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Abstract

It is becoming increasingly clear that brain network organization shapes the course and

expression of neurodegenerative diseases. Parkinson disease (PD) is marked by progres-

sive spread of atrophy from the midbrain to subcortical structures and, eventually, to the

cerebral cortex. Recent discoveries suggest that the neurodegenerative process involves

the misfolding and prion-like propagation of endogenous α-synuclein via axonal projections.

However, the mechanisms that translate local "synucleinopathy" to large-scale network dys-

function and atrophy remain unknown. Here, we use an agent-based epidemic spreading

model to integrate structural connectivity, functional connectivity, and gene expression and

to predict sequential volume loss due to neurodegeneration. The dynamic model replicates

the spatial and temporal patterning of empirical atrophy in PD and implicates the substantia

nigra as the disease epicenter. We reveal a significant role for both connectome topology

and geometry in shaping the distribution of atrophy. The model also demonstrates that

SNCA and GBA transcription influence α-synuclein concentration and local regional vulner-

ability. Functional coactivation further amplifies the course set by connectome architecture

and gene expression. Altogether, these results support the theory that the progression of

PD is a multifactorial process that depends on both cell-to-cell spreading of misfolded pro-

teins and regional vulnerability.

Introduction

Neurodegenerative diseases such as Alzheimer disease (AD), Parkinson disease (PD), and

amyotrophic lateral sclerosis are a major cause of psychosocial burden and mortality but lack

specific therapy. Until recently, the mechanism of progressive neuronal death in these condi-

tions was unknown. However, converging lines of evidence from molecular, animal, and

human postmortem studies point to misfolded neurotoxic proteins that propagate through the

central nervous system via neuronal connections [1–6]. These pathogenic misfolded disease-

specific proteins function as corruptive templates that induce their normal protein counterparts
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to adopt a similar conformational alteration, analogous to the self-replication process in prion

diseases. Examples include amyloid β-protein (Aβ) and tau in AD and α-synuclein in PD. The

misfolded proteins can deposit into insoluble aggregates and progressively spread to intercon-

nected neuronal populations through synaptic connections. The model of a propagating protei-

nopathy remains controversial, however [7], and direct evidence in humans remains mostly

circumstantial [8].

The prion hypothesis suggests that propagation dynamics in neurodegenerative diseases

may be modeled using methods derived from infectious disease epidemiology. Just as infec-

tious diseases spread via social contact networks, misfolded proteins propagate via the brain’s

connectome. There are different approaches for modeling epidemic spread over a network. In

simple diffusion models, disease in any region is modeled as a concentration (e.g., of misfolded

protein), and propagation obeys the law of mass effect with first-order kinetics [9, 10].

Such models are easily solved mathematically but have limited explanatory power. Another

approach is the agent-based model [11], in which the infectious state of each individual agent

and its motility are simulated and in which simple local interactions can translate into complex

global behavior. Agent-based models have the advantage of easily incorporating additional

emergent properties of a system as the epidemic spreads—for example, a brain region may

lose its ability to propagate the disease once it is severely affected. They also easily incorporate

differences among agents (e.g., in susceptibility to infection or mobility) and are useful for test-

ing interventions (e.g., vaccination).

Here, we propose a Susceptible-Infected-Removed (S-I-R) agent-based model on a brain

network to explore the spreading of pathological proteins in neurodegenerative diseases

(Fig 1). The agents are individual proteins. The population is split into “S,” the portion yet to

be infected (normal proteins), “I,” the portion capable of transmitting the infection (misfolded

proteins), and “R,” the portion no longer active in the spreading (metabolized and cleared pro-

teins). We took PD as an example to show how an S-I-R agent-based model can track the

spreading of misfolded α-synuclein, the pathological fibrillar species of endogenous α-synu-

clein suggested to be responsible for PD pathology. Although convincing evidence from ani-

mal [12–18] and neuroimaging studies [19, 20] supports the propagation of misfolded and

neurotoxic α-synuclein, other mechanisms may also drive PD pathology, including cell-auton-

omous factors—dependent on gene expression—that modulate regional neuronal vulnerability

[7]. If the pathology of neurodegenerative diseases is indeed driven by progressive accumula-

tion and propagation of disease-related proteins, such a model should recapitulate the spatial

pattern of regional neurodegeneration in patients, thereby providing converging and indepen-

dent evidence for the pathogenic spread hypothesis. We also investigate whether selective vul-

nerability may influence the spatial patterning of the disease.

Results

Model construction

Structural connectivity. Diffusion-weighted MRI data from 1,027 healthy participants

were used to construct the anatomical network for α-synuclein propagation (source: Human

Connectome Project, 2017 S1200 release [21]). Adjacency matrices were reconstructed using

deterministic streamline tractography [22]. A group consensus structural connectivity matrix

was constructed by selecting the most commonly occurring edges averaged across all subjects,

resulting in a binary density of 35% [23–25].

Functional connectivity. Resting-state functional MRI (fMRI) data from 496 healthy par-

ticipants (source: Human Connectome Project, 2015 S500 release [21]) were used to construct

the functional connectome. Individual functional connectivity matrices were calculated using
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Pearson’s correlation coefficient and then normalized using Fisher’s z transform. A group cor-

relation matrix was then constructed by first averaging the z-score connectivity matrices across

subjects, and then converted back to correlation values using the inverse transformation. Neg-

ative correlation values in the resultant group connectivity matrix were set to 0.

Gene expression. mRNA transcription (measured using in situ hybridization) profiles of

the genes α -synuclein (SNCA) and glucocerebrosidase (GBA) were averaged across samples in

the same brain parcel and across the 6 subjects in the Allen Human Brain Atlas (AHBA) data

set. These gene expression profiles determine the local synthesis and degradation of α-synu-

clein (see Methods).

Atrophy. An atrophy map was derived from T1-weighted MRI scans of 237 PD patients

and 118 age-matched healthy controls (source: Parkinson Progression Marker Initiative

[PPMI] [26]). For each participant (patient or healthy control), the Deformation-Based

Fig 1. Agent-based S-I-R model. (A) Misfolded α -synuclein (red) may diffuse through synaptic connections into adjacent neurons, causing misfolding of normal α
-synuclein (gray). Accumulation of misfolded α-synuclein induces neuronal loss. (B) At the macroscopic level, misfolded α -synuclein propagates via structural

connections, estimated from diffusion-weighted imaging. Simulated neuronal loss (atrophy) is compared against empirical atrophy, estimated from PD patients using

DBM. α-syn, α-synuclein; DBM, Deformation-Based Morphometry; PD, Parkinson disease; S-I-R, Suspectible-Infected-Removed.

https://doi.org/10.1371/journal.pbio.3000495.g001
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Morphometry (DBM) value in each parcel was estimated to quantify the local volume change,

on which an unpaired t test was conducted between the patients and healthy controls. The

resulting t statistics were taken as the measure of regional atrophy [19].

Brain parcellation. The brain MRI template was parcellated according to an anatomical

segmentation-based atlas, featuring 68 bilateral cortical and 15 subcortical regions [27–29]. As

only 2 of the 6 postmortem AHBA brains have right hemispheric data available, and diffusion

tractography is prone to errors in detecting interhemispheric connections, we simulated prop-

agation using only the left hemisphere, yielding 42 regions in total.

Synuclein propagation. We posited that regional expression level of endogenous α-synu-

clein already existing in the brain before disease onset may bias the trajectory of misfolded α-synu-

clein propagation. Therefore, to estimate regional density of endogenous α-synuclein in the

healthy brain, we set up a process that used generic information only to simulate the population

growth of normal α-synuclein agents. Normal agents in region i are synthesized in each unit area

(1 mm3 voxel) per unit time with probability αi (the synthesis rate in region i). Meanwhile, any

agent already existing in region i can (a) exit region i and move into the edges it connects to with

probabilities proportional to the corresponding connection strengths (densities of the fiber tracts)

or (b) remain in region i, where it may be metabolized with probability βi (the clearance rate in

region i). Likewise, the agents in edge (i,j) can (a) exit edge (i,j) to enter region j with probability

1/lij in which lij is the mean length of the fiber tracts between region i and j, reflecting our intuition

that agents in longer edges have lower probability of exiting the edge, or (b) remain in edge (i,j)
with probability 1 − 1/lij. The synthesis rate αi and clearance rate βi in region i are the SNCA and

GBA expression z-scores, respectively, in region i converted to (0,1) using the standard normal

cumulative distribution function. The system has only one stable point that can be found numeri-

cally (see S1 Text and S1 Fig), suggesting that the growth of α-synuclein will deterministically con-

verge to an equilibrium state set by the connectome and the gene expression profiles. The regional

density of normal agents (number of agents per voxel) solved at the stable point was taken as the

initial state of the system on which to simulate the misfolded α-synuclein spreading process.

Synuclein misfolding. We next initiated the pathogenic spread by injecting misfolded α-

synuclein agents into the seed region, here chosen as the substantia nigra. The updating rules

of normal agents (see “Synuclein propagation”) were adapted to account for their susceptibility

to infection from contact with misfolded agents. Apart from the rules defined in the aforemen-

tioned growth process, normal (susceptible) agents in region i that survive degradation can be

infected with probability γi, thereby becoming misfolded (infected) agents. In the absence of

any molecular evidence to the contrary, misfolded agents are updated with the same mobility

(exiting/remaining in regions/edges) and degradation (clearance rate) as normal agents. The

new system seeded with misfolded α-synuclein has 2 fixed points: (1) one represents the sce-

nario in which misfolded α-synuclein dies out, cleared by metabolic mechanisms before being

able to transmit the infection to the entire population; (2) the other represents a major out-

break of misfolded α-synuclein, spreading to other regions via physical connections, causing

further misfolding of endogenous α-synuclein and widespread propagation (see S1 Text and

S1 Fig). In this model, neither the injection number of misfolded α-synuclein agents nor the

choice of seed region will affect the magnitude of misfolded α-synuclein accumulation at the

fixed point; rather, they determine whether the spreading process converges to the epidemic

scenario or dies out quickly. See S1 Table for the full list of parameters and their explanations.

Simulated neuronal loss replicates the spatial pattern of atrophy

We first investigated whether misfolded α-synuclein spreading on the healthy connectome

could replicate the spatial patterning of atrophy observed in PD patients. We simulated the
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propagation of misfolded agents and the accrual of atrophy due to the toxic accumulation of

the aggregates. Two factors that may induce neuronal loss were accounted for: (1) the accumu-

lation of misfolded α-synuclein, which will cause region-specific cell or synaptic loss directly,

and (2) atrophy due to deafferentation secondary to cell death or synaptic loss in connected

regions. At each time point, we compared the relative magnitude of simulated atrophy with

the spatial pattern of empirical atrophy using Spearman’s rank correlation coefficient, yielding

the model fit as a function of time t.
As the misfolded agents propagate and accumulate in the system, the model fit increases up

to a maximum value (r = 0.63, p = 1.71 × 10−5, Fig 2A) after which it drops slightly and stabi-

lizes (see S1 Text). It is possible that the slight decrease following the peak occurs because sim-

ulated atrophy becomes increasingly widespread as the propagation of misfolded agents

progresses, while the empirical atrophy was derived from de novo PD patients at their first

visit in PPMI. Fig 2B shows the linear relationship between simulated and empirical atrophy

across all nodes at peak fit, while Fig 2C shows the spatial correspondence between simulated

and empirical atrophy.

Interestingly, the model fit finally stabilizes with increasing t as the regional accumulation

of misfolded α-synuclein approximates the stable point (see S2 Fig for model fit up to 105 time

steps), a finding that mirrors recent discoveries in animal models in which misfolded α-synu-

clein eventually ceases to increase in later stages [30]. We also note that misfolded α-synuclein

arrival time at each brain region resembles the well-established Braak stages of PD [31, 32] (S3

Fig). For validation purposes, we estimated the DBM values using an alternative pipeline

(fsl_anat) [33], reobtained the t statistics as the atrophy measure, and found that the model fit

based on the new measure yielded a comparable temporal pattern (S4 Fig).

We next investigated whether the model fit was consistent across variations in structural

network connection densities. We selected varying subsets of the most commonly occurring

edges in the individual structural connectivity matrices, varying the binary density of the

group structural network matrix from 25% to 45% (of all possible edges). We then simulated

Fig 2. Model fit. (A) Correlations between simulated atrophy and empirical atrophy derived from PD patient DBM maps up to t = 104. Correlations are shown as a

function of simulation time. After reaching the peak value (r = 0.63, p = 1.71 × 10−5), the model fit slightly drops and finally stabilizes. See S2 Fig for correlations up to

t = 105. (B) Model fit at the peak of Spearman’s correlation taken from panel A. Using Pearson’s correlation coefficients yielded comparable results (r = 0.56,

p = 1.52 × 10−4. Values shown in the axes are normalized. The outlier at the bottom right is the nucleus accumbens (for a possible explanation see Discussion). (C)

Simulated atrophy and empirical atrophy plotted on the MNI152 standard template. The slices were chosen at x = −22, y = −7, z = 0 (MNI coordinates). The underlying

data can be found at https://github.com/yingqiuz/SIR_simulator/blob/master/results/Fig2.mat. DBM, Deformation-Based Morphometry; MNI, Montreal Neurological

Institute; PD, Parkinson disease.

https://doi.org/10.1371/journal.pbio.3000495.g002
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the spreading processes on each network, derived the atrophy estimate at each region, and

compared it to the empirical atrophy pattern using Spearman’s rank correlation coefficient.

All the simulations yielded comparable model fits with the peak correlation values consistently

around 0.6 (Fig 3, blue curve), suggesting that the S-I-R agent-based model is robust to varia-

tions in network density. Notably, we also assessed the Spearman’s correlation between the

regional density of misfolded α-synuclein and the empirical atrophy pattern. Across the same

set of networks, simulated atrophy consistently provides better fits with the empirical atrophy

than the regional density of misfolded α-synuclein (Fig 3, red curve), indicating that account-

ing for tissue loss due to both α-synuclein and deafferentation yields a better model of regional

atrophy accrual than the mere accumulation of misfolded α-synuclein. Note that, because

Spearman’s correlation is relatively unstable when sample size is limited, it may peak at early-

spreading time frames while, at the time, the simulated atrophy bears no real resemblance to

the real atrophy pattern. At the same time, atrophy is a late stage in symptom progression of

PD. We therefore discarded the early-spreading time frames, defined as the time steps at

which change of misfolded α-synuclein density in any of the regions exceeds 1%.

Fig 3. The full dynamic model outperforms static network measures across multiple network densities. The full spread model has more

predictive power than static topological metrics, including node degree (yellow), node strength (purple), and eigenvector centrality (green).

Moreover, simulated atrophy (blue) from the full agent-based model yielded higher correlation with empirical atrophy than the modeled density

of misfolded α-synuclein (red, peak correlation along t at each density), suggesting that loss of neuronal tissue resulting from misfolded α
-synuclein accumulation plus deafferentation is a better measure of atrophy in PD than the mere accumulation of misfolded α-synuclein. Model

fit was assessed using Spearman’s correlation coefficient. The overall pattern of results was consistent across multiple network densities. Using

Pearson’s correlation coefficient yielded similar results (S5 Fig). For the same analysis using two finer-grained anatomical parcellations, see S6 Fig.

The underlying data can be found at https://github.com/yingqiuz/SIR_simulator/blob/master/results/Fig3.mat. α-syn, α-synuclein; PD,

Parkinson disease.

https://doi.org/10.1371/journal.pbio.3000495.g003
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Finally, we investigated whether the observed atrophy patterns could be directly reproduced

from simpler topological measures, without invoking agent-based dynamics. We first tested

whether simple regional variation in GBA or SNCA expression is associated with regional varia-

tion in atrophy. Neither the GBA nor SNCA expression profile bears a strong association with the

spatial map of empirical atrophy (GBA: Spearman’s r = −0.2402, p = 0.1301; Pearson’s r = −0.3109,

p = 0.0478; SNCA: Spearman’s r = −0.2385, p = 0.1330; Pearson’s r = −0.2824, p = 0.0736). Next,

we tested whether simple network metrics provide a comparable fit to the observed atrophy val-

ues. We correlated the atrophy map with node-level network metrics, including node degree,

node strength, and eigenvector centrality, at each network density ranging from 25% to 45%.

Hubs—or nodes with greater degree connectivity or centrality—tend to be more atrophied (Fig 3,

green, purple and yellow curves), echoing the findings that hubs are often implicated in a host of

brain disorders [34]. However, none of the metrics performed as well as the full agent-based

model in matching the spatial pattern of empirical atrophy. Altogether, these results suggest that

the protein dynamics embodied by the S-I-R agent-based model provide explanatory power

above and beyond network topology and gene expression.

Identifying the disease epicenter

We next investigated whether the model yields a disease epicenter consistent with the previous

literature. In the aforementioned process of normal α-synuclein growth, we solved the regional

density of normal agents at the stable point as a baseline estimation of endogenous α-synuclein

level in healthy brains. Recent findings from animal studies have suggested that α-synuclein

expression level correlates with neuronal vulnerability in PD [30, 35]; likewise, in our model,

higher regional abundance of normal α-synuclein agents should indicate greater likelihood of

exposure to and growth of infectious agents, higher chance of disease transmission, and, con-

sequently, greater vulnerability to the accumulation of misfolded α-synuclein.

We find that, of the 42 left hemisphere regions, substantia nigra has the highest normal α-

synuclein level (Fig 4, blue line). The elevated density of endogenous α-synuclein renders sub-

stantia nigra susceptible to the encroaching of infectious misfolded α-synuclein in the model,

increasing both its vulnerability to misfolded protein and its chance of acting as a disease epi-

center to further the propagation of the epidemic. This corresponds with observations of Lewy

body inclusions and dopaminergic neuron loss in substantia nigra of PD patients as well as its

role in most of the presenting symptoms of the disease [32, 36, 37]. Moreover, other basal gan-

glia regions have relatively high levels of normal α-synuclein at the equilibrium compared to

cortical regions (caudate ranks among the highest 42.9% of all the regions; putamen, 31.0%;

pallidum, 28.6%), consistent with their role in propagating the disease process to the cerebral

cortex [20]. These findings suggest that our model can indeed represent regional variations in

selective vulnerability to the pathogenic attacks underlying PD progression by combining

information from the healthy connectome and SNCA and GBA expression.

An alternative definition of disease epicenter is the seed node most likely to propagate an

outbreak. As explained in the previous section, the agent-based model has 2 fixed points repre-

senting disease extinction or major outbreak. Although in our model the choice of seed region

and injection number of misfolded α-synuclein agents does not affect the final magnitude of

misfolded α-synuclein accumulation, it can shift the properties of the two fixed points, deter-

mining which one the system will converge to. We posited that the probability of triggering an

outbreak in a brain region indicates its likelihood of acting as an epicenter. Therefore, we

quantified the spread threshold for each region, i.e., the minimally required injection amount

of misfolded α-synuclein to initiate an outbreak. In traditional epidemic disease models that

do not consider spatial structure or synthesis of new susceptible hosts, basic reproduction
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number R0 (the average number of susceptible agents that will be affected by an infectious

agent before it is removed) marks the transition between the regimes in which disease spreads

or extinguishes [38]. However, in our agent-based higher-order system in which new agents

are constantly synthesized and move across regions, the transition threshold can only be deter-

mined numerically by scanning across different injected amounts of misfolded α-synuclein to

find the point at which the disease no longer extinguishes. More specifically, starting with an

injection amount at which the disease does not spread (here we chose 1 × 10−13), we incremen-

ted the value by step sizes of 1 × 10−13 until the point at which the disease no longer extin-

guishes, and took this as the spread threshold. This procedure was repeated for every region,

yielding 42 regional spread thresholds (Fig 4, red curve).

Substantia nigra has the lowest spread threshold (Fig 4, red curve), suggesting that it is also

the most plausible seed region to initiate an epidemic spread. This is consistent with the notion

that substantia nigra acts as the epicenter for propagation to the supratentorial central nervous

system [19] and is generally one of the earliest regions to display neuronal loss in clinically

overt PD. Interestingly, other basal ganglia regions also exhibited relatively low spread

Fig 4. Identifying the disease epicenter. Densities of normal α-synuclein (blue) at equilibrium (represented by the stable point) and spread threshold (red). Spread

threshold was inverted by −log10, so higher values indicate lower thresholds. Spread thresholds reflect the susceptibility of a region to trigger an epidemic. Basal ganglia

regions are rich in endogenous α-synuclein (caudate ranks among the top 42.9% of regions; putamen, 31.0%; pallidum, 28.6%) and have relatively low spread threshold

(caudate ranks among the lowest 35.7%; putamen, 38.1%; pallidum, 16.7%). Substantia nigra has the highest normal α-synuclein level and lowest spread threshold, making

it the most probable epicenter of disease outbreak. The underlying data can be found at https://github.com/yingqiuz/SIR_simulator/blob/master/results/Fig4.mat. α-syn,

α-synuclein.

https://doi.org/10.1371/journal.pbio.3000495.g004
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thresholds (caudate ranks among the lowest 35.7% of all the regions; putamen, 38.1%; palli-

dum, 16.7%). Note, however, that our model does not include regions caudal to the midbrain,

which are likely affected earlier than the substantia nigra (see Discussion).

Connectome architecture shapes disease spread

We next asked whether model fit depends on the connectome’s topology and/or spatial

embedding (geometry). To address this question, we implemented 2 types of null models, in

which (a) the topology of the connectome was randomized (rewired null) or (b) the spatial

positions of the regions were shuffled (spatial null) (Fig 5).

Rewired null networks were generated by swapping pairs of edges while preserving the orig-

inal degree sequence and density using the Maslov-Sneppen algorithm [39] implemented in

the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/) [40]. Note that it is pos-

sible that the edges after swapping are not defined in the original connectivity matrices

(because no actual fiber tracts exist between the two regions). To interpolate fiber length in the

rewired null network, for each region pair (i,j), we calculated the euclidean distances between

every possible pair of voxels respectively belonging to region i and j and took the median as

the distance between region i and j. Next, we fitted a simple linear regression model on the

originally existing edges (i.e., y = w0 + w1x + ε, where y is the fiber length and x is the distance

(as defined in the section “Synuclein propagation”) and assigned the predicted fiber lengths to

the new connections created during the rewiring process. Spatial null networks were generated

by swapping the physical positions of the nodes while keeping their original connection pro-

files [41, 42]. This null model retains the degree sequence and connection profiles of every

region but randomizes spatial proximity. Networks at binary density 25%, 30%, 35%, and 40%

were selected as representatives to construct the 2 types of null networks, with 10,000 realiza-

tions each. We then implemented the dynamic model on each network and compared model

fits for the empirical and null networks.

Fig 5. Effects of network topology and geometry. (A) Systematic disruption of connectome topology (rewired null). (B) Systematic disruption of spatial embedding

(spatial null). Both procedures significantly degrade model fit as measured by Spearman’s correlation. Red = real structural network (empirical network); gray = null

networks. Rewired null: p25% < 0.001, p30% = 0.0035, p35% = 0.0013, p40% = 0.0035; spatial null: p25% < 0.001, p30% < 0.001, p35% < 0.001, p40% < 0.0013). The underlying

data can be found at https://github.com/yingqiuz/SIR_simulator/blob/master/results/Fig5.mat.

https://doi.org/10.1371/journal.pbio.3000495.g005
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The agent-based model simulated on top of the empirical structural network yielded signifi-

cantly greater fit to empirical atrophy than models simulated on either type of null network. This

result was consistent across network densities (rewired null, Fig 5A: p25% < 0.001, p30% = 0.0035,

p35% = 0.0013, p40% = 0.0035; spatial null, Fig 5B: p25%< 0.001, p30% < 0.001, p35% < 0.001,

p40%< 0.0013) and suggests that the high correspondence between simulated and empirical atro-

phy in PD is jointly driven by connectome topology and geometry.

Gene expression shapes disease spread

We next sought to directly assess the influence of local gene expression on spreading patterns

of neurodegeneration. Based on molecular evidence, the model uses regional expression of

GBA and SNCA as determinants of α-synuclein clearance and synthesis rate. (Note, however,

that any other gene known to influence α-synuclein synthesis or dynamics could also be

included in the model.) Regional GBA and SNCA expressions were shuffled 10,000 times,

respectively, by reassigning the expression scores in each parcel (Fig 6A and 6B, respectively).

We then implemented the dynamic models with randomized expression levels and compared

differences in model fit when using the empirical gene expression levels (Fig 6, red curve) and

permuted gene expression levels (Fig 6, gray bar).

Shuffling the transcription profile of either gene significantly degraded model fit (Fig 6A,

GBA: p25% = 0.0031, p30% < 0.001, p35% < 0.001, p40% < 0.0024; Fig 6B, SNCA: p25% = 0.0102,

p 30% = 0.0201, p 35% = 0.0084, p 40% = 0.0334), suggesting a significant role of GBA and SNCA
expression in driving the spatial patterning of atrophy. In other words, the regional expression

of the genes, as implemented in the dynamic model, serves to modulate the vulnerability of

individual nodes above and beyond their topological attributes by influencing α-synuclein syn-

thesis, seeding, and clearance.

Fig 6. Assessing the contribution of GBA and SNCA gene expression. To assess the influence of gene expression on atrophy, model fit using real expression values (red)

is compared to null models in which node-wise expression profiles of GBA and SNCA (reflecting, respectively, α-synuclein clearance and synthesis) were shuffled. Both

manipulations significantly reduce model fit regardless of network density. (A) Model fit of randomized GBA expression (gray bar) is significantly worse than that of the

real GBA expression (red line).p25% = 0.0031, p30% < 0.001, p35% < 0.001, p40% < 0.0024. (B) Model fit of randomized SNCA expression (gray) is significantly worse than

that of the real SNCA expression (red). p25% = 0.0102, p 30% = 0.0201, p 35% = 0.0084, p 40% = 0.0334). Notably, uniform transcription profiles, in which all nodes have

identical expression values (blue line), yield above-chance model fit but perform poorly compared to the model with real expression values (GBA uniform correlations:

r25% = 0.4479, r30% = 0.3869, r35% = 0.3672, r40% = 0.3481; SNCA uniform correlations: r25% = 0.5653, r30% = 0.5780, r35% = 0.5767, r40% = 0.5794). The underlying data can

be found at https://github.com/yingqiuz/SIR_simulator/blob/master/results/Fig6.mat. GBA, glucocerebrosidase gene; SNCA, α-synuclein gene.

https://doi.org/10.1371/journal.pbio.3000495.g006
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An alternative explanation for these results is that simply introducing regional heterogene-

ity in gene expression levels improves model fit, for example, because of differences in general

transcription levels between cortex and subcortex. To address this possibility, we further

assessed model fit in the cases in which GBA and SNCA expression is made uniform across all

brain regions. Instead of using empirical gene expression, we set uniform synthesis and clear-

ance rates across all regions using the mean expression score, converted to a scalar value

between [0,1] using the standard normal cumulative distribution function. We then computed

the model fit (peak Spearman’s correlation value) for this “uniform” model. The models using

uniform transcription profiles underperformed compared to those using empirical transcrip-

tion profiles (Fig 6, red = empirical gene expression; blue = uniform gene expression); in other

words, the incorporation of true local differences in gene expression improves model fit, sug-

gesting that the atrophy pattern in PD is not solely explained by pathogenic spreading per se

but also depends on local vulnerability, here dependent on α-synuclein concentration. Models

implemented using uniform transcription profiles of either gene exhibited above-chance

model fit compared to shuffled transcription profiles (GBA uniform correlations: r25% =

0.4479, r30% = 0.3869, r35% = 0.3672, r40% = 0.3481; SNCA uniform correlations: r25% = 0.5653,

r30% = 0.5780, r35% = 0.5767, r40% = 0.5794, blue curve in Fig 6). Altogether, these results dem-

onstrate that regional expression of GBA and SNCA shapes the spatial patterning of atrophy in

addition to connectome topology and spatial embedding.

Structural and functional connectivity interact to drive disease spread

Finally, we tested whether neuronal activity or pre- and postsynaptic coactivation may facili-

tate α-synuclein propagation. Past neuroimaging studies have shown that cortical thinning in

PD is predicted in part by functional connectivity to affected subcortical regions and that

regions that exhibit stronger functional connectivity with the substantia nigra tend to exhibit

greater atrophy [19, 20]. Secretion of α-synuclein by neurons has been shown to be activity

dependent [43]. Spread of α-synuclein through multiple anatomical pathways may be biased

by synchronous activity between the pre- and postsynaptic cells, such that the agents are more

likely to move toward regions with higher functional connectivity to a seed region.

To address this question, we integrated resting-state fMRI functional connectivity into the

model. We introduce a term ek�fcði;jÞ to rescale the probability of moving from region i to region

j previously defined by the connection strength of edge (i,j) while keeping the sum of the prob-

abilities equal to 1 to preserve the multinomial distribution (Fig 7A). As k is increased, the

influence of functional connectivity is greater: stronger coactivation patterns play a more influ-

ential role in modulating the motion of the agents on structural connections. For structural

edges with relatively small corresponding functional connectivity values, larger k may decrease

those edges’ contributions to favor propagation through edges with greater functional connec-

tivity. All negative-valued and nonsignificant functional connections were set to 0.

We varied k from 0 (no influence of functional connectivity) to 5 and derived the corre-

sponding peak values of model fit using the same 4 structural connectome densities as before

(Fig 7). Model fit was improved by progressively increasing the importance of functional con-

nectivity but only up to a point (k25% = 1, k30% = 2.5, k35% = 2.5, k40% = 2.5). Beyond this point,

the influence of functional connectivity dominates the agents’ mobility pattern resulting in

diminished model fit. The results were consistent across network densities. These results pro-

vide evidence for the notion that, while α-synuclein propagation and resultant brain atrophy

patterns occur via anatomical connections, they may also be biased by neuronal activity.

An alternative explanation is that inclusion of functional connectivity simply leads to over-

fitting the model. To test this possibility, we investigated whether the same improvement in
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model fit could be observed if α-synuclein spread is biased by randomized functional connec-

tivity patterns. We generated “null” functional connectivity matrices by randomly reassigning

the parcellated resting-state fMRI time series into the 42 left hemisphere regions. The results

are shown in S7 Fig. We note 2 important results. First, atrophy patterns based on real func-

tional connectivity consistently yield significantly higher model fit than atrophy patterns based

on null functional connectivity. Second, model fits based on null functional connectivity do

not have the same peaked shape as observed when using real functional connectivity. This fur-

ther supports the conclusion that atrophy patterns observed in PD patients depend on both

the structural and functional architecture of the brain.

Discussion

Modeling the spatiotemporal dynamics of neurodegeneration

We developed a networked S-I-R agent-based model of neurodegenerative disease consisting of

normal and misfolded proteins. Taking PD as an example, we integrated multimodal neuroim-

aging and gene expression data to simulate the propagation of misfolded α-synuclein on the

healthy connectome. The S-I-R agent-based model incorporates pathogenic spread (dominated

Fig 7. Incorporating functional connectivity improves model fit. (A) An illustration of incorporating the influence of functional connectivity. Region 1 is more densely

connected with region 2 than with region 3 (i.e., structural connectivity w12 > w13) but coactivates more with region 3 than with region 2 (i.e., functional connectivity fc 12

> fc13). If functional connectivity is not incorporated, the probability of spreading toward region 2 or 3 for agents in region 1 is proportional to the structural connectivity

w12 or w13 (upper panel); after functional connectivity is incorporated, these probabilities are rescaled to be proportional to exp (k × fc12)w12 and exp (k × fc13)w13,

respectively (lower panel), in which k is a factor to control the importance of functional connectivity. (B) Resting-state fMRI functional connectivity was incorporated in

the model by tuning the probability of α-synuclein propagation along structural connections. As the influence of functional connectivity is increased, α-synuclein

spreading is biased towards structural connections that exhibit high functional connectivity. Model fit is shown for a range of structural connection densities. A balanced

effect of functional connectivity and structural connectivity improves model performance, while excessive influence of functional connectivity degrades model fit. The

same beneficial effect is not observed when randomized “null” functional connectivity patterns are used (S7 Fig). The underlying data can be found at https://github.com/

yingqiuz/SIR_simulator/blob/master/results/Fig7.mat. fMRI, functional MRI.

https://doi.org/10.1371/journal.pbio.3000495.g007
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by the connectome) and selective vulnerability (modulated here by α-synuclein concentration

derived from gene expression) under one computational framework. The dynamic model repli-

cated the spatial pattern of measured brain atrophy in PD patients and had greater predictive

power than any of the constituent features (i.e., network metrics or gene expression) on their

own. Our results demonstrate that connectome topology and geometry, local gene expression,

and functional coactivation jointly shape disease progression, as systematic disruption of each

of these elements significantly degraded model performance. This model yields insights into the

mechanism of PD, providing support for the propagating proteinopathy theory, and can be

readily adapted to other neurodegenerative diseases.

The S-I-R model allowed us to map the interaction between network architecture and

regional susceptibility and transmissibility. Solving our S-I-R agent-based model numerically

yielded 2 fixed (or stable) points of the process after seeding of the infection: rapid extinction

or epidemic spread (S1 Text and S1 Fig). If the system is attracted to extinction, misfolded pro-

teins will eventually be cleared. If the system is attracted to the second fixed point, this repre-

sents an outbreak. However, in our model, misfolded proteins do not accumulate boundlessly

but achieve a stable final concentration at which they coexist with normal proteins. These

results are consistent with recent experimental evidence in rodents in which injected mis-

folded α-synuclein grew but eventually ceased to propagate [30], suggesting the existence of an

equilibrium. These different outcomes (extinction versus outbreak) might perhaps represent

normal aging versus progressive neurodegeneration, or mild versus malignant PD [44].

Agent-based models built on networks allow for the determination of the origin of a disease

outbreak and arrival times at different locations [45]. Combining network structure with pro-

tein spreading dynamics allowed for the identification of the substantia nigra as the likeliest

disease epicenter. Mirroring the reproduction number R0 [38], which marks the transition

between disease extinction and outbreak in conventional epidemic models, we estimated

spread threshold for our S-I-R agent-based model. This represents the minimum number of

infectious agents that need to be introduced in any area to cause an outbreak. In our model,

the substantia nigra has the lowest spread threshold, identifying it as a likely disease epicenter.

This is not to say that the substantia nigra is the origin of the disease, or the first affected site:

the concept of epicenter as used here is similar to “best propagator” [10] and identifies the

region most likely to trigger an outbreak rather than the first affected site. According to the

Braak hypothesis, the dorsal motor nucleus of the vagus is the initial central nervous system

target in PD [31, 32]; however, we could not include structures in the pons and medulla due to

difficulty in imaging either atrophy or white matter tracts in the brainstem. Nonetheless, our

model is consistent with the substantia nigra acting as a propagator of disease from brainstem

to supratentorial areas [19]. We suggest that this may result from its high concentrations of α-

synuclein and widespread connections. We also used the agent-based model to estimate α-

synuclein arrival time at each brain region after seeding the substantia nigra (S3 Fig).

We took advantage of several useful features of agent-based models to provide an under-

standing of factors involved in disease propagation. Others have applied more traditional dif-

fusion models to AD [9, 10] and to neurodegeneration more generally [46]; however the

agent-based model used here affords us the possibility of testing different mechanisms of dis-

ease, likelihood of outbreak, effect of emergent properties (such as the effect of regional neuro-

nal death on subsequent disease propagation), and eventually, therapeutic interventions. Note

that we divided the population into compartments in which the agents share the same charac-

teristics, making the spreading dynamics more tractable and computationally efficient. This

simplified model can easily be tailored to accommodate a full agent-based setting by introduc-

ing more fine-grained rules. For example, the transmission rate gi ¼ 1 � eM lnð1� g0i Þ can be
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extrapolated as gi ¼ 1 � e
XM

k¼1
lnð1 � g0

i:kÞ to model individually differentiated transmission

rates g0
i;k in region i.

Interplay of local vulnerability and network propagation

The small-world properties of brain networks that favor information flow may also potentiate

disease spread [47]. These properties include short path lengths [48] and community structure

[49, 50], the second of which may potentiate global disease spread by enhancing local, intra-

community infection [51]. The presence of high degree nodes (hubs) that are highly intercon-

nected also favors disease propagation [52]. Hubs are expected to have faster arrival times, and

greater accumulation of infected agents, making them especially vulnerable to attack. Indeed,

hubs manifest greater structural abnormalities in a host of neurodegenerative diseases [34],

including PD [19]. Here, we show that disruptions of brain network architecture reduce

model fit, providing evidence that the emergent dynamics of synucleinopathy depend on net-

work topology and geometry.

However, while we did find that network metrics predict brain atrophy, the full S-I-R

agent-based model provided a better fit to the empirical data than these metrics on their own

(Fig 3). Spatial proximity among regions and local differences in synthesis and clearance of α-

synuclein both impose constraints on the spreading process. As a result, atrophy patterns are

shaped by—but ultimately transcend—the underlying connection patterns. The present model

correctly predicts that the regions most vulnerable to atrophy are not simply those that partici-

pate in the greatest number of connections or those that are a few steps away from other

infected regions. More specifically, the agent-based model allowed us to test 2 competing theo-

ries of PD pathogenesis: prion-like protein propagation versus regional vulnerability [1, 7].

Here, we chose to model regional vulnerability by incorporating estimated local α-synuclein

concentration, known to facilitate seeding [53] and increase neuronal vulnerability in animal

models [35]. We used regional expression of GBA and SNCA as estimates of α-synuclein clear-

ance and synthesis rates to derive the concentration of endogenous α-synuclein. We showed

that incorporating this information into the model improved the correlation with empirical

atrophy in PD patients; moreover, spatial permutation of gene expression degraded the fit.

Thus, our findings support the theory that the dynamics of disease progression arise from an

interplay between regional vulnerability and network-wide propagation.

Our results provide converging evidence for the involvement of GBA and SNCA in PD

pathology previously indicated in animal and cellular studies [54]. Mutations in GBA are the

most common genetic risk factor for PD [55, 56]; mutations and multiplications of SNCA have

been implicated in driving the severity of the pathology [57–59]. It is worth noting that simple

spatial correlation measures alone failed to link GBA or SNCA regional expression to empirical

atrophy; the gene expression effects only emerged from the full agent-based propagating

model, which therefore provides a new way to identify gene–disease associations in the central

nervous system. New genes can easily be incorporated for the PD model, or to adapt it to other

neurodegenerative diseases.

It is also known that α-synuclein is secreted in an activity-dependent manner [43]. We there-

fore tested the influence of resting-state fMRI-derived measures of functional connectivity on

protein mobility. As a measure of synchronous neuronal activity in pre- and postsynaptic

regions, functional connectivity will bias the proteins into regions showing greater coactivation.

Once again, we found that this addition significantly improved the model fit. Thus, functional

coactivation also shapes the pattern of disease propagation, explaining why atrophy patterns in

neurodegenerative diseases tend to resemble intrinsic functional networks [19, 60].
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Methodological considerations

Although the S-I-R agent-based model provided a good fit to observed neurodegeneration,

there are several caveats and limitations in the present study. First, regional variations in vul-

nerability apart from the effects of α-synuclein concentration were not accounted for. It is pos-

sible that regions respond differently to the toxicity of α-synuclein aggregates, and this can

easily be incorporated into the model by introducing new factors, such as genes that control

resilience to energetic stress, for example [61]. Moreover, tissue loss was homogeneously mod-

elled as a simple linear combination of local damage (from α-synuclein accumulation) and

deafferentation, which may not reflect reality. Also, cell death may slow the propagation of

misfolded α-synuclein and accrual of atrophy, especially in more affected regions. Although

we did not take this effect into account here, it can easily be incorporated into the model using

agent-based rules.

Note also that our model does not attempt to distinguish between neuronal, axonal, den-

dritic, or other tissue loss as causes of atrophy. Our only hypothesis is that tissue damage from

α-synuclein accumulation is reflected in MRI deformation. However, atrophy measured with

DBM does not necessarily reflect death of neurons. Indeed, postmortem studies in PD demon-

strate a dissociation between α-synuclein pathology and neuronal loss, which is prominent in

some areas (e.g., substantia nigra) but virtually absent in others (cortex, amygdala) [72]. This is

similar to normal senescence, in which there is widespread tissue atrophy in cortex despite

preservation of neuronal numbers [73]. Thus, it is possible that tissue atrophy in PD in some

regions may reflect loss of dendritic arbors and spines without loss of neurons.

Moreover, the white matter network may not represent the exact physical routes of spread.

It is possible that α-synuclein spread occurs only between specific cell types—or in one direc-

tion—while, in our model, the agents spread bidirectionally along the fiber tracts. The outlier

region (accumbens, Fig 2B), which impedes model fit, serves as an example. Nucleus accum-

bens is one of the least atrophied regions in the data set used here, whereas it exhibits high

atrophy in the model. One possible reason for this disagreement is that we did not include the

different subsections of the substantia nigra and their projections in the structural connectome

used for the model. While we seeded the entire substantia nigra, it is known that the medial

portion, which projects to the accumbens [62], is less affected in PD than the lateral substantia

nigra, which projects to dorsal striatum [31, 32].

Also, the structural and functional connectomes used here were derived from healthy indi-

viduals, as is typically done [9, 10, 19, 60]. However, disease-related alterations to cell integrity

should eventually affect network function. Connectomics data in PD are starting to become

available, and it will be interesting to incorporate these time-varying effects into our agent-

based model.

Finally, we focused on only 2 genes in modelling synucleinopathy, while many other genes

such as LRKK2 and MAPT and proteins such as dopamine or tau may also influence or inter-

act with synucleinopathy propagation. Using a small subset of genes avoids high model com-

plexity and allowed modelling the proteinopathy in a parameter-free setting. However, the

parameter-free setting introduces another caveat: the model converts gene expression scores

and fiber density into probabilities without scaling their relative magnitude, while the actual

rate of synthesis, clearance, and protein spreading may not be at the same scale. (However, see

S8 Fig for evidence that the model is robust to these parameter choices.)

One of the future directions is to customize the model with individual anatomical, func-

tional, genetic, or clinical data to increase its ability to predict disease trajectory and to identify

factors that promote resistance to disease spread. Moreover, this model can hopefully help test

new preventive procedures. Introducing medications may change the parameters of the
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dynamical system; for example, increasing GBA activity to elevate the clearance rate would

make the stable point for extinction more robust to small perturbations.

Materials and methods

Human brain parcellation

We used a brain parcellation generated by atlas-based segmentation [28]. Sixty-eight cortical

parcels were defined using curvature-based information [27], which is available at FreeSurfer

(http://surfer.nmr.mgh.harvard.edu). Subcortical parcels, including thalamus, caudate, puta-

men, pallidum, accumbens, amygdala, and hippocamppus, were extracted using the same soft-

ware from a whole brain segmentation [63]. Finally, substantia nigra was added to the atlas

using the location provided in the ATAG atlas (https://www.nitrc.org/projects/atag) [29].

Only the left hemisphere was used in this model, resulting in a total of 42 regions for the subse-

quent analysis. We used only the left hemisphere to simulate the propagation model because it

is difficult to accurately determine interhemispheric connections using tractography [64].

Moreover, regional gene expression was mostly available only for the left hemisphere (see

“Regional gene expression”).

PPMI patient data and image processing

PPMI is an open-access comprehensive observational clinical study [26], longitudinally collect-

ing multimodal imaging data, biological samples, and clinical and behavioral assessments in a

cohort of PD patients; 3T high-resolution T1-weighted MRI scans of 355 subjects (237 PD

patients and 118 age-matched healthy controls) were obtained from the initial visit of PPMI to

assess group-level regional atrophy using DBM [19], a method to detect local changes in tissue

density. DBM was performed using the minc-toolkit available at https://github.com/BIC-MNI/

minc-toolkit-v2.

After denoising [65], inhomogeneity correction [66], and linear intensity scaling, individual

MRI images are registered nonlinearly to the MNI152-2009c template [67], yielding the corre-

sponding transformation fields to be inverted into deformation maps in MNI space. Instead of

directly using the displacement value U(x) = (u1(x), u2(x), u3(x)) of voxel x at coordinates (x1,

x2, x3), we calculate the derivative of the displacement in each direction and take the determi-

nant of the jacobian matrix J minus 1, namely, |J| − 1, as the value of deformation at x, which

reflects local volume change.

J ¼
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These values constitute a three-dimensional deformation map for each subject, on which an

unpaired t test is conducted to derive the statistical difference (t score) between the PD patients

and the healthy controls at each voxel as a measure of local atrophy. Considering that in the

denoising stage a nonlocal smoothing filter was applied to the T1 images, we decided to

exclude substantia nigra in the estimation of atrophy because it is too small in size compared

to the smoothing parameter and the deformation map may therefore not reflect the true level

of tissue loss in such a small structure. Therefore, although substangia nigra is included in the

spreading model (and plays a vital role), the model fit was assessed using only the 41 much
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larger cortical and subcortical regions (see [19] for more). The deformation maps can be

found at https://neurovault.org/collections/860/.

Regional gene expression

Regional gene expression levels were derived from the 6 postmortem brains included in the

AHBA [68], a multimodal atlas of the anatomy and microarray-based gene expression of the

human brain. Individuals who donated their brains had no history of psychiatric or neurologi-

cal disorders. Because 4 of the brains have data from the left hemisphere only, we only modeled

the left hemisphere in our study, selecting a total of 3,021 samples of GBA (probe ID: 1025373,

1025374) and SNCA (probe ID: 1020182, 1010655) in left hemisphere regions. Cortical sam-

ples were volumetrically mapped to the 34 cortical regions of our parcellation according to

their corrected MNI coordinates (https://github.com/chrisfilo/alleninf) [69], also including

samples that are within 1 mm of the nearest gray matter coordinates assigned to any region.

Subcortical samples were assigned to one of the 8 subcortical regions as specified by the struc-

ture names provided in the AHBA, due to imperfect registration of the postmortem brains

onto MNI space. For each probe, all samples that fell in the same anatomical region were aver-

aged and then normalized across all 42 left hemisphere regions, generating transcription maps

of each individual probe. These probe maps were next averaged according to the gene classifi-

cation and normalized again across the regions, yielding the spatial expression profiles for

SNCA and GBA, respectively, represented as 42 × 1 vectors (S9 Fig).

Diffusion-weighted image processing and structural connectivity

A total of 1,027 subjects’ preprocessed diffusion MRI data with the corresponding T1 images

were obtained from the Human Connectome Project (2017 Q4; 1,200-subject release) to con-

struct an average macroscopic structural connectivity map of the healthy brain. With a multi-

shell scheme of b values 1,000, 2,000, and 3,000 s/mm2 and the number of diffusion sampling

directions 90, 90, and 90, the diffusion data were reconstructed in individual T1 spaces using

generalized q-sampling imaging (GQI) [70] with a diffusion sampling length ratio of 1.0, out-

putting at each voxel quantitative anisotropy (QA) and the Spin distribution function (SDF), a

measurement of the density of diffusing water at different orientations [71].

Deterministic fiber tracking was conducted in native space using DSI studio (https://www.

nitrc.org/projects/dsistudio/) [22]. The 42 left hemisphere regions in standard space were

mapped nonlinearly onto the individual T1 images using the FNIRT algorithm (https://fsl.

fmrib.ox.ac.uk/) [33] with a warp resolution of 8 mm, 8 mm, 8 mm. The 34 cortical regions

were dilated toward the gray-white matter interface by 1 mm. The QA threshold was set to 0.6
� Otsu’s threshold, which maximizes the variance between background and foreground pixels.

To compensate for volume-size introduced biases, deterministic tractography was performed

for each region (taken as the seed region) separately. With an angular cutoff of 55, step size of

0.5 mm, minimum length of 20 mm, and maximum length of 400 mm, 100,000 streamlines

were reconstructed for each seed region. Connection strength between the seed region and the

target region was set to be the density of streamlines (streamline counts) normalized by the

volume size (voxel counts) of the target region and the mean length of the streamlines. The

goal of this normalization is to correct for the bias toward large regions and long fibers inher-

ent in the fiber tracking algorithms. The procedure was repeated for each region (as the tracto-

graphy seed region), resulting in 42 connection profiles (42 1 × 42 vectors). Each connection

profile consists of the connection strengths between the seed region and all other brain regions

with self-connection set to 0. These connection profiles were finally concatenated to generate a

42 × 42 structural connectivity matrix per subject. Varying numbers of most commonly
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occurring edges were selected and averaged across the individual structural connectivity matri-

ces to construct the group structural connectivity matrix with binary density ranging from

25% to 45%. These group-level matrices were finally symmetrized to represent (undirected)

brain networks. Likewise, we also constructed a group-level distance matrix in which elements

denote mean euclidean length of the corresponding streamlines, which were used to model the

mobility pattern of agents in the edges.

S-I-R agent-based model

The S-I-R agent-based model includes 5 modules:

a. Production of normal α-synuclein

b. Clearance of normal and misfolded α-synuclein

c. Misfolding of normal α-synuclein (infection transmission)

d. Propagation of normal and misfolded α-synuclein

e. Accrual of neuronal tissue loss (atrophy)

It assumes that α-synuclein molecules are independent agents with mobility patterns and

life spans characterized by the connectome’s architecture, neuronal activity, and regional gene

expression. The normal α-synuclein agents, synthesized continuously under the modulation of

regional SNCA expression, are susceptible to the misfolding process when they come in con-

tact with a misfolded agent. Once infected, they adopt the misfolded form and join the infected

population. Both normal and infected agents may spread via fiber tracts toward connected

regions. The degradation rate of both agents is modulated by GBA expression, which codes for

the lysosomal enzyme glucocerebrosidase [56].

Production of normal α-synuclein. In each voxel of region i, a new normal agent may

get synthesized per unit time with probability αi, i.e., the synthesis rate in region i. αi is chosen

as F0,1(SNCAexpressioni) where F0,1(�) is the standard normal cumulative distribution func-

tion. Therefore, a higher expression score entails a higher α-synuclein synthesis rate. The

increment of normal agents in region i is αiSiΔt after a total time Δt, where Si is the size (voxel

count) of region i. Δt was set to 0.01.

Clearance of normal and misfolded α-synuclein. Agents in region i, either normal or

misfolded, may get cleared per unit time with probability βi, the clearance rate in region i. As

for synthesis rate, βi is set to F0,1(GBAexpressioni). Considering that the probabililty that an

agent is still active after a total time Δt is given by limdt!0ð1 � bdtÞ
Dt=dt
¼ e� bDt , the cleared

proportion within time step Δt is 1 � e� bDt .

Misfolding of normal α-synuclein (infection transmission). The normal agents that sur-

vive clearance may become infected with probability gi ¼ 1 � eMi lnð1� g0i Þ in region i, where Mi

is the population of misfolded agents and g0
i is the baseline transmission rate that measures the

likelihood that a single misfolded agent can transmit the infection to other susceptible agents.

Therefore, ð1 � g0
i Þ

Mi is the probability that a single normal agent is not infected by any of the

Mi misfoled agents so that gi ¼ 1 � ð1 � g0
i Þ

Mi ¼ 1 � eMi lnð1� g0i Þ denotes the probability of get-

ting infected by at least one of the Mi misfolded agents in region i per unit time [11, 38]. The

baseline transmission rate g0
i in region i is set to the reciprocal of region size, 1/Si. Analogous

to the clearance module, the probability that a normal agent is uninfected after a total time Δt
is given by limdt!0ð1 � g

0
i dtÞ

MiDt=dt
¼ e� g0i MiDt, therefore the proportion of normal agents that

undergo misfolding within Δt is 1 � e� g0i MiDt.
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Therefore, in determining the baseline regional density of normal α-synuclein, we incre-

ment the population of normal agents Ni with

DNi ¼ aiSiDt � ð1 � e� biDtÞNi: ð2Þ

After the system reaches the stable point (error tolerance ε< 10−7), we initiate the patho-

genic spread and update the population of normal (N) and misfolded (M) agents with

DNi ¼ aiSiDt � ð1 � e� biDtÞNi � ðe
� biDtÞð1 � e� g0i MiDtÞNi ð3Þ

DMi ¼ ðe
� biDtÞð1 � e� g0i MiDtÞNi � ð1 � e� biDtÞMi: ð4Þ

The system has 2 fixed points, the final positions of which will not be affected by the initial

conditions of (Ni, Mi), including the choice of seed region and seeded misfolded agents (see

S1 Text). Note that normal and misfolded agents are equivalent to susceptible and infected

agents.

Propagation of normal and misfolded α-synuclein. Agents in region i may remain in

region i or enter the edges according to a multinomial distribution per unit time with probabil-

ities

Pregioni!regioni ¼ ri ð5Þ

Pregioni!edgeði;jÞ ¼ ð1 � riÞ
wijX

j
wij

ð6Þ

where wij is the connection strength of edge (i,j) (fiber tracts density between region i and j).
The probability of remaining in the current region i, ρi, was set to 0.5 for all i (see S9A Fig for

other choices of ρi; we note that the model fit is robust to variations in ρi). Analogously, the

agents in edge (i,j) may exit the edge or remain in the same edge per unit time with binary

probabilities

Pedgeði;jÞ!regionj ¼
1

lij
ð7Þ

Pedgeði;jÞ!edgeði;jÞ ¼ 1 �
1

lij
ð8Þ

where lij is the length of edge (i,j) (the mean length of the fiber tracts between region i and

region j). In the absence of definitive molecular evidence of different spreading rates for nor-

mal and misfolded α-synuclein, we do not assume different exit and propagation dynamics for

the two types of agents. We use N(i,j), M(i,j) to denote the normal/misfolded population in edge

(i,j). After a total time Δt, the increments of Ni, Mi in region i are

DNi ¼
X

j

1

lji
Nðj;iÞDt � ð1 � riÞNiDt ð9Þ

DMi ¼
X

j

1

lji
Mðj;iÞDt � ð1 � riÞMiDt ð10Þ
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Likewise,

DNði;jÞ ¼ ð1 � riÞ
wijX

j
wij

NiDt �
1

lij
Nði;jÞDt ð11Þ

DMði;jÞ ¼ ð1 � riÞ
wijX

j
wij

MiDt �
1

lij
Mði;jÞDt ð12Þ

We adopt an asynchronous implementation in which the propagation of normal and mis-

folded agents is operated before the synthesis, clearance, and infection at each Δt. We have also

tried other implementations, including propagation after synthesis, clearance, or infection at

each Δt and synchronous implementation and found that the differences are negligible, sug-

gesting that our results are independent of the modules’ update order. Note that, although the

agent-based model can also be viewed in a stochastic framework (i.e., individual agents alter

their states stochastically and the total number of agents at any time is discrete valued), we con-

ducted the simulations in a deterministic way (i.e., using the mean values for each subpopula-

tion of agents in a region, which can take on noninteger values), which preserves the dynamics

of disease spreading because the population of protein agents is sufficiently large.

Another important question to consider is whether the model fit that we observed arises

only from our particular choice of synthesis, clearance, and propagation rate. Specifying the

synthesis and clearance rates as values between 0 and 1 transformed from the gene expression

z-scores, we have simplified the complex relationship between transcriptions and the actual

function of the gene; likewise, setting the probability of exiting an edge simply to the reciprocal

of edge length, we have implicitly specified the relative scale and regional synthesis, clearance,

and propagation processes. It is possible that these assumptions implicitly imposed on the

model might not be able to reflect the actual spreading process. However, we found that the

model yielded robust results as long as the relative magnitude of variations in regional gene

expression z-scores is preserved in synthesis and clearance rates (S10A Fig). Moreover, varying

the scale of propagation rate with respect to the synthesis or clearance process within a certain

range has little effect on model fit as well (S10B Fig).

Accrual of neuronal tissue loss (atrophy). We model neuronal tissue loss as the result of

2 processes: direct toxicity from accumulation of native misfolded α-synuclein and deafferen-

tation (reduction in neuronal inputs) from neuronal death in neighboring (connected)

regions. The atrophy accrual at t within Δt in region i is given by the sum of the two processes:

DLiðtÞ ¼ k1ð1 � e� riðtÞDtÞ þ k2

X

j

wjiX

j
wji

ð1 � e� rjðt� 1ÞDtÞ ð13Þ

where ri(t) is the proportion of misfolded agents in region i at time t, and 1 � e� riðtÞDt quantifies

the increment of atrophy caused by accumulation of native misfolded α-synuclein aggregates

within Δt at time t. The second term 1 � e� rjðt� 1ÞDt , weighted by wji=
X

j
wji and summed up

across j, accounts for the increment of atrophy induced by deafferentation from neighboring

regions within Δt at t − 1. k1, k2 are the weights of the 2 terms with k1 + k2 = 1. We set k1 = k2 =

0.5 such that native α-synuclein accumulation and the deafferentation have equal importance

in modelling the total atrophy growth (see S10B Fig for other choices of k1, k2; we note that the

model fit is consistent across k1/k2 ranging from 0.1 to 10). Code of the model and relevant

data can be found at https://github.com/yingqiuz/SIR_simulator.
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Integration of functional connectivity

We used resting-state fMRI scans from the Human Connectome Project (2015, S500 release)

to construct the functional connectivity maps. Both left-right and right-left phase encoding

direction data were used. Based on the minimally preprocessed resting-state fMRI data, further

processing steps were performed, including (1) nuisance signal regression (including white

matter, cerebrospinal fluid, global signal, and 6 motion parameters), (2) bandpass temporal fil-

tering (0.01 Hz f 0.08 Hz), and (3) spatial smoothing using a 4 mm FWHM Gaussian kernel.

After quality control, 494 subjects were finally included. We then extracted the mean time

course in each of the 42 regions and computed the pairwise Pearson’s correlation coefficients

to derive individual functional connectivity matrices. Normalized by Fisher’s z transform, the

functional connectivity matrices were averaged across subjects and converted back to correla-

tions using inverse Fisher transform to generate the group functional connectivity matrix. All

negative correlations in the resultant functional connectivity matrix were set to 0, having no

influence on the agents’ mobility pattern.

Integration of functional connectivity into the model should bias mobility of the agents

toward region pairs showing greater coactivation patterns. Agents thus have a higher chance of

entering the edges that connect regions having stronger synchronous neuronal activity. More

specifically, the weights wij (connection strength of structural connectivity) in Eq 6 were scaled

by ek�fcði;jÞ , where fc(i,j) is the functional connectivity between region i and region j. Therefore,

the probability that agents move from region i to edge (i,j) per unit time is determined by

Pregioni!edgeði;jÞ ¼ ð1 � riÞ
ek�fcði;jÞwijX

j
ek�fcði;jÞwij

ð14Þ

Note that increasing k makes the influence of functional connectivity more differentiated

across the edges: the stronger functional connectivity values will be enhanced, while the weaker

ones may be suppressed.

Supporting information

S1 Text. Analysis of the fixed points.

(DOCX)

S1 Table. A list of all the parameters or notations used in the model. Note that only k, ρi, k1,

k2 are free parameters: k was scanned from 0 to 5 to study the effect of functional connectivity on

disease spread (Fig 7); ρi = 0.5 for all the regions so that agents have equal chance of staying in the

same region or moving out; K1 = K2 = 0.5 so that the two factors ([i] native misfolded α-synuclein

accumulation; [ii] deafferentation from connected regions) contributed equally to the total atro-

phy growth. We also note that model fit is robust across multiple choices of ρi, k1, k2 (S10 Fig).

(DOCX)

S1 Fig. An illustration of the phase plane at α = 5000, β1 = 0.5, β2 = 0.5, γ = 0.001. M

decreases with N (N nullcline, blue, equation [S4]) and N increases with M (M nullcline,

orange, equation [S5]), therefore, apart from (N = 10000, M = 0), there is only one other inter-

section (N = 5017.15, M = 4982.85) of the 2 lines, indicating that the system has 2 fixed points

only. The vector field (arrows) denotes the direction of the gradient at each position (i.e., the

system at that point will move along the direction of the corresponding arrow). The code to

generate the figure can be found at https://github.com/yingqiuz/SIR_simulator/tree/master/

results/S1_Fig.ipynb.

(TIF)
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S2 Fig. Model fit up to t = 105. Correlations between simulated atrophy and empirical atro-

phy derived from PD patient DBM maps. Correlations are shown as a function of simulation

time. At large t, the model fit stabilizes as the system approaches the stable point. The underly-

ing data can be found at https://github.com/yingqiuz/SIR_simulator/tree/master/results/S2_

Fig.mat.

(TIF)

S3 Fig. Arrival time of misfolded α-synuclein in the model. (A) Regional arrival time of mis-

folded α-synuclein is defined as the time steps required for misfolded α-synuclein amount to

exceed 1 (after seeding at the substantia nigra with one misfolded agent). This roughly follows

the Braak staging hypothesis (see [31]). (B) Arrival time of misfolded α-synuclein at each brain

region. The underlying data can be found at https://github.com/yingqiuz/SIR_simulator/tree/

master/results/S3_Fig.mat.

(TIF)

S4 Fig. Model fit with atrophy estimated using fsl_anat. The computational model replicates

empirical atrophy patterns estimated using an alternative DBM pipeline. Model fits are compa-

rable between the minctools and FSL-estimated atrophy patterns. The underlying data can be

found at https://github.com/yingqiuz/SIR_simulator/tree/master/results/S4_Fig.mat.

(TIF)

S5 Fig. Model fit based on Pearson’s correlation coefficient yielded comparable results

across network density from 25% to 45%. The model integrated with gene expression levels

has more predictive power than the density of misfolded α-synuclein (red) and the static net-

work metrics, including node degree (yellow), node strength (green), or eigenvector (purple)

centrality. The underlying data can be found at https://github.com/yingqiuz/SIR_simulator/

tree/master/results/S5_Fig.mat.

(TIF)

S6 Fig. Model fit at 65-region and 119-region resolution. The 42 regions used in the main

manuscript were hierarchically partitioned into 65 regions and then a further 119 regions.

Simulations were conducted on these two finer resolutions, and yielded comparable results to

the model fit at 42-region resolution. (A) Spearman’s correlation (blue curve) and Pearson’s

correlation (red curve) versus time using the 65-region parcellation. Black dot: peak position

of the correlation coefficients. (B) The model has more predictive power than its constituent

factors (as assessed by Spearman’s correlation). (C) Spearman’s correlation (blue curve) and

Pearson’s correlation (red curve) versus time using the 119-region parcellation. Black dot:

peak position of the correlation coefficients. (D) The model has more predictive power than its

constituent factors (as assessed by Spearman’s correlation). The underlying data can be found

at https://github.com/yingqiuz/SIR_simulator/tree/master/results/S6_Fig.mat.

(TIF)

S7 Fig. Permutation tests for FC. Increasing k (the influence of FC on α-synuclein transmis-

sion) first facilitates then degrades model fit. The red line indicates model fit using true FC val-

ues. For each k, resting-state fMRI time series were reassigned to construct null FC matrices.

The null model fit declines monotonously as k increases (gray line). At smaller vaues of k, sim-

ulations based on real FC yield significantly higher model fit than the null settings as indicated

by the 95% confidence interval (gray bar), whereas at larger k, real FC ceases to have advantage

over null FC. The underlying data can be found at https://github.com/yingqiuz/SIR_

simulator/tree/master/results/S7_Fig.mat. FC, functional connectivity.

(TIF)
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S8 Fig. Exploring other choices of synthesis, clearance, and propagation rates. (A) In the

main setting, we transformed the SNCA and GBA expression z-scores to synthesis and clear-

ance rates using a standard normal cumulative distribution function (Fig 2). To test other pos-

sibilities of the relation between gene expression and synthesis or clearance rate, we chose a set

of commonly used functions that have domain of all real numbers and return values monoton-

ically from 0 to 1. The temporal pattern of model fit is robust to the choice of transformation

functions: the model yields similar results as long as the relative magnitudes of regional gene

expressions are preserved. xi is the gene expression z-score in region i and f(xi) is the transfor-

mation function. (B) We set the probability of exiting an edge (i,j) to the reciprocal of edge

length li,j in the main setting. However, it is possible that the protein agents propagate faster or

slower than the regional synthesis or clearance process. To test sensitivity of the model to the

rate of protein propagation, we introduced propagation speed v and set the probability thereof

to v/li,j such that varying v changes the relative scale of the propagation process vis-a-vis the

regional synthesis and clearance process (e.g., increasing v suggests that the propagation pro-

cess happens faster than the regional synthesis and clearance processes). We chose v = 0.1,1,10

(where v = 1 corresponds to the results in the main text) and found that the relative scale of the

two processes has little effect on the model fit. https://github.com/yingqiuz/SIR_simulator/

tree/master/results/S8_Fig.mat.

(TIF)

S9 Fig. GBA and SNCA expression. (A) Regional GBA expression. There are 3 probes for

GBA (probe ID: 1025372, 1025373, and 1025374). Probes 1025372 and 1025373 were included

to generate the group transcription profile. Probe 1025374 was excluded as it deviated too

much from probe 1025372 (Pearson correlation = 0.30), while the correlation between the

other two probes is 0.79. (B) Regional SNCA expression. Probes 1020182 and 1010655 were

included to generate the group transcription map. Compared to GBA expression, SNCA is

more homogeneous in cortical regions. The underlying data can be found at https://github.

com/yingqiuz/SIR_simulator/tree/master/results/S9_Fig.mat.

(TIF)

S10 Fig. Testing free parameters ρi, k1, k2. Model fit (Spearman’s correlation) is robust to

variations in ρi, k1, k2 (results shown at network density 35%). (A) ρi controls the probability

of remaining in region i while (1-ρi) is the probability of exiting region i per unit time. The

main results are based on ρi = 0.5. However, the model fit is consistently above 0.55 across ρi

ranging from 0.1 to 0.9. (B) For the atrophy in region i, k1 controls the contribution of α-synu-

clein accumulation inside region i, while k2 controls the contribution of deafferentation

induced by atrophy in connected regions. k1 + k2 = 1. The model fit is consistently over 0.5

across k1/k2 ranging from 0.1 to 10. These results suggest that the predicative power of the

model is robust to variations in free parameters ρi or k1/k2. The underlying data can be found

at https://github.com/yingqiuz/SIR_simulator/tree/master/results/S10_Fig.mat.

(TIF)
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