSX)

S1 Data. The individual numerical values for the following figure panel: Fig 1B.

(XLSX)

S2 Data. The individual numerical values for the following figure panel: Fig 1C.

(XLSX)
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S3 Data. The individual numerical values for the following figure panel: Fig 2A.

(XLSX)

S4 Data. The individual numerical values for the following figure panel: Fig 2B.

(XLSX)

S5 Data. The individual numerical values for the following figure panel: Fig 2C.

(XLSX)

S6 Data. The individual numerical values for the following figure panel: Fig 2D.

(XLSX)

S7 Data. The individual numerical values for the following figure panel: Fig 2E.

(XLSX)

S8 Data. The individual numerical values for the following figure panel: Fig 2F.

(XLSX)

S9 Data. The individual numerical values for the following figure panel: Fig 5.

(XLSX)

S10 Data. The individual numerical values for the following figure panel: Fig 5C.

(XLSX)

S11 Data. The individual numerical values for the following figure panel: S3A Fig.

(XLSX)

S12 Data. The individual numerical values for the following figure panel: S3B Fig.

(XLSX)

S13 Data. The individual numerical values for the following figure panel: S4 Fig.

(XLSX)

S14 Data. The individual numerical values for the following figure panel: S5B Fig.

(XLSX)

S15 Data. The individual numerical values for the following figure panel: S5C Fig.

(XLSX)

S16 Data. The individual numerical values for the following figure panel: S6 Fig.

(XLSX)
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