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Abstract

Larval dispersal is a critically important yet enigmatic process in marine ecology, evolution,

and conservation. Determining the distance and direction that tiny larvae travel in the open

ocean continues to be a challenge. Our current understanding of larval dispersal patterns at

management-relevant scales is principally and separately informed by genetic parentage

data and biological-oceanographic (biophysical) models. Parentage datasets provide clear

evidence of individual larval dispersal events, but their findings are spatially and temporally

limited. Biophysical models offer a more complete picture of dispersal patterns at regional

scales but are of uncertain accuracy. Here, we develop statistical techniques that integrate

these two important sources of information on larval dispersal. We then apply these meth-

ods to an extensive genetic parentage dataset to successfully validate a high-resolution bio-

physical model for the economically important reef fish species Plectropomus maculatus in

the southern Great Barrier Reef. Our results demonstrate that biophysical models can pro-

vide accurate descriptions of larval dispersal at spatial and temporal scales that are relevant

to management. They also show that genetic parentage datasets provide enough statistical

power to exclude poor biophysical models. Biophysical models that included species-spe-

cific larval behaviour provided markedly better fits to the parentage data than assuming

passive behaviour, but incorrect behavioural assumptions led to worse predictions than

ignoring behaviour altogether. Our approach capitalises on the complementary strengths of

genetic parentage datasets and high-resolution biophysical models to produce an accurate

picture of larval dispersal patterns at regional scales. The results provide essential empirical

support for the use of accurately parameterised biophysical larval dispersal models in

marine spatial planning and management.
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Introduction

Most marine species have a brief pelagic larval stage that is spent dispersing in open water

[1,2]. Because suitable habitat is often patchy and isolated, larval dispersal is the primary pro-

cess through which populations of demersal species are connected and replenished. Accurately

predicting where larvae settle at the end of their dispersal stage is essential for understanding

the ecology and evolution of marine populations and species [3,4] and for making decisions

about their conservation and sustainable exploitation [5–8]. To this end, recent advances in

biological oceanography and genetics have provided separate and revolutionary insights into

larval dispersal and population connectivity in the coastal oceans [9].

Coupled biological-oceanographic models (hereafter “biophysical” models) can compre-

hensively describe larval dispersal patterns, simulating the movement of billions of larvae

across entire seascapes [3,10,11]. Increasingly sophisticated biophysical models, with higher

resolution and incorporating knowledge of larval biology and behaviour, are widely advocated

as decision-support tools for coastal ecosystem management [12–16]. Although the oceano-

graphic components of these models are usually validated, their biological components are

often underdeveloped and uncertain [17,18]. The resulting model predictions are therefore of

unknown accuracy and precision [19].

Genetic parentage techniques have recently been applied to directly measure larval dispersal

patterns at both local and regional scales [7,20–22]. Parentage data have provided evidence for

local retention of larvae [20] and for multidirectional dispersal over hundreds of kilometres

[21,22]. They have also supported marine spatial management and have informed the design

of marine reserve networks [7,23]. Although parentage assignments provide strong evidence

of specific dispersal events, constraints on the spatial and temporal scales of population sam-

pling mean that only a fraction of potential dispersal pathways can be resolved. Nonetheless,

parentage datasets have the potential to provide an independent test of biophysical model pre-

dictions and to decide whether these models provide credible representations of true larval dis-

persal patterns [9].

The validation of biophysical models with parentage data is a crucial next step in marine

spatial ecology and conservation [2,5,19,24–26]. Genetic parentage data provide an opportu-

nity to validate biophysical models at the spatial and temporal scales that are most relevant to

management, using the distance, direction, and timing of known dispersal events. Given that

both biophysical models and parentage data describe the sources and destinations of individ-

ual larvae, the process of statistical validation is conceptually straightforward. However, it is

logistically demanding to assemble the necessary data for several reasons. First, genetic parent-

age assignments are expensive to obtain at the requisite intensity and spatial scale [9]. If there

are too few assignments, the parentage dataset may not offer the statistical power needed for a

rigorous test [27,28]. Second, it is challenging to produce a biophysical model at both the reso-

lution and scale needed to match observed assignments, as the observed dispersal events

include both small-scale retention of larvae in and around their natal population and long-dis-

tance connections over hundreds of kilometres. Third, because ocean currents are often highly

variable through time, the model must provide a close temporal match to the measured larval

dispersal events [19]. Finally, to isolate the significance of larval biology and behaviour, parent-

age data should be tested against a range of different biophysical models, from passive dispersal

models to those incorporating the biological and behavioural traits of the study species

[17,18,25].

Here, we resolve each of these challenges to validate a biophysical model with a matching

genetic parentage dataset. We parameterise a high-resolution biophysical model of larval dis-

persal across the southern and central Great Barrier Reef (GBR) for bar-cheeked coral trout
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(also called the spotted coral grouper, P. maculatus, Serranidae). We develop novel quantita-

tive validation techniques and use them to rigorously test this model against an intensive and

independent genetic parentage survey of P. maculatus (previously published in [21]). Our

results represent a formal validation of a regional-scale biophysical model using genetic par-

entage data, thereby integrating two important and complementary sources of larval dispersal

information.

Materials and methods

Genetic parentage assignments and population sampling

Between September 2011 and August 2013, a total of 880 adult and 1,190 juvenile P. maculatus
were sampled across three reef regions in the southern GBR: the Keppel Islands, the Percy

Islands, and the Capricorn Bunker group (Fig 1A and 1B). A panel of 23 microsatellite loci iden-

tified 69 parent–offspring relationships within the sample, connecting 18 different patch reefs

separated by distances ranging from a few hundred metres to over 200 km. The observed larval

dispersal network revealed self-recruitment within each region (including to individual natal

reefs) and longer-distance multidirectional dispersal between regions (Fig 1C), creating an

observed parentage dispersal matrix (Fig 1D). Each assigned juvenile and a subset of 314 unas-

signed juveniles were aged from daily otolith growth rings to determine both the spawn date

and the pelagic larval duration. This allowed a closer parameterisation of the biophysical model

and precise temporal match between empirical dispersal vectors and the biophysical model.

Underwater visual census (UVC) surveys were conducted on reefs within each of the three

regions to establish reef-specific estimates of adult population size. This was combined with P.

maculatus fecundity data to estimate the number of propagules released from each reef in the

biophysical model. The species’ relative abundance was highly variable among reefs, particu-

larly between reserve and nonreserve reefs. For reefs within the study domain where popula-

tions were not surveyed, adult densities were approximated by the average density of surveyed

reefs with the same protected status within their region. The biophysical model used these pop-

ulation estimates to account for the unassigned juveniles during model fitting. For full details

of the population sampling and genetic parentage assignments, see S1 Text and reference [21].

Biophysical larval dispersal model

The biophysical model was physically and biologically parameterised for the locations and tim-

ing of the genetic parentage study. The southern GBR has one of the most complex bathyme-

tries on the east Australian coast. A dramatic narrowing of the continental shelf marks the end

of the GBR, leaving its reef systems particularly exposed to oceanic influences. The Capricorn

Channel divides two geomorphologically distinct coral reef systems—the Percy Islands, Keppel

Islands, and Capricorn Bunker group in the inshore and midshelf and the dense Swain Reefs

on the outer shelf (Fig 1A and S2 Text).

Surface currents are predominantly driven northwest by strong trade winds. However,

flows become more variable during the austral summer when P. maculatus spawning is most

intense (S2 Text), when tropical lows can cause southward reversals [29,30]. Circulation is also

driven by the poleward-flowing East Australian Current, a western boundary current that

flows strongest during the summer. The East Australian Current periodically generates strong

cyclonic eddy structures, which create mesoscale recirculation patterns that have a particular

influence on flow in the Capricorn Channel [31].

These flows are captured by the hydrodynamic component of the biophysical model. The

model is based on a temporally implicit 3D barotropic scheme, built from three nested compu-

tational grids with resolutions of 1.85 km (1 nautical mile) for the whole GBR, 370 m for the

Validating larval dispersal models with genetic parentage data
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three sample regions, and 74 m around focal reefs. The numerical scheme was developed from

the models of James and colleagues [10] and Luick and colleagues [32]. It incorporates a sub-

grid scale parameterisation of hydrodynamic impedance around GBR reefs that results in

more accurate modelling of currents passing through the complex matrix of reefs in the GBR

lagoon. Currents were determined hourly throughout the period July 2011 to July 2013, which

encompasses all dispersal events in the parentage dataset.

Fig 1. Study region and data. (A) Location of the study region in the southern Great Barrier Reef, Australia. Stars

highlight sampled reefs in each region. (B) 16-mm P. maculatus settlement-stage larva. Photo credit: C. Wen. (C)

Observed connectivity network between the sampled reefs. Line and reef colours indicate the identity of the source

region. Note that bidirectional connections were observed between all three regions. (D) Parentage connectivity matrix

for the sampled reefs. Only a few rows and columns contain connections, because only a subset of reefs were sampled.

(E) Connectivity matrix generated by the consistent biophysical model simulations, for all reefs in the three regions.

Each row and column correspond to a reef in one of the three sampled regions. In both matrices, colours indicate the

relative strength of dispersal, with purple> green> red. Biophysical simulations give a more complete picture of

regional dispersal patterns, but the genetic parentage data are empirically defensible. The data used in this figure are

given in S1 Data. Is, Islands.

https://doi.org/10.1371/journal.pbio.3000380.g001
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The biological larval component is an individual-based model that tracks each propagule in

5-minute time steps from spawning to settlement or mortality. Its behavioural assumptions

incorporate the recommendations of North and colleagaues [33] and Staaterman and Paris

[17] and include the buoyancy of pelagic eggs, realistic larval sensory ability, behaviour (onto-

genetic vertical migration, swimming performance, and orientation), pelagic larval duration

and mortality, and adult spawning phenology. Importantly, all of these behaviours exhibit diel,

spatial, and ontogenetic variation. They also exhibit individual variation, with the behaviour of

each individual larva being sampled from probability distributions. Behavioural parameters

were based on empirical data for P. maculatus or the most closely related grouper species for

which the required information is known. For each new moon period between July 2011 and

July 2013, we simulated the release of eggs from all reef slope habitats within the study domain,

creating 24 biophysical dispersal matrices (Fig 1E). To achieve the best estimates of the proba-

bilities contained in these matrices, we released as many eggs at each spawning event as com-

putationally possible (more than 25 million per event).

We repeated these simulations using three different behavioural variants of the model. Two

models were plausible representations of P. maculatus larval behaviour, based on best esti-

mates for each parameter: a “consistent” behaviour model, in which each larva’s behaviour was

consistent within each ontogenetic stage, based on a single sample from each parameter’s

probability distribution, and a “varying” behaviour model, in which the behaviour of each

larva varied within and between ontogenetic stages, by resampling from each distribution. For

example, the average larvae in the consistent and varying models swim at the same depth.

However, in the consistent model, a particular larva would maintain a single swimming depth

during each ontogenetic stage aside from diel vertical movements, whereas in the varying

model, that larva would sample a range of depths over time. Both models are a reasonable

interpretation of observational evidence. The final behavioural variant was a “passive” behav-

iour model, in which larvae act as neutrally buoyant particles with minimal behaviour (larvae

in the consistent and varying models control vertical distribution from hatching and develop

horizontal swimming abilities once the caudal fin forms). Our primary goal in simulating the

three different behavioural models was not to draw conclusions about specific behavioural

parameters, since this would require a much larger set. Rather, we wanted to assess the impor-

tance of including larval behaviour (i.e., the passive model, compared with the consistent and

varying models) and to determine whether the parentage dataset had enough statistical power

to discriminate between different plausible behavioural assumptions (i.e., the varying model,

compared with the consistent model). For full details of the hydrodynamic and biological com-

ponents of each of the biophysical larval dispersal models, see S2 Text.

Results

Matching biophysical models with empirical parentage data

Biophysical model predictions can be compared with parentage data in different ways, and the

amount of agreement will vary between goodness of fit tests. To ensure a robust validation, we

performed multiple comparisons between the observed parentage data and the biophysical

simulations, with a focus on the scale and direction of larval dispersal—factors that have been

identified as important for marine science and management. For full details of each goodness

of fit test, see S3 Text.

Matching individual larval dispersal events. An obvious initial goodness of fit test is

whether the biophysical models can reproduce the particular dispersal events observed in the

parentage dataset, including bidirectional dispersal between reef regions (Fig 1C). To give one

example, the parentage dataset contains a larva that was sampled on South Island in the Percy

Validating larval dispersal models with genetic parentage data
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Islands, whose parents lived on Polmaise Reef in the Capricorn Bunker group. This larva

therefore dispersed more than 230 km (straight-line distance) from its natal reef, and otolith

analysis indicates that this dispersal occurred at the end of November 2011. When we look for

this same event in the consistent biophysical model simulations, we find that it occurred multi-

ple times (S3 Text).

We repeated this process for each of the 69 assigned juveniles in the parentage dataset,

searching the three biophysical models for matching events. The consistent biophysical model

delivered the most matches. Altogether, 66 of the observed dispersal events in the parentage

dataset could be spatiotemporally matched to simulated events in this model. The remaining

three dispersal events were observed in the consistent model simulations, but not on the pre-

cise spawning dates indicated by the otolith analysis (i.e., they were spatially but not temporally

matched). This degree of event matching is highly unlikely by random chance (S3 Text). Fur-

thermore, neither the varying nor the passive model achieved this level of matching; in fact,

neither could recreate the majority of observed events (32 and 34 events could be matched,

respectively).

Maximum-likelihood model validation. To assess which model provided the best fit to

the empirical data, we calculated the likelihood that the observed parentage assignments were

generated by each of the three candidate biophysical models. A maximum-likelihood frame-

work can be applied by assuming that biophysical model simulations approximate the multi-

nomial probability distributions of larval destinations from each source reef. Our likelihood

function (S3 Text) incorporates the sampling intensity for both juveniles and adults, the distri-

bution of unsampled reefs in the metapopulation, variation in adult populations between

source reefs, postsettlement mortality, and the proportion of sampled juveniles that could not

be assigned to any genotyped adults, all of which influence model fit [26]. The results showed

that the consistent model produced the best fit to the observed data and convincingly outper-

formed both the passive and the varying models (Fig 2A).

The consistent model provides reasonable predictions of the relative strength of dispersal

between reefs in the southern GBR and accurate predictions of the unassigned juveniles sam-

pled on each reef (Fig 2B). The confidence bounds around each observation reflect the sam-

pling variance inherent in parentage datasets, in which assigned juveniles represent a small

proportion of the total recruitment to a population. They also include the uncertainty around

our estimates of the adult population size of (and thus the larval output from) each reef. The

consistent biophysical model tends to overestimate the amount of dispersal within the regions

(green markers), which includes self-recruitment, and underestimate the amount of dispersal

between the regions (blue markers). It predicts a number of within-region short-distance dis-

persal events that were not observed (green markers along the y-axis). This is unexpected, as

juvenile sampling is often biased towards locations near sampled adult populations [9,20],

making short-distance dispersal events easier to observe. The two other biophysical models

provided poor fits to the data; the varying model predicted almost no between-region recruit-

ment, whereas the passive model underestimated both within- and between-region recruit-

ment (S3 Text).

As well as producing the best fit to the data, a parametric bootstrap goodness of fit test indi-

cated that the consistent model produced a statistically good fit to the parentage data. Fig 2A

shows that the observed likelihood values fall within the 95% confidence bounds of expected

likelihoods, if the biophysical model represents the true dispersal process (S3 Text). In other

words, the consistent model would produce parentage data that are indistinguishable from our

empirical dataset; this suggests that the consistent model provides an accurate representation

of the species’ larval dispersal in the southern GBR. According to this same goodness of fit test,

neither the varying nor the passive model provided good fits to the parentage data (Fig 2A).

Validating larval dispersal models with genetic parentage data
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Fig 2. Biophysical model fit. (A) Histograms show probability distributions of the likelihood of the three biophysical models,

given the dataset of genetic parentage assignments. The consistent model (blue) provides the unambiguous best fit to the data.

The spread of each distribution is caused by sampling and uncertainty about adult population sizes. The overlap of the

consistent model with the parametric GoF distribution (shown in grey) indicates a good fit; the lack of overlap for the varying

and passive model show them to be poor fits. (B) Scatterplot of observed parentage assignments against the expected number

of assignments according to the consistent model. Dashed line shows the 1:1 fit line. Shaded ellipses indicate uncertainty,

estimated using multinomial confidence bounds for the parentage data, and random subsampling for the biophysical data.

Green indicates assignments within the same group of reefs; blue indicates assignments between reef groups, and black

Validating larval dispersal models with genetic parentage data
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We ran a post hoc power analysis to determine whether the likelihood method in general,

and our parentage assignment dataset in particular, were powerful enough to discriminate

between alternative biophysical models. When faced with a simulated parentage assignment

dataset that was sampled from one of our three biophysical models (at the same intensity as the

observed dataset), we were able to identify the correct model 83% of the time (see S3 Text for

details). The consistent and passive models were correctly identified from 97% and 94% of par-

entage datasets, but the varying model was harder to identify. It was correctly identified from

58% of parentage datasets, whereas the remainder were misclassified as the consistent model.

Following previous analyses [34,35], we also calculated the correlation between the

observed parentage matrix and equivalent matrices sampled from the three biophysical simu-

lation models. We found a consistently high correlation between the observed data and all

three biophysical models (Pearson’s r> 0.95), suggesting that this type of test is not useful for

identifying the best model.

Larval dispersal scale and direction. The distance and direction of larval dispersal are

important elements in ecological and evolutionary theory and are central parameters in

marine spatial management. They drive source-sink dynamics [36], economic externalities

[6,37], and the design and performance of marine reserve networks [7,38]. Useful biophysical

models must provide an accurate estimate of these metrics.

To measure the distance scale of recruitment predicted by the consistent biophysical model

and observed in the parentage assignments, we fit isotropic larval dispersal kernels to both

[26]. The two kernels broadly agree, although the consistent model simulations were best fit by

a shorter dispersal kernel than the observed parentage data, and this difference was particularly

apparent at distances of less than 50 km (Fig 3). However, both kernels readily predicted both

within-region connections and also the 200+ km connections observed between different

regions.

Fig 3 also shows that the consistent biophysical model recreates the directional elements of

the parentage dataset for each of the three sampling regions. Neither the passive nor the vary-

ing models were able to achieve this (S3 Text). This result also illustrates the influential role

played by larval behaviour in determining dispersal patterns: although all three models were

forced by the same underlying oceanography, the parameterised larval behaviour of the consis-

tent model was needed to accurately predict the directional patterns of observed larval

dispersal.

Discussion

Our results compare three variants of a high-resolution biophysical larval dispersal model

(consistent, passive, and varying) with high-quality genetic parentage data, using formal statis-

tical comparisons. A suite of tests indicate that our sample of 1,190 P. maculatus juveniles—

including 69 positive parentage assignments—could plausibly have been generated by the con-

sistent biophysical model. This match holds across several different types of comparison,

including event matching, model likelihood, and aggregate estimates of dispersal distance and

direction. The goodness of fit is strengthened by the fact that the parentage dataset was power-

ful enough to statistically exclude two alternative variants of the biophysical model. The poor

fit of the passive model confirms the importance of including larval behaviour and ontogeny

in biophysical models, whereas the poor fit of the varying model emphasises the importance of

including the correct larval behaviour.

indicates unassigned juveniles (i.e., juveniles whose parents were not among the sampled adults). The data used in this figure

are given in S1 Data. GoF, goodness of fit.

https://doi.org/10.1371/journal.pbio.3000380.g002

Validating larval dispersal models with genetic parentage data

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000380 July 12, 2019 8 / 13

https://doi.org/10.1371/journal.pbio.3000380.g002
https://doi.org/10.1371/journal.pbio.3000380


Our analysis only considered the fit of three biophysical models from among the very large

number that could be created using different values of pelagic larval duration, larval growth

rates, swimming ability, and so on. It is possible that one of these untested biophysical models

offers a better fit than the consistent model. However, it is important to note that the consistent

model is mechanistic and deductive, constructed using direct empirical measurements of

model parameters. As a consequence, the superior fit of a model with different (and therefore

less realistic) values would not necessarily mean that it offers a better description of P. macula-
tus larval dispersal. When confronted with independent data on larval dispersal that was gath-

ered using a completely different technique (genetic parentage), the consistent biophysical

model provided a reasonable fit along a number of important dimensions. Despite some

important deviation, particularly across short dispersal distances (Fig 3), these results represent

a validation of this biophysical model.

Quantitative comparisons between biophysical simulations and known dispersal trajecto-

ries for marine fish are challenging, requiring accurate biophysical predictions over distances

that range across several orders of magnitude (102–105 m in our parentage dataset). Past

attempts to compare biophysical simulations with parentage data have been limited by small

numbers of assignments and informal, qualitative comparisons [27,28,39]. None attempted to

compare alternative biophysical models, and without the use of formal statistical methods,

inadequate models cannot be rejected, goodness of fit cannot be assessed, and we cannot be

confident that any apparent match is not a statistical artefact.

Fig 3. Scale and direction of dispersal. Dispersal kernels indicating the scale of dispersal observed in the dataset of parentage assignments (grey) and the

consistent model simulations (blue). Shaded regions indicate 95% confidence bounds of uncertainty, resulting from sampling variation (adults and juveniles)

and uncertain adult population size. The consistent model predicts a larger proportion of short-distance dispersal—and consequently, less long-distance

dispersal—than the genetic parentage data. Inset: compass plots illustrating the straight-line direction and distance travelled from each reef group by all larvae

in the parentage dataset (black) and in the consistent model (blue). Concentric circles measure distances of 100 km, 200 km, and 300 km (outside circle).

Histograms indicate the relative availability of sampled habitat in each direction in the other two regions. The data used in this figure are given in S1 Data.

https://doi.org/10.1371/journal.pbio.3000380.g003
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A number of other analyses have compared biophysical models of larval dispersal with dif-

ferent kinds of empirical data, although very few did so quantitatively [34]. Most have been

based on recreating genetic distance matrices [11,34,40], but this type of population genetic

structure is only evident at large spatial scales and across many generations of dispersal. This

makes genetic distance spatially and temporally poorly suited for biophysical model validation

[2]. Other comparisons used assignments tests, which identify dispersal trajectories by match-

ing larval signatures (genetic or geochemical) to source patches [34,35,41]. Regional assign-

ment matrices can be closely correlated with biophysical matrices, but it can be difficult to

positively assign larvae at smaller scales (site-level misclassification rates can exceed 50%),

because genetic and geochemical differentiation is generally limited between patches in a

marine metapopulation [34,42]. This limits the strength of the validation they offer biophysical

models for marine spatial management purposes, in which the most important decisions must

be made at precise scales [19].

Our analyses integrate biophysical simulation models with genetic parentage data—two

descriptions of larval dispersal that have come to dominate marine dispersal research. Each

data type has unique strengths: biophysical models are cost-effective and can offer a complete

picture of larval dispersal in a region, whereas parentage analyses offer the best direct evidence

dispersal at management-relevant scales. When the spatiotemporal coverage of biophysical

model predictions is reinforced by the evidence contained in genetic parentage dataset, the

result is strongly complementary, opening new avenues in larval dispersal research. For exam-

ple, metapopulation viability models require estimates of dispersal between reefs, and particu-

larly local retention—the amount of reproductive output that returns to the natal population

[5,8,24]. All presently available empirical data, including parentage assignments, can only esti-

mate the amount of self-recruitment [24], but empirically validated biophysical models can

effectively translate observations of recruitment into conclusions about dispersal. Parentage

analyses and biophysical modelling can also inform each other by using larval dispersal simula-

tions to guide and prioritise empirical sampling and by using parentage data to understand

where and why model predictions fail. Finally, validated biophysical models can help explain

unusual events in parentage assignment datasets. For example, the GBR dataset contains

simultaneous long-distance dispersal in different directions—from the Percy Islands to the

Capricorn Bunker group, for instance. These events are common in the consistent biophysical

model simulations, and inspection reveals that the larvae are likely moving under the influence

of contrasting inshore and offshore currents (S3 Text; S1 Animation).

The observed match between an extensive genetic parentage dataset and a high-resolution

dispersal simulation represents an important and overdue validation of biophysical models.

Biophysical models are the foundation of important new theories in marine ecology and evolu-

tion, and their predictions are being incorporated into decision-support tools for marine spa-

tial planning and policy. Given this widespread usage, establishing the credibility of these

models is a matter of urgency. Our observed match between models and data in the southern

GBR provides reassuring support for existing applications of biophysical models worldwide,

but also directions for future improvement. The methods we have developed provide a tem-

plate for such future validation efforts.
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S1 Text. Full description of the genetic parentage dataset, including the adult abundance
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S2 Text. Full description of the biophysical larval dispersal model, including the oceano-

graphic and biological components.
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S3 Text. Full description of the statistical matching methods, including event matching,

likelihood model, directional matching, and dispersal kernel fitting.

(DOCX)

S1 Animation. Animation of long-distance bidirectional larval dispersal in the Southern

Great Barrier Reef. Simulations are generated by the consistent biophysical model, recreating

the 26/07/2011 spawning event. Red larvae were spawned in the Capricorn Bunker group; blue

larvae were spawned in the Percy Islands. Note that these larvae were selected for illustrative

purposes and are neither all the larvae that were released from these two reef groups nor the

only ones that travelled between them.

(GIF)

S1 Data. Spreadsheet containing the data illustrated in Fig 1, Fig 2 and Fig 3.

(XLSX)
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