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Abstract

The development of next generation sequencing (NGS) platform-based single-cell RNA

sequencing (scRNA-seq) techniques has tremendously changed biological researches,

while there are still many questions that cannot be addressed by them due to their short

read lengths. We developed a novel scRNA-seq technology based on third-generation

sequencing (TGS) platform (single-cell amplification and sequencing of full-length RNAs by

Nanopore platform, SCAN-seq). SCAN-seq exhibited high sensitivity and accuracy compa-

rable to NGS platform-based scRNA-seq methods. Moreover, we captured thousands of

unannotated transcripts of diverse types, with high verification rate by reverse transcription

PCR (RT-PCR)–coupled Sanger sequencing in mouse embryonic stem cells (mESCs).

Then, we used SCAN-seq to analyze the mouse preimplantation embryos. We could clearly

distinguish cells at different developmental stages, and a total of 27,250 unannotated tran-

scripts from 9,338 genes were identified, with many of which showed developmental stage-

specific expression patterns. Finally, we showed that SCAN-seq exhibited high accuracy on

determining allele-specific gene expression patterns within an individual cell. SCAN-seq

makes a major breakthrough for single-cell transcriptome analysis field.

Introduction

The development of next generation sequencing (NGS) platform-based single-cell RNA

sequencing (scRNA-seq) techniques has made great advances during the past decade, and

these techniques have accelerated researches in many biological fields. It helped to overcome

the challenges in studying rare biological materials and illustrated the heterogeneity within a

biological sample [1–2]. The highly parallel scRNA-seq methods such as Drop-seq [3–4] and

Microwell-seq [5] have made it feasible to analyze human cell atlas (HCA). However, they
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relied on NGS platform with short read length (100 to 250 bp). Alternative splicing of tran-

scripts is prevalent in mammalian cells and could make major differences for maintenance of

cell identity and function [6–7], many of which could not be detected by NGS platform-based

single-cell RNA-seq methods due to their short read length. Therefore, we need new solutions

on accurately reporting the complicated alternative splicing events at single-cell resolution.

The third-generation sequencing (TGS) platform has overcome the drawbacks of short

read length of NGS and has been applied in direct RNA sequencing [8–9]. However, all the

TGS sequencing strategies need large amount of starting materials for library construction,

which is difficult to be amplified from an individual cell. Here, we reported a novel method

called single-cell amplification and sequencing of full-length RNAs by Nanopore platform

(SCAN-seq), which could detect the full-length transcripts in single cells with high accuracy.

By pooling amplified full-length cDNAs of 48 individual cells labeled by different Nanopore

platform compatible barcodes, the final total cDNA amount was enough for Nanopore library

construction and sequencing. The single-cell information could be separated according to the

24-nucleotide (nt) Nanopore platform compatible cell barcodes efficiently. We tested this

method in mouse embryonic stem cells (mESCs), and TGS-based SCAN-seq showed compara-

ble sensitivity and higher reliability compared to those NGS-based scRNA-seq methods. More-

over, we directly captured the exact quantity of full-length cDNAs in mESCs, including

unannotated ones which could be validated by reverse transcription PCR (RT-PCR)–coupled

Sanger sequencing. We further applied this method to investigate the transcriptome in mouse

oocytes and preimplantation embryos. Cells at different developmental stages could be clearly

distinguished, with each stage of samples well matched the ones analyzed using NGS method.

We identified 27,250 unannotated transcripts from 9,338 genes in the mouse preimplantation

embryos, and 5 out of 7 candidate unannotated transcripts we chose could be validated by

RT-PCR–coupled Sanger sequencing. Finally, we showed that SCAN-seq could accurately

evaluate allele-specific transcripts within an individual cell during mouse preimplantation

development. Taken together, by taking advantages of both single-cell full-length cDNA

amplification and TGS, SCAN-seq showed unique advantages in single-cell transcriptome

analysis.

Results

Characterization of SCAN-seq technique

Current single-cell RNA amplification methods could achieve up to tens of nanogram of

cDNAs, which is enough for NGS library construction. While in TGS, near micrograms of

starting material were needed for library construction. To develop SCAN-seq, we took advan-

tages of the TGS platform compatible barcoding strategy, through which we could get enough

cDNA products by pooling cells with different barcodes. We introduced the official 24-nt bar-

code sequences of Nanopore in the reverse transcription (RT) primers to avoid cell splitting

bias in the TGS data generation. We followed the previous barcoded Smart-seq2 amplification

procedure with minor modifications [10–12] and pooled the amplified cDNAs of up to 48

cells in a library (Fig 1A). As the PCR amplification generally show bias on shorter cDNAs, we

purified the pooled amplicons twice with 0.6 volume of Ampure beads to remove shortest

cDNA products, which are usually primer dimers and cDNAs of partially degraded mRNAs.

Then, the purified full-length cDNAs were used for Nanopore library construction and

sequencing (Fig 1A). Further gene expression and unannotated transcript analysis were car-

ried out with TGS data in each individual cell (S1A Fig).

We first tested SCAN-seq in mESCs. The length of cDNA products before library construc-

tion enriched for fragments of 1,200 to 2,000 bp (S1B Fig). Almost all the full-length reads
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were longer than 300 bp (S1C Fig), and the length distribution of the reads increased after data

collapse as the short reads contained higher ratios of PCR duplicates (S1D Fig). The average

ratio of reads mapping for SCAN-seq was 0.87, higher than the standard NGS platform-based

scRNA-seq methods. The number of genes and transcripts detected in each cell increased with

more reads, while the degree of increases rapidly reduced when the reads went over 100,000

(S2A Fig); thus, we set this number as 1 criterion for filtering cells for downstream analyses. By

further requiring the mapping ratio over 85% and number of detected genes more than 3,000,

53 out of 55 mESCs from 2 batches of experiments were kept for further analyses. On average,

SCAN-seq could detect over 8,000 genes and 10,000 splice isoforms in each individual mESC

(S2A Fig), which was comparable, or even better than those of NGS platform-based single-cell

RNA-seq techniques [13] (Fig 1B). As there were 13,700 genes detected in NGS bulk sample,

Fig 1. Characterization and evaluation of SCAN-seq. (A) The schematic of SCAN-seq. Briefly, a single cell is lysed to release mRNAs and, the first-

strand cDNAs are synthesized using a 24-nt barcode RT primer. After amplification, cDNAs of up to 48 cells are pooled and purified. Then, the full-length

cDNAs are used for Nanopore library construction and sequencing. (B) Comparison between the numbers of genes detected by different methods. Both

gene number of the group (detected in at least 10% of the cells in the group) and single cells (the purple bars) are shown. The center represents the mean,

whereas the error bars represent the SEM. (C) Density plot showing the distribution of global gene expression correlations (Pearson) between every 2

mESCs. Most of the cells showed correlation of over 0.94. (B, C) The numerical data are listed in S1 Data. (D) Dendrogram of mESCs from 2 different

experimental batches shows mixed pattern. NGS, next generation sequencing; nt, nucleotide; RT, reverse transcription; SCAN-seq, single-cell

amplification and sequencing of full-length RNAs by Nanopore platform; SEM, standard error of the mean.

https://doi.org/10.1371/journal.pbio.3001017.g001
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the 12,161 genes obtained by SCAN-seq in mESCs (by requiring detected in at least 10% of the

single-cell samples) could detect nearly 90% genes in bulk, representing high sensitivity.

We further evaluated the reproducibility of SCAN-seq by calculating the correlations on

global gene expressions between each pair of individual mESCs. The averaged correlation

value (R2) was 0.9 (Fig 1C and S2B Fig), which was even higher than that of many previous

NGS platform-based single-cell RNA-seq methods [13], indicating high reproducibility of

SCAN-seq. This could be also revealed by well-mixed pattern of mESCs from 2 different

batches in clustering (Fig 1D). Then, we calculated the coverage along the whole transcripts by

SCAN-seq, and it showed relatively mild decrease of the coverage from the 30 to the 50 end of

mRNAs (S2C Fig). This allowed us to get comprehensive information of full-length mRNAs.

Next, we referred to an existing algorithm for identifying unannotated transcripts with

SCAN-seq data [14]. We searched 5 types of unannotated transcripts: (1) combination of

known junctions (CJ), indicating new combinations of previous annotated splice junctions

from different transcripts of the same gene; (2) combination of known splice sites (CS), which

implies new combinations of annotated splice junctions within the same transcript; (3) mono-

exon (ME), deriving from 1 annotated exon; (4) intron retention (IR), which is a very preva-

lent alternative splicing type that 1 or more introns are preserved in the mRNA; and (5)

mono-exon by intron retention (MIR), appearing as 1 or more annotated exons with corre-

sponding flanking introns retained together as a new long exon (Fig 2A). Although we could

use assembly to find unannotated transcripts with NGS data, it is difficult to distinguish CJ

and CS. Since we were able to get full-length transcripts by SCAN-seq, it was easy to separate

these 2 types of unannotated transcripts, indicating higher accuracy of this technique. The

number of unannotated transcripts decreased as expected by requiring them to be simulta-

neously detected in more individual cells. We obtained 6,487 unannotated transcripts, which

correspond to 3,834 genes in total by requiring them detected with expression level (RPT10k;

see method) over 0.1 and accounted for over 5% of all transcripts of the host genes in at least 3

individual cells. A total of 110 unannotated transcripts were detected in all 53 mESCs analyzed

(Fig 2B). Of all these unannotated transcripts, CJ took part of the largest proportion (2,481 out

of 6,487), followed by CS (1,738 out of 6,487). A total of 1,653 transcripts belonged to IR

group, and ME and MIR possess 550 and 65 transcripts, respectively (Fig 2C). We selected 5

unannotated transcripts for verification using RT-PCR followed by Sanger sequencing (S2

Table). All of them were consistent with the expected transcripts. We listed some unannotated

transcripts of different types as examples (Fig 2D). Specifically, we noticed that Top2a, an

enzyme that is important for cell cycle, was found with IR between the last 2 exons. The high

accuracy for unannotated transcript identification demonstrated that SCAN-seq has made

great progress in detecting unannotated transcripts at single-cell level.

Transcriptome analysis of mouse preimplantation embryos using SCAN-

seq

We then applied SCAN-seq to systematically study the transcriptome of mouse oocytes and

preimplantation embryos. We isolated single blastomeres of embryos (C57BL/6J♀ × DBA/

2C♂) at different developmental stages according to diverse digestive conditions. The inner

cell mass (ICM) and trophectoderm (TE) cells in blastocysts were briefly predicted through

detecting the abundance of Nanog and Cdx2 in the amplified cDNAs by fluorescent quantita-

tive PCR. The confirmation of cell identity at blastocyst stages were based on clustering of cells

according to the expression levels of well-known ICM and TE marker genes (Nanog, Sox2,

Fgf4, Lifr, Gata4, Gata6, Sox17, and Foxa2 for ICM and Cdx2, Eomes, Elf5, Gata3, and Tfap2a
for TE). For a total of 213 blastomeres we sequenced, 122 were left after stringent filtering
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Fig 2. Unannotated transcripts in mESCs. (A) The schematic showing the 5 types of unannotated transcripts. (B) The number of unannotated transcripts detected within

different numbers of cells. The unannotated ones captured in at least 3 cells were remained, and we analyzed 110 unannotated transcripts detected in all 53 mESCs. The

numerical data are listed in S1 Data. (C) Proportions of these 5 types of unannotated transcripts in mESCs. (D) Examples of unannotated transcripts identified in mESCs.

TCONS_00202455 corresponds to a part of the Gene Rabggtb sequence. A complete intron between the second and third exon, 25 bp of intron right next to 50 of the first

exon, and 98 bp of intron between the fourth and fifth exon are retained in the RNA. Gene Mfsd10 has 3 annotated transcripts, and TCONS_00249892 contains the intron

between the eighth and ninth exon of the known transcripts. TCONS_00044709 matches partial Gene Top2a sequence and contains a complete intron between the 35th

and 36th exon of the known transcript. CJ, combination of known junctions; CS, combination of known splice sites; IR, intron retention; ME, mono-exon; mESC, mouse

embryonic stem cell; MIR, mono-exon by intron retention.

https://doi.org/10.1371/journal.pbio.3001017.g002
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(Table 1). The saturation curve indicated that we could detected a sufficient number of genes

and isoforms in individual cells at distinct developmental stages with 100,000 mapped reads,

while the abundance of genes and transcript isoforms varied with enough reads (S3 Fig).

Oocytes and zygotes were detected with highest number of genes on average (12,360 and

12,467 detected genes, respectively) in each individual cell (S4A Fig). The number of detected

genes in each blastomere decreased along the developmental stages, reaching the lowest at

8-cell stage (6,730 on average). This should be caused by the global degradation of maternal

RNAs during cell division. The gene content in morular cells increased (8,751 genes on aver-

age in an individual cell), indicating a boost of de novo gene transcription at this stage.

We performed principal component analysis (PCA) of all the blastomeres at different devel-

opmental stages together with mESCs (Fig 3A). As expected, cells at each developmental stage

clustered together on the PCA map and showed a continuous distribution from oocyte, zygote

to the ICM, and TE cells at blastocyst stage. The most dramatic transcriptome shift happened at

2-cell stage, exhibiting the largest distance to the previous developmental stages. The global

gene expression pattern from morula stage to blastocyst was similar as they could hardly sepa-

rate on PCA map. Cells at blastocyst stage were more heterogeneous than those at morula stage,

indicating more cell fate differentiation at this stage. While the pluripotent mESCs, as the cul-

tured cell line initially derived from ICM cells, were more homogeneous and closer to the blas-

tocyst cells (Fig 3A). Further hierarchical clustering analysis revealed that nearly all cells belong

to the same developmental stage could be clustered together, and the adjacent stage of samples

showed shorter distances (Fig 3B). We then compared the results to the pairwise data generated

by single-cell universal poly(A)-independent RNA sequencing (SUPeR-seq), a representative of

scRNA-seq method using NGS platform [15]. SCAN-seq could detect more genes in samples

before 4-cell stage. Fewer genes in 4-cell and samples at later stages might be due to the fact that

SUPeR-seq used a whole embryo (at least 4 blastomeres) as input for amplification in a reaction,

while SCAN-seq used only 1 blastomere (Fig 3C). Nevertheless, both methods showed high

consistency on gene detection at each developmental stage, with 66% to 78% overlapped genes

(Fig 3C). The stage-specific genes identified using SCAN-seq also matched well with those

using SUPeR-seq (S4B Fig), indicating high accuracy and reliability of SCAN-seq data.

To figure out the candidate genes regulating mouse preimplantation development, we

searched for differentially expressed genes (DEGs) between every 2 stages of cells and re-clus-

tered all the DEGs according to their expression patterns in samples across all developmental

stages (Fig 3D). A total of 2,521 genes could be separated into 6 groups (S1 Table). Group 1

Table 1. Sample collection of mouse oocytes and preimplantation embryos.

Stage No. of collected cells No. of cells after filter No. of embryos Genetic background(♀x♂)

MII oocyte 10 7 10 C57BL/6J × DBA/2C

MII oocyte 16 16 16 DBA/2C × C57BL/6J

Zygote 10 9 10 C57BL/6J × DBA/2C

2-cell_early 21 13 11 C57BL/6J × DBA/3C

2-cell_late 20 18 10 C57BL/6J × DBA/4C

4-cell 24 14 9 C57BL/6J × DBA/5C

8-cell 24 12 5 C57BL/6J × DBA/6C

Morula 24 23 3 C57BL/6J × DBA/7C

Blastocyst 80 26 18 C57BL/6J × DBA/8C

Blastocyst 69 49 4 DBA/2C × C57BL/6J

MII, metaphase II.

https://doi.org/10.1371/journal.pbio.3001017.t001
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Fig 3. Transcriptome analysis in mouse preimplantation embryos. (A) PCA of mESCs and all blastomeres at different developmental stages. (B) Hierarchical

clustering of all blastomeres at different developmental stages. Cells of the same stage clustered together and the adjacent stage showed shorter distances. (C)

Comparison between the number of genes detected at each developmental stage by NGS and TGS. SCAN-seq detected more genes before 4-cell stage. And 66% to 78%

genes were overlapped by these 2 methods at the same stage. (D) Heatmap of gene expressions showing developmental stage-specific patterns. A total of 2,252 genes

were divided into 6 groups according to their expression patterns. (A, C, D) The numerical data are listed in S1 Data. ICM, inner cell mass; mESC, mouse embryonic

stem cell; NGS, next generation sequencing; PCA, principal component analysis; TE, trophectoderm; TGS, third-generation sequencing.

https://doi.org/10.1371/journal.pbio.3001017.g003
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genes such as Bmp15, ZSCAN4−ps1, Dyp30, Ampd3, Tcl1, and Clock showed highest expres-

sion levels in oocyte, zygote, and 2-cell stage embryos. These should be maternal genes and

gene ontology (GO) analysis showed that they enriched for biological terms related to cell

cycle (S4C Fig). The expression of group 2 genes elevated in oocyte, zygote, 2-cell embryos,

and ICM cells. The representative genes included Nanog and Lama1. Genes in group 3 were

specifically highly expressed in zygote, such as Arg2, Krt12, and Sgcd, related to regulation of

protein and RNA transport. Group 4 genes, including Egfr, Eif4g1, Abcf1, Kdm5b, and Hook1,

were up-regulated during 2-cell to 8-cell stage. These genes enriched for biological terms

related to metabolism of RNA, chromatin organization, and cell cycle process. Genes in group

5 showed elevated expression levels from 8-cell stage onwards, and they were strongly associ-

ated with GTP hydrolysis and regulation of translation. The representative genes in group 5

included Rpl27a, Gata6, Eif5, etc. We found that the blastocyst specific genes, such as Pou5f1,

Src, Sox17, Aimp1, and Cdc37, in group 6 showed enrichment in cytoskeleton organization,

embryonic morphogenesis, cortical cytoskeleton organization, and ectodermal cell differentia-

tion. This indicated that cells at blastocyst stage already began to differentiate with committed

cell fate (S4C Fig).

LncRNAs detected in mouse preimplantation embryos

Long noncoding RNAs (lncRNAs) are important regulators for gene expression regulation.

They are also reported to be involved in early embryonic development [16–17]. To investigate

the lncRNAs captured by SCAN-seq, we extracted reads mapping to intergenic regions and

then mapped the reads to the NONCODEv5 lncRNA database (S4 Table). It is interesting that

the intergenic reads were dramatically increased at the 2-cell stage and then decreased along

with the developmental stages (S5A Fig). This indicates de novo expression of large abundance

of lncRNAs, which were possibly involved in the zygotic gene activation. We further investi-

gated whether lncRNAs play roles in mouse preimplantation development by analyzing the

stage-specific lncRNA expressions. For the total of 2,742 lncRNAs we observed in the embry-

onic samples, 1,032 lncRNAs showed stage-specific expression pattern (S5B Fig), most of

which were highly detected before 4-cell stage, indicating potential regulation roles for preim-

plantation development.

Unannotated transcripts detected in mouse preimplantation embryos

Likewise, we searched unannotated transcripts in all the preimplantation samples and identi-

fied 27,250 unannotated transcripts, which corresponded to 9,338 genes (S2 Table). Different

to the ratios in mESCs, CS type took almost half of all unannotated transcripts (13,596 out of

27,250) in mouse embryonic samples (Fig 4A). We then performed hierarchical clustering of

these unannotated transcripts according to their expression levels in all embryonic cells. Many

of them show developmental stage-specific expression patterns (Fig 4B). We then selected 7

unannotated transcripts which showed higher expression levels in either the oocyte or the blas-

tocyst stage for verification. Five candidates (71%) were consistent with the expected tran-

scripts according to RT-PCR–coupled Sanger sequencing (S2 Table), including protein

structure regulation related gene Cul1 and the epigenetic modification gene Tet3 (Fig 4C).

Then, we wondered how many of the unannotated transcripts were generated by the stage-spe-

cific genes. We compared these genes with the 6 groups of genes identified previously.

Although 7,574 genes showed no stage-specific expression patterns and only 1,056 genes over-

lapped with the 6 groups of genes, the stage-specific genes showed higher ratios to be detected

with unannotated transcripts (Fig 4D), especially for the maternal genes (group 1) and 8-cell

stage onwards expressed genes (group 5) (73% and 83%, respectively). The identification of

PLOS BIOLOGY Null
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such a large number of unannotated transcripts provides a valuable resource for further study

of their function in the development of mouse preimplantation embryos.

Allelic-specific and parental-specific expression analysis during mouse

preimplantation embryo development

Diploid organisms have 2 alleles of genes in each individual cell, with 1 from mother (maternal

allele) and the other from father (paternal allele). A gene is usually expressed from both alleles,

which is called biallelic expression, or from only 1 allele, which is called monoallelic expression.

Fig 4. Unannotated transcripts in mouse oocytes and preimplantation embryos. (A) Proportions of these 5 types of unannotated transcripts in mouse oocytes and

embryonic cells. (B) Heatmap showing the expression levels of unannotated transcripts in all cells. The numerical data are listed in S1 Data. (C) Examples of

unannotated transcripts. TCONS_00733377 matches a part of the Gene Omt2a sequence. It contains an extra exon from an intron region. Gene Cul1 has 3 annotated

transcripts, and TCONS_00602790 has a different 50 UTR. TCONS_00617265 contains 2 annotated exons of Tet3, and 2 additional exons came from extra 50 UTR

region and an intron region. These 3 transcripts were verified in mouse oocytes. (D) Comparison between genes generating unannotated transcripts and the 6 groups

of stage-specific genes. The histogram showing the number of genes allocating in each group. The ratio of the overlapped genes in each group is also shown. The

numerical data are listed in S1 Data. CJ, combination of known junctions; CS, combination of known splice sites; IR, intron retention; ME, mono-exon; MIR, mono-

exon by intron retention; UTR, untranslated region.

https://doi.org/10.1371/journal.pbio.3001017.g004
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Monoallelic gene expression occurs when 1 allele is actively expressed, whereas the other is silent

[18–19], and unbalanced allelic gene expression is a significant genetic regulatory mechanism.

Parental-specific genes expression is involved in many diseases such as diabetes, inherited dis-

eases, and cancer [20–21]. Therefore, investigating allele-specific gene expression patterns is

important, and such evaluations were usually done through NGS technology [22–23].

To check whether we could accurately specify paternal and maternal expressions in an indi-

vidual cell, we calculated transcripts belonging to C57BL/6J and DBA/2C, respectively, accord-

ing to different single nucleotide polymorphism (SNP) between these 2 strains in every

blastomere of all embryonic stages we analyzed. Of all the expressed genes in each single cell at

each developmental stage, 40% to 55% transcripts (correspondingly 45% to 65% of the genes)

were detected with at least 1 discriminable SNP (Fig 5A and S6 Fig). We also found that there

was a significant bias in calculating maternally expressed genes when using each strain’s refer-

ence genome for mapping (Fig 5B). Thus, we mapped the full-length reads to both reference

genomes and calculated the paternal and maternal read counts in every individual cell and

then averaged the results from both situations (S3 Table). In this way, the averaged error rates

for SNP identification were 1.8% for identifying C57BL/6J allelic transcripts and 1.3% for iden-

tifying DBA/2C allelic transcripts (Fig 5B). As expected, the ratios of maternal allele expressed

genes were near 100% at oocyte and zygote stages and then gradually decreased because of the

maternal RNA digestion and zygotic gene activation (Fig 5C). The paternal allelic genes

already took about a quarter of all transcripts at early 2-cell stage and nearly 40% at later stage,

indicating large scale of gene expression activation at 2-cell stage. This was consistent to the

previous observation that genes in group 4 were enriched for genes related to the metabolism

of RNA (S4C Fig). Different from the previous results by Deng and colleagues [22] that the

transcript amounts from both alleles are almost equal, we found that the total amount of tran-

scripts from the maternal genome was still slightly higher than those from the paternal

genome. In our dataset, transcripts from both alleles reached equal abundance at blastocyst

stage in both ICM and TE cells. To verify this rigorously, another 16 metaphase II (MII)

oocytes of DBA/2C and 49 blastomeres from reciprocally crossed embryos at blastocyst stage

were also analyzed (Fig 5C). The results suggested a reliable estimation of allele-specific gene

expression by SCAN-seq.

Discussion

Current NGS platform-based scRNA-seq methods can offer information of expression levels

and splicing events for each gene. It is practically impossible to capture the full-length tran-

scripts of longer genes in single cells because of the limitation of short read length of the NGS

platform. SCAN-seq took advantages of acquiring full-length cDNA with TGS and makes it

implementable at single-cell level. SCAN-seq not only got the results obtained using the cur-

rent NGS platform-based scRNA-seq methods, but also captured the intact cDNA molecules

directly (with the longest cDNA captured in mESCs as 10,050 bp, from the gene Fasn with 43

annotated exons), which is convenient and accurate for RNA isoform analysis. Moreover,

SCAN-seq could specify the template strand for transcription of a specific RNA molecule,

which is practically impossible for the previous NGS platform-based full-length cDNA

scRNA-seq methods without specific labeling (S5 Table).

According to the transcriptome analysis of mouse preimplantation embryos using SCAN-

seq, we validated that this new method is accurate to distinguish cells at different developmen-

tal stages. Additionally, this method can investigate allele-specific gene expression patterns

with high accuracy. In summary, SCAN-seq provides a great basis for further study of different

biological systems at single-cell resolution.
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There are also some limitations for SCAN-seq. For example, the relative high cost of TGS

sequencing. The sequencing cost for an individual cell is US$60 in the case of 48 cells as a

sequencing library. This made it unaffordable to analyze large number of individual cells. Sec-

ondly, due to the relative high error rate of Nanopore sequencing, it is difficult to do absolute

counting of transcripts using unique molecular identifiers (UMIs). Therefore, there would be

bias in gene expression analysis, caused by the PCR amplification errors. Currently, there is

also possible way to evaluate the absolute copy numbers of the transcripts in such TGS based

scRNA-seq methods. The most common strategy is to combine NGS data for correction of

TGS results [24–26]. In this way, both NGS and TGS libraries need to be constructed with the

Fig 5. Analysis of allele-specific transcripts. (A) The percentage of allele-specific transcripts at each stage during mouse preimplantation development. (B) Error

rates for SNP detection when aligned to C57BL/6J and DBA/2C reference genomes. (C) Percentage of transcripts which can be assigned to each allele in each

individual cell. (A–C) The numerical data are listed in S1 Data. ICM, inner cell mass; SNP, single nucleotide polymorphism; TE, trophectoderm.

https://doi.org/10.1371/journal.pbio.3001017.g005
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same sample, increasing the experimental and sequencing costs, and there are fewer TGS

reads assigned for downstream analysis. We investigated the published TGS based scRNA-seq

methods [24–28] and compared them with SCAN-seq in several aspects (Table 2). SCAN-seq

showed clear advantages in cell capture efficiency and gene detection ability by just relying on

TGS platform. The throughput of SCAN-seq can also be improved by involving more types of

cell barcodes or using combined barcodes on both ends of the transcripts. As for absolute

counting of transcripts, 1 applicable way is to use spike-ins, such as External RNA Controls

Consortium (ERCC) for copy number evaluation in the future. In summary, SCAN-seq turns

out to be a great breakthrough in single-cell transcriptome study using TGS technology, and it

will drive research in many biological fields.

Methods

Ethics statement

All animal experiments were performed according to the guidelines of the Institutional Animal

Care and the Ethics Committee of the Peking University (Beijing, China). The research license

number is LSC-TangFC-4.

Collection of mouse MII oocytes and preimplantation embryos

The MII oocytes were collected from the C57BL/6J (C57) mice, and preimplantation embryos

were collected after the 6- to 8-week-old C57 female mice mated with DBA/2NCrl (DBA) male

mice. To induce ovulation, the female mice were injected with 5IU of pregnant mare’s serum

gonadotropin (PMSG) (Ningbo SanSheng Biological Technology, Ningbo, Zhejiang, China,

Cat. 110044564) and then after 46 to 48 hours 5IU of human chorionic gonadotropin (hCG)

(Ningbo SanSheng Biological Technology, Cat. 50030248). The MII oocytes and embryos of

each stage during preimplantation development were collected at defined time periods after

hCG administration [29]: 20 hours (MII oocyte), 22 to 24 hours (zygote), 30 to 32 hours (early

2-cell), 46 to 48 hours (late 2-cell), 54 to 56 hours (4-cell), 68 to 70 hours (8-cell), 78 to 80

hours (morula), 88 to 90 hours (early blastocyst), and 108 to 116 hours (late blastocyst).

Single-cell isolation from preimplantation embryos

To isolate single cells from embryos, we first eliminated granulosa cells by putting the MII

oocytes and embryos at zygote and 2-cell stages in hyaluronidase (Sigma, St. Louis, Missouri,

Table 2. Comparison of SCAN-seq to current TGS base scRNA-seq methods.

Method Amplification Sequencing

platform

No. of cells in a

library

Cell capture

efficiency

No. of UMIs per

cell

No. of full-length genes

per cell

Experiment cost per

cell

SCAN-seq Smart-seq2 Nanopore 10–48 80% – 8,000 US$3

R2C2 [27–28] Smart-seq2 Nanopore 1–96 64% – 532 US$7

ScISOr-Seq [24] 10x Genomics NGS+Pacbio >5,000 40% 260 129 US$0.3

ScNaUmi-seq

[25]

10x Genomics NGS+Nanopore 100–1,000 40% 6047 2,427 US$5

RAGE-seq [26] 10x Genomics NGS+Nanopore 2,500–6,000 18.7% – TCR/BCR mRNA US$0.5

BCR, B cell receptor; NGS, next generation sequencing; RAGE-seq, Repertoire and Gene Expression by Sequencing; R2C2, Rolling Circle Amplification to

Concatemeric Consensus; SCAN-seq, single cell amplification and sequencing of full-length RNAs by Nanopore platform; ScISOr-Seq, single-cell isoform RNA-Seq;

ScNaUmi-seq, Single-cell Nanopore sequencing with UMIs; scRNA-seq, single-cell RNA sequencing; TCR, T cell receptor; TGS, third-generation sequencing; UMI,

unique molecular identifier.

https://doi.org/10.1371/journal.pbio.3001017.t002
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United States of America, Cat. V900833). Then, we transferred the embryos into the Tyrode’s

solution (Sigma, Cat. T1788) to digest the zona pellucida. Next, we used 1:3 dilution of TrypLE

(Invitrogen, Carlsbad, California, USA, Cat. 12605010) in Accutase (Invitrogen, Cat.

A1110501) to dissociate embryos into single cells. Incubation time varied from 30 seconds to

30 minutes depending on the embryonic stage.

SCAN-Seq single-cell amplification

After digestion, single cells were placed into 2-μL lysis buffer by mouth pipette. The cell lysis

buffer contained 2U RNase Inhibitor (Takara, Beijing, China, Cat. 2313B), 0.0475% Triton

X-100 (Sigma-Aldrich, St. Louis, Missouri, USA, Cat. X100), 2.5-μM dNTP mixture (Thermo,

Waltham, Massachusetts, USA, Cat. R0193), and 0.75-μM RT primer (AAGCAGTGGTAT

CAACGCAGAGTAC-XXXXXXXXXXXXXXXXXXXXXXXX-T25, with X representing the

nucleotide of cell-specific barcode). We thoroughly vortexed the tubes for 60 seconds and

incubated at 72˚C for 3 minutes to release the linearized RNA molecules and immediately

transferred them on ice. Then, 2.85 μL of RT mixture which comprised of 50U SuperScript II

reverse transcriptase (Invitrogen, Cat. 18064071), 5U RNase Inhibitor, 5X Superscript II first-

strand buffer, 5M betaine (Sigma-Aldrich, Cat. B0300), 25 mM DTT, 30 mM MgCl2 (Sigma-

Aldrich, Cat. 63020), and 1.75-μM TSO primer (AAGCAGTGGTATCAACGCAGAGTA-

CATrGrG+G, rG represents riboguanosines and +G represents the locked nucleic acid

(LNA)-modified guanosine) was added into each tube. The RT reaction was carried out at

25˚C for 5 minutes, 42˚C for 60 minutes, 50˚C for 30 minutes, and 70˚C for 10 minutes. After

that, 7.5-μL PCR mixture that included 2× KAPA HiFi Hot-Start Ready Mix and 300 nM of

ISPCR oligo (AAGCAGTGGTATCAACGCAGAGT) was added into each tube. The amplifi-

cation was performed by the following program: 4 cycles at 98˚C for 20 seconds, 65˚C for 30

seconds, and 72˚C for 5 minutes, followed by 16 cycles at 98˚C for 20 seconds, 67˚C for 15 sec-

onds, and 72˚C for 5 minutes, with a final cycle at 72˚C for 5 minutes. Then, we pooled the

cDNAs of different cell barcodes together and purified twice with 0.6X Ampure XP beads

(Beckman, Brea, California, USA, Cat. A63882). A total of 400 ng to 1 ug cDNA products were

used for further library construction.

SCAN-Seq library preparation and sequencing

We constructed the library for Nanopore sequencing using Ligation Sequencing Kit 1D (ONT,

Beijing, China, Cat. SQK-LSK109) following the instructions. Briefly, the cDNA fragments

were end-repaired and added dA-tailed using the Ultra II End Prep module (NEB, Ipswich,

Massachusetts, USA, Cat. E7546) and then tethered to 1D adapter by using Quick Ligation

Module (NEB, Cat. E6056). After that, each cDNA library was loaded into 1 FLOPRO002 flow

cell and sequenced on PromethION.Beta.

Preprocessing of SCAN-seq Data

We used MinKNOW (v3.6.3) and Guppy (v3.1.5) to generate the fastq data from electric sig-

nals. After that, we applied nanoplexer (https://github.com/hanyue36/nanoplexer/) to demul-

tiplex barcode for each cell in the library. Specifically, the 150 bp on both ends of the reads

were extracted and mapped to cell barcode sequences, obtaining a score for each barcode. The

reads were assigned to difference cells based on the highest barcode mapping score, and those

with score below 31 were discarded. Then, the low-quality reads (qscore <7) and short reads

(length<100 bp) were discarded using nanofilt (v2.5.0) [30]. The left reads were identified,

oriented, and trimmed using Pychopper (v2.3) (https://github.com/nanoporetech/pychopper).

We obtained the full-length reads from the previous steps according to the PCR anchor
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sequence (AAGCAGTGGTATCAACGCAGAGTAC) and the cell barcode on both ends of the

reads. These full-length reads were aligned to mouse genome and transcriptome (Ensembl,

GRCm38.90), respectively, with minimap2 (v2.1) [31].

The genome alignments were performed with the arguments “-ax splice -uf -k14—

secondary = no”, and transcriptome alignments used the arguments “-ax map-ont -N 100 -p

0.99.” We filtered the cells with number of full-length reads less than 100,000, bases mapping

ratio (to the genome) less than 0.85, or number of detected genes fewer than 3,000.

Quantitative analysis of transcripts and genes

Based on the number of full-length reads aligned to the known transcriptome, we quantified

genes and transcripts using Salmon (v0.14.1) [32] with the parameter as “—noErrorModel -l

U.” Then, the expression level was calculated as read counts per 10,000 mapped reads for each

gene (RPG10k) and transcript (RPT10k) [33].

LncRNA detection

The quality passed reads were mapped to the mouse genome, and the mapped reads in the

bam file were marked with identities of exon, intron, and intergenic regions. After removing

redundancy, the number of reads of each type within each single cell was calculated, and the

intergenic reads were mapped to the NONCODEv5 lncRNA database (http://noncode.org/).

Quantification of lncRNA expressions was done as the same with the known transcripts.

Analysis of unannotated transcripts

With the full-length reads mapping to the reference genome in each cell, we performed cluster-

ing analysis with pinfish (v0.1) (https://github.com/nanoporetech/pinfish) and filtered out the

low-depth read clusters (<2 reads for known exon sites and <5 reads for regions nonover-

lapped with known exons). Thus, we obtained mapping intervals with high confidence and

used the collapse_isoforms_by_sam.py (https://github.com/Magdoll/cDNA_Cupcake/wiki/

Cupcake:-supporting-scripts-for-Iso-Seq-after-clustering-step) script in the cDNA_Cupcake

(v8.5) to further remove redundancy. Then, we made comparison between the deduplicated

sequences and the mouse reference annotation (Ensemble GRCm38.90) using SQANT2 (v3.8)

[14]. Sequences inconsistent with the annotations were selected as unannotated candidate

transcripts in each cell, which were further classified as the 5 types in Fig 2A. To search for

unannotated transcripts of high confidence, we used gffcompare (v0.10.6) [34] to combine the

self-annotated unannotated transcripts in all cells. Then, within each single cell, we calculated

the expression level for each novel transcript using Salmon (v0.14.1) with the parameter as “—

noErrorModel -l U,” and we defined those with RPT10k less than 0.1 as 0. To remove the arti-

ficial novel transcripts as much as possible, we further calculated the ratio of each transcript to

the corresponding host gene and removed those accounted for less than 5%. Based on the

above criteria, we only retained those simultaneously identified in at least 3 cells as unanno-

tated transcript in each cell type. For unannotated transcripts in the mouse embryos, gffcom-

pare (v0.10.6) was used 1 more time to merge and re-annotate all transcripts at different

stages. Meanwhile, the expression levels of unannotated transcripts were calculated together

with the known transcripts (Fig 4B).

Processing of NGS data

The NGS data were downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE53386), and quality control was performed using Fastp (v0.19.6) [35].
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Then, we used Salmon (v0.14.1) with the default parameter as “—libType IU” to quantify gene

expressions (RPG10k) with the clean data.

Stage-specific gene expression analysis

The DEGs between each 2 adjacent embryonic stages were calculated using R package DEseq2

[36]. The top 300 DEGs in each group were merged, generating a total list of 2,251 genes.

Then, these genes were clustered according to their expression patterns in all stages using

pheatmap package in R (Fig 3D) and finally divided into 6 groups.

PCA and clustering analysis of cells in mouse preimplantation embryos

The PCA analysis was performed using R packages. Firstly, dimension reduction process was

done with FactoMineR, and then we used the function “fviz_pca_ind()” in factoextra package

to plot the samples on the PCA map. To draw the dendrogram, we calculated the distances

between cells by “maximum” and plot the graph using the function “fviz_dend()” in factoextra

package.

Comparison between results from SCAN-seq and SUPeR-seq

The genes detected in each stage were calculated as those expressed in at least 10% of the cells

at that stage (Fig 3C). We used the Seurat package in R to find markers for samples at each

stage/cell type. Then, we extracted unique markers for each embryonic stage in SCAN-seq and

SUPeR-seq data, respectively. Then, the matrix of overlapped genes between the SCAN-seq

and SUPeR-seq samples of each stage was generated to draw the Sankey diagram (S4B Fig).

Detection of single nucleotide polymorphism (SNP)

We obtained about 155G whole geneome sequencing data of DBA/2C mouse generated by

Nova seq of illumine platform and used fastp (v0.20.1) [35] to filter low-quality reads with

default parameters. Then, the high-quality reads were aligned to mouse genome (Ensembl,

GRCm38.90) with bwa mem (v0.7.17) [37]. After removing the duplicate reads, GATK4 Hap-

lotypeCaller (v4.1.5.0) [38] was applied to call SNPs. The homozygous SNPs with depth�30

were remained as DBA/2C specific SNPs, which was 4,494,566 in total.

Identification of maternal and paternal transcripts

Based on the mouse genome (Ensembl, GRCm38.90) and DBA/2C specific SNPs, we con-

structed the DBA/2C reference genome, REF_DBA_2C. Then, we aligned full-length reads to

each mouse genome (Ensembl, GRCm38.90) and REF_DBA_2C using minimap 2(v.2.10)

[31]. We retained reads covering at least 60% of the shortest transcripts of genes for parental

typing in each single cell. The remaining cDNA reads were determined C57BL/6J or DBA/2C

allelic under 2 conditions:(1) if the read contains only 1 strain-specific SNP, it is assigned to

the corresponding strain; and (2) if the read had more than 1 strain-specific SNPs, it can be

assigned to 1 strain only when the number of SNPs assigned to this strain is at least twice of

that assigned to the other strain.

Supporting information

S1 Fig. Preprocessing of SCAN-seq data and quality control. (A) Schematic of SCAN-seq

data pretreatments (for details, see Methods). (B) The length distribution of cDNA products

before library construction. (C, D) Length distribution of full-length reads. The numerical

data are listed in S2 Data. SCAN-seq, single cell amplification and sequencing of full-length
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RNAs by Nanopore platform.

(TIF)

S2 Fig. Data quality of mESCs using SCAN-seq. (A) Saturation curve of detected genes and

isoforms in mESC. (B) Heatmap of correlation value (Pearson) between each pair of mESCs.

The correlation value of mESCs by SCAN-seq was even better than that by SUPeR-seq and

Tang 2009 method. (C) Coverage of reads along the whole transcripts. (A–C) The numerical

data are listed in S2 Data. mESC, mouse embryonic stem cell; SCAN-seq, single cell amplifica-

tion and sequencing of full-length RNAs by Nanopore platform; SUPeR-seq, single-cell uni-

versal poly(A)-independent RNA sequencing.

(TIF)

S3 Fig. Saturation curve of detected genes and isoforms in cells at different developmental

stages. The numerical data are listed in S2 Data.

(TIF)

S4 Fig. Gene expression analysis in mouse embryonic samples. (A) Number of detected

genes in each individual cell at each developmental stage/type. The numerical data are listed in

S2 Data. (B) Correspondence of stage-specific genes detected using SCAN-seq and SUPeR-

seq. (C) GO analysis of the 6 group of genes in Fig 3D. GO, gene ontology; SCAN-seq, single

cell amplification and sequencing of full-length RNAs by Nanopore platform; SUPeR-seq, sin-

gle-cell universal poly(A)-independent RNA sequencing.

(TIF)

S5 Fig. LncRNAs detected in mouse preimplantation embryos. (A) The reads ratio of

mESCs and all blastomeres at different developmental stages. The center represents the mean,

and the error bars represent the SEM. (B) Heatmap showing the expression levels of LncRNAs

in all cells. (A, B) The numerical data are listed in S2 Data. lncRNA, long noncoding RNA;

mESC, mouse embryonic stem cell; SEM, standard error of the mean.

(TIF)

S6 Fig. Percentage of genes which can be assigned to each allele in each individual cell. The

numerical data are listed in S2 Data.

(TIF)

S1 Table. Developmental stage-specific genes in mouse preimplantation embryos.

(XLSX)

S2 Table. Unannotated transcripts identified in mouse oocytes and preimplantation

embryo samples.

(XLSX)

S3 Table. Allele-specific transcripts identified under each mapping conditions. Each name

of the column contains 3 parts of information: sample id, mapping reference, assigned strain.

(XLSX)

S4 Table. LncRNAs detected in mouse oocytes and preimplantation embryos. lncRNA,

long noncoding RNA.

(XLS)

S5 Table. Summary of strand information of all full-length reads in each individual cell.

(XLSX)
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S1 Data. The individual numerical values in Figs 1B and 1C, 2B, 3A, 3C, 3D, 4B–4D and

5A–5C.

(XLSX)

S2 Data. The individual numerical values in S1C, S1D, S2A–S2C, S3, S4, S5A, S5B and S6

Figs.

(XLSX)
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